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Abstract.  

Climate change is increasing the frequency and intensity of natural hazards, causing disastrous impacts on vulnerable 10 

communities. Pacific Small Island Developing States (SIDS) are of particular concern, requiring resilient disaster risk 

management consisting of two key elements: proactivity and suitability. Drought risk knowledge can inform resilient risk 

management, but it is currently underexplored in Pacific SIDS, particularly in the highly vulnerable nation of Papua New 

Guinea (PNG). A semi-dynamic and tailored drought risk assessment methodology to be utilised in PNG was developed in 

this research. Representative hazard, vulnerability, and exposure indicators were selected, and integrated Geographic 15 

Information System (GIS) processes were used to produce hazard, vulnerability, exposure and risk indices and maps. The 

validity of the risk assessment was investigated with a retrospective risk assessment of drought in PNG (from 2014-2020) 

paired with a literature assessment (as a ground-truth source), and a sensitivity analysis. The preliminary drought risk 

assessment methodology demonstrated in this study was overall deemed valid and robust, with supplementary improvements 

proposed for consideration in future investigation. The developed methodology makes strides in addressing methodological 20 

knowledge gaps in drought risk assessment, for global assessments and those specific for PNG, and demonstrates the potential 

for risk assessment to inform resilient drought management practices in at-risk areas. Overall, the results of this study directly 

contribute to enhancing provincial drought risk knowledge in PNG. 

Keywords: Climate Risk; Drought Risk Assessment; Resilient Management; Small Island Developing States; Papua New 

Guinea 25 

1 Introduction 

1.1 Drought in Papua New Guinea 

Increased intensity and frequency of natural hazards and disaster events resultant of a changing global climate are already seen 

to have destructive impacts on the world’s most vulnerable communities (Mercer, 2010). Small island developing states (SIDS) 

in the Pacific include some of the most hazard-vulnerable communities in the world (Bang and Crimp, 2019). Papua New 30 

Guinea (PNG) is one such country that has experienced destructive impacts from hazard events. In particular, drought has 

consistently devastated PNG communities in the past, and is predicted to increasingly affect PNG in the future (Kuleshov et 

al., 2014 ).  

 

Generally, drought can be described as an extended dry period resulting from rainfall deficiency. However, drought has many 35 

definitions for its various types: meteorological (when climactic factors result in dry conditions within an area), hydrological 

(when water shortages occur after a period of meteorological drought), agricultural (when agricultural productivity is inhibited 

by meteorological and hydrological drought), and socioeconomic (when dry conditions restrict the supply and demand of 
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commodities) (Wilhite et al., 2014). Drought events across PNG occur mainly a result of two key climate drivers: El Niño 

Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD).  40 

 

In PNG, ENSO alters the distribution of  precipitation, often causing precipitation extremes (Horton et al., 2021). ENSO has 

two key phases: El Niño (warm phase) and La Niña (cold phase). La Niña-associated prolonged rainfall has commonly 

contributed to floods, whilst El Niño-associated prolonged aridity has commonly contributed to droughts in PNG (Smith et al., 

2013). Historically, the 1997-1998 El Niño contributed to severe drought in PNG causing immense loss of life, destruction of 45 

crops, and forest fires subsequently causing regional pollution problems (Nicholls, 2001). However, different regions of PNG 

experience varying climactic affects from El Niño and La Niña (Fig. 1). For example, a mild to moderate La Niña event which 

occurred in PNG during 2011-2012 resulted in drought conditions in several PNG provinces. Although in a La Niña phase, 

severe precipitation deficits were observed in New Ireland and Milne Bay Province throughout 2010 and the first half of 2011, 

resulting in drought conditions which contributed to crop destruction, food insecurity, and water shortages (Smith et al., 2013).  50 

 

The effects of ENSO can be influenced by the IOD to further weaken or strengthen trends in rainfall variability (Bhardwaj et 

al., 2021b). Defined as consistent changes in sea surface temperature variability across the tropical western and eastern Indian 

Ocean, the IOD can be negative, positive, or neutral. Each IOD phase interacts with ENSO impacts differently (Bhardwaj et 

al., 2021b). The impacts of interactive IOD and ENSO phases experienced in PNG are shown in Fig. 2. Whilst drought 55 

conditions can occur in PNG in any ENSO or IOD phase, extreme drought conditions are most often a result of a positive IOD 

phase interacting with an El Niño ENSO phase.  

1.2 Disaster risk reduction and resilient risk management of droughts in Papua New Guinea 

PNG has a lack of coping capacity for managing the risks posed by the drought events which occur across the country, due to 

limited resource availability, including water and food insecurity, and reactive management practices (Kuleshov et al., 2020). 60 

Although drought historically has disastrous impacts on PNG communities, the risk of drought has not been extensively 

investigated compared to other hazards like tropical cyclones and floods. Due to the lack of drought risk knowledge, and the 

lack of coping capacity, future disaster risk reduction (DRR) of drought, through resilient drought risk management, is of 

priority in PNG (Bang and Crimp, 2019).  

 65 

Resilient drought risk management consists of two key elements: proactivity and suitability. In this instance, proactivity is 

characterised by controlling a drought risk situation prior to the occurrence of a drought event, rather than responding to 

drought after it has reached a crisis level. Suitability is seen as the level of appropriateness that drought management strategies 

have for application at localised levels in vulnerable places. A drought management strategy is deemed suitable if it can be 

independently implemented by local stakeholders and/or communities and if it addresses the specific impacts faced by local 70 

decision-makers (Aitkenhead et al., 2021). Thus, when seeking to increase drought resilience in PNG, the proactivity and 

suitability of localised drought risk management is of critical focus (Mercer, 2010). 

1.3 Investigating drought risk knowledge in PNG: Drought risk assessments 

Drought risk assessments are increasingly recognised as key to informing proactive and suitable drought risk management 

decisions, as they aid in increasing risk knowledge and can identify priority management areas. Such assessments are 75 

commonly used in global studies investigating drought risk knowledge, and there is potential for application of these 

assessments in SIDSs like PNG (Chen et al., 2003; Rahmati et al., 2020). Drought risk assessments analyse the risk of adverse 

drought impacts in a particular area. Drought risk is defined as the probability of harmful consequences, or expected losses 

resulting from interactions between drought hazard (the possible future occurrence of drought hazard events); drought exposure 
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(the total population, its livelihoods and assets in an area in which drought hazard events may occur); and drought vulnerability 80 

(the tendency of exposed factors to suffer negative impacts when drought hazard events occur) (Sharafi et al., 2020).  

 

It is widely accepted that there are two types of risk assessments: static and dynamic. Dynamic drought risk assessments 

consider both the spatial and temporal aspects of droughts, using historic, periodically updated, and simulated data. 

Additionally, dynamic assessments incorporate not only hazard monitoring indicators, but also vulnerability and exposure 85 

indicators (Mosquera-Machado and Dilley, 2009). Most drought risk assessments that have been previously conducted have 

been static assessments (Hagenlocher et al., 2020). Static assessments provide an estimate of risk factors for a discrete moment 

in time and space, usually considering only one or two components of risk (e.g only hazard) (Aerts et al., 2018) (Hagenlocher 

et al., 2020). Dynamic assessments are recommended for use over static assessments as they provide a more holistic assessment 

of drought risk; drought risk is not static, but rather dynamic in both space and time (Hagenlocher et al., 2020).  90 

 

The vitality of such dynamic drought risk assessments is demonstrated by Rahmati et al. (2020) in a study of drought risk in a 

vulnerable area of south-east Queensland, Australia. As a result of their study, Rahmati et al. (2020) provided recommendations 

detailing areas that are likely to experience adverse drought impacts, within which drought resilience should be improved. The 

drought risk assessment also had implications for utilising integrated Geographic Information System (GIS)-based mapping 95 

techniques to accurately map and visualise drought risk levels in an area to better inform drought preparedness. Integrated 

GIS-based mapping techniques for risk assessment include three key components: data integration into GIS, risk assessment 

tasks, and consideration of risk decision-making (Chen et al., 2003).  

 

The first component, data integration into GIS, consists of data collection and assimilation onto a GIS platform and data 100 

transformation and standardisation. Fuzzy logic is a data transformation and standardisation technique increasingly recognised 

as useful in drought risk mapping (Dayal et al., 2018). As drought risk is dynamic, assessing and mitigating regional drought 

impacts is likely to involve some level of subjectivity as there are no standard criteria on mapping and quantifying drought 

risk. The application of fuzzy logic in GIS, minimises the subjectivity in drought risk assessment, thus improving the efficiency 

of risk assessment as a tool for spatial decision-making (Dayal et al., 2018). Risk assessment tasks are then performed on the 105 

GIS platform, including individual hazard, vulnerability, and exposure assessments with accompanying mathematic 

calculations (Hagenlocher et al., 2019). The consideration of risk decision-making is incorporated through efficient data 

visualization on GIS risk maps and appropriate dissemination of such products to decision-makers (Blauhut, 2020).  

1.4. Validating drought risk assessments to ensure accuracy and usability of results 

Drought risk assessments commonly lack adequate validation (Asare-Kyei et al., 2017; Blauhut 2020). In a review of past risk 110 

assessment methodology, Hagenlocher et al. (2019) state that comprehensive validation “has proven to provide relevant 

information on the reliability, validity, and methodological robustness of risk assessments and their outcomes. However, its 

application in the field of risk assessment remains largely underdeveloped.”. Among the few studies seeking to validate a risk 

assessment methodology, various validation techniques have emerged (González Tánago et al. 2016).  

 115 

Validation through result comparison with historical data has been used in several studies (Wu and Wilhite, 2004), however 

the preciseness of this method has been criticised (Fekete, 2019). Molinari et al. (2019) states that there is “the need of higher 

quality data to perform validation and of benchmark solutions to be followed in different contexts, along with a greater 

involvement of end-users”. An alternative technique, incorporating the views of end-users as a ‘ground-truth’ source, called 

participatory research is becoming increasingly utilised to validate drought monitoring outcomes, including risk assessment 120 
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results. A ground-truth source provides information that is real or true, given by direct observation or measurement in the real 

world. For example, drought impact records for a particular event provided by locals who experienced the event first-hand.  

 

Participatory research is a technique which includes collaboration with stakeholders in a capacity building process as well as 

consideration of local peoples and expert observations into knowledge systems (Mckenna and Yakam, 2021; Fragaszy et al., 125 

2020). Although participatory research is seen as a promising validation methodology, some past investigations using this 

method have employed an additional ‘ground-truth’ source to strengthen validation adequacy (González Tánago et al. 2016). 

For example, Bijaber (2018) verified risk assessment results with historical on-the-ground precipitation and crop data at the 

national scale in Morocco, as well as the views of experts regarding what conditions were experienced during the study period. 

 130 

In addition to validating risk assessment results, a statistical sensitivity analysis is also recommended as best practice for 

validating the selection of drought risk indicators informing the risk assessment (Hangelocher et al., 2019). Sensitivity analysis 

is used to determine how different values of an independent variable affect a particular dependent variable under a provided 

set of assumptions. Although recognised as a critical verification tool, previous drought risk assessment studies commonly 

exclude sensitivity analysis. In a review of past drought risk assessments, Hangelocher et al. (2019) determined that only 12% 135 

of studies conducted a statistical sensitivity analysis, with only four studies employing both a validation of risk assessment 

outcomes against a ground-truth source and a sensitivity analysis.  

 

In Pacific SIDS like PNG, data availability is scarce. Therefore, validation through comparison with historical independent 

data is unlikely to be credible. Overall, a strengthened validation methodology using multiple ground-truth sources, and an 140 

additional sensitivity analysis, seems most promising for future study of drought risk assessments in PNG.  

1.5 Addressing drought risk assessment knowledge gaps in PNG 

Generally, drought is insufficiently investigated on the global scale (Blauhut, 2020). Out of the few drought risk assessments 

previously conducted, most are lacking in effective methodological components (González Tánago et al. 2016). Blauhut (2020) 

recommends that future studies must “improve the characterisation of drought risks and its components” and “ascertain how 145 

this risk can be communicated…to enhance resilience to drought”. Hagenlocher et al. (2019) corroborates that there are major 

gaps in previous risk assessment methodologies, like a lack of tailored indicator selection. 

 

Tailored drought risk assessment is specific for measuring drought risk in a particular area and produces information for a 

certain set of stakeholders. This can be achieved by selecting hazard, vulnerability and exposure indices that specifically 150 

consider the climatic, socio-economic, and geographic characteristics of the area being assessed. Thus, generalised indicators 

would be omitted from the assessment. In recognising the importance of tailoring drought risk assessment through appropriate 

selection of indicators, Le et al. (2021) selected specific indicators for their agricultural drought risk assessment in Vietnam, 

based on three criteria (i) indicators are relevant to agricultural sector; (ii) data for these indicators are quantitative and publicly 

available, and (iii) indicators are specific to Vietnam’s socio-economic conditions.  155 

 

The scarce number of previous studies in PNG, assessing the risk of negative drought impacts, are commonly lacking in 

effective methodological aspects, and do not address key knowledge gaps in drought risk assessment investigation. An analysis 

of previous drought assessment studies in PNG is provided in table 1, and the methodological knowledge gaps are outlined. 

