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Abstract.

10 Climate change is increasing the frequency and intensity of natural hazards, causing disastrous impacts on vulnerable

communities. Pacific Small Island Developing States (SIDS) are of particular concern, requiring resilient disaster risk
management consisting of two key elements: proactivity and suitability. Drought risk knowledge can inform resilient risk
management, but it is currently underexplored in Pacific SIDS, particularly in the highly vulnerable nation of Papua New

Guinea (PNG). A tailored, meaning highly specific to the area under investigation, drought risk assessment methodology is

15 key for expanding risk knowledge in vulnerable communities. A semi-dynamic and tailored drought risk assessment
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methodology to be utilised in PNG was developed in this research. Representative hazard, vulnerability, and exposure
indicators were selected, and integrated Geographic Information System (GIS) processes were used to produce hazard,
vulnerability, exposure and risk indices and maps. The validity of the risk assessment was investigated with a retrospective
risk assessment of drought in PNG (from 2014-2020) paired with a literature assessment (as a ground-truth source), and a
sensitivity analysis. The preliminary drought risk assessment methodology demonstrated in this study was overall deemed
valid and robust, with supplementary improvements proposed for consideration in future investigation. The developed
methodology makes strides in addressing methodological knowledge gaps in drought risk assessment, for global assessments
and those specific for PNG, and demonstrates the potential for risk assessment to inform resilient drought management
practices in at-risk areas. Overall, the results of this study directly contribute to enhancing provincial drought risk knowledge
in PNG.

Keywords: Climate Risk; Drought Risk Assessment; Resilient Management; Small Island Developing States; Papua New

Guinea

1 Introduction
1.1 Drought in Papua New Guinea

Increased intensity and frequency of natural hazards and disaster events resultant of a changing global climate are already seen
to have destructive impacts on the world’s most vulnerable communities (Mercer, 2010). Small island developing states (SIDS)
in the Pacific include some of the most hazard-vulnerable communities in the world (Bang and Crimp, 2019). Papua New
Guinea (PNG) is one such country that has experienced destructive impacts from hazard events. In particular, drought has
consistently devastated PNG communities in the past, and is predicted to increasingly affect PNG in the future (Kuleshov et
al., 2014 ).

Generally, drought can be described as an extended dry period resulting from rainfall deficiency. However, drought has many

definitions for its various types: meteorological (when climactic factors result in dry conditions within an area), hydrological



(when water shortages occur after a period of meteorological drought), agricultural (when agricultural productivity is inhibited

40 by meteorological and hydrological drought), and socioeconomic (when dry conditions restrict the supply and demand of
commodities) (Wilhite et al., 2014). Drought events across PNG occur mainly a result of two key climate drivers: El Nifio
Southern Oscillation (ENSO) and Indian Ocean Dipole (I0D) (Chua et al., 2020).

In PNG, ENSO alters the distribution of precipitation, often causing precipitation extremes (Horton et al., 2021). ENSO has
45 two key phases: ElI Nifio (warm phase) and La Nifia (cold phase). La Nifia-associated prolonged rainfall has commonly
contributed to floods, whilst El Nifio-associated prolonged aridity has commonly contributed to droughts in PNG (Smith et al.,
2013). Historically, the 1997-1998 EI Nifio contributed to severe drought in PNG causing immense loss of life, destruction of
crops, and forest fires subsequently causing regional pollution problems (Nicholls, 2001). However, different regions of PNG
experience varying climactic affects from El Nifio and La Nifia (Fig. 1). For example, a mild to moderate La Nifia event which
50 occurred in PNG during 2011-2012 resulted in drought conditions in several PNG provinces. Although in a La Nifia phase,
severe precipitation deficits were observed in New Ireland and Milne Bay Province throughout 2010 and the first half of 2011,

resulting in drought conditions which contributed to crop destruction, food insecurity, and water shortages (Smith et al., 2013).

The effects of ENSO can be influenced by the 10D to further weaken or strengthen trends in rainfall variability (Bhardwaj et
55 al., 2021b). Defined as consistent changes in sea surface temperature variability across the tropical western and eastern Indian
Ocean, the 10D can be negative, positive, or neutral. Each 10D phase interacts with ENSO impacts differently (Bhardwaj et
al., 2021b). The impacts of interactive IOD and ENSO phases experienced in PNG are shown in Fig. 2. Whilst drought
conditions can occur in PNG in any ENSO or 10D phase, extreme drought conditions are most often a result of a positive |OD

phase interacting with an EI Nifio ENSO phase.

60 1.2 Disaster risk reduction and resilient risk management of droughts in Papua New Guinea

PNG has a lack of coping capacity for managing the risks posed by the drought events which occur across the country, due to
limited resource availability, including water and food insecurity, and reactive management practices (Kuleshov et al., 2020).
Although drought historically has disastrous impacts on PNG communities, the risk of drought has not been extensively
investigated compared to other hazards like tropical cyclones and floods. Due to the lack of drought risk knowledge, and the

65 lack of coping capacity, future disaster risk reduction (DRR) of drought, through resilient drought risk management, is of
priority in PNG (Bang and Crimp, 2019).

| Globally, rResilient drought risk management consists of two key elements: proactivity and suitability. In this instance,

proactivity is characterised by controlling a drought risk situation prior to the occurrence of a drought event, rather than

| 70 responding to drought after it has reached a crisis level (Pulwarty and Sivakumar 2014). Suitability is seen as the level of
appropriateness that drought management strategies have for application at localised levels in vulnerable places. A drought
management strategy is deemed suitable if it can be independently implemented by local stakeholders and/or communities and
if it addresses the specific impacts faced by local decision-makers (Aitkenhead et al., 2021). Thus, when seeking to increase
drought resilience in PNG, the proactivity and suitability of localised drought risk management is of critical focus (Mercer,

75  2010).

1.3 Investigating drought risk knowledge in PNG: Drought risk assessments

Drought risk assessments are increasingly recognised as key to informing proactive and suitable drought risk management
decisions, as they aid in increasing risk knowledge and can identify priority management areas. Such assessments are

commonly used in global studies investigating drought risk knowledge, and there is potential for application of these
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assessments in SIDSs like PNG (Chen et al., 2003; Rahmati et al., 2020). Drought risk assessments analyse the risk of adverse
drought impacts in a particular area. Drought risk is defined as the probability of harmful consequences, or expected losses
resulting from interactions between drought hazard (the possible future occurrence of drought hazard events); drought exposure
(the total population, its livelihoods and assets in an area in which drought hazard events may occur); and drought vulnerability

(the tendency of exposed factors to suffer negative impacts when drought hazard events occur) (Sharafi et al., 2020).

It is widely accepted that there are two types of risk assessments: static and dynamic_(Hagenlocher et al., 2020; Wilhite et al.,
2014). Dynamic drought risk assessments consider both the spatial and temporal aspects of droughts, using historic,
periodically updated, and simulated data. Additionally, dynamic assessments incorporate not only hazard monitoring

indicators, but also vulnerability and exposure indicators (Mosquera-Machado and Dilley, 2009). Most drought risk

assessments that have been previously conducted on both the global scale, and specifically for PNG, have been static
assessments (Hagenlocher et al., 2020). Static assessments provide an estimate of risk factors for a discrete moment in time
and space, usually considering only one or two components of risk (e.g only hazard) (Aerts et al., 2018) (Hagenlocher et al.,
2020). Dynamic assessments are recommended for use over static assessments as they provide a more holistic assessment of
drought risk; drought risk is not static, but rather dynamic in both space and time (Hagenlocher et al., 2020).

The vitality of such dynamic drought risk assessments is demonstrated by Rahmati et al. (2020) in a study of drought risk in a
vulnerable area of south-east Queensland, Australia. As a result of their study, Rahmati et al. (2020) provided recommendations
detailing areas that are likely to experience adverse drought impacts, within which drought resilience should be improved. The
drought risk assessment also had implications for utilising integrated Geographic Information System (GIS)-based mapping
techniques to accurately map and visualise drought risk levels in an area to better inform drought preparedness. Integrated
GIS-based mapping techniques for risk assessment include three key components: data integration into GIS, risk assessment

tasks, and consideration of risk decision-making (Chen et al., 2003).

The first component, data integration into GIS, consists of data collection and assimilation onto a GIS platform and data
transformation and standardisation. Fuzzy logic is a data transformation and standardisation technique increasingly recognised
as useful in drought risk mapping (Dayal et al., 2018). As drought risk is dynamic, assessing and mitigating regional drought
impacts is likely to involve some level of subjectivity as there are no standard criteria on mapping and quantifying drought
risk. The application of fuzzy logic in GIS, minimises the subjectivity in drought risk assessment, thus improving the efficiency
of risk assessment as a tool for spatial decision-making (Dayal et al., 2018). Risk assessment tasks are then performed on the
GIS platform, including individual hazard, vulnerability, and exposure assessments with accompanying mathematic
calculations (Hagenlocher et al., 2019). The consideration of risk decision-making is incorporated through efficient data

visualization on GIS risk maps and appropriate dissemination of such products to decision-makers (Blauhut, 2020).

1.4. Validating drought risk assessments to ensure accuracy and usability of results

Drought risk assessments commonly lack adequate validation (Asare-Kyei et al., 2017; Blauhut 2020). In a review of past risk
assessment methodology, Hagenlocher et al. (2019) state that comprehensive validation “has proven to provide relevant
information on the reliability, validity, and methodological robustness of risk assessments and their outcomes. However, its

application in the field of risk assessment remains largely underdeveloped.”. Among the few studies seeking to validate a risk

assessment methodology,_including those seeking to validate an assessment solely focused on one component of risk like

vulnerability, various validation techniques have emerged (Gonzalez Tanago et al. 2016).
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Validation through result comparison with historical data has been used in several studies (Wu and Wilhite, 2004), however
the preciseness of this method has been criticised (Fekete, 2019). Molinari et al. (2019) states that there is “the need of higher
quality data to perform validation and of benchmark solutions to be followed in different contexts, along with a greater
involvement of end-users”. An alternative technique, incorporating the views of end-users as a ‘ground-truth’ source, called
participatory research is becoming increasingly utilised to validate drought monitoring outcomes, including risk assessment
results. A ground-truth source provides information that is real or true, given by direct observation or measurement in the real

world. For example, drought impact records for a particular event provided by locals who experienced the event first-hand.