Overall, there is room for future investigation to develop a drought risk assessment to be utilised in PNG that incorporates the 160 

most effective methodological aspects, specifically considering the following: tailored and specific indicator selection; 
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consistent drought risk definitions; dynamic rather than static assessment; sufficient validation of indicators and results; and 

the provision of recommendations for risk reduction. 

 

Accordingly, this study will expand on previous research (Bhardwaj 2021b; Kuleshov 2020) with an aim to increase drought 165 

risk knowledge in PNG. Specifically, this research seeks to:  

• demonstrate the potential for tailored drought risk assessments to accurately inform on drought risk levels before, 

during and after a drought event and thus contribute to more resilient drought risk management in local areas, using 

drought in PNG as a case study.  

• develop an effective, dynamic drought risk assessment methodology utilising GIS integrated technique and space-170 

based weather and climate extremes observations, conduct a unique and tailored, dynamic drought risk assessment 

for a retrospective period in PNG, and perform a comprehensive validation of the risk assessment results using 

literature records as a ‘ground-truth’ source.  

The development of the drought risk assessment is intended to aid the PNG NWS in informing local PNG stakeholders on 

which provinces are of highest concern and guide resilient drought risk management practices within priority communities.    175 

2. Data and Methodology 

2.1 Study Area: PNG 

PNG has a population of approximately 8.8 million across its mainland and six hundred islands, which have a total land area 

of 452,860 km2. The country consists of four major regions, within which the 22 provinces of PNG are divided (Fig. 3). The 

four major PNG regions and their provinces are as follows: 180 

1. Highlands Region: Chimbu (Simbu), Eastern Highlands, Enga, Hela, Jiwaka, Southern Highlands, and Western Highlands. 

2. New Guinea Islands Region: Bougainville, East New Britain, Manus, New Ireland, and West New Britain. 

3. Momase Region: East Sepik, Madang, Morobe, and Sandaun (West Sepik). 

4. Southern Region: Central, Gulf, Milne Bay, National Capital District, Oro (Northern), and Western. 

 185 

PNG is largely mountainous, and much of it is covered with tropical rainforest. The climate of PNG can be described as tropical 

throughout, however each region of PNG experiences differences in seasonal climactic factors (Fig. 2) (Bhardwaj et al., 2021a). 

PNG society consists of traditional village-based life, dependent on subsistence and small cash-crop agriculture, as well as 

modern urban life in the main cities. Economic performance in PNG has historically been based on international prices for 

exports, fiscal policies, and construction activity. As of 2015, over 2 million Papua New Guineans were poor and/or facing 190 

hardship, particularly those based in rural areas (Pacific Islands Forum Secretariat, 2015). Agricultural occupation is 

consistently important for local livelihoods, with approximately 80-85% of the rural population directly deriving their 

livelihood from farming (Pacific Islands Forum Secretariat, 2015). 

2.2 Study Design 

The methodology proposed here addresses the gaps identified in previous studies (Hagenlocher et al., 2019) to achieve a 195 

tailored and accurate risk assessment. Hazard, vulnerability, and exposure components are equally considered, and the spatial 

and temporal aspects of drought are investigated, using retrospective and periodically updated data. The assessment is deemed 

as semi-dynamic as it has a dynamic hazard component, that can be updated monthly and includes monitoring indicators with 

data on 3-month cumulative timescales, but also includes more static components of vulnerability and exposure, which are 

updated annually. 200 
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This research is conducted on the provincial level within a 2014-2020 study period. The methodology for this study was four-

part:  

1. Selection of tailored hazard, vulnerability, and exposure indicators appropriate for monitoring drought risk in PNG 

provinces.  

2. Calculation and GIS mapping of hazard, vulnerability, exposure, and drought risk indices for retrospective1 years 205 

(2014-2020) to determine the occurrence of drought events in PNG in the past.  

3. Validation of drought risk assessment accuracy through a comparison of the drought risk index results with literature 

detailing the drought conditions and impacts experienced on-the-ground at the time of each past PNG drought event. 

4. Implementation of a sensitivity analysis to enhance the evaluation and validity of the risk assessment. 

2.2.1 Methodology: Part 1 210 

The risk index produced incorporates equal indices of hazard, vulnerability, and exposure; specific indicators were selected to 

contribute to these three indices. With drought hazard covering the possible occurrence of drought events in the future, 

exposure considering the total population, its livelihoods and assets in an area in which drought events occur, and drought 

vulnerability reflecting the tendency of exposed factors to suffer adverse impacts when a drought event occurs (Sharafi et al., 

2020). These definitions remained clear throughout the assessment process, addressing the literature recommendation to 215 

consistently characterise drought risk as the risk of negative impacts as a function of three core components: hazard, exposure, 

and vulnerability (Hagnelocher et al. 2019). 

 

Tailored risk indicators were selected for monitoring drought risk in PNG on the provincial scale, based on the following 

criteria adapted from Le et al. (2021) (i) indicators are relevant to one or more of the three most drought impacted sectors in 220 

PNG (economic sector, agricultural sector, and health sector) (ii) data for these indicators are quantitative and publicly 

available, and (iii) hazard indicators are highly specific to PNG’s climactic conditions and the vulnerability and exposure 

indicators are highly specific to PNG’s socioeconomic and geographic conditions. An analysis of indicator selection in earlier 

studies of characteristically similar areas to the 22 provinces of PNG was used to measure the suitability of potential indicators 

for this study against the selection criteria described above. PNG National Weather Service (NWS) advice was also sought to 225 

approve indicator selection for this study. Additionally, hazard indicators were assessed against recommendations made by 

WMO in their Handbook of Drought Indicators and Indices (Svoboda and Fuchs, 2016).  

 

It is important to note that: 

- all types of droughts were considered when selecting indicators, as well as all major sectors across PNG provinces. 230 

This was done to provide a holistic risk index for PNG provinces, as each type of drought is known to impact PNG 

communities (Kuleshov et al., 2020), and each major sector experiencing the effects (Bhardwaj et al., 2021b).  

- publicly accessible data was only available for certain indicators as data availability is poor in PNG, thus indicators 

which could have been more appropriate for use in hindsight had to be omitted.  

- indicator data was only available at certain spatial resolutions. Because of this, a standard spatial resolution was 235 

chosen for the recording of data; data was recorded at the provincial level.  

- space-based monitoring products were used when gathering data for hazard indicators to ensure accuracy. There is a 

commonly recognised need to increase the utilisation of monitoring of climate extremes from space in disaster risk 

investigations (Kuleshov et al., 2020; Blauhut, 2020).  

 
1 This methodology follows the process of historical risk assessment validation, as in Wu and Wilhite (2004), however due 

to the limited data range available for selected indices, it is inappropriate to call this a historical risk assessment. It is 

therefore deemed a retrospective risk assessment. 
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Table 2 displays the chosen hazard, vulnerability, and exposure indicators, indicator data sources, data resolution for each 240 

indicator, and the weight applied to each indicator. The reasoning behind the selection of each of these indicators is described 

in tables that are included in the Supplementary Materials. Other potential indicators and the reasons why they were omitted 

from this study are also described in tables in the Supplementary Materials.   

 

Each of the selected hazard, vulnerability and exposure indicators have varying thresholds for signalling levels of drought risk. 245 

Table 3 provides the generally accepted thresholds for each indicator in which ‘no to mild drought risk, ‘moderate drought 

risk’, and ‘severe to extreme drought risk’ is likely signalled. These thresholds have been determined through an investigation 

of literature regarding each indicator. For example, SPI and VHI thresholds were decided upon using guidance from Chua et 

al., (2020). These thresholds are provided as an insight into the general signals given by ranges of values in the indicator data. 

They were not used further in any calculations.  250 

2.2.2 Methodology: Part 2 

Data for hazard, vulnerability, and exposure conditions, in each of the 22 PNG provinces within the 2014-2020 study period 

in PNG, was used to develop a yearly risk index for each year investigated to determine whether it is suspected that a drought 

event(s) occurred. In this research, we consider a drought event as the occurrence of drought hazard conditions with associated 

impacts. Integrated-GIS methodology for mapping was used to display yearly risk levels for 2014-2020, on the provincial 255 

scale across PNG. Monthly risk indices were also produced for November and December in 2014, January to December of 

2015, and November and December in 2016. The monthly results formed a case study of PNG’s transition into and out of 

drought in the strong El Nino year of 2015.  

 

To calculate the hazard, vulnerability, and exposure indices, indicator data was first reclassified by a linear function (using the 260 

rescale by function tool in ArcGIS Pro) on a 1-10 scale and then standardised using fuzzy logic in ArcGIS Pro (Environmental 

Systems Research Institute (Esri) Inc., 2019). Fuzzy logic is processed in ArcGIS Pro through the fuzzy function which requires 

the assignment of fuzzy membership classes to data (Equation 1).  

 

𝜇𝐴(𝑥): 𝑋 ⟶ [0,1]                                                                        (1) 265 

where μA(x) refers to the grade of membership for element x in a fuzzy set A, and the X is the universal set. 

 

Prior to the performance of the fuzzy function, fuzzy membership classes were assigned to each indicator, describing the 

relationship between it and drought risk as recommended in Rahmati et al. (2020) and Aitkenhead et al. (2021).  Two classes 

of fuzzy membership were assigned in this study: fuzzy small2 and fuzzy large3. Fuzzy values scaled between 0-1 based on the 270 

possibility of the indicator data contributing to drought risk, where 0 was assigned to values unlikely to contribute to drought 

risk, and 1 was assigned to values most likely to contribute.  

 

In fuzzy large, larger inputs have membership values closer to 1. This function is defined by a midpoint value that can be left 

as a default or manually adjusted to suit specific datasets, which is assigned a membership of 0.5. Equation 2 gives the 275 

mathematical expression for fuzzy large membership.  

𝜇(𝑥) =  
1

1+(
𝑥

𝑓2
)−𝑓1

                                                                        (2) 

where f1 is the spread and f2 is the assigned midpoint.  

 
2Fuzzy small: a transformation function used when smaller input values are most likely to influence drought risk. 

3Fuzzy large: a transformation function used when larger input values are most likely to influence drought risk.  
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In fuzzy small, smaller inputs have membership values closer to 1. Like fuzzy large, it is defined by a either a default or 

manually assigned midpoint that is given a membership value of 0.5. Equation 3 gives the mathematical expression for fuzzy 280 

small membership.  

𝜇(𝑥) =  
1

1+(
𝑥

𝑓2
)𝑓1

                                                                          (3) 

 

The default midpoint was not used when performing the fuzzy function; the midpoint used for each indicator was based on the 

mean value in the historical records for indicator data (historical records meaning all available past data; this differs for each 285 

indicator e.g. SPI data is available from 2001 onwards). This ensured that the data was standardised on both a spatial and 

temporal scale.  

 

The indicator fuzzy values for each year were mapped on the provincial scale as yearly raster layers in ArcGIS Pro4. Thus, a 

2014, 2015, 2016, 2017, 2018, 2019, and 2020 standardised raster layer was mapped on the provincial scale for each of the 290 

ten indicators. This was also done for the months investigated as part of the 2015 case study. After standardising indicator 

data, numerical weights were assigned by researchers to each indicator based on an expert weighting scheme informed by past 

studies and advice from the PNG NWS. The weights assigned reflected the relative importance and contribution of each 

indicator to the specific index it informs. This weighting scheme was on a 0-1 scale, with 0 indicating no probable contribution 

to the relative index and 1 being total probable contribution to the relative index (Frischen et al., 2020). The weights assigned 295 

to each hazard, vulnerability and exposure indicator are shown in table 2.  

 

By applying weights to indicators, the potential affect of anomalies in individual indicator data is reduced. For example, hazard 

data anomalies are expected as there is commonly a lag between dry signals from SPI and VHI. The effects of dry conditions 

recorded in SPI are commonly seen leading up to and during a drought event, whereas the vegetative affects recorded by VHI 300 

can sometimes lag and can only become evident once a drought event has commenced (Zhao et al. 2022). Additionally, VHI 

primarily signals only agricultural drought, whereas SPI considers multiple drought types (meteorological, hydrological, and 

agricultural). So, in a holistic drought risk assessment aiming to encompass all forms of drought, as in this study, SPI could be 

weighted more. 

 305 

The vulnerability, hazard and exposure indices were calculated for each province, and spatial maps of the area covering the 22 

provinces of PNG (representing vulnerability, exposure, and hazard per unit area) were produced, through the raster calculator 

in ArcGIS Pro using Equations 4, 5, and 6 (Dayal et al., 2018). Vulnerability, hazard and exposure indices were calculated for 

each year and month under investigation.  

𝐻𝐼 = ∑ ( 𝑤𝑖  ∗  𝑥𝑖′ )
𝑛
𝑖=1                                                              (4), 310 

𝑉𝐼 = ∑ ( 𝑤𝑖  ∗  𝑥𝑖 ′ )𝑛
𝑖=1                                                              (5),  

𝐸𝐼 = ∑ ( 𝑤𝑖  ∗  𝑥𝑖 ′ )𝑛
𝑖=1                                                              (6),  

where HI is the Hazard Index, VI is the Vulnerability Index, EI is the Exposure Index, n is the number of Hazard, Vulnerability or Exposure 

Indicators, xi′ refers to the standardised indicators and wi refers to the respective indicator weight. 

 315 

The final drought risk index value for each PNG province was then determined and mapped through the integration of the 

drought vulnerability, hazard and exposure index maps using the Fuzzy Gamma Overlay function (using a gamma of 0.75) in 

ArcGIS Pro. The mathematical expression for this function is given in Equation 7 (Dayal et al., 2018). 

 

 
4The base map used for all mapping in this study was gathered from the open-sourced platform, GISMap. 
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𝜇𝑔𝑎𝑚𝑚𝑎 =  (𝜇𝑠𝑢𝑚)𝛾 ×  (𝜇𝑝𝑟𝑜𝑑𝑢𝑐𝑡)1−𝛾                                        (7) 320 

where μgamma is the calculated fuzzy membership function, γ is a parameter chosen between 0 and 1; μsum is the fuzzy algebraic SUM and 

μproduct is the fuzzy algebraic PRODUCT that is mathematically expressed in Equation 8 and 9 respectively (Dayal et al., 2018). 

𝜇𝑠𝑢𝑚 = 1 −  ∏ (1 − 𝜇𝑖)
𝑛
𝑖=1                                                           (8), 

𝜇𝑝𝑟𝑜𝑑𝑢𝑐𝑡 = 1 −  ∏ (𝜇𝑖)
𝑛
𝑖=1                                                             (9) 

where μi is the fuzzy membership for the map, and i equals the number of maps to be combined. In the fuzzy gamma operation, γ=0 is 325 

equivalent to the fuzzy product and γ=1 is equivalent to fuzzy sum.  

 

Once a final drought risk map was produced for each year and month under investigation, the extent of drought risk displayed 

was classified into five levels: very mild (0.01 to 0.20 index values, mild (0.21 to 0.40 index values), moderate (0.41 to 0.60 

index values), severe (0.61 to 0.80 index values), and extreme (0.81 to 1.00 index values). These classifications are commonly 330 

used in drought risk assessments (Dayal et al., 2018; Frischen et al., 2020).  

 

The researcher then observed the drought risk maps produced and determined the years in which a nationwide drought event 

was suspected in PNG. Since PNG is a highly variable nation, it is hard to stipulate that drought is occurring as a nationwide 

event if a handful of scattered provinces are at high risk, it is more suitable to consider drought risk across each of the four 335 

regions of PNG. Table 4 outlines the decision rules for when a regional drought event was suspected within the four regions 

of PNG. Three severity levels were used to classify the strength of the events indicated: mild, moderate, and severe to extreme. 

The strength of each identified drought event was determined based on the risk level pattern observed across PNG overall. As 

recognised in the literature describing past drought events across PNG (Bhardwaj et al., 2021b; Bang and Crimp, 2019), if half 

of the regions in PNG (two out of four) are deemed to be experiencing drought, then a mild to moderate nationwide drought 340 

event is likely to be occurring (mild or moderate depending on the severity of risk levels observed in the drought suspected 

regions). If the majority or all the regions are suspected to be in drought, then a severe to extreme nationwide drought event is 

likely to be occurring (severe or extreme depending on the severity of risk levels observed in the drought suspected regions) 

(Kanua et al., 2016). 

2.2.3 Methodology: Part 3 345 

Risk level accuracy was validated through comparison with documented records of observed impacts during the study period 

as a ground-truth source. Literature sources on this topic were analysed for the period of 2014-2020 to determine when drought 

events were recorded. The events recorded in the literature were compared to those identified by the risk assessment. The 

events identified by both the literature and risk assessment were further analysed by comparing the severity of each event 

indicated by the risk assessment and the severity described in the literature. As in the events identified by the risk assessment, 350 

three severity levels were used to classify the strength of the events indicated in the literature: mild, moderate, and severe to 

extreme. Table 5 displays the information used to formalise the link between impacts reported by literature sources and the 

three severity classes.  

 

A literature search was undertaken to gather appropriate sources for analysis. Criteria for the inclusion and exclusion of sources 355 

was developed, guided by similar past studies (González Tánago et al. 2016) and the requirements of this study. Table 6 

displays the criteria used to select sources for this study. The search parameters used to gather the sources are listed in Table 

7. Overall a total of 13 sources (Annamalai et al. 2015; Whitfield et al., 2019; Bonnafous et al., 2017; Government of Australia, 

2017; Allan et al., 2019; De Deckker, 2016; Schmidt et al., 2021; Burivalova et al., 2017; Bhardwaj et al., 2021b; Johnson et 

al., 2019; Bang and Crimp, 2019; World Food Programme, 2019; Mckenna and Yakam, 2021) were included in the literature 360 

investigation (Table 8). Each of the 13 sources were analysed and the following information was recorded: the time of drought 
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mentioned, the severity of drought mentioned, and the types of drought impacts mentioned. The specific provinces mentioned, 

and the severity of impacts described for such provinces, were also recorded.  

 

To determine if there were significant differences between the severity level for each identified drought event, indicated by 365 

the risk assessment compared to literature, two types of statistical test were performed: F-test and t-test5. These tests were 

conducted for each drought event identified by the assessment and literature. The F-test was firstly conducted to determine 

whether there were equal variances between the provincial risk levels displayed in the risk assessment, and the impact levels 

noted for provinces in the literature, for each drought event identified (Table 9). The F-value (test statistic), degrees of freedom 

and the two-tailed p-value indicating the level of marginal significance within the test, were recorded. A Student’s t-test 370 

(assuming equal or unequal variances depending on F-test results) was then conducted to determine the significance of 

difference between the drought risk levels indicated by the assessment and the impact levels indicated in literature (Table 9). 

The t-value (test statistic), degrees of freedom and the two-tailed p-value were recorded. The main factor being tested for was 

if a difference existed between the risk assessment-given risk levels and the literature-given risk levels. As this is non-specific, 

a two-tailed p-value is deemed appropriate for use (Peskun, 2020). Test assumptions were checked by plotting the data 375 

distribution on boxplots. All assumptions were met, thus the tests proceeded. All statistical tests used α = 0.05. 

2.2.4 Methodology: Part 4 

Sensitivity analysis provides insight into how uncertainty in a model’s output (in this case the hazard, vulnerability, or exposure 

index) can be attributed to different sources of uncertainty in the model input (in this case the individual indicators) (González 

Tánago et al. 2016). A sensitivity analysis was conducted for the risk assessment to determine how sensitive the indices were 380 

to changes in indicator values. The analysis results were used to identify priority needs for revising the weighting of indicators, 

to ensure that the most robust indicators are given the most merit in index calculations. The 2015 year was used as a case study 

for the sensitivity analysis, as it was the most critical drought year indicated by the risk assessment and identified in the 

literature. It was deemed that this year would be representative of how the risk assessment would perform in a drought event.  

 385 

The sensitivity analysis performed was a one-way analysis. As such, one input parameter (indicator) used in the calculation of 

an output (hazard, vulnerability, or exposure index) was varied individually to assess the impact that it would enact upon the 

output. For example, the sensitivity of the hazard index to changes in SPI was analysed separately to the sensitivity of the 

hazard index to changes in VHI. Data tables were created in Microsoft Excel for each indicator in each index. In the individual 

data tables, the indicator data value in question was instructed to change in 0.1 increments (spanning from 0.1 to 1). Using the 390 

What-If analysis function, these data tables were populated with output results, in this case the relevant index (hazard, 

vulnerability, or exposure) output in response to the change in the indicator value in question. An example data table is included 

in Appendix A. The output values were then used to calculate the Sensitivity Index (SI), indicating the sensitivity of the index 

in question to the individual indicator in question, following Equation 10 (adapted from Farok and Homayouni (2018)). 

SI = (Dmax - Dmin)/ Dmax                                                                       (10) 395 

where Dmax is the output result (hazard, vulnerability, or exposure value) when the indicator value in question is set at its maximum value 

and Dmin is the result for the minimum indicator value. A high SI means high sensitivity, vice versa, with ‘sensitivity’ meaning the magnitude 

of the index reaction to changes in indicator data. 

 

This process was repeated for all provinces, meaning an SI was produced for each of the 10 indicators used in this study, for 400 

each of the 22 provinces investigated. Provincial SI’s were averaged to determine an overall SI for each indicator. The higher 

the indicator SI is, the more sensitive the relative index is to that indicator. The average SI value was used to rank each indicator 

 
5 Statistical tests were performed in Microsoft Excel. 
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in terms of sensitivity (first being the most sensitive) in each of the three indices. As it is known that indices comprising of 

indicators with a high sensitivity index (SI) have a likely reduced robustness, a credibility rank was able to be given to each 

indicator, based on the sensitivity results (first being the most credible for inclusion in the index) (Anand e t al., 2019).  405 

3. Results 

3.1 Comparison of drought risk assessment results and literature findings 

Through observing the risk assessment results it was determined that in 2014, the Highlands Region and New Guinea Islands 

Region was not suspected of experiencing a drought event. The Momase and Southern Regions were both suspected as 

experiencing drought (severe to extreme drought and moderate drought respectively). As two out of four regions in PNG were 410 

indicated as experiencing drought in 2014, it was concluded that a drought event was suspected to be occurring in this time. 

The strength of the event was determined to be moderate, based off the risk level pattern observed across PNG (Fig. 4). The 

risk level pattern displayed across PNG was a result of the hazard, vulnerability, and exposure levels. In 2014, high hazard and 

vulnerability levels were evident across the Momase Region and Southern Region. Exposure levels were high throughout all 

regions, except for the New Guinea Islands Region (Fig. 4 and 5). In the literature investigation, only 15% of sources mentioned 415 

2014 as a drought year in PNG (Table 8). The sources that did mention drought impacts throughout 2014 (Allan et al., 2019; 

Burivalova et al., 2017) deemed such impacts to be severe to extreme. As less than a quarter of sources mentioned 2014 as a 

drought year, there is insufficient evidence to corroborate the drought risk assessment results to deem 2014 a drought year.  

 

The risk assessment results displayed a suspected severe to extreme drought in the Highlands Region, Momase Region and 420 

Southern Region in 2015. The New Guinea Islands Region was suspected of experiencing a moderate drought. Due to all 

regions suspected of drought, and the consistently elevated risk levels displayed across PNG (Fig. 4), 2015 was concluded as 

a severe to extreme drought year. These high-risk levels were a result of high hazard levels consistent throughout all PNG 

provinces, high exposure levels consistently throughout PNG regions, with New Guinea Islands an exception with more 

moderate levels, and high vulnerability levels in Southern Region and Momase Region (Fig. 4 and 6). 76% of literature sources 425 

mentioned 2015 as a year in which a drought event occurred across PNG. All sources that mentioned drought impacts in 2015 

(Annamalai et al. 2015; Whitfield et al., 2019; Bonnafous et al., 2017; Government of Australia, 2017; Allan et al., 2019; De 

Deckker, 2016; Schmidt et al., 2021; Burivalova et al., 2017; Bhardwaj et al., 2021b; Bang and Crimp, 2019) stated that 

impacts were severe to extreme. Impacts commonly recorded by sources for the 2015 drought event included compromised 

food security and famine (Annamalai et al. 2015; Government of Australia, 2017; Allan et al., 2019; De Deckker, 2016; 430 

Schmidt et al., 2021; Bang and Crimp, 2019), compromised fresh water supply (Annamalai et al. 2015; Government of 

Australia, 2017), affected public health and mortality (Annamalai et al. 2015; Government of Australia, 2017; Bang and Crimp, 

2019), and negative effects on crops (Whitfield et al., 2019; De Deckker, 2016; Schmidt et al., 2021; Bang and Crimp, 2019). 

Food security impacts were mentioned the most among sources (Table 8).  