Participatory research is a technique which includes collaboration with stakeholders in a capacity building process as well as
consideration of local peoples and expert observations into knowledge systems (Mckenna and Yakam, 2021; Fragaszy et al.,
2020). Although participatory research is seen as a promising validation methodology, some past investigations using this
method have employed an additional ‘ground-truth’ source to strengthen validation adequacy (Gonzalez Tanago et al. 2016).
For example, Bijaber (2018) verified risk assessment results with historical on-the-ground precipitation and crop data at the
national scale in Morocco, as well as the views of experts regarding what conditions were experienced during the study period.

In addition to validating risk assessment results, a statistical sensitivity analysis is also recommended as best practice for
validating the selection of drought risk indicators informing the risk assessment (Hangelocher et al., 2019). Sensitivity analysis
is used to determine how different values of an independent variable affect a particular dependent variable under a provided
set of assumptions. Although recognised as a critical verification tool, previous drought risk assessment studies commonly
exclude sensitivity analysis. In a review of past drought risk assessments, Hangelocher et al. (2019) determined that only 12%
of studies conducted a statistical sensitivity analysis, with only four studies employing both a validation of risk assessment
outcomes against a ground-truth source and a sensitivity analysis.

In Pacific SIDS like PNG, data availability is scarce. Therefore, validation through comparison with historical independent
data is unlikely to be credible. Overall, a strengthened validation methodology using multiple ground-truth sources, and an

additional sensitivity analysis, seems most promising for future study of drought risk assessments in PNG.

1.5 Addressing drought risk assessment knowledge gaps in PNG

Generally, drought is insufficiently investigated on the global scale (Blauhut, 2020). Out of the few drought risk assessments
previously conducted, most are lacking in effective methodological components (Gonzélez Ténago et al. 2016). Blauhut (2020)
recommends that future studies must “improve the characterisation of drought risks and its components” and “ascertain how
this risk can be communicated...to enhance resilience to drought”. Hagenlocher et al. (2019) corroborates that there are major

gaps in previous risk assessment methodologies, like a lack of tailored indicator selection.

Tailored drought risk assessment is specific for measuring drought risk in a particular area and produces information for a
certain set of stakeholders. This can be achieved by selecting hazard, vulnerability and exposure indices that specifically
consider the climatic, socio-economic, and geographic characteristics of the area being assessed. Thus, generalised indicators
would be omitted from the assessment. In recognising the importance of tailoring drought risk assessment through appropriate
selection of indicators, Le et al. (2021) selected specific indicators for their agricultural drought risk assessment in Vietnam,
based on three criteria (i) indicators are relevant to agricultural sector; (ii) data for these indicators are quantitative and publicly

available, and (iii) indicators are specific to Vietnam’s socio-economic conditions.
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The scarce number of previous studies in PNG, assessing the risk of negative drought impacts, are commonly lacking in
effective methodological aspects, and do not address key knowledge gaps in drought risk assessment investigation. An analysis
of previous drought assessment studies in PNG is provided in table 1, and the methodological knowledge gaps are outlined.
Overall, there is room for future investigation to develop a drought risk assessment to be utilised in PNG that incorporates the
most effective methodological aspects, specifically considering the following: tailored and specific indicator selection;
consistent drought risk definitions; dynamic rather than static assessment; sufficient validation of indicators and results; and

the provision of recommendations for risk reduction.

Accordingly, this study will expand on previous research (Bhardwaj 2021b; Kuleshov 2020) with an aim to increase drought
risk knowledge in PNG. Specifically, this research seeks to:

e demonstrate the potential for tailored drought risk assessments to accurately inform on drought risk levels before,
during and after a drought event and thus contribute to more resilient drought risk management in local areas, using
drought in PNG as a case study.

o develop an effective, dynamic drought risk assessment methodology utilising GIS integrated technique and space-
based weather and climate extremes observations, conduct a unique and tailored, dynamic drought risk assessment
for a retrospective period in PNG, and perform a comprehensive validation of the risk assessment results using
literature records as a ‘ground-truth’ source.

The development of the drought risk assessment is intended to aid the PNG NWS in informing local PNG stakeholders on

which provinces are of highest concern and guide resilient drought risk management practices within priority communities.

2. Data and Methodology
2.1 Study Area: PNG

PNG has a population of approximately 8.8 million across its mainland and six hundred islands, which have a total land area
of 452,860 km?2. The country consists of four major regions, within which the 22 provinces of PNG are divided (Fig. 3). The
four major PNG regions and their provinces are as follows:

1. Highlands Region: Chimbu (Simbu), Eastern Highlands, Enga, Hela, Jiwaka, Southern Highlands, and Western Highlands.
2. New Guinea Islands Region: Bougainville, East New Britain, Manus, New Ireland, and West New Britain.

3. Momase Region: East Sepik, Madang, Morobe, and Sandaun (West Sepik).

4. Southern Region: Central, Gulf, Milne Bay, National Capital District, Oro (Northern), and Western.

PNG is largely mountainous, and much of it is covered with tropical rainforest. The climate of PNG can be described as tropical
throughout, however each region of PNG experiences differences in seasonal climactic factors (Fig. 2) (Bhardwaj et al., 2021a).
PNG society consists of traditional village-based life, dependent on subsistence and small cash-crop agriculture, as well as
modern urban life in the main cities. Economic performance in PNG has historically been based on international prices for
exports, fiscal policies, and construction activity. As of 2015, over 2 million Papua New Guineans were poor and/or facing
hardship, particularly those based in rural areas (Pacific Islands Forum Secretariat, 2015). Agricultural occupation is
consistently important for local livelihoods, with approximately 80-85% of the rural population directly deriving their

livelihood from farming (Pacific Islands Forum Secretariat, 2015).

2.2 Study Design

The methodology proposed here addresses the gaps identified in previous studies (Hagenlocher et al., 2019) to achieve a

tailored and accurate risk assessment. Hazard, vulnerability, and exposure components are equally considered, and the spatial
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and temporal aspects of drought are investigated, using retrospective and periodically updated data. The assessment is deemed
as semi-dynamic as it has a dynamic hazard component, that can be updated monthly and includes monitoring indicators with

data on 3-month cumulative timescales, but also includes more semi-dynamic and static components of vulnerability and

exposure, which are updated annually or in some cases (e.g. elevation) remain fixed.

This research is conducted on the provincial level within a 2014-2020 study period. The methodology for this study was four-
part:
1. Selection of tailored hazard, vulnerability, and exposure indicators appropriate for monitoring drought risk in PNG
provinces.
2. Calculation and GIS mapping of hazard, vulnerability, exposure, and drought risk indices for retrospective! years
(2014-2020) to determine the occurrence of drought events in PNG in the past.
3. Validation of drought risk assessment accuracy through a comparison of the drought risk index results with literature
detailing the drought conditions and impacts experienced on-the-ground at the time of each past PNG drought event.

4. Implementation of a sensitivity analysis to enhance the evaluation and validity of the risk assessment.

2.2.1 Methodology: Part 1

The risk index produced incorporates equal indices of hazard, vulnerability, and exposure; specific indicators were selected to
contribute to these three indices. With drought hazard covering the possible occurrence of drought events in the future,
exposure considering the total population, its livelihoods and assets in an area in which drought events occur, and drought

vulnerability reflecting the tendency of exposed factors to suffer adverse impacts when a drought event occurs (Sharafi et al.,

220 2020). These definitions remained clear throughout the assessment process, addressing the literature recommendation to
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consistently characterise drought risk as the risk of negative impacts as a function of three core components: hazard, exposure,
and vulnerability (Hagrenlocher et al. 2019).

Tailored risk indicators were selected for monitoring drought risk in PNG on the provincial scale, based on the following
criteria adapted from Le et al. (2021) (i) indicators are relevant to one or more of the three most drought impacted sectors in
PNG (economic sector, agricultural sector, and health sector) (ii) data for these indicators are quantitative and publicly
available, and (iii) hazard indicators are highly specific to PNG’s climactic conditions and the vulnerability and exposure
indicators are highly specific to PNG’s socioeconomic and geographic conditions. An analysis of indicator selection in earlier
studies of characteristically similar areas to the 22 provinces of PNG was used to measure the suitability of potential indicators
for this study against the selection criteria described above. PNG National Weather Service (NWS) advice was also sought to
approve indicator selection for this study. Additionally, hazard indicators were assessed against recommendations made by
WMO in their Handbook of Drought Indicators and Indices (Svoboda and Fuchs, 2016).

Table 2 displays the chosen hazard, vulnerability, and exposure indicators, indicator data sources, data resolution for each

indicator, and the weight applied to each indicator. The reasoning behind the selection of each of these indicators is described
in tables that are included in the Supplementary Materials. Other potential indicators and the reasons why they were omitted

from this study are also described in tables in the Supplementary Materials.

It is important to note that:

! This methodology follows the process of historical risk assessment validation, as in Wu and Wilhite (2004), however due
to the limited data range available for selected indices, it is inappropriate to call this a historical risk assessment. It is
therefore deemed a retrospective risk assessment.
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- all types of droughts were considered when selecting indicators_(Supplementary Materials), as well as all major
sectors across PNG provinces. This was done to provide a holistic risk index for PNG provinces, as each type of

drought is known to impact PNG communities (Kuleshov et al., 2020), and each major sector experiencing the effects

(Bhardwaj et al., 2021b). However, it was particularly difficult to find indicators suitable for the study context that

inform on hydrological drought. Thus, this drought type could not be examined in the PNG drought risk assessment.

- publicly accessible data was only available for certain indicators as data availability is poor in PNG_(all indicators
ultimately selected for use in the risk assessment had publicly accessible data available), thus indicators which could

have been more appropriate for use in hindsight had to be omitted. For example, Avg. household consumption of

staple food could have been a useful vulnerability indicator, particularly informing on food insecurity. However, data

availability was too scarce across PNG for it to be included in the risk assessment (Supplementary Materials).

- indicator data was only available at certain spatial resolutions. Because of this, a standard spatial resolution was
chosen for the recording of data; data was recorded at the provincial level.

- space-based monitoring products were used when gathering data for hazard indicators to ensure accuracy. There is a
commonly recognised need to increase the utilisation of monitoring of climate extremes from space in disaster risk
investigations (Kuleshov et al., 2020; Blauhut, 2020).