 435 

For 2016, the risk assessment displayed a suspected severe to extreme drought in the Southern Region of PNG, a mild drought 

in the Highlands Region, and a moderate drought event in both the New Guinea Islands Region and Momase Region (Fig. 4 

and 7). All regions were suspected as experiencing drought; thus, a nationwide drought event was suspected as occurring in 

2016. The risk levels displayed across PNG for 2016 expressed that this was likely a moderate drought event. Such risk levels 

were resultant of high hazard levels that were consistent throughout the Southern Region and scattered throughout various 440 

provinces in other regions (e.g West New Britain in the New Guinea Islands Region), high exposure levels throughout all PNG 

regions except for New Guinea Islands, and high vulnerability levels primarily across both the Southern Region and Momase 

Region (Fig. 7). Many literature sources (61%) also mentioned 2016 as a year in which PNG suffered severe to extreme drought 
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impacts (Table 8) (Annamalai et al. 2015; Whitfield et al., 2019; Bonnafous et al., 2017; Government of Australia, 2017; Allan 

et al., 2019; Schmidt et al., 2021; Bhardwaj et al., 2021b; Bang and Crimp, 2019). The impacts were the same as those conveyed 445 

for the 2015 period, and most sources constituted the drought impacts seen in 2015 and 2016 as resulting from a singular 

drought event which lasted for a two-year period.  

 

No drought was suspected in 2017, with most provinces displaying mild drought risk in the risk assessment (Fig. 4). This was 

corroborated by the literature analysis, with no sources mentioning drought conditions or impacts in 2017 (Table 8). No 450 

nationwide drought was suspected in 2018, with the risk assessment indicating only one region (Southern Region) suspected 

of experiencing drought impacts (Fig. 4). The provinces throughout the other regions of PNG displayed mostly mild or 

moderate risk. The literature made no indication of 2018 being a drought year (Table 8). 

 

In 2019 two out of four of the PNG regions were suspected as experiencing drought. The Momase Region was suspected as 455 

experiencing mild drought, and the Southern Region was likely experiencing severe to extreme drought (Fig. 4). As half of the 

regions in PNG were likely experiencing drought impacts, it was concluded that a nationwide drought event was occurring 

throughout 2019. The risk level pattern across PNG illustrated that this was likely a moderate drought event (Fig. 8). This is 

attributed to high hazard levels in the Southern Region and across the Highlands Region, with all other regions displaying 

much milder levels; high exposure levels throughout all PNG regions except for New Guinea Islands, which displayed more 460 

moderate levels; and high vulnerability levels in the Southern Region and Momase Region, with more moderate levels evident 

in the other two PNG regions (Fig. 8). 30% of the literature sources mentioned 2019 as a drought year, with half of those 

sources describing the drought event as mild (Bhardwaj et al., 2021b; Johnson et al., 2019) and the other half discussing it as 

moderate (World Food Programme, 2019; Mckenna and Yakam, 2021) (Table 8). Impacts recorded included negatively 

affected vegetation (World Food Programme, 2019), decreases in water storage (World Food Programme, 2019), and negative 465 

impacts on market sellers (Mckenna and Yakam, 2021).  

 

Two regions were suspected as experiencing drought in 2020, as indicated by the risk assessment: Southern Region and New 

Guinea Islands Region displayed as likely having mild drought. Since two out of four regions were likely in drought, 2020 

was determined to be a nationwide drought year for PNG. The strength of the event was determined to be only mild, based off 470 

risk levels displayed across PNG provinces (Fig. 4). Such patterns were a result of the varying hazard, vulnerability and 

exposure levels indicated across PNG. High hazard levels were indicated throughout the New Guinea Islands, with high levels 

also indicated in provinces scattered throughout the other regions of PNG. Like the vulnerability and exposure levels indicated 

in 2019, the 2020 vulnerability map shows high levels in the Southern and Momase region, and the 2020 exposure map displays 

moderate levels in the New Guinea Islands Region, and higher levels in all other regions (Fig. 9). In the literature investigation, 475 

only 15% of sources mentioned 2020 as a drought year in PNG. Half of the sources that did mention drought impacts 

throughout 2020 described such impacts to be mild (Bhardwaj et al., 2021b), and the other half described them as moderate 

(Mckenna and Yakam, 2021). As less than a quarter of sources mentioned 2020 as a drought year, there is insufficient evidence 

to corroborate the drought risk assessment results and deem 2020 as a drought year.  

 480 

Overall, the comparison of risk assessment and literature investigation results suggests a drought event occurred in 2015-2016 

with severe to extreme impacts, and in 2019 with moderate impacts. There was insufficient evidence in the literature to indicate 

2014 and 2020 as years included in these drought events, even though they were indicated as likely drought years in the risk 

assessment. Accordingly, only the risk assessment results for 2015-2016 and 2019 were included to be statistically validated 

by the literature analysis results.  485 
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3.2 Statistical Validation of Risk Assessment with Literature Analysis Results 

The different severity levels for each province, indicated by the risk assessment compared to the literature, in each drought 

event (2015-2016 and 2019) are listed in Table 9. The risk assessment reported the three most at-risk provinces during the 

2015-2016 drought period as Central (average risk index value of 0.82), West Sepik (average risk index value of 0.81), and 

Northern (Oro) (average risk index value of 0.76) (Table 9). Similarly, during the 2019 drought period, Gulf Province (risk 490 

index value of 0.83), Central (risk index value of 0.81), and Northern (Oro) (risk index value of 0.80) were the three most at-

risk provinces (Table 9). Northern (Oro) and West Sepik were mentioned in the literature among the most affected provinces 

during the 2015-2016 drought period, however Central was not included among the most affected (Table 9). For the 2019 

drought period, Gulf Province, Central, and Northern (Oro) were mentioned among the most affected provinces in the literature 

(Table 9).  495 

 

No statistically significant variation was displayed between the severity levels described for each province in the risk 

assessment versus the literature for the 2015-2016 event (F18=0.86, p=0.37) (Appendix B), thus a t-test assuming equal 

variances could be conducted. For the 2019 event, a statically significant variation was detected (F17=2.67, p=0.02) (Appendix 

C), thus a t-test assuming unequal variances was performed on the data. T-test results found that there was no significant 500 

difference between the severity levels recorded for the 22 PNG provinces given by the risk assessment compared to the 

literature for both the 2015-2016 drought event (t36=-1.70, p=0.10) (Appendix D) and the 2019 drought event (t28=2.07E-15, 

p=0.50) (Appendix E). Therefore, suggesting a valid identification of a severe to extreme drought event in 2015-2016 and 

moderate drought event in 2019, and a valid indication of provincial drought risk levels, by the risk assessment.  

3.4 Sensitivity Analysis Results 505 

The validity of the risk assessment is further confirmed by sensitivity analysis results examining the robustness of the 

individual indices (hazard, vulnerability, and exposure) used in the assessment. All indicator SI’s were below or just over 0.5, 

the highest being SPI with 0.56. SI values 0.5 or below are considered low, with SPI’s 0.56 value still deemed relatively low, 

meaning that the hazard, vulnerability, and exposure indices are essentially robust rather than sensitive (Anand e t al., 2019).  

 510 

The results of the 2015 case study sensitivity analysis show that the hazard index is more sensitive to SPI compared to VHI, 

meaning that changes in SPI affect the hazard index more greatly than changes in VHI. Thus, SPI is the indicator ranked as 1st 

in hazard sensitivity and 2nd in likely credibility (Table 10). The vulnerability index is seen to be most sensitive to the Staple 

Crop Tolerance Score Indicator, thus it is ranked as 1st in vulnerability sensitivity, and is likely the least credible vulnerability 

index. Agricultural Occupation is ranked 2nd with a slightly lower SI value than Staple Crop Tolerance Score. Child 515 

Malnourishment and Key Crop Replacement Cost have similar SI values, with the SI given for Child Malnourishment being 

slightly greater than that for Key Crop Replacement cost, therefore they are ranked 3rd and 4th respectively in terms of 

vulnerability sensitivity (Table 10). The exposure index sensitivity analysis results show that the exposure index is most 

sensitive to land use, thus land use is ranked 1st in exposure sensitivity with the greatest SI value, and 4th in likely credibility. 

The SI values for the remaining three exposure indicators are similar, with elevation type giving an SI of 0.34, population 520 

density 0.32 and access to safe drinking water 0.31, resulting in a 2nd, 3rd and 4th ranking respectively for exposure sensitivity 

(Table 10). Overall, the SI values of each indicator within each of the three indices did not greatly differ, the greatest being a 

0.1 difference between key crop replacement cost (SI of 0.31) and staple crop tolerance score (SI of 0.41). Thus, credibility 

was similar for all indicators within each of the hazard, vulnerability, and exposure indices.  
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3.3 Demonstrating the usability of risk assessment results: 2015 monthly case study 525 

The strong event which occurred in 2015-2016 is further detailed by monthly risk index maps indicating the transition of most 

provinces into extreme drought risk levels in July 2015. Fig. 10 shows the heightening of drought risk from November 2014 

to July 2015 for most provinces, with drought risk levels peaking in October-December 2015 and then slightly reducing at the 

commencement of 2016. When the drought risk levels peaked, all PNG regions except for the Highlands Region had provinces 

reaching extreme drought risk levels. In the Highlands Region, all provinces were at a severe risk level when the drought event 530 

reached its peak. The provinces reaching extreme levels throughout the 2015 year included Southern Highlands, West New 

Britain, East Sepik, Madang, West Sepik (Sandaun), Central, Gulf Province, and Northern (Oro). The transition into and out 

of extreme levels was different for each of these provinces. 

 

Drought impacts in Southern Highlands seemed to peak in July, with extreme risk levels indicated for both July and August 535 

of 2015. Afterwards, levels dropped down to severe for the remainder of 2015 and the beginning of 2016 (Fig. 10). In West 

new Britain, risk levels peaked in December at an extreme level; for the 9 months leading up to this, levels were severe. In 

January 2016 risk dropped back down to severe for West new Britain (Fig. 10). East Sepik was found to have extreme risk 

from June to December 2015, in the six months prior, levels were severe (Fig. 10). Following December 2015, levels returned 

to severe for East Sepik. Similarly, Madang displayed extreme levels from August to December 2015, with severe levels noted 540 

for the five months leading up to this peak, and severe levels recorded following the peak (Fig. 10). In West Sepik (Sandaun), 

levels were severe until March 2015, in which extreme risk was recorded and remained for the rest of the months investigated 

(Fig. 10). Northern (Oro) displayed severe risk until August 2015, in which extreme risk arose and continued occurring until 

December 2015 (Fig. 10). Both Central and Gulf Province were indicated to have extreme levels consistently from the end of 

2014 to the beginning of 2016 (Fig. 10).  545 

4. Discussion 

4.1 PNG drought events indicated by risk assessment and confirmed in the literature 

The risk assessment results indicated a suspected severe to extreme drought event in 2015-2016 and a moderate event in 2019. 

When compared to literature findings, these results were corroborated. It is widely reported that a strong drought event 

commenced in PNG at the beginning of 2015 and reached its peak during 2016 (Kuleshov et al., 2020; Chua et al., 2020; 550 

Gwatirisa et al., 2017; Jacka, 2020; Varotsos et al., 2018; Rimes and Papua New Guinea National Weather Service, 2017). 

Kuleshov et al. (2020) attributed the drought of 2015-2016 to a strong El Niño which occurred during these years. This strong 

El Niño phase was paired with a positive IOD phase; the interacting impacts of both climate drivers resulted in devastating 

negative rainfall anomalies across the entirety of PNG (Bhardwaj et al., 2021b). It is explained in the literature that the 2015-

2016 drought event affected approximately 40% of PNG’s population, with drought-caused food shortages impacting half a 555 

million people throughout PNG’s provinces (Annamalai et al. 2015; Whitfield et al., 2019; Government of Australia, 2017; 

Schmidt et al., 2021; De Deckker, 2016; Bhardwaj et al., 2021b; Bang and Crimp, 2019). In their poverty analysis of the 

lowlands of PNG, Schmidt et al. (2021) further detail that the drought decimated a critical amount of PNG’s local crop 

production which left PNG communities in a food crisis. Such a climate shock had critical consequences for household welfare, 

contributing to a rise in households below the poverty line, particularly in rural and lowland areas (Schmidt et al., 2021).  560 

 

A recent drought event occurring in PNG throughout 2019, has been reported by various sources (Bhardwaj et al., 2021b; 

Johnson et al., 2019; World Food Programme, 2019; Mckenna and Yakam, 2021). Unlike the 2015-2016 drought event, 

drought conditions in PNG during 2019 were due to a La Niña event. A neutral IOD phase was also evident, thus La Niña 

impacts were not exacerbated by the IOD. The impacts of La Niña on rainfall patterns vary across PNG. In the past, La Niña 565 
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has resulted in wetter conditions over most of the country, except in the eastern islands of Milne Bay region (Food and 

Agriculture Organisation of the United Nations, 2021). The 2019 La Niña caused below-average rainfall in PNG, particularly 

in the northern parts of PNG (Food Security Cluster et al., 2021). With La Niña alone influencing the 2019 event, it was 

expected to be weaker than the previous drought in 2015-2016. In the literature, the impacts of the 2019 drought event are 

primarily discussed as mild or moderate rather than severe to extreme. However, the effects of the 2019 drought event have 570 

not been widely discussed in peer-reviewed literature as it is such a recent event. The few sources that have reported on this 

event, described the negative affect of dry conditions on agricultural production and food security  (World Food Programme, 

2019; Johnson et al., 2019).  

4.2 PNG non-drought years  

2014, 2017, 2018 and 2020 were deemed to be non-drought years due to the comparison of risk assessment results and literature 575 

analysis results. Even though 2014 and 2020 displayed high enough drought risk levels across PNG’s regions to signal that a 

drought event may have occurred in these years, there was insufficient evidence in the literature to corroborate this. Only a 

small number of sources reported these years as drought years (Allan et al., 2019; Burivalova et al., 2017; Mckenna and 

Yakam, 2021; Bhardwaj et al., 2021b). The risk assessment may have identified high risk levels throughout these years as they 

lead up to (in the case of 2014) or followed (in the case of 2020) confirmed drought. Further investigation on these years is 580 

recommended to confirm the validity of the risk assessment. 2017 displayed mostly mild risk throughout all PNG regions, as 

corroborated in the literature, signalling an end to the 2015-2016 drought event.  

 

Although 2018 was indicated as a non-drought year with most provinces displaying mild or moderate risk, there were some 

provinces with severe or extreme risk. These higher levels were particularly present throughout the Southern Region. This is 585 

not an entirely unexpected result, as PNG is a highly vulnerable and exposed country to drought. Therefore, the vulnerability 

and exposure indices are likely to be consistently high for most years across PNG provinces. With two out of the three indices 

likely being at higher levels, it is not radical to suggest that the final drought risk index would be higher than mild for most 

years. It is important to note that in this study, it is recognised that drought risk does not directly translate to the occurrence of 

a drought, rather it corresponds with the severity of impacts likely to be experienced by the area of investigation when a drought 590 

occurs. For example, mild drought risk levels seen in certain provinces on the drought risk maps in this study do not necessarily 

mean that a mild drought is occurring, instead it suggests that mild drought impacts are likely to occur in those provinces. Such 

mild impacts could occur because of a drought event or could occur because of the regular dry season of PNG (Bhardwaj et 

al., 2021b). Comparatively, moderate to extreme risk levels are most likely the result of a drought event (Kanua et al., 2016). 

 595 

In non-drought years, where hazard is low but vulnerability and/or exposure remain high across PNG provinces, it is the time 

to be proactive and improve adaptive capacity. If management practices are put in place during non-drought years to reduce 

the levels of vulnerability and exposure, when a drought hazard event commences the risk of destructive impacts can be 

reduced (Pulwarty and Sivakumar 2014). Management actions that could be taken in non-drought years to foster resilience in 

PNG include strengthening of health services, cultivating/planting drought resilient crops, and increasing water storages in 600 

highly vulnerable and exposed areas (Hagenlocher et al., 2019). The importance of risk assessment-informed resilient 

management is highlighted further in the monthly case study of the extreme drought year of 2015. 

4.3 2015 monthly case study: transition of drought 

The 2015 monthly risk assessment (including the conclusion of 2014 and commencement of 2016) accurately displayed high 

drought risk levels leading up to the peak of the 2015-2016 drought event in mid-2015 until November/December 2015 (Chua 605 

et al., 2020). The case study highlighted priority areas: Southern Highlands, East Sepik, Madang, West Sepik (Sandaun), 
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Northern (oro), Central and Gulf Province were provinces exhibiting extreme risk for more than one month throughout 2015. 

Records of the event confirmed that these provinces experienced severe to extreme impacts during the 2015-2016 drought in 

PNG (Annamalai et al. 2015; Whitfield et al., 2019; Government of Australia, 2017; Schmidt et al., 2021; De Deckker, 2016; 

Bhardwaj et al., 2021b; Bang and Crimp, 2019). All priority provinces were indicated by the risk assessment to be at high risk 610 

levels (severe or extreme) for at least 3 months prior to the peak of the drought event. This suggests that if performed prior to 

the drought event, the risk assessment would have likely aided in notifying provincial and state decision-makers of priority 

areas requiring focused management and higher allocation of resources. Small-scale proactive and suitable management 

actions could have been implemented, including the allocation of resources to emergency and health services, implementation 

of water restrictions, and initiation of negotiations for food aid from surrounding countries like Australia (Government of 615 

Australia, 2017). As a result, local communities in PNG provinces could have been better prepared for the impacts of the 

drought event before it peaked, potentially saving lives (Kanua et al., 2016). 

4.4 Sensitivity analysis 

Sensitivity analyses are neglected in the few drought assessments performed for PNG. Without sensitivity analysis, the 

indicators used in past PNG drought assessment studies cannot be definitively concluded as credible. For example, SPI and 620 

VHI were investigated by Chua et al., (2020) for assessing drought in PNG, but were only validated through a 2015-2016 case 

study of drought impacts. No sensitivity analysis was performed. Like Chua et al., (2020), SPI and VHI are considered in this 

study. A sensitivity analysis can confirm the credibility of these indicators for use in assessing drought across PNG.  

 

In this study, it was found that no single indicator displayed a seriously high SI value, so each indicator selected for use in the 625 

risk assessment is likely credible. This suggests that the hazard, exposure, and vulnerability indices calculated in this study are 

robust and able of representing the complex processes that lead to drought risk (Anand e t al., 2019). However, based on the 

different SI values expressed and differences in likely credibility of individual indicators, a review of the weighting applied to 

each indicator may be appropriate.  

 630 

The expert weighting scheme applied to the hazard indicators gave SPI a weighting of 0.75, and VHI 0.25. The sensitivity 

analysis ranked SPI as 1st, with an SI value greater than VHI, meaning that the hazard component is more sensitive to changes 

in SPI rather than VHI. Results suggest that VHI is a more credible indicator compared to SPI, therefore more weight could 

be distributed to VHI than what is currently. Previous drought risk assessment studies, conducted in other countries, that have 

employed SPI and VHI as hazard indicators, commonly weight SPI highly in the hazard index calculations, and VHI usually 635 

has a mid-range weighting (Nagarajan and Ganapuram, 2015). Here, a similar approach is taken, however in PNG specifically, 

it may be pertinent to weight VHI slightly higher (as indicated by the sensitivity analysis).  

 

Generally, global drought risk assessment studies adopt a range of vulnerability indicators that focus on agricultural, economic, 

and/or health-related vulnerability. In an assessment including economic, health and agricultural vulnerability indicators to 640 

detect drought vulnerability in Zimbabwe, Frischen et al. (2020) used an expert weighting scheme to assign indicator weights. 

Agricultural indicators were commonly assigned the highest weighting, with economic indicators weighted second, and health 

indicators weighted third (Frischen et al. 2020). Here, the expert weighting scheme followed this trend, with staple crop 

tolerance score and key crop replacement cost weighted the highest, agricultural occupation weighted third and, children 

weighed at clinics less than 80% weight for age 0 to 4 years old weighted the least. The sensitive analysis results reveal that a 645 

revision is needed. The vulnerability index was evidently most sensitive to changes in the staple crop tolerance score indicator; 

it is likely incorrect that it is weighted highest. Key crop average replacement cost was identified as the most credible indicator; 

it is logical that it should be weighted the highest among vulnerability indicators. Similarly, more weight should be applied to 
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the percentage of children weighed at clinics less than 80% weight for age 0 to 4 years old indicator as it was identified as the 

second most credible vulnerability indicator. The weighting of agricultural occupation is likely valid as it was found to be the 650 

second lowest indicator in terms of credibility.  

 

In many past risk assessments, access to safe drinking water and population density are weighted highly among exposure 

indicators (Nagarajan and Ganapuram, 2015; Dayal et al., 2018). Whereas land use is generally weighted with mid-range 

values and slope weighted with lower values (Dayal et al., 2018). The sensitivity analysis results of this study suggest that 655 

such weightings should be revised in the case of assessing drought exposure in PNG. Results show land use to be ranked last 

among exposure indicators in terms of credibility. Currently, land use is weighted the greatest among exposure indicators. This 

suggests that the weighting assigned to land use should be reduced. Elevation type, population density and access to safe 

drinking water were found to likely have similarly high credibility. However, the exposure index was seen to be slightly more 

sensitive to changes in elevation type over population density, and population density over access to safe drinking water. As 660 

the most credible exposure indicator, access to safe drinking water should be weighted the greatest; it is currently weighted as 

the second greatest.  

 

Whilst refinements to the weightings applied to hazard, vulnerability and exposure indicators are recommended in the future, 

they would be minimal as the differences in SI values between indicators within each index were not immense. Overall, the 665 

sensitivity analysis results do not retract from the value of the risk assessment results produced in this preliminary study.  

4.4 Reasonability of Validation Methods 

The validation method adopted in this study used literature sources discussing past drought events in PNG as the ground-truth 

for what occurred during previous droughts. A more reliable ground-truth would have been the perspectives of local PNG 

people who personally experienced the drought conditions and ensuing impacts (Fragaszy et al. 2020). Interviews could have 670 

been conducted like those executed by Mckenna and Yakam (2021) and Fragaszy et al. (2020). However, due to the COVID-

19 situation in both PNG and Australia at the time of this study, interviews were not viable. González Tánago et al. (2016) 

recommend the use of multiple ground-truth sources, to strengthen validation methodology. Bijaber (2018) adhered to this 

recommendation and used historical on-the-ground data as well as expert knowledge of what occurred, to validate the results 

of their drought risk monitoring in Morocco. Due to the data scarcity in PNG, and the additional limitation of not being present 675 

in the country to conduct this research, the assessment here could only include one kind of ground-truth source. Future research 

should consider interviewing local communities in each PNG province to add another, more robust ground-truth for the impacts 

of each drought event investigated.  

 

Using statistical sensitivity analysis as a second form of validation is recommended as best practice for validating drought 680 

risk assessment methodology (Hangelocher et al., 2019). Rahmati et al. (2020) conducted a sensitivity analysis to validate 

the use of specific indicators for assessing drought risk in south-eastern Queensland. The sensitivity analysis outlined which 

indicators were highly suitable for use in the risk assessment, highlighting that plant-available water capacity, the percentage 

of soil comprised of sand, and mean annual precipitation were the most important predictors of drought for the study 

(Rahmati et al. 2020). Such best practice was adhered to in this study, with the use of sensitivity analysis as a second form of 685 

risk assessment verification. Overall, the use of both a comparison to a ground-truth source, and a sensitivity analysis, for 

validation of this study is a reasonable approach.  
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4.5 Study limitations and recommendations for further research 

4.5.1 Indicator Selection Process 

In the literature, it is indicated that current practice for indicator selection is to select indicators based on a review of literature 690 

(Frischen et al., 2020) and use of current expert knowledge (Dayal et al., 2018). Indicators are commonly arbitrarily selected 

for the country they are to be used to assess. It is common for data restrictions to be a limiting factor of indicator selection 

(Dayal et al., 2018). As this study seeks to select specifically suitable indicators for assessment of drought risk on a more 

localised scale in PNG, to achieve a tailored drought risk assessment, it would have been ideal to select indicators not only 

based on a literature review or current expert knowledge, but also established with local knowledge as recommended by Benzie 695 

et al., (2016). In this study it was not feasible to formally gauge the perspectives of users, but advice on relevant indicators 

was sought by PNG NWS. In future investigation, surveys and interviews will be conducted to formally gain the perspective 

of locals regarding what vulnerability and exposure indicators are most appropriate for use. This feedback will inform further 

refinements of the risk index for drought in PNG, given data is accurate and available.  

4.5.2 Static Indicators 700 

Vulnerability and exposure indicators were static, using annually updated observed data, due to limited data availability. 

Although regularly updated data is not available for the vulnerability and exposure indicators, a holistic drought risk index still 

requires these two components in addition to the hazard component. The hazard indicators used were dynamic, incorporating 

regularly updated monitoring data.  The hazard variables used were 3-month cumulated values (3-month SPI and VHI), which 

potentially reduces the informative value of the hazard and risk index to give a warning of high risk early enough in advance 705 

to act proactively. However, this risk assessment is not intended to predict drought events before they happen, it is intended to 

be used to determine the risk of a drought event occurring and the relative impact that might be faced by specific PNG provinces 

during a drought. Overall, the semi-dynamic nature of this assessment is not likely a limitation that will reduce the value of 

this preliminary risk assessment methodology.  