Each of the selected hazard, vulnerability and exposure indicators have varying thresholds for signalling levels of drought risk.
Table 3 provides the-generathy-accepted thresholds, outlined by several other studies (Rahmati et al., 2020; Nasrollahi et al.,

2018; Aitkenhead et al., 2021), the advice of the PNG National Weather Service, as well as past data trends in PNG (Chua et
al., 2020), for each indicator in which ‘no to mild drought risk, ‘moderate drought risk’, and ‘severe to extreme drought risk’

is likely signalled. These thresholds have been determined through an investigation of literature regarding each indicator. For
example, SPI and VHI thresholds were decided upon using guidance from Chua et al., (2020). These thresholds are provided
as an insight into the general signals given by ranges of values in the indicator data. They were not used further in any

calculations.

2.2.2 Methodology: Part 2

Data for hazard, vulnerability, and exposure conditions, in each of the 22 PNG provinces within the 2014-2020 study period
in PNG, was used to develop a yearly risk index for each year investigated to determine whether it is suspected that a drought
event(s) occurred. In this research, we consider a drought event as the occurrence of drought hazard conditions with associated
impacts. Integrated-GI1S methodology for mapping was used to display yearly risk levels for 2014-2020, on the provincial
scale across PNG. Monthly risk indices were also produced for November and December in 2014, January to December of
2015, and November and December in 2016. The monthly results formed a case study of PNG’s transition into and out of

drought in the strong EI Nino year of 2015.

To calculate the hazard, vulnerability, and exposure indices, indicator data was first reclassified by a linear function (using the
rescale by function tool in ArcGIS Pro) on a 1-10 scale and then standardised using fuzzy logic in ArcGIS Pro (Environmental
Systems Research Institute (Esri) Inc., 2019). Fuzzy logic is processed in ArcGIS Pro through the fuzzy function which requires

the assignment of fuzzy membership classes to data (Equation 1).
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where pA(x) refers to the grade of membership for element x in a fuzzy set A, and the X is the universal set.

Prior to the performance of the fuzzy function, fuzzy membership classes were assigned to each indicator, describing the
relationship between it and drought risk as recommended in Rahmati et al. (2020) and Aitkenhead et al. (2021). Two classes
of fuzzy membership were assigned in this study: fuzzy small? and fuzzy large®. Fuzzy values scaled between 0-1 based on the
possibility of the indicator data contributing to drought risk, where 0 was assigned to values unlikely to contribute to drought

risk, and 1 was assigned to values most likely to contribute.

In fuzzy large, larger inputs have membership values closer to 1. This function is defined by a midpoint value that can be left
as a default or manually adjusted to suit specific datasets, which is assigned a membership of 0.5. Equation 2 gives the

mathematical expression for fuzzy large membership.

1

where f1 is the spread and f2 is the assigned midpoint.
In fuzzy small, smaller inputs have membership values closer to 1. Like fuzzy large, it is defined by a either a default or
manually assigned midpoint that is given a membership value of 0.5. Equation 3 gives the mathematical expression for fuzzy

small membership.
1

u(x) = W @)

The default midpoint was not used when performing the fuzzy function; the midpoint used for each indicator was based on the
mean value in the historical records for indicator data (historical records meaning all available past data; this differs for each
indicator e.g. SPI data is available from 2001 onwards). This ensured that the data was standardised on both a spatial and

temporal scale.

The indicator fuzzy values for each year were mapped on the provincial scale as yearly raster layers in ArcGIS Pro*. Thus, a
2014, 2015, 2016, 2017, 2018, 2019, and 2020 standardised raster layer was mapped on the provincial scale for each of the
ten indicators. This was also done for the months investigated as part of the 2015 case study. After standardising indicator
data, numerical weights were assigned by researchers to each indicator based on an expert weighting scheme informed by past
studies and advice from the PNG NWS. The weights assigned reflected the relative importance and contribution of each
indicator to the specific index it informs. This weighting scheme was on a 0-1 scale, with 0 indicating no probable contribution
to the relative index and 1 being total probable contribution to the relative index (Frischen et al., 2020). The weights assigned

to each hazard, vulnerability and exposure indicator are shown in table 2.

By applying weights to indicators, the potential affect of anomalies in individual indicator data is reduced. For example, hazard
data anomalies are expected as there is commonly a lag between dry signals from SPI and VHI. The effects of dry conditions
recorded in SPI are commonly seen leading up to and during a drought event, whereas the vegetative affects recorded by VHI
can sometimes lag and can only become evident once a drought event has commenced (Zhao et al. 2022). Additionally, VHI

primarily signals only agricultural drought, whereas SPI is a meteorological drought hazard indicator which can be linked to

2Fuzzy small: a transformation function used when smaller input values are most likely to influence drought risk.
3Fuzzy large: a transformation function used when larger input values are most likely to influence drought risk.

“The base map used for all mapping in this study was gathered from the open-sourced platform, GISMap.

8
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the impacts of eensiders—multiple drought types (meteerelogical—not only meteorological but also hydrological; and

agricultural). So, in a holistic drought risk assessment aiming to encompass all forms of drought, as in this study, SPI could be

weighted more.

The vulnerability, hazard and exposure indices were calculated for each province, and spatial maps of the area covering the 22
provinces of PNG (representing vulnerability, exposure, and hazard per unit area) were produced, through the raster calculator
in ArcGIS Pro using Equations 4, 5, and 6 (Dayal et al., 2018). Vulnerability, hazard and exposure indices were calculated for

each year and month under investigation.

HI =Y (w; * x/) (),
VI=%_1(wi * x;") (®),
El = Ei:l(wi * Xi’) (6),

where HI is the Hazard Index, V1 is the Vulnerability Index, El is the Exposure Index, n is the number of Hazard, Vulnerability or Exposure
Indicators, xi’ refers to the standardised indicators and wi; refers to the respective indicator weight.

The final drought risk index value for each PNG province was then determined and mapped through the integration of the
drought vulnerability, hazard and exposure index maps using the Fuzzy Gamma Overlay function (using a gamma of 0.75) in

ArcGIS Pro. The mathematical expression for this function is given in Equation 7 (Dayal et al., 2018).

1_
Hgamma = (ﬂsum)y S (“product) 4 (7)
where pigammais the calculated fuzzy membership function, y is a parameter chosen between 0 and 1; psum is the fuzzy algebraic SUM and

Wproduct IS the fuzzy algebraic PRODUCT that is mathematically expressed in Equation 8 and 9 respectively (Dayal et al., 2018).
Usum =1 — Hn 1(1 - .ui) (8),

i=
Hproduct = 1- l—ti:l (,Ltl) (9)

where piis the fuzzy membership for the map, and i equals the number of maps to be combined. In the fuzzy gamma operation, y=0 is

equivalent to the fuzzy product and y=1 is equivalent to fuzzy sum.

Once a final drought risk map was produced for each year and month under investigation, the extent of drought risk displayed
was classified into five levels: very mild (0.01 to 0.20 index values, mild (0.21 to 0.40 index values), moderate (0.41 to 0.60
index values), severe (0.61 to 0.80 index values), and extreme (0.81 to 1.00 index values). These classifications are commonly
used in drought risk assessments (Dayal et al., 2018; Frischen et al., 2020).

Through observation of the produced drought risk maps,

determined-the years in which a nationwide drought event was suspected in PNG_were determined. Since PNG is a highly

variable nation (in both climatic and geographic characteristics), it is hard to stipulate that drought is occurring as a nationwide

event if a handful of scattered provinces are at high risk, it is more suitable to consider drought risk across each of the four
regions of PNG. Table 4 outlines the decision rules for when a regional drought event was suspected within the four regions
of PNG. Three severity levels were used to classify the strength of the events indicated: mild, moderate, and severe to extreme.
The strength of each identified drought event was determined based on the risk level pattern observed across PNG overall. As
recognised in the literature describing past drought events across PNG (Bhardwaj et al., 2021b; Bang and Crimp, 2019), if half
of the regions in PNG (two out of four) are deemed to be experiencing drought, then a mild to moderate nationwide drought
event is likely to be occurring (mild or moderate depending on the severity of risk levels observed in the drought suspected
regions). If the majority or all the regions are suspected to be in drought, then a severe to extreme nationwide drought event is
likely to be occurring (severe or extreme depending on the severity of risk levels observed in the drought suspected regions)
(Kanua et al., 2016).
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2.2.3 Methodology: Part 3

Risk level accuracy was validated through comparison with documented records of observed impacts during the study period
as a ground-truth source. Literature sources on this topic were analysed for the period of 2014-2020 to determine when drought
events were recorded. The events recorded in the literature were compared to those identified by the risk assessment. The
events identified by both the literature and risk assessment were further analysed by comparing the severity of each event
indicated by the risk assessment and the severity described in the literature. As in the events identified by the risk assessment,
three severity levels were used to classify the strength of the events indicated in the literature: mild, moderate, and severe to
extreme. Table 5 displays the information used to formalise the link between impacts reported by literature sources and the

three severity classes.

A literature search was undertaken to gather appropriate sources for analysis. Criteria for the inclusion and exclusion of sources
was developed, guided by similar past studies (Gonzalez Tanago et al. 2016) and the requirements of this study. Table 6
displays the criteria used to select sources for this study. The search parameters used to gather the sources are listed in Table
7. Overall a total of 13 sources (Annamalai et al. 2015; Whitfield et al., 2019; Bonnafous et al., 2017; Government of Australia,
2017; Allan et al., 2019; De Deckker, 2016; Schmidt et al., 2021; Burivalova et al., 2017; Bhardwaj et al., 2021b; Johnson et
al., 2019; Bang and Crimp, 2019; World Food Programme, 2019; Mckenna and Yakam, 2021) were included in the literature
investigation (Table 8). Each of the 13 sources were analysed and the following information was recorded: the time of drought
mentioned, the severity of drought mentioned, and the types of drought impacts mentioned. The specific provinces mentioned,
and the severity of impacts described for such provinces, were also recorded.

To determine if there were significant differences between the severity level for each identified drought event, indicated by
the risk assessment compared to literature, two types of statistical test were performed: F-test and t-test®. These tests were
conducted for each drought event identified by the assessment and literature. The F-test was firstly conducted to determine
whether there were equal variances between the provincial risk levels displayed in the risk assessment, and the impact levels
noted for provinces in the literature, for each drought event identified (Table 9). The F-value (test statistic), degrees of freedom
and the two-tailed p-value indicating the level of marginal significance within the test, were recorded. A Student’s t-test
(assuming equal or unequal variances depending on F-test results) was then conducted to determine the significance of
difference between the drought risk levels indicated by the assessment and the impact levels indicated in literature (Table 9).
The t-value (test statistic), degrees of freedom and the two-tailed p-value were recorded. The main factor being tested for was
if a difference existed between the risk assessment-given risk levels and the literature-given risk levels. As this is non-specific,
a two-tailed p-value is deemed appropriate for use (Peskun, 2020). Test assumptions were checked by plotting the data

distribution on boxplots. All assumptions were met, thus the tests proceeded. All statistical tests used o = 0.05.

2.2.4 Methodology: Part 4

Sensitivity analysis provides insight into how uncertainty in a model’s output (in this case the hazard, vulnerability, or exposure
index) can be attributed to different sources of uncertainty in the model input (in this case the individual indicators) (Gonzalez
Tanago et al. 2016). A sensitivity analysis was conducted for the risk assessment to determine how sensitive the indices were
to changes in indicator values. The analysis results were used to identify priority needs for revising the weighting of indicators,
to ensure that the most robust indicators are given the most merit in index calculations. The 2015 year was used as a case study
for the sensitivity analysis, as it was the most critical drought year indicated by the risk assessment and identified in the

literature. It was deemed that this year would be representative of how the risk assessment would perform in a drought event.

S Statistical tests were performed in Microsoft Excel.
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The sensitivity analysis performed was a one-way analysis. As such, one input parameter (indicator) used in the calculation of
an output (hazard, vulnerability, or exposure index) was varied individually to assess the impact that it would enact upon the
output. For example, the sensitivity of the hazard index to changes in SPI was analysed separately to the sensitivity of the

hazard index to changes in VHI. Conducting the sensitivity analysis, the value of each indicator in question was changed in a

stepwise manner from 0.1 to 1 with 0.1 increment and outputs for the relevant index (hazard, vulnerability, or exposure) were
tabulated; data tables were produced using Microsoft Excel with the What-If analysis function.Data-tables-waerecreated-in

alala aYa Y| allla
S

change-in-the-indicatorvalue-inguestion. _An example data table is included in Appendix A. The output values were then used

to calculate the Sensitivity Index (SI), indicating the sensitivity of the index in question to the individual indicator in question,

following Equation 10 (adapted from Farok and Homayouni (2018)).

SI = (Drmax - Dmin)/ Drmax (10)

where Dmax is the output result (hazard, vulnerability, or exposure value) when the indicator value in question is set at its maximum value
and Dnmin is the result for the minimum indicator value. A high SI means high sensitivity, vice versa, with ‘sensitivity” meaning the magnitude
of the index reaction to changes in indicator data.

This process was repeated for all provinces, meaning an Sl was produced for each of the 10 indicators used in this study, for
each of the 22 provinces investigated. Provincial SI’s were averaged to determine an overall SI for each indicator. The higher
the indicator Sl is, the more sensitive the relative index is to that indicator. The average Sl value was used to rank each indicator
in terms of sensitivity (first being the most sensitive) in each of the three indices. As it is known that indices comprising of
indicators with a high sensitivity index (SI) have a likely reduced robustness, a credibility rank was able to be given to each

indicator, based on the sensitivity results (first being the most credible for inclusion in the index) (Anand e t al., 2019).

3. Results
3.1 Comparison of drought risk assessment results and literature findings

Through observing the risk assessment results it was determined that in 2014, the Highlands Region and New Guinea Islands
Region was not suspected of experiencing a drought event. The Momase and Southern Regions were both suspected as
experiencing drought (severe to extreme drought and moderate drought respectively). As two out of four regions in PNG were
indicated as experiencing drought in 2014, it was concluded that a drought event was suspected to be occurring in this time.
The strength of the event was determined to be moderate, based off the risk level pattern observed across PNG (Fig. 4). The
risk level pattern displayed across PNG was a result of the hazard, vulnerability, and exposure levels. In 2014, high hazard and
vulnerability levels were evident across the Momase Region and Southern Region. Exposure levels were high throughout all
regions, except for the New Guinea Islands Region (Fig. 4 and 5). In the literature investigation, only 15% of sources mentioned
2014 as a drought year in PNG (Table 8). The sources that did mention drought impacts throughout 2014 (Allan et al., 2019;
Burivalova et al., 2017) deemed such impacts to be severe to extreme. As less than a quarter of sources mentioned 2014 as a

drought year, there is insufficient evidence to corroborate the drought risk assessment results to deem 2014 a drought year.

The risk assessment results displayed a suspected severe to extreme drought in the Highlands Region, Momase Region and
Southern Region in 2015. The New Guinea Islands Region was suspected of experiencing a moderate drought. Due to all

regions suspected of drought, and the consistently elevated risk levels displayed across PNG (Fig. 4), 2015 was concluded as
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a severe to extreme drought year. These high-risk levels were a result of high hazard levels consistent throughout all PNG
provinces, high exposure levels consistently throughout PNG regions, with New Guinea Islands an exception with more
moderate levels, and high vulnerability levels in Southern Region and Momase Region (Fig. 4 and 6). 76% of literature sources
mentioned 2015 as a year in which a drought event occurred across PNG. All sources that mentioned drought impacts in 2015
(Annamalai et al. 2015; Whitfield et al., 2019; Bonnafous et al., 2017; Government of Australia, 2017; Allan et al., 2019; De
Deckker, 2016; Schmidt et al., 2021; Burivalova et al., 2017; Bhardwaj et al., 2021b; Bang and Crimp, 2019) stated that
impacts were severe to extreme. Impacts commonly recorded by sources for the 2015 drought event included compromised
food security and famine (Annamalai et al. 2015; Government of Australia, 2017; Allan et al., 2019; De Deckker, 2016;
Schmidt et al., 2021; Bang and Crimp, 2019), compromised fresh water supply (Annamalai et al. 2015; Government of
Australia, 2017), affected public health and mortality (Annamalai et al. 2015; Government of Australia, 2017; Bang and Crimp,
2019), and negative effects on crops (Whitfield et al., 2019; De Deckker, 2016; Schmidt et al., 2021; Bang and Crimp, 2019).

Food security impacts were mentioned the most among sources (Table 8).

For 2016, the risk assessment displayed a suspected severe to extreme drought in the Southern Region of PNG, a mild drought
in the Highlands Region, and a moderate drought event in both the New Guinea Islands Region and Momase Region (Fig. 4
and 7). All regions were suspected as experiencing drought; thus, a nationwide drought event was suspected as occurring in
2016. The risk levels displayed across PNG for 2016 expressed that this was likely a moderate drought event. Such risk levels
were resultant of high hazard levels that were consistent throughout the Southern Region and scattered throughout various
provinces in other regions (e.g West New Britain in the New Guinea Islands Region), high exposure levels throughout all PNG
regions except for New Guinea Islands, and high vulnerability levels primarily across both the Southern Region and Momase
Region (Fig. 7). Many literature sources (61%) also mentioned 2016 as a year in which PNG suffered severe to extreme drought
impacts (Table 8) (Annamalai et al. 2015; Whitfield et al., 2019; Bonnafous et al., 2017; Government of Australia, 2017; Allan
et al., 2019; Schmidt et al., 2021; Bhardwaj et al., 2021b; Bang and Crimp, 2019). The impacts were the same as those conveyed
for the 2015 period, and most sources constituted the drought impacts seen in 2015 and 2016 as resulting from a singular

drought event which lasted for a two-year period.

No drought was suspected in 2017, with most provinces displaying mild drought risk in the risk assessment (Fig. 4). This was
corroborated by the literature analysis, with no sources mentioning drought conditions or impacts in 2017 (Table 8). No
nationwide drought was suspected in 2018, with the risk assessment indicating only one region (Southern Region) suspected
of experiencing drought impacts (Fig. 4). The provinces throughout the other regions of PNG displayed mostly mild or

moderate risk. The literature made no indication of 2018 being a drought year (Table 8).

In 2019 two out of four of the PNG regions were suspected as experiencing drought. The Momase Region was suspected as
experiencing mild drought, and the Southern Region was likely experiencing severe to extreme drought (Fig. 4). As half of the
regions in PNG were likely experiencing drought impacts, it was concluded that a nationwide drought event was occurring
throughout 2019. The risk level pattern across PNG illustrated that this was likely a moderate drought event (Fig. 8). This is
attributed to high hazard levels in the Southern Region and across the Highlands Region, with all other regions displaying
much milder levels; high exposure levels throughout all PNG regions except for New Guinea Islands, which displayed more
moderate levels; and high vulnerability levels in the Southern Region and Momase Region, with more moderate levels evident
in the other two PNG regions (Fig. 8). 30% of the literature sources mentioned 2019 as a drought year, with half of those
sources describing the drought event as mild (Bhardwaj et al., 2021b; Johnson et al., 2019) and the other half discussing it as

moderate (World Food Programme, 2019; Mckenna and Yakam, 2021) (Table 8). Impacts recorded included negatively
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affected vegetation (World Food Programme, 2019), decreases in water storage (World Food Programme, 2019), and negative

impacts on market sellers (Mckenna and Yakam, 2021).

Two regions were suspected as experiencing drought in 2020, as indicated by the risk assessment: Southern Region and New
Guinea Islands Region displayed as likely having mild drought. Since two out of four regions were likely in drought, 2020
was determined to be a nationwide drought year for PNG. The strength of the event was determined to be only mild, based off
risk levels displayed across PNG provinces (Fig. 4). Such patterns were a result of the varying hazard, vulnerability and
exposure levels indicated across PNG. High hazard levels were indicated throughout the New Guinea Islands, with high levels
also indicated in provinces scattered throughout the other regions of PNG. Like the vulnerability and exposure levels indicated
in 2019, the 2020 vulnerability map shows high levels in the Southern and Momase region, and the 2020 exposure map displays
moderate levels in the New Guinea Islands Region, and higher levels in all other regions (Fig. 9). In the literature investigation,
only 15% of sources mentioned 2020 as a drought year in PNG. Half of the sources that did mention drought impacts
throughout 2020 described such impacts to be mild (Bhardwaj et al., 2021b), and the other half described them as moderate
(Mckenna and Yakam, 2021). As less than a quarter of sources mentioned 2020 as a drought year, there is insufficient evidence

to corroborate the drought risk assessment results and deem 2020 as a drought year.