4.5.3 Data Availability 710 

Limited data availability constrained several aspects of the methodological process: 

• The validation method was constrained by the fact that there were limited numbers of scientifically robust literature 

sources reporting on the 2019 drought event, as it was a recent event. The PNG National Weather Service was 

consulted to ensure that the results from the 2019 literature sources were true and accurate.  

• Space-based VHI data is only available from 2014 onwards. Whereas the SPI data record dates to 2001. To have a 715 

complete hazard index in the retrospective risk assessment, the retrospective period investigated had to begin from 

2014. 2014-2020 is a shorter period of analysis, which limits the number of drought events and non-drought periods 

occurring within, resulting in lower confidence in results. A longer analysis would provide greater confidence in the 

risk assessment methodology. It is possible that the risk assessment could be performed for years prior to 2014 by 

using only SPI to inform the hazard index, or by replacing VHI with a different hazard indicator with data available 720 

for a longer period. However, it is deemed that for the risk assessment to be holistic and tailored, the hazard index 

should not rely only on one indicator. Additionally, different hazard indicators that could potentially replace VHI, 

like the Normalized difference vegetation index (NDVI) (which has raw data from the 80s onwards) are not as 

accurate as VHI; VHI has been proven to be efficient and accurate, specifically for across PNG (Chua et al., 2020).  

 725 

Data availability was also limited for the exposure and vulnerability indicators, thus, the data available closest to the 

time investigated was used. This meant that the vulnerability and exposure indices were the same for both 2014 and 
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2015 as the data was not updated throughout those two years. However, as half the indicators in both the vulnerability 

and exposure are more static rather than dynamic (excluding agricultural occupation, key crop replacement cost, 

population density and access to safe drinking water), it is not expected that values would largely change on a yearly 730 

basis regardless, rather it would be more likely for values to change every two or three years (Aitkenhead et al., 2021). 

Therefore, the limited data availability for vulnerability and exposure indicators in 2014-2015 will not likely have a 

large effect on the credibility of the results. Data availability is constrained throughout many SIDS like PNG; future 

investment in open-sourced and cloud-based data platforms would allow for collaboration between separate entities 

that have collected data so that all relevant data can be combined, stored, and accessed from the same place (Sun et 735 

al., 2020).  

 

When working in such countries as Pacific SIDS and other developing nations, data availability is commonly scarce 

(Chua et al., 2020). Several previous studies have come across this limitation and have addressed it in similar ways. 

In their drought risk assessment in China, Zhao et al. (2020) faced data limitations for the more local level. They 740 

chose to use provincial data where county level data was missing. As in this study, Frischen et al. (2020) were faced 

with limited data availability for drought vulnerability indicators, so it was decided that static indicators would be 

used rather than temporally-dynamic indicators. Although not dynamic, Frischen et al. (2020) deemed that there was 

merit in their drought vulnerability assessment, as results offered to expand the underexplored topic of drought risk 

in Zimbabwe.  745 

 

• This research presents a preliminary validation of a tailored risk assessment methodology which is conceptually 

applicable to the local level. With tailored explicitly meaning that indicators were selected based on rigorous criteria 

outlining suitability to this study’s context. The developed risk assessment methodology was intended to be tailored 

to a highly localized level, however due to data restraints, the provincial level was the most localized level able to be 750 

assessed in PNG. Data is severely limited at heightened local scales, e.g. for individual villages/cities. In the future, 

it would be useful to further validate the applicability of such a risk assessment methodology at a more localized scale 

through conducting a drought risk assessment for a specific local PNG village. Currently, such an investigation is 

beyond the scope of the research presented in the paper. 

4.5.4 Weighting scheme 755 

Although used in many similar past studies, like Frischen et al. (2020), the expert weighting scheme approach has been 

described by some as unreliable for the delivery of robust results, due to the presence of subjective judgements (Dayal et al., 

2018). Furthermore, the sensitivity analysis results suggest that the weighting scheme applied to indicators may not have been 

optimal. In the future, a revised set of indicator weights should be employed, based off the sensitivity analysis results. As this 

study was a preliminary assessment, initially attempting to address drought risk assessment knowledge gaps in PNG, the 760 

limitations of the weighting scheme do not take away the value of results. So, it was determined that improvements were not 

required at this stage of the research but are set to be made in future work. Before the drought risk assessment methodology 

can be adopted for operational use and/or applied to additional Pacific SIDS, weighting refinements will be completed.  

4.6 Research Significance and Conclusions 

This study aimed to expand drought risk knowledge, explore effective methodological aspects of drought risk assessment, and 765 

develop a preliminary drought risk assessment methodology intended for use in PNG. Such research is minimal across Pacific 

SIDS, and particularly underexplored in the context of PNG (Hagenlocher et al. 2019). This study made significant strides in 

addressing key knowledge gaps commonly missed in drought risk assessment studies in general, and drought assessment in 
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PNG specifically, by considering specific and tailored indicator selection, consistent drought risk definitions, dynamic 

assessment, sufficient validation of indicators and results, and the provision of recommendations.  770 

 

In this study, an unprecedented attempt at developing a tailored drought risk assessment for the provincial scale across PNG 

was made. The development of a tailored, meaning highly specific to the area under investigation, drought risk assessment 

methodology has been recognised as vital to improving risk knowledge for the development of resilient drought risk 

management strategies in vulnerable communities (Wilhelmi and Wilhite 2002). Out of the disaster risk assessments that have 775 

been conducted in PNG, they have used arbitrary risk indicators (Bang et al., 2003; Allen & Bourke, 1997; Korada et al., 2018) 

and have been conducted on a broader (national/regional) level rather than local area (provinces) or community level 

(Hagenlocher et al. 2019). This research presents a methodology emphasising tailored risk assessment, with distinct criteria 

used to select suitable drought risk indicators. This assessment is conducted at the most local level possible at this time, the 

provincial level. In the future, it would be beneficial to investigate risk at the town/village level and include local user 780 

consultation in the indicator selection process, however this is beyond the scope of the current research because of 

travel/resource limitations, and the remoteness of local PNG communities.  

 

This study adopted the drought risk definitions consistent with those recommended by Hagenlocher et al. (2019). No such 

study has been conducted previously in PNG, where clearly defined hazard, vulnerability and exposure components are 785 

included to assess risk for all provinces. The assessment was intended to be dynamic, but limitations saw that it was only semi-

dynamic. Due to data restrictions, the vulnerability and exposure components of the risk assessment consisted of annually 

updated, static indicators. Whereas the hazard component included dynamic factors. Thus, the approach is deemed a semi-

dynamic drought risk assessment. For the assessment to become wholly dynamic, socio-economic data needs to become more 

readily available. The constrained availability of relevant, reliable, and updated data is recognised as majorly detrimental to 790 

drought risk assessments across the world (González Tánago et al. 2016). The semi-dynamic assessment can still provide 

important results, static assessment is useful for identifying where the origins and drivers of drought risk exist, and the areas 

that are of priority for long-term adaptation plans (Blauhut 2020, Hagenlocher et al., 2019 and González Tánago et al. 2016).  

 

Indicators used and results produced underwent preliminary validation; however, a more comprehensive validation method is 795 

recommended for future research. The risk assessment methodology developed in this research was overall deemed valid. It 

provides the foundation for conducting drought risk assessments in PNG, to increase risk knowledge and inform local drought 

risk management. To consolidate this methodology as reliable in an operational sense, results must undergo validation against 

further ground-truth sources (e.g local accounts of past drought events). Results allowed for recommendation on disaster risk 

reduction in PNG, including the identification of priority areas that were detrimentally affected in previous drought, as well as 800 

recommendations for improved efficacy of the risk assessment methodology. This is a critical step commonly omitted from 

the risk assessment process ((Blauhut 2020, Hagenlocher et al., 2019 and González Tánago et al. 2016). 

 

Overall, this research establishes an essential foundation for tailored and accurate drought risk assessments in Pacific SIDS, 

using drought in PNG as a case study. However, improvements to the validation methods and the indicator selection process 805 

are vital to the efficiency of the risk assessment methodology. Once refinements are made, the risk assessment methodology 

may be adopted on a more operational basis in PNG. The PNG NWS could conduct drought risk assessment across PNG to 

inform stakeholders and local users of provincial risk levels, and guide preparedness plans/risk management (Pulwarty and 

Sivakumar 2014). Such a methodology has the potential to not only be applied across PNG but could be tested for 

implementation in other vulnerable Pacific SIDS (Finucane 2009). With the occurrence of droughts expected to be exacerbated 810 

under anthropogenic climate change, and the impacts predicted to critically affect agricultural productivity, food security, and 
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general economic productivity, severely reducing the financial and social health of local communities in Pacific SIDS, the 

effective implementation of valid drought risk assessment is needed now more than ever (Pulwarty and Sivakumar 2014). 

6. Appendices 

6.1 Appendix A 815 

An example of the data tables used in the sensitivity analysis. This example is for Bougainville province, analysing the 

sensitivity of the 2015 hazard index to 0.1 incremental changes in the SPI value. Original data tables were formatted in excel. 

Bougainville 

SPI Hazard Index 

Original 0.561564 

0.1 0.339167 

0.2 0.389167 

0.3 0.439167 

0.4 0.489167 

0.5 0.539167 

0.6 0.589167 

0.7 0.639167 

0.8 0.689167 

0.9 0.739167 

1.0 0.789167 

6.2 Appendix B 

Table displaying F-test results for the 2015-2016 drought period risk assessment versus literature results.  

Statistic df (degrees of freedom) F statistic P-value 

Value 18 0.86 0.37 

6.3 Appendix C 820 

Table displaying F-test results for the 2019 drought period risk assessment versus literature results.  

Statistic df (degrees of freedom) F statistic P-value 

Value 17 2.67 0.02 

6.4 Appendix D 

Table displaying t-test results for the 2015-2016 drought period risk assessment versus literature results.  

Statistic df (degrees of freedom) t statistic P-value 

Value 36 -1.70 0.10 

6.5 Appendix E 

Table displaying t-test results for the 2019 drought period risk assessment versus literature results.  825 

Statistic df (degrees of freedom) t statistic P-value 

Value 28 2.07E-15 0.50 
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Figure 1: Multi-Source Weighted-Ensemble Precipitation (MSWEP) rainfall deciles in (a) La Niña events (La Niña years being 1050 

1988, 1989, 1995, 1998, 1999, 2000, 2007, 2010, 2011 and 2020) and (b) El Niño events (El Niño years being 1982, 1987, 

1991, 1992, 1994, 1997, 2002, 2006, and 2015) compared to a base period of 1980–2020. Figure adapted from Bhardwaj et 

al. 2021b. 

Figure 2. Multi-Source Weighted-Ensemble Precipitation (MSWEP) rainfall deciles in response to various climate drivers: (a) 

Negative IOD phase (during 1981, 1989, 1992, 1996, 1998, 2010, 2014, and 2016 years), (b) Positive IOD phase (during 1982, 1055 

1983, 1994, 1997, 2006, 2012, 2015, and 2019 years), (c) Negative IOD phase and La Niña ENSO phase (during 1989, 1998, 

and 2010 years) and (d) Positive IOD phase and El Niño ENSO phase (during 1982, 1994, 1997, 2006, and 2015 years). 

Deciles are compared to a 1980–2020 base period. Figure adapted from Bhardwaj et al. 2021b. 

Table 1. An analysis of previous drought assessment studies in PNG outlining the methodological aspects lacking. 

https://doi.org/10.1016/j.wace.2014.01.002
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Study 

source 

Study Description Effective Methodological Aspects 

Lacking 

Korada et 

al. 2018 

Performed in the Western Highlands province of PNG, which is a rain-fed subsistence farming 

dominated province highly vulnerable to drought, Korada et al. 2018 adopted GIS and remote 

sensing technology to highlight potential drought risk zones. General environmental indicators 

were used to inform the risk assessment: soil type, NDVI, rainfall, terrain, population 

demography and surface temperature. Using multi-criteria evaluation techniques in GIS, 

indicators were integrated, and risk areas were identified. Risk areas were mapped and then 

classified to indicate levels of drought risk from low, medium, and high.  

Indicator selection is not specific and 

tailored; Risk assessment is static; 

Insufficient validation of indicators and 

results; Lacks the provision of 

recommendations for risk reduction; 

Lacks clear drought risk definitions. 

Chua et al. 

2020 

Used remotely sensed indicators to assess drought over PNG. The indicators evaluated for this 

study included precipitation, vegetation health and soil moisture. Indicators were assessed on 

a monthly timescale from 2001 to 2018. A case study was then performed to determine the 

efficiency of such indicators to characterise drought in PNG during the 2015-2016 El Niño. 