Overall, the comparison of risk assessment and literature investigation results suggests a drought event occurred in 2015-2016
with severe to extreme impacts, and in 2019 with moderate impacts. There was insufficient evidence in the literature to indicate
2014 and 2020 as years included in these drought events, even though they were indicated as likely drought years in the risk
assessment. Accordingly, only the risk assessment results for 2015-2016 and 2019 were included to be statistically validated

by the literature analysis results.

3.2 Statistical Validation of Risk Assessment with Literature Analysis Results

The different severity levels for each province, indicated by the risk assessment compared to the literature, in each drought
event (2015-2016 and 2019) are listed in Table 9. The risk assessment reported the three most at-risk provinces during the
2015-2016 drought period as Central (average risk index value of 0.82), West Sepik (average risk index value of 0.81), and
Northern (Oro) (average risk index value of 0.76) (Table 9). Similarly, during the 2019 drought period, Gulf Province (risk
index value of 0.83), Central (risk index value of 0.81), and Northern (Oro) (risk index value of 0.80) were the three most at-
risk provinces (Table 9). Northern (Oro) and West Sepik were mentioned in the literature among the most affected provinces
during the 2015-2016 drought period, however Central was not included among the most affected (Table 9). For the 2019
drought period, Gulf Province, Central, and Northern (Oro) were mentioned among the most affected provinces in the literature
(Table 9).

No statistically significant variation was displayed between the severity levels described for each province in the risk
assessment versus the literature for the 2015-2016 event (F15=0.86, p=0.37) (Appendix B), thus a t-test assuming equal
variances could be conducted. For the 2019 event, a statically significant variation was detected (F17=2.67, p=0.02) (Appendix
C), thus a t-test assuming unequal variances was performed on the data. T-test results found that there was no significant
difference between the severity levels recorded for the 22 PNG provinces given by the risk assessment compared to the
literature for both the 2015-2016 drought event (tzs=-1.70, p=0.10) (Appendix D) and the 2019 drought event (t2s=2.07E-15,
p=0.50) (Appendix E). Therefore, suggesting a valid identification of a severe to extreme drought event in 2015-2016 and

moderate drought event in 2019, and a valid indication of provincial drought risk levels, by the risk assessment.
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3.4 Sensitivity Analysis Results

The validity of the risk assessment is further confirmed by sensitivity analysis results examining the robustness of the
individual indices (hazard, vulnerability, and exposure) used in the assessment. All indicator SI’s were below or just over 0.5,
the highest being SPI with 0.56. SI values 0.5 or below are considered low, with SPI’s 0.56 value still deemed relatively low,

meaning that the hazard, vulnerability, and exposure indices are essentially robust rather than sensitive (Anand e t al., 2019).

The results of the 2015 case study sensitivity analysis show that the hazard index is more sensitive to SPI compared to VHI,
meaning that changes in SPI affect the hazard index more greatly than changes in VHI. Thus, SPI is the indicator ranked as 1%
in hazard sensitivity and 2™ in likely credibility (Table 10). The vulnerability index is seen to be most sensitive to the Staple
cCrop tTolerance sScore itndicator, thus it is ranked as 1% in vulnerability sensitivity, and is likely the least credible
vulnerability index. Agricultural oOccupation is ranked 2" with a slightly lower Sl value than Staple cCrop tTolerance sScore.
Percentage of children weighed at clinics less than 80% weight for age 0 to 4 years oldChild-Malreurishiment and Key cSrop
rReplacement cCost have similar Sl values, with the Sl given for Percentage of children weighed at clinics less than 80%
weight for age 0 to 4 years old Chitd-Malneurishment-being slightly greater than that for Key cCrop rReplacement cost,

therefore they are ranked 3" and 4% respectively in terms of vulnerability sensitivity (Table 10). The exposure index sensitivity
analysis results show that the exposure index is most sensitive to Liand use, thus Lland use is ranked 1% in exposure sensitivity
with the greatest Sl value, and 4™ in likely credibility. The SI values for the remaining three exposure indicators are similar,
with Eelevation type giving an Sl of 0.34, Ppopulation density 0.32 and Aaccess to safe drinking water 0.31, resulting in a 2",
3 and 4" ranking respectively for exposure sensitivity (Table 10). Overall, the Sl values of each indicator within each of the
three indices did not greatly differ, the greatest being a 0.1 difference between Kkey crop replacement cost (SI of 0.31) and
Sstaple crop tolerance score (SI of 0.41). Thus, credibility was similar for all indicators within each of the hazard, vulnerability,

and exposure indices.

3.3 Demonstrating the usability of risk assessment results: 2015 monthly case study

The strong event which occurred in 2015-2016 is further detailed by monthly risk index maps indicating the transition of most
provinces into extreme drought risk levels in July 2015. Fig. 10 shows the heightening of drought risk from November 2014
to July 2015 for most provinces, with drought risk levels peaking in October-December 2015 and then slightly reducing at the
commencement of 2016. When the drought risk levels peaked, all PNG regions except for the Highlands Region had provinces
reaching extreme drought risk levels. In the Highlands Region, all provinces were at a severe risk level when the drought event
reached its peak. The provinces reaching extreme levels throughout the 2015 year included Southern Highlands, West New
Britain, East Sepik, Madang, West Sepik (Sandaun), Central, Gulf Province, and Northern (Oro). The transition into and out

of extreme levels was different for each of these provinces.

Drought impacts in Southern Highlands seemed to peak in July, with extreme risk levels indicated for both July and August
of 2015. Afterwards, levels dropped down to severe for the remainder of 2015 and the beginning of 2016 (Fig. 10). In West
new Britain, risk levels peaked in December at an extreme level; for the 9 months leading up to this, levels were severe. In
January 2016 risk dropped back down to severe for West new Britain (Fig. 10). East Sepik was found to have extreme risk
from June to December 2015, in the six months prior, levels were severe (Fig. 10). Following December 2015, levels returned
to severe for East Sepik. Similarly, Madang displayed extreme levels from August to December 2015, with severe levels noted
for the five months leading up to this peak, and severe levels recorded following the peak (Fig. 10). In West Sepik (Sandaun),
levels were severe until March 2015, in which extreme risk was recorded and remained for the rest of the months investigated

(Fig. 10). Northern (Oro) displayed severe risk until August 2015, in which extreme risk arose and continued occurring until
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December 2015 (Fig. 10). Both Central and Gulf Province were indicated to have extreme levels consistently from the end of
2014 to the beginning of 2016 (Fig. 10).

4. Discussion
4.1 PNG drought events indicated by risk assessment and confirmed in the literature

The risk assessment results indicated a suspected severe to extreme drought event in 2015-2016 and a moderate event in 2019.
When compared to literature findings, these results were corroborated. It is widely reported that a strong drought event
commenced in PNG at the beginning of 2015 and reached its peak during 2016 (Kuleshov et al., 2020; Chua et al., 2020;
Gwatirisa et al., 2017; Jacka, 2020; Varotsos et al., 2018; Rimes and Papua New Guinea National Weather Service, 2017).
Kuleshov et al. (2020) attributed the drought of 2015-2016 to a strong El Nifio which occurred during these years. This strong
El Nifio phase was paired with a positive 10D phase; the interacting impacts of both climate drivers resulted in devastating
negative rainfall anomalies across the entirety of PNG (Bhardwaj et al., 2021b). It is explained in the literature that the 2015-
2016 drought event affected approximately 40% of PNG’s population, with drought-caused food shortages impacting half a
million people throughout PNG’s provinces (Annamalai et al. 2015; Whitfield et al., 2019; Government of Australia, 2017,
Schmidt et al., 2021; De Deckker, 2016; Bhardwaj et al., 2021b; Bang and Crimp, 2019). In their poverty analysis of the
lowlands of PNG, Schmidt et al. (2021) further detail that the drought decimated a critical amount of PNG’s local crop
production which left PNG communities in a food crisis. Such a climate shock had critical consequences for household welfare,

contributing to a rise in households below the poverty line, particularly in rural and lowland areas (Schmidt et al., 2021).

A recent drought event occurring in PNG throughout 2019, has been reported by various sources (Bhardwaj et al., 2021b;
Johnson et al., 2019; World Food Programme, 2019; Mckenna and Yakam, 2021). Unlike the 2015-2016 drought event,
drought conditions in PNG during 2019 were due to a La Nifia event. A neutral IOD phase was also evident, thus La Nifia
impacts were not exacerbated by the IOD. The impacts of La Nifia on rainfall patterns vary across PNG. In the past, La Nifia
has resulted in wetter conditions over most of the country, except in the eastern islands of Milne Bay region (Food and
Agriculture Organisation of the United Nations, 2021). The 2019 La Nifia caused below-average rainfall in PNG, particularly
in the northern parts of PNG (Food Security Cluster et al., 2021). With La Nifia alone influencing the 2019 event, it was
expected to be weaker than the previous drought in 2015-2016. In the literature, the impacts of the 2019 drought event are
primarily discussed as mild or moderate rather than severe to extreme. However, the effects of the 2019 drought event have

not been widely discussed in peer-reviewed literature as it is such a recent event. Drought investigations usually occur after

the fact, sometimes years after an event occurs. This is most likely because the drought research and response space is still

largely reactive, despite efforts towards proactivity (Wilhite et al., 2014). The few sources that have reported on this event,

described the negative affect of dry conditions on agricultural production and food security (World Food Programme, 2019;
Johnson et al., 2019).

4.2 PNG non-drought years

2014, 2017, 2018 and 2020 were deemed to be non-drought years due to the comparison of risk assessment results and literature
analysis results. Even though 2014 and 2020 displayed high enough drought risk levels across PNG’s regions to signal that a
drought event may have occurred in these years, there was insufficient evidence in the literature to corroborate this. Only a

small number of sources reported these years as drought years (Allan et al., 2019; Burivalova et al., 2017; Mckenna and

605 Yakam, 2021; Bhardwaj et al., 2021b). The risk assessment may have identified high risk levels throughout these years as they

lead up to (in the case of 2014) or followed (in the case of 2020) confirmed drought. Further investigation on these years is
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recommended to confirm the validity of the risk assessment. 2017 displayed mostly mild risk throughout all PNG regions, as

corroborated in the literature, signalling an end to the 2015-2016 drought event.

Although 2018 was indicated as a non-drought year with most provinces displaying mild or moderate risk, there were some
provinces with severe or extreme risk. These higher levels were particularly present throughout the Southern Region. This is
not an entirely unexpected result, as PNG is a highly vulnerable and exposed country to drought. Therefore, the vulnerability
and exposure indices are likely to be consistently high for most years across PNG provinces. With two out of the three indices
likely being at higher levels, it is not radical to suggest that the final drought risk index would be higher than mild for most
years. It is important to note that in this study, it is recognised that drought risk does not directly translate to the occurrence of
a drought, rather it corresponds with the severity of impacts likely to be experienced by the area of investigation when a drought
occurs. For example, mild drought risk levels seen in certain provinces on the drought risk maps in this study do not necessarily
mean that a mild drought is occurring, instead it suggests that mild drought impacts are likely to occur in those provinces. Such
mild impacts could occur because of a drought event or could occur because of the regular dry season of PNG (Bhardwaj et

al., 2021b). Comparatively, moderate to extreme risk levels are most likely the result of a drought event (Kanua et al., 2016).

In non-drought years, where hazard is low but vulnerability and/or exposure remain high across PNG provinces, it is the time
to be proactive and improve adaptive capacity. If management practices are put in place during non-drought years to reduce
the levels of vulnerability and exposure, when a drought hazard event commences the risk of destructive impacts can be
reduced (Pulwarty and Sivakumar 2014). Management actions that could be taken in non-drought years to foster resilience in
PNG include strengthening of health services, cultivating/planting drought resilient crops, and increasing water storages in
highly vulnerable and exposed areas (Hagenlocher et al., 2019). The importance of risk assessment-informed resilient

management is highlighted further in the monthly case study of the extreme drought year of 2015.

4.3 2015 monthly case study: transition of drought

The 2015 monthly risk assessment (including the conclusion of 2014 and commencement of 2016) accurately displayed high
drought risk levels leading up to the peak of the 2015-2016 drought event in mid-2015 until November/December 2015 (Chua
et al., 2020). The case study highlighted priority areas: Southern Highlands, East Sepik, Madang, West Sepik (Sandaun),
Northern (oro), Central and Gulf Province were provinces exhibiting extreme risk for more than one month throughout 2015.
Records of the event confirmed that these provinces experienced severe to extreme impacts during the 2015-2016 drought in
PNG (Annamalai et al. 2015; Whitfield et al., 2019; Government of Australia, 2017; Schmidt et al., 2021; De Deckker, 2016;
Bhardwaj et al., 2021b; Bang and Crimp, 2019). All priority provinces were indicated by the risk assessment to be at high risk
levels (severe or extreme) for at least 3 months prior to the peak of the drought event. This suggests that if performed prior to
the drought event, the risk assessment would have likely aided in notifying provincial and state decision-makers of priority
areas requiring focused management and higher allocation of resources. Small-scale proactive and suitable management
actions could have been implemented, including the allocation of resources to emergency and health services, implementation
of water restrictions, and initiation of negotiations for food aid from surrounding countries like Australia (Government of
Australia, 2017). As a result, local communities in PNG provinces could have been better prepared for the impacts of the

drought event before it peaked, potentially saving lives (Kanua et al., 2016).

4.4 Sensitivity analysis

Sensitivity analyses are neglected in the few drought assessments performed for PNG. Without sensitivity analysis, the
indicators used in past PNG drought assessment studies cannot be definitively concluded as credible. For example, SPI and

VHI were investigated by Chua et al., (2020) for assessing drought in PNG, but were only validated through a 2015-2016 case
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study of drought impacts. No sensitivity analysis was performed. Like Chua et al., (2020), SPI and VVHI are considered in this

study. A sensitivity analysis can confirm the credibility of these indicators for use in assessing drought across PNG.

In this study, it was found that no single indicator displayed a seriously high Sl value, so each indicator selected for use in the
risk assessment is likely credible. This suggests that the hazard, exposure, and vulnerability indices calculated in this study are
robust and able of representing the complex processes that lead to drought risk (Anand e t al., 2019). However, based on the
different Sl values expressed and differences in likely credibility of individual indicators, a review of the weighting applied to

each indicator may be appropriate.

The expert weighting scheme applied to the hazard indicators gave SPI a weighting of 0.75, and VHI 0.25. The sensitivity
analysis ranked SPI as 1%, with an Sl value greater than VVHI, meaning that the hazard component is more sensitive to changes
in SPI rather than VHI. Results suggest that VHI is a more credible indicator compared to SPI, therefore more weight could
be distributed to VVHI than what is currently. Previous drought risk assessment studies, conducted in other countries, that have
employed SPI and VHI as hazard indicators, commonly weight SPI highly in the hazard index calculations, and VHI usually
has a mid-range weighting (Nagarajan and Ganapuram, 2015). Here, a similar approach is taken, however in PNG specifically,

it may be pertinent to weight VVHI slightly higher (as indicated by the sensitivity analysis).

Generally, global drought risk assessment studies adopt a range of vulnerability indicators that focus on agricultural, economic,
and/or health-related vulnerability. In an assessment including economic, health and agricultural vulnerability indicators to
detect drought vulnerability in Zimbabwe, Frischen et al. (2020) used an expert weighting scheme to assign indicator weights.
Agricultural indicators were commonly assigned the highest weighting, with economic indicators weighted second, and health
indicators weighted third (Frischen et al. 2020). Here, the expert weighting scheme followed this trend, with Sstaple crop
tolerance score and Kkey crop replacement cost weighted the highest, Aagricultural occupation weighted third and, Percentage
of children weighed at clinics less than 80% weight for age 0 to 4 years old weighted the least. The sensitive analysis results
reveal that a revision is needed. The vulnerability index was evidently most sensitive to changes in the Sstaple crop tolerance
score indicator; it is likely incorrect that it is weighted highest. Key crop average replacement cost was identified as the most
credible indicator; it is logical that it should be weighted the highest among vulnerability indicators. Similarly, more weight
should be applied to the Ppercentage of children weighed at clinics less than 80% weight for age 0 to 4 years old indicator as
it was identified as the second most credible vulnerability indicator. The weighting of Aagricultural occupation is likely valid

as it was found to be the second lowest indicator in terms of credibility.

In many past risk assessments, Aaccess to safe drinking water and Ppopulation density are weighted highly among exposure
indicators (Nagarajan and Ganapuram, 2015; Dayal et al., 2018). Whereas Liand use is generally weighted with mid-range
values and slope weighted with lower values (Dayal et al., 2018). The sensitivity analysis results of this study suggest that
such weightings should be revised in the case of assessing drought exposure in PNG. Results show Lland use to be ranked last
among exposure indicators in terms of credibility. Currently, Liand use is weighted the greatest among exposure indicators.
This suggests that the weighting assigned to Lland use should be reduced. Elevation type, Ppopulation density and Aaccess to
safe drinking water were found to likely have similarly high credibility. However, the exposure index was seen to be slightly
more sensitive to changes in Eelevation type over Ppopulation density, and Ppopulation density over Aaccess to safe drinking
water. As the most credible exposure indicator, Aaccess to safe drinking water should be weighted the greatest; it is currently

weighted as the second greatest.
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Whilst refinements to the weightings applied to hazard, vulnerability and exposure indicators are recommended in the future,
they would be minimal as the differences in Sl values between indicators within each index were not immense. Overall, the

sensitivity analysis results do not retract from the value of the risk assessment results produced in this preliminary study.

4.4 Reasonability of VValidation Methods

The validation method adopted in this study used literature sources discussing past drought events in PNG as the ground-truth
for what occurred during previous droughts. A more reliable ground-truth would have been the perspectives of local PNG
people who personally experienced the drought conditions and ensuing impacts (Fragaszy et al. 2020). Interviews could have
been conducted like those executed by Mckenna and Yakam (2021) and Fragaszy et al. (2020). However, due to the COVID-
19 situation in both PNG and Australia at the time of this study, interviews were not viable. Gonzalez Tanago et al. (2016)
recommend the use of multiple ground-truth sources, to strengthen validation methodology. Bijaber (2018) adhered to this
recommendation and used historical on-the-ground data as well as expert knowledge of what occurred, to validate the results
of their drought risk monitoring in Morocco. Due to the data scarcity in PNG, and the additional limitation of not being present
in the country to conduct this research, the assessment here could only include one kind of ground-truth source. Future research
should consider interviewing local communities in each PNG province to add another, more robust ground-truth for the impacts

of each drought event investigated.

Using statistical sensitivity analysis as a second form of validation is recommended as best practice for validating drought
risk assessment methodology (Hangelocher et al., 2019). Rahmati et al. (2020) conducted a sensitivity analysis to validate
the use of specific indicators for assessing drought risk in south-eastern Queensland. The sensitivity analysis outlined which
indicators were highly suitable for use in the risk assessment, highlighting that plant-available water capacity, the percentage
of soil comprised of sand, and mean annual precipitation were the most important predictors of drought for the study
(Rahmati et al. 2020). Such best practice was adhered to in this study, with the use of sensitivity analysis as a second form of
risk assessment verification. Overall, the use of both a comparison to a ground-truth source, and a sensitivity analysis, for

validation of this study is a reasonable approach.

4.5 Study limitations and recommendations for further research
4.5.1 Indicator Selection Process

In the literature, it is indicated that current practice for indicator selection is to select indicators based on a review of literature
(Frischen et al., 2020) and use of current expert knowledge (Dayal et al., 2018). Indicators are commonly arbitrarily selected
for the country they are to be used to assess. It is common for data restrictions to be a limiting factor of indicator selection
(Dayal et al., 2018). As this study seeks to select specifically suitable indicators for assessment of drought risk on a more
localised scale in PNG, to achieve a tailored drought risk assessment, it would have been ideal to select indicators not only
based on a literature review or current expert knowledge, but also established with local knowledge as recommended by Benzie
et al., (2016). In this study it was not feasible to formally gauge the perspectives of users, but advice on relevant indicators
was sought by PNG NWS. In future investigation, surveys and interviews will be conducted to formally gain the perspective
of locals regarding what vulnerability and exposure indicators are most appropriate for use. This feedback will inform further

refinements of the risk index for drought in PNG, given data is accurate and available.