This case study was used as a validation for indicator effectiveness in assessing drought 

impacts in PNG. It was found that Vegetation Health Index (VHI) and the Standardized 

Precipitation Index (SPI) were able to accurately indicate the spatial and temporal components 

of the 2015 to 2016 severe drought event in PNG caused by the El Niño phase. Overall, these 

satellite-derived precipitation products were recommended as potentially useful for 

operational use for drought detection and monitoring in PNG. 

Inconsistent drought risk definitions: 

This is a hazard-centric assessment of 

drought impacts across PNG; The role of 

ecosystems and ecosystem services as a 

driver of risk is not explored. 

 

Allen & 

Bourke 

1997 

An assessment of the risk of drought impacts was undertaken in response to the severe 1997-

1998 El Nino induced drought in PNG. The impacts of the drought specifically on food 

supplies and water, on the national scale, were examined. Assessment teams, consisting of 

experts, were sent out to report on food supply conditions in rural communities, identify placed 

in severe need, assess migration out of impacted areas, assess local drinking water supply, 

assess health conditions, and report on the existence of emergency services and 

communications. Local people were interviewed and observed to obtain the information. 

Assessment teams each focused on specific area, provinces, or regions. The assessment was 

conducted over four weeks.  

Inconsistent drought risk definitions: 

although vulnerability, exposure and 

hazard aspects of drought risk were 

considered in this study, no clear 

definitions were provided for drought 

risk; Lacks the provision of 

recommendations for risk reduction; No 

drought risk mapping was conducted; 

Risk assessment is static; Insufficient 

validation of indicators and results; 

Indicator selection is not specific and 

tailored: although a specific focus on 

food and water supply was employed, 

the assessment asked general questions 

about food and water supply and did not 

use specific indicators relevant to PNG.  

Bang et al. 

2003 

Agricultural drought risk in PNG was assessed in response to the 2002 drought in PNG, using 

software developed by the Queensland Centre for Climate Applications. This software used 

correlations with the Southern Oscillation Index (SOI) and the Pacific Sea Surface 

Temperature (SST) to assess droughts. Overall drought risk in this study was classified as very 

low, low, moderate, high, and very high. Indicators considered for the agricultural drought 

assessment included: population density, slope of agricultural land, drought tolerance of crops, 

staple crop prevalence, altitude, reliance on agriculture, diversity of cropping systems, and use 

of irrigation systems, land use intensity, rainfall variability, precipitation deficiency and soil 

water deficiency. The assessment was carried out through surveys of local farming families 

residing in severely affected highland and lowland regions across PNG. The results of the 

study allowed for the following recommendation: a consistent implementation program of 

long-term farm-specific coping strategies is required in the vulnerable areas throughout PNG, 

particularly in the highland provinces.  

Inconsistent drought risk definitions: 

although hazard, vulnerability and 

exposure indicators are considered, 

these components are not defined; 

Indicator selection is not specific and 

tailored: the selection process is not 

described in detail, with more focus 

given to the selection of assessed sites; 

Insufficient validation of indicators and 

results: no sensitivity analysis was 

performed to assess the robustness of 

indicators; No drought risk mapping was 

conducted.  
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Figure 3. PNG Map indicating each of the 22 PNG provinces with shortened names for Eastern Highlands (EH), Southern 

Highlands (SH) and Western Highlands (WH). Map was produced using ArcGIS Pro with an open-source base map.   

Table 2. Hazard, Vulnerability and Exposure indicators selected for the PNG Drought Risk Assessment. The data source, data 

resolution and coverage, and weighting for each indicator is included.  1080 

 
6 As there is limited data for direct indicators of accessibility in terms of road accessibility and health service accessibility, 

population density has been used as an indirect indicator for accessibility as it is associated with the accessibility level for each 

province; provinces with low population densities have more rural communities which are expected to have reduced 

accessibility to infrastructure (e.g. roads) and health services compared to urban communities. 

Index Indicator Data Source Data Resolution and Coverage Weighting 

Hazard Standardised 

Precipitation Index 

(SPI) (3-month) 

NOAA database (National Oceanic Atmospheric 

Administration (NOAA), 2020) and JAXA database 

(Japan Aerospace Exploration Agency (JAXA), 

2020). 

Spatial- Average value for each 

province. Temporal- monthly and 

averaged yearly data available from 

2001 onwards. Updated every 

month.  

0.75 

Vegetation Health Index 

(VHI) (3-month) 

NOAA database (National Oceanic Atmospheric 

Administration (NOAA), 2020) and JAXA database 

(Japan Aerospace Exploration Agency (JAXA), 

2020). 

Spatial- Average value for each 

province. Temporal- monthly and 

averaged yearly data available from 

2014 onwards.  Updated every 

month. 

0.25 

Vulnerability Percentage of Children 

Weighed at Clinics Less 

than 80% Weight for 

Age 0 to 4 years old (%) 

PNG National Weather Service (NWS) (PNG 

National Weather Service (NWS), 2017) and United 

Nations Development Programme (UNDP) (United 

Nations Development Programme (UNDP), 2017) 

Spatial- Average value for each 

province. Temporal- yearly data 

available for study period. 

Periodically updated (every 1-2 

years). Missing data for 2015; 2014 

data was used for this period. 

0.1 

Agricultural Occupation 

(% of population 

employed in agriculture) 

PNG National Statistical Office (PNG National 

Statistical Office, 2018) 

Spatial- Average value for each 

province. Temporal- yearly data 

available for study period.  

Periodically updated (every 1-2 

years).  Missing data for 2015; 2014 

data was used for this period. 

0.2 

Key crop replacement 

cost (USD) 

PNG National Weather Service (NWS) (PNG 

National Weather Service (NWS), 2017) and United 

Nations Development Programme (UNDP) (United 

Nations Development Programme (UNDP), 2017) 

Spatial- Average value for each 

province. Temporal- yearly data 

available for study period.  

Periodically updated (every 1-2 

years).  Missing data for 2015; 2014 

data was used for this period. 

0.3 

Staple crop tolerance 

scores (maximum 

consecutive drought 

days tolerated (days) 

(14-30)).  

PNG National Weather Service (NWS) (PNG 

National Weather Service (NWS), 2017) and United 

Nations Development Programme (UNDP) (United 

Nations Development Programme (UNDP), 2017) 

Spatial- Average value for each 

province. Temporal- yearly data 

available for study period.  

Periodically updated (every 1-2 

years).  Missing data for 2015; 2014 

data was used for this period. 

0.4 

Exposure Land use (type) PNG National Weather Service (NWS) (PNG 

National Weather Service (NWS), 2017) and United 

Nations Development Programme (UNDP) (United 

Nations Development Programme (UNDP), 2017) 

Spatial- Land use details available 

for each province; these details were 

used to score land use type exposure 

for each province. Temporal- static 

data available for study period.   

0.35 

Elevation (type) 

(Highland/Lowland/Av

erage) 

Open-sourced GIS platforms Spatial- Elevation details available 

for each province, average type 

across the province was recorded. 

Temporal- static data available for 

study period. 

0.15 

Access to safe drinking 

water (% of population 

with access to improved 

water sources)  

PNG National Statistical Office (PNG National 

Statistical Office, 2018) 

Spatial- Average value for each 

province. Temporal- yearly data 

available for study period.  

Periodically updated (every 1-2 

years).  Missing data for 2015; 2014 

data was used for this period. 

0.3 

Population density (as 

an indicator of 

accessibility6) 

PNG National Statistical Office (PNG National 

Statistical Office, 2018) 

Spatial- Average value for each 

province. Temporal- yearly data 

available for study period. 

Periodically updated (every 1-2 

years).  Missing data for 2015; 2014 

data was used for this period. 

0.2 
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Table 3. Indicator thresholds that signal different stages of drought risk. These thresholds have been decided upon based on 

use in past studies (Rahmati et al., 2020; Nasrollahi et al., 2018; Aitkenhead et al., 2021), the advice of the PNG National 

Weather Service, as well as past data trends in PNG (Chua et al., 2020).  

Indicator No to Mild Drought Risk Moderate Drought Risk Severe to Extreme Drought Risk 

SPI 0.4 to 2 and above 0.4 to -0.4 -0.4 to -2 and above 

VHI 50 to 56 and above 42 to 50 30 and below to 42 

Percentage of Children Weighed at Clinics Less than 

80% Weight for Age 0 to 4 years old  

0 to 15 15 to 25 25 to 50 and over 

Agricultural Occupation  0 to 20 20 to 45 45 to 100 

Key crop average replacement cost  0 to 2,000 2,000 to 4,000 4,000 to 10,000 

Staple crop tolerance scores  0 1 2 

Land use (score) 0 to 1 1 to 2.5 2.5 to 6 

Average Elevation (type)  1 2 3 

Population density 50 to 100 and above 20 to 50 0 to 20 

Access to safe drinking water (%) 60 to 100 40 to 60 0 to 40 

 

Table 4. Risk level pattern observed to determine whether a drought event was suspected as occurring throughout each PNG 1085 

region.  

 

 

Risk level pattern 

observed across 

PNG Region 

Drought 

event 

suspected? 

Corresponding 

strength 

assigned to the 

event 

Justification 

Very mild risk levels 

are present within the 

region. 

No N/A Very mild conditions consistent throughout the country likely indicate that 

socio-economic conditions within PNG are stable, and no drought hazard 

conditions are being experienced within PNG (Kanua et al., 2016). These 

are characteristics of a stable, non-drought period (Bhardwaj et al., 2021b).  

Mild risk is detected 

within the region. 

No N/A The indication of mild risk within a PNG region could be attributed to 

expected dry conditions resultant of the regular PNG dry season (occurring 

from June to September across PNG) (Chua et al., 2020). The detection of 

only mild drought risk in a region is not reason enough to assume that a 

drought event is occurring.  

No mild or very mild 

levels present, with 

majority of or all 

provinces within the 

region at a moderate 

risk level. 

Yes   Mild Moderate risk levels suggest that socio-economic conditions are becoming 

unstable across PNG, and drought hazard conditions are likely being 

experienced. However, consistent moderate risk levels, without the distinct 

presence of any higher levels, is characteristic of only a mild drought event. 

It has been seen in past drought events across PNG, that have been classified 

as mild, that only a few provinces were affected severely, with majority of 

other provinces experiencing only moderate or mild impacts (Iese et al. 

2021).  

No mild or very mild 

levels present, and 

there is an 

approximately equal 

distribution between 

severe and moderate 

risk, with no extreme 

levels present. 

Yes Moderate Moderate droughts in PNG are generally associated with dry conditions 

beyond what are commonly experienced during the regular dry season, as 

well as unstable social, economic, and agricultural aspects (Bang et al., 

2003). In the past, moderate drought has seen severe and moderate impacts 

consistently distributed across all PNG provinces, but more extreme impacts 

are not experienced (Iese et al. 2021).  

 

Most provinces or all 

within the region are 

at severe/extreme 

levels. 

Yes Severe to 

extreme 

In past severe or extreme drought events, all regions across PNG were 

known to be highly adversely affected. This occurred even when only certain 

provinces in the different regions experienced extreme drought conditions 

and direct impacts, as other provinces encountered indirect impacts which 

were also severe. For example, during the 1997-1998 nationwide drought 

event in PNG, dire social, health and economic effects were felt across the 

entire country (Kanua et al., 2016). Resources of provinces in non-dry 

conditions were pressured with PNG villagers from drought-affected 

provinces travelling to areas in non-drought conditions or to relatives living 

in urban areas seeking familial help and support (Allen and Bourke, 2009).  
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Table 5. Information on the types of impacts associated with the three severity classes used to classify drought severity in the 1090 

literature. Adapted from Allen & Bourke (1997). 

 
Severity Class Types of impacts associated 

Mild Unusually dry, but no major food supply, or drinking water or health problems OR some inconvenience 

with shortages in staple food but other food available, and/or must 

travel further to collect drinking water. Health satisfactory. 

Moderate Conditions are difficult, with food reduced and some famine food being eaten, 

and/or water available only at a distance, and/or some babies and elderly people 

unwell. No lives at risk and no related deaths reported. Affects may begin to be felt in industry and/or 

markets. 

Severe to Extreme No food in gardens, famine food only being eaten, and/or water in short supply and possibly polluted, and/or 

increasing disease, and/or the lives of small children and elderly people at risk OR Extreme situation with 

only famine food available, and/or water very short, and/or many people ill, and/or small children and 

elderly people seriously at risk and/or related deaths reported OR workplaces/industry closures 

 

Table 6. Inclusion and exclusion criteria for the selection of literature sources to be used in the risk assessment validation.   

 1095 
Criteria for inclusion Criteria for exclusion 

Literature in English Literature in other languages 

Mention of a specific time period in Papua New Guinea 

within which drought was present and/or drought impacts 

were experienced.  

Vague mention of drought events overall in the history of Papua New 

Guinea, with specific years not mentioned and/or mention of drought in 

years prior to the study period.  

Impacts of drought are mentioned in a detailed manner, with 

the specific type of impacts described. Mention of specific 

impacts in particular PNG provinces. 

Drought conditions are briefly mentioned, with no reference to specific 

drought impacts experienced in PNG, or in specific provinces. 

Drought impacts described are not only 

meteorological/hazard impacts, socio-

economic/vulnerability/exposure impacts are also 

mentioned.  

Only meteorological/hazard impacts are described (e.g temperature 

anomalies) 

Publicly available government/relevant organisation 

documents, Open access Journal articles, review articles and 

book chapters 

Restricted access books/book chapters, journal/ review articles, and grey 

literature other than relevant organisation documents (meteorological 

organisation documents), for example newspaper articles 

 

Table 7. Search parameters used to gather literature sources for the risk assessment validation.   

 
Database Search Parameters Result 

Google Scholar 1st search: 

“Papua New Guinea” AND “drought impacts” 

Filtered date from 2014-2020 (study period) 

2nd search: 

"Papua New Guinea" AND "drought impacts" AND "La Nina" AND "El 

Nino" 

Filtered date from 2020-2021  

1st search: 

101 items found, 7 Included, 94 

Excluded 

2nd search: 

16 items found, 2 Included, 10 

Excluded, 4 Repeated 

ScienceDirect 1st search: 

Drought AND Papua New Guinea 

Filtered date from 2014-2020 (study period) 

2nd search: 

Papua New Guinea AND drought impacts AND La Nina AND El Nino 

Filtered date from 2020-2021 

1st search: 

502 items found, 0 Included, 500, 

Excluded, 2 Repeated  

2nd search: 

2 items found, 0 included, 2 excluded, 0 

repeated 

Springer Link 1st search: 

Drought event AND Papua New Guinea AND impacts 

Filtered date from 2014-2020 (study period) 

2nd search: 

Papua New Guinea AND drought impacts AND La Nina AND El Nino 

Filtered date from 2020-2021 

1st search: 

48 items found, 2 Included, 45 

Excluded, 1 Repeated  

2nd search: 

3 items found, 0 included, 2 excluded, 1 

Repeated 

Wiley Online 

Library 

1st search: 

Drought AND Papua New Guinea AND impact AND province 

Filtered date from 2014-2020 (study period) 

2nd search: 

Drought AND Papua New Guinea AND impact AND province 

Filtered date from 2020-2021 

1st search: 

134 items found, 3 Included, 129 

Excluded, 2 Repeated 

2nd search: 

27 items found, 0 included, 14 excluded, 

13 repeated 
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Figure 4. Risk index levels for each PNG province calculated from the Drought Risk Assessment conducted for 2014, 2015, 

2016, 2017, 2018, 2019, and 2020. Risk index levels are classified on a deepening orange colour scale from Very Mild (index 

values from 0.01-0.20) to Extreme (index values from 0.81-1.00). 

Table 8. Literature sources used as a ground-truth. The source is listed and described with the types of impacts listed in the 1105 

sources recorded.  

Source Drought 

Period 

Mentioned 

Severity of 

Drought 

Mentioned  

Types of Impacts Described for PNG 

Annamalai et 

al. 2015 

2015-2016 Severe to 

extreme 

-Famine 

-Compromised freshwater supplies and food security 

-Impacts on public health, economies, and food distribution 

Whitfield et 

al., 2019 

2015-2016 Severe to 

extreme 

-Climatological effect, which varied with elevation.  

-Extreme high temperatures were recorded at lower elevations, coinciding with bush fires and 

severe drought impacts 

-At mid-elevation, there were reductions in dry season rainfall and the increases in temperature 

were less severe, due to the mediation of cloud effects 

-intermittent frosts occurred at particularly high elevations. 

-impacted crops both directly through drought and frost, and indirectly, through changes in 

ecosystem services and disservices, including pest pressure and predation of pests. 

Bonnafous et 

al., 2017 

2015-2016 Severe to 

extreme 

-the Ok Tedi mine experienced several months of shutdown after a drought induced by the 2015 

El Niño event. 

Government 

of Australia, 

2017 

2015-2016 Severe to 

extreme 

-reduced rainfall in many areas of PNG from April 2015  

-reduced cloud cover in high altitude locations in July-August led to damaging frosts.  

-the rural population experienced reduced access to clean drinking water and staple foods, which 

resulted in health problems.  

-there was an increase in mortality  

Allan et al., 

2019 

2014-2016 Severe to 

extreme 

-the drought event had very severe societal, agricultural, environmental, and ecological impacts 

-severe drought and associated food shortages impacted Papua New Guinea 

De Deckker, 

2016 

2015 Severe to 

extreme 

-El Niño conditions in mid-2015 led to almost a third of the PNG population experiencing famine 

due to crop failure 

Schmidt et al., 

2021 

2015-2016 Severe to 

extreme 

-the severe 2015-2016 El Niño event decimated a critical share of PNG’s local crop production, 

leaving 10 per cent of the population with significant food shortages. 

Burivalova et 

al., 2017 

2014-2015 Severe to 

extreme 

-the 2014–2015 El Niño event, which caused unusual precipitation patterns in Papua New 

Guinea, had severe drought impacts 

Bhardwaj et 

al., 2021b 

2015-2016 

and 2019-

2020 

Severe to 

extreme for 

2015-2016 

-there was a strong El Niño-induced drought event in 2015  

-there was a weaker La Niña-induced dry period in 2020 
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Mild for 

2019-2021 

-the 2015-2016 event led to devastating negative rainfall anomalies, particularly in the southern 

mainland  

-the weak dry event in 2019-2020 was evidently detected over the entire country of PNG, with 

the first provinces to experience dry conditions being New Ireland, East and West New Britain, 

Bougainville, and Manus in the north-east of the nation. Impacts experienced in such provinces 

were likely mild.  

Johnson et al., 

2019 

2019 Mild  -mild drought impacts were detected in PNG during a weak 2019 drought episode  

Bang and 

Crimp, 2019 

2015-2016 Severe to 

extreme 

-widespread hunger 

-malnutrition and in some cases even death due to starvation.  

-recovery crops like sweet potato were crushed by unseasonal frosts. 

World Food 

Programme, 

2019 

2019 Moderate -below average vegetation across most of the country  

-Western and Gulf Province experienced moderate to severe dry conditions and subsequent 

impacts. 

-prolonged drought conditions and moderate drought impacts were recorded in southeast areas 

of the country.  

-soil moisture was impacted in the coastal areas and southern part of the country, affecting water 

storage, irrigation and raising the risk of bushfire.  

Mckenna and 

Yakam, 2021 

2019-2020 Moderate -negative impacts were experienced by market sellers 

 

Table 9. Individual PNG Province mentions in literature for each drought event as well as the severity level indicated for each 

province in the literature. Note, not all 22 provinces were mentioned. 

Drought event 

identified 

Province No. of 

sources that 

mentioned 

province 

Level of impact 

mentioned in the 

literature  

Quantified 

drought impact 

level indicated 

in the literature 

Yearly drought risk level given by the 

risk assessment (for the 2015-2016 

event the 2015 yearly risk and 2016 

yearly risk were averaged) 

2015-2016 Central 5 Severe 0.61-0.8 0.82 

Chimbu (Simbu) 7 Severe 0.61-0.8 0.63 

East New Britain 3 Extreme 0.81-1 0.70 

East Sepik 1 Extreme 0.81-1 0.71 

Eastern Highlands 8 Severe 0.61-0.8 0.62 

Enga 6 Severe 0.61-0.8 0.66 

Gulf province 2 Severe 0.61-0.8 0.75 

Hela 2 Severe 0.61-0.8 0.67 

Madang 2 Extreme 0.81-1 0.68 

Manus 2 Severe 0.61-0.8 0.49 

Milne Bay Province 2 Severe 0.61-0.8 0.65 

Morobe 6 Severe 0.61-0.8 0.60 

New Ireland 2 Extreme 0.81-1 0.51 

Northern (Oro) 1 Extreme 0.81-1 0.76 

Southern Highlands 7 Severe 0.61-0.8 0.72 

West New Britain 2 Extreme 0.81-1 0.74 

West Sepik (Sandaun) 1 Extreme 0.81-1 0.81 

Western 4 Severe 0.61-0.8 0.67 

Western Highlands 8 Severe 0.61-0.8 0.54 

2019 Bougainville 1 Moderate 0.41-0.6 0.38 

Central 3 Severe 0.61-0.8 0.81 

Chimbu 1 Moderate 0.41-0.6 0.67 

East Sepik 2 Moderate 0.41-0.6 0.51 

Eastern Highlands  2 Moderate 0.41-0.6 0.45 

Gulf Province 1 Severe 0.61-0.8 0.83 

Hela 3 Severe 0.61-0.8 0.65 

Jiwaka 1 Moderate 0.41-0.6 0.51 

Madang 1 Moderate 0.41-0.6 0.53 

Manus 2 Moderate 0.41-0.6 0.38 

Milne Bay Province 3 Severe 0.61-0.8 0.63 

Morobe 1 Moderate 0.41-0.6 0.41 

New Ireland 2 Mild 0.21-0.4 0.38 

Northern (Oro) 1 Severe 0.61-0.8 0.80 

Southern Highlands 3 Severe 0.61-0.8 0.78 

West New Britain 1 Moderate 0.41-0.6 0.55 

Western  3 Severe 0.61-0.8 0.70 

Western Highlands 3 Moderate 0.41-0.6 0.37 
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 1110 
Figure 5. Overall drought risk maps of PNG provinces for 2014 including a drought hazard, drought vulnerability, drought 

exposure and drought risk map detailing the index level of each province. The index level is classified on a deepening orange 

colour scale from Very Mild (index values from 0.01-0.20) to Extreme (index values from 0.81-1.00).  

 
Figure 6. Overall drought risk maps of PNG provinces for 2015 including a drought hazard, drought vulnerability, drought 1115 

exposure and drought risk map detailing the index level of each province. The index level is classified on a deepening orange 

colour scale from Very Mild (index values from 0.01-0.20) to Extreme (index values from 0.81-1.00).  
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Figure 7. Overall drought risk maps of PNG provinces for 2016 including a drought hazard, drought vulnerability, drought 

exposure and drought risk map detailing the index level of each province. The index level is classified on a deepening orange 1120 

colour scale from Very Mild (index values from 0.01-0.20) to Extreme (index values from 0.81-1.00). 

 
Figure 8. Overall Drought Risk Maps of PNG Provinces for 2019 including a Drought Hazard, Drought Vulnerability, Drought 

Exposure and Drought Risk Map detailing the index level of each province. The index level is classified on a deepening orange 

colour scale from Very Mild (index values from 0.01-0.20) to Extreme (index values from 0.81-1.00).  1125 
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Figure 9. Overall Drought Risk Maps of PNG Provinces for 2020 including a Drought Hazard, Drought Vulnerability, Drought 

Exposure and Drought Risk Map detailing the index level of each province. The index level is classified on a deepening orange 

colour scale from Mild (index values from 0.01-0.25) to Extreme (index values from 0.76-1.00). 

 1130 

 



 

35 

 

Figure 10. Drought risk levels calculated from monthly risk assessments for each province during the transition into the strong 

2015-2016 drought conditions. Drought risk levels are given for November and December 2014, January to December 2015, 

and January and February 2016. The drought risk level is classified on a deepening orange colour scale from Mild (index 

values from 0.01-0.25) to Extreme (index values from 0.76-1.00).  1135 

Table 10. Average Sensitivity Index Values across PNG provinces for each indicator and the index which they inform using 

2015 data as a case study. Rankings are shown for SI with highest sensitivity ranked first and lowest sensitivity ranked last. 

The likely credibility is also ranked amongst indicators, with first being the most credible for inclusion in the index and last 

being the least credible.  

 1140 
Index Indicator Sensitivity Index (Avg. 

across provinces) 

Sensitivity Rank (highest to 

lowest SI) 

Likely Credibility 

Rank 

Hazard SPI 0.56 1st  2nd  

VHI 0.47 2nd  1st  

Vulnerability Staple Crop Tolerance Score 0.41 1st  4th  

Agricultural Occupation 0.36 2nd  3rd  

Percentage of Children Weighed at 

Clinics Less than 80% Weight for 

Age 0 to 4 years old 

0.33 3rd 2nd  

Key Crop Replacement Cost 0.31 4th 1st  

Exposure Land Use  0.39 1st  4th  

Elevation Type 0.34 2nd  3rd  

Population Density 0.32 3rd 2nd  

Access to Safe Drinking Water 0.31 4th  1st  

 