4.5.2 Static Indicators

Vulnerability and exposure indicators were semi-dynamic or static, using annually updated observed data or fixed data;-eue-to
Hmited-data-avatlability. Fixed data for indicators like Land use and Elevation type is expected; these indicators are naturally
static (Safavi et al., 2014). Whereas the data for indicators like Staple crop tolerance score, Agricultural occupation, Percentage
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of children weighed at clinics less than 80% weight for age 0 to 4 years old, and Key crop replacement cost (for vulnerability),

along with Population density and Access to safe drinking water (for exposure), was semi-dynamic due to limited data

availability. Ideally, more dynamic data (e.g updated monthly rather than annually) would be used for these indicators, but this

can only happen if consistent socio-economic statistics become available for PNG. Although regularly updated data is not

available for allthe vulnerability and exposure indicators, a holistic drought risk index still requires these two components in
addition to the hazard component. The hazard indicators used were dynamic, incorporating regularly updated monitoring data.
The hazard variables used were 3-month cumulated values (3-month SPI and VHI), which potentially reduces the informative
value of the hazard and risk index to give a warning of high risk early enough in advance to act proactively. However, this risk
assessment is not intended to predict drought events before they happen, it is intended to be used to determine the risk of a
drought event occurring and the relative impact that might be faced by specific PNG provinces during a drought. Overall, the
semi-dynamic nature of this assessment is not likely a limitation that will reduce the value of this preliminary risk assessment

methodology.

4.5.3 Data Availability

Limited data availability constrained several aspects of the methodological process:

e The validation method was constrained by the fact that there were limited numbers of scientifically robust literature
sources reporting on the 2019 drought event, as it was a recent event. The PNG National Weather Service was
consulted to ensure that the results from the 2019 literature sources were true and accurate.

e  Space-based VHI data is only available from 2014 onwards. Whereas the SPI data record dates to 2001. To have a
complete hazard index in the retrospective risk assessment, the retrospective period investigated had to begin from
2014. 2014-2020 is a shorter period of analysis, which limits the number of drought events and non-drought periods
occurring within, resulting in lower confidence in results. A longer analysis would provide greater confidence in the
risk assessment methodology. It is possible that the risk assessment could be performed for years prior to 2014 by
using only SPI to inform the hazard index, or by replacing VHI with a different hazard indicator with data available
for a longer period. However, it is deemed that for the risk assessment to be holistic and tailored, the hazard index
should not rely only on one indicator. Additionally, different hazard indicators that could potentially replace VHI,
like the Normalized difference vegetation index (NDVI) (which has raw data from the 80s onwards) are not as

accurate as VHI; VHI has been proven to be efficient and accurate, specifically for across PNG (Chua et al., 2020).

Data availability was also limited for the exposure and vulnerability indicators, thus, the data available closest to the
time investigated was used. This meant that the vulnerability and exposure indices were the same for both 2014 and
2015 as the data was not updated throughout those two years. However, as half the indicators in both the vulnerability
and exposure are more static rather than dynamic (excluding agricultural occupation, key crop replacement cost,
population density and access to safe drinking water), it is not expected that values would largely change on a yearly
basis regardless, rather it would be more likely for values to change every two or three years (Aitkenhead et al., 2021).
Therefore, the limited data availability for vulnerability and exposure indicators in 2014-2015 will not likely have a
large effect on the credibility of the results. Data availability is constrained throughout many SIDS like PNG; future
investment in open-sourced and cloud-based data platforms would allow for collaboration between separate entities
that have collected data so that all relevant data can be combined, stored, and accessed from the same place (Sun et
al., 2020).

When working in such countries as Pacific SIDS and other developing nations, data availability is commonly scarce

(Chua et al., 2020). Several previous studies have come across this limitation and have addressed it in similar ways.
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In their drought risk assessment in China, Zhao et al. (2020) faced data limitations for the more local level. They
chose to use provincial data where county level data was missing. As in this study, Frischen et al. (2020) were faced
with limited data availability for drought vulnerability indicators, so it was decided that static indicators would be
used rather than temporally-dynamic indicators. Although not dynamic, Frischen et al. (2020) deemed that there was
merit in their drought vulnerability assessment, as results offered to expand the underexplored topic of drought risk

in Zimbabwe.

e Thisresearch presented an effective solution to test the presents-a-preliminary-validation of a tailored risk assessment

methodology which is conceptually applicable to the local level. With tailored explicitly meaning that indicators were

selected based on rigorous criteria outlining suitability to this study’s context. The developed risk assessment
methodology was intended to be tailored to a highly localized level, however due to data restraints, the provincial
level was the most localized level able to be assessed in PNG. Data is severely limited at heightened local scales, e.g.
for individual villages/cities. In the future, it would be useful to further validate the applicability of such a risk
assessment methodology at a more localized scale through conducting a drought risk assessment for a specific local

PNG village. Currently, such an investigation is beyond the scope of the research presented in the paper.

4.5.4 Weighting scheme

Although used in many similar past studies, like Frischen et al. (2020), the expert weighting scheme approach has been
described by some as unreliable for the delivery of robust results, due to the presence of subjective judgements (Dayal et al.,
2018). Furthermore, the sensitivity analysis results suggest that the weighting scheme applied to indicators may not have been
optimal. In the future, a revised set of indicator weights should be employed, based off the sensitivity analysis results. As this
study was a preliminary assessment, initially attempting to address drought risk assessment knowledge gaps in PNG, the
limitations of the weighting scheme do not take away the value of results. So, it was determined that improvements were not
required at this stage of the research but are set to be made in future work. Before the drought risk assessment methodology

can be adopted for operational use and/or applied to additional Pacific SIDS, weighting refinements will be completed.

4.6 Research Significance and Conclusions

This study aimed to expand drought risk knowledge, explore effective methodological aspects of drought risk assessment, and
develop a preliminary drought risk assessment methodology intended for use in PNG. Such research is minimal across Pacific
SIDS, and particularly underexplored in the context of PNG (Hagenlocher et al. 2019). This study made significant strides in
addressing key knowledge gaps commonly missed in drought risk assessment studies in general, and drought assessment in
PNG specifically, by considering specific and tailored indicator selection, consistent drought risk definitions, dynamic

assessment, sufficient validation of indicators and results, and the provision of recommendations.

In this study, an unprecedented attempt at developing a tailored drought risk assessment for the provincial scale across PNG
was made. The development of a tailored, meaning highly specific to the area under investigation, drought risk assessment
methodology has been recognised as vital to improving risk knowledge for the development of resilient drought risk
management strategies in vulnerable communities (Wilhelmi and Wilhite 2002). Out of the disaster risk assessments that have
been conducted in PNG, they have used arbitrary risk indicators (Bang et al., 2003; Allen & Bourke, 1997; Korada et al., 2018)
and have been conducted on a broader (national/regional) level rather than local area (provinces) or community level
(Hagenlocher et al. 2019). This research presents a methodology emphasising tailored risk assessment, with distinct criteria
used to select suitable drought risk indicators. This assessment is conducted at the most local level possible at this time, the

provincial level. In the future, it would be beneficial to investigate risk at the town/village level and include local user
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consultation in the indicator selection process, however this is beyond the scope of the current research because of

travel/resource limitations, and the remoteness of local PNG communities.

This study adopted the drought risk definitions consistent with those recommended by Hagenlocher et al. (2019). No such
study has been conducted previously in PNG, where clearly defined hazard, vulnerability and exposure components are
included to assess risk for all provinces. The assessment was intended to be dynamic, but limitations saw that it was only semi-
dynamic. Due to data restrictions, the vulnerability and-expesure-components of the risk assessment consisted of annually

updated, static-semi-dynamic indicators. The exposure component was also semi-dynamic, with fixed data for naturally static

indicators, and annually updated data for the indicators that would ideally be more dynamic. Whereas the hazard component

included solely dynamic factors. Thus, the overall approach is deemed a semi-dynamic drought risk assessment. For the
assessment to become wholly dynamic, socio-economic data needs to become more readily available. The constrained
availability of relevant, reliable, and updated data is recognised as majorly detrimental to drought risk assessments across the

world (Gonzélez Téanago et al. 2016). The semi-dynamic assessment can still provide important results, more static assessment
is useful for identifying where the origins and drivers of drought risk exist, and the areas that are of priority for long-term

adaptation plans (Blauhut 2020, Hagenlocher et al., 2019 and Gonzalez Tanago et al. 2016).

Indicators used and results produced underwent preliminary validation; however, a more comprehensive validation method is
recommended for future research. The risk assessment methodology developed in this research was overall deemed valid. It
provides the foundation for conducting drought risk assessments in PNG, to increase risk knowledge and inform local drought
risk management. To consolidate this methodology as reliable in an operational sense, results must undergo validation against
further ground-truth sources (e.g local accounts of past drought events). Results allowed for recommendation on disaster risk
reduction in PNG, including the identification of priority areas that were detrimentally affected in previous drought, as well as
recommendations for improved efficacy of the risk assessment methodology. This is a critical step commonly omitted from
the risk assessment process {(Blauhut 2020, Hagenlocher et al., 2019 and Gonzélez Tanago et al. 2016).

Overall, this research establishes an essential foundation for tailored and aceurate-valid drought risk assessments in Pacific
SIDS, using drought in PNG as a case study. However, improvements to the validation methods and the indicator selection
process are vital to the efficiency of the risk assessment methodology. Once refinements are made, the risk assessment
methodology may be adopted on a more operational basis in PNG. The PNG NWS could conduct drought risk assessment
across PNG to inform stakeholders and local users of provincial risk levels, and guide preparedness plans/risk management
(Pulwarty and Sivakumar 2014). Such a methodology has the potential to not only be applied across PNG but could be tested
for implementation in other vulnerable Pacific SIDS (Finucane 2009). With the occurrence of droughts expected to be
exacerbated under anthropogenic climate change, and the impacts predicted to critically affect agricultural productivity, food
security, and general economic productivity, severely reducing the financial and social health of local communities in Pacific
SIDS, the effective implementation of valid drought risk assessment is needed now more than ever (Pulwarty and Sivakumar
2014).

6. Appendices
6.1 Appendix A

An example of the data tables used in the sensitivity analysis. This example is for Bougainville province, analysing the

sensitivity of the 2015 hazard index to 0.1 incremental changes in the SPI value. Original data tables were formatted in excel.

Bougainville
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6.2 Appendix B

SPI Hazard Index
Original 0.561564
0.1 0.339167
0.2 0.389167
0.3 0.439167
0.4 0.489167
0.5 0.539167
0.6 0.589167
0.7 0.639167
0.8 0.689167
0.9 0.739167
1.0 0.789167

Table displaying F-test results for the 2015-2016 drought period risk assessment versus literature results.

Statistic
Value

df (degrees of freedom)

F statistic

P-value

[18

0.86

0.37

6.3 Appendix C

Table displaying F-test results for the 2019 drought period risk assessment versus literature results.

Statistic
Value

df (degrees of freedom)

F statistic

P-value

| 17

2.67

0.02

6.4 Appendix D

Table displaying t-test results for the 2015-2016 drought period risk assessment versus literature results.

Statistic
Value

df (degrees of freedom)

t statistic

P-value

[36

-1.70

0.10

6.5 Appendix E

Table displaying t-test results for the 2019 drought period risk assessment versus literature results.

Statistic
Value

df (degrees of freedom)

t statistic

P-value

[28

2.07E-15

0.50
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Figure 1: Multi-Source Weighted-Ensemble Precipitation (MSWEP) rainfall deciles in (a) La Nifia events (La Nifia years being

1988, 1989, 1995, 1998, 1999, 2000, 2007, 2010, 2011 and 2020) and (b) El Nifio events (El Nifio years being 1982, 1987,
1991, 1992, 1994, 1997, 2002, 2006, and 2015) compared to a base period of 1980-2020. Figure adapted from Bhardwaj et

al. 2021b.
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Figure 2. Multi-Source Weighted-Ensemble Precipitation (MSWEP) rainfall deciles in response to various climate drivers: (a)

1090  Negative IOD phase (during 1981, 1989, 1992, 1996, 1998, 2010, 2014, and 2016 years), (b) Positive IOD phase (during 1982,
1983, 1994, 1997, 2006, 2012, 2015, and 2019 years), (c) Negative 10D phase and La Nifia ENSO phase (during 1989, 1998,
and 2010 years) and (d) Positive 10D phase and El Nifio ENSO phase (during 1982, 1994, 1997, 2006, and 2015 years).
Deciles are compared to a 1980-2020 base period. Figure adapted from Bhardwaj et al. 2021b.
Table 1. An analysis of previous drought assessment studies in PNG outlining the methodological aspects lacking.
Study Study Description Effective  Methodological ~ Aspects
source Lacking
Korada et | Performed in the Western Highlands province of PNG, which is a rain-fed subsistence farming | Indicator selection is not specific and
al. 2018 dominated province highly vulnerable to drought, Korada et al. 2018 adopted GIS and remote | tailored; Risk assessment is static;
sensing technology to highlight potential drought risk zones. General environmental indicators | Insufficient validation of indicators and
were used to inform the risk assessment: soil type, NDVI, rainfall, terrain, population | results; Lacks the provision of
demography and surface temperature. Using multi-criteria evaluation techniques in GIS, | recommendations for risk reduction;
indicators were integrated, and risk areas were identified. Risk areas were mapped and then | Lacks clear drought risk definitions.
classified to indicate levels of drought risk from low, medium, and high.
Chua et al. | Used remotely sensed indicators to assess drought over PNG. The indicators evaluated for this | Inconsistent drought risk definitions:
2020 study included precipitation, vegetation health and soil moisture. Indicators were assessed on | This is a hazard-centric assessment of
a monthly timescale from 2001 to 2018. A case study was then performed to determine the | drought impacts across PNG; The role of
efficiency of such indicators to characterise drought in PNG during the 2015-2016 El Nifio. | ecosystems and ecosystem services as a
This case study was used as a validation for indicator effectiveness in assessing drought | driver of risk is not explored.
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impacts in PNG. It was found that Vegetation Health Index (VHI) and the Standardized
Precipitation Index (SPI) were able to accurately indicate the spatial and temporal components
of the 2015 to 2016 severe drought event in PNG caused by the EI Nifio phase. Overall, these
satellite-derived precipitation products were recommended as potentially useful for
operational use for drought detection and monitoring in PNG.

Allen &
Bourke
1997

An assessment of the risk of drought impacts was undertaken in response to the severe 1997-
1998 EIl Nino induced drought in PNG. The impacts of the drought specifically on food
supplies and water, on the national scale, were examined. Assessment teams, consisting of
experts, were sent out to report on food supply conditions in rural communities, identify placed
in severe need, assess migration out of impacted areas, assess local drinking water supply,
assess health conditions, and report on the existence of emergency services and
communications. Local people were interviewed and observed to obtain the information.
Assessment teams each focused on specific area, provinces, or regions. The assessment was
conducted over four weeks.

Inconsistent drought risk definitions:
although vulnerability, exposure and
hazard aspects of drought risk were
considered in this study, no clear
definitions were provided for drought
risk; Lacks the provision of
recommendations for risk reduction; No
drought risk mapping was conducted;
Risk assessment is static; Insufficient
validation of indicators and results;
Indicator selection is not specific and
tailored: although a specific focus on
food and water supply was employed,
the assessment asked general questions
about food and water supply and did not
use specific indicators relevant to PNG.

Bang et al.
2003

Agricultural drought risk in PNG was assessed in response to the 2002 drought in PNG, using
software developed by the Queensland Centre for Climate Applications. This software used
correlations with the Southern Oscillation Index (SOI) and the Pacific Sea Surface
Temperature (SST) to assess droughts. Overall drought risk in this study was classified as very
low, low, moderate, high, and very high. Indicators considered for the agricultural drought
assessment included: population density, slope of agricultural land, drought tolerance of crops,
staple crop prevalence, altitude, reliance on agriculture, diversity of cropping systems, and use
of irrigation systems, land use intensity, rainfall variability, precipitation deficiency and soil
water deficiency. The assessment was carried out through surveys of local farming families
residing in severely affected highland and lowland regions across PNG. The results of the
study allowed for the following recommendation: a consistent implementation program of
long-term farm-specific coping strategies is required in the vulnerable areas throughout PNG,
particularly in the highland provinces.

Inconsistent drought risk definitions:
although hazard, vulnerability and
exposure indicators are considered,
these components are not defined;
Indicator selection is not specific and
tailored: the selection process is not
described in detail, with more focus
given to the selection of assessed sites;
Insufficient validation of indicators and
results: no sensitivity analysis was
performed to assess the robustness of
indicators; No drought risk mapping was
conducted.
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Figure 3. PNG Map indicating each of the 22 PNG provinces with shortened names for Eastern Highlands (EH), Southern
Highlands (SH) and Western Highlands (WH). Map was produced using ArcGIS Pro with an open-source base map.
Table 2. Hazard, Vulnerability and Exposure indicators selected for the PNG Drought Risk Assessment. The data source, data
1115 resolution and coverage, and weighting for each indicator is included.
Index Indicator Data Source Data Resolution and Coverage Weighting
Hazard Standardised NOAA database (National Oceanic Atmospheric Spatial- Average value for each 0.75

Precipitation Index

(SPI) (3-month)

Administration (NOAA), 2020) and JAXA database
(Japan Aerospace Exploration Agency (JAXA),
2020).

province. Temporal- monthly and
averaged yearly data available from
2001 onwards_(3-month SPI values

from the month of January to the

month of December were averaged
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to get annual values). Updated every
month.

an indicator of
accessibility®)

Statistical Office, 2018)

province. Temporal- yearly data
available  for  study  period.
Periodically updated (every 1-2
years). Missing data for 2015; 2014
data was used for this period.

Vegetation Health Index NOAA database (National Oceanic Atmospheric Spatial- Average value for each 0.25
(VHI) (3-month) Administration (NOAA), 2020) and JAXA database province. Temporal- monthly and
(Japan Aerospace Exploration Agency (JAXA), averaged yearly data available from
2020). 2014 onwards_(3-month VHI values
from the month of January to the
month of December were averaged
to get annual values). .Updated every
month.

Vplnerability Percentage of cChildren PNG National Weather Service (NWS) (PNG Spatial- Average value for each 0.1
wWeighed at cClinics National Weather Service (NWS), 2017) and United  province. Temporal- yearly data
IEess than 80% Nations Development Programme (UNDP) (United available  for  study  period.
w\Weight for aAge 0to 4  Nations Development Programme (UNDP), 2017) Periodically updated (every 1-2
years old (%) years). Missing data for 2015; 2014

data was used for this period.
Agricultural PNG National Statistical Office (PNG National Spatial- Average value for each 0.2
oOccupation (% of Statistical Office, 2018) province. Temporal- yearly data
population employed in available  for  study  period.
agriculture) Periodically updated (every 1-2
years). Missing data for 2015; 2014
data was used for this period.
Key crop replacement ~ PNG National Weather Service (NWS) (PNG Spatial- Average value for each 0.3
cost (USD) National Weather Service (NWS), 2017) and United province. Temporal- yearly data
Nations Development Programme (UNDP) (United available  for  study  period.
Nations Development Programme (UNDP), 2017) Periodically updated (every 1-2
years). Missing data for 2015; 2014
data was used for this period.
Staple crop tolerance PNG National Weather Service (NWS) (PNG Spatial- Average value for each 0.4
scores (maximum  National Weather Service (NWS), 2017) and United province. Temporal- yearly data
consecutive drought  Nations Development Programme (UNDP) (United available  for  study  period.
days tolerated (days) Nations Development Programme (UNDP), 2017) Periodically updated (every 1-2
(14-30)). years). Missing data for 2015; 2014
data was used for this period.
Exposure Land use (type) PNG National Weather Service (NWS) (PNG Spatial- Land use details available 0.35
National Weather Service (NWS), 2017) and United  for each province; these details were
Nations Development Programme (UNDP) (United used to score land use type exposure
Nations Development Programme (UNDP), 2017) for each province. Temporal- static
data available for study period.
Elevation (type) Open-sourced GIS platforms Spatial- Elevation details available 0.15
(Highland/Lowland/Av for each province, average type
erage) across the province was recorded.
Temporal- static data available for
study period.
Access to safe drinking PNG National Statistical Office (PNG National Spatial- Average value for each 0.3
water (% of population Statistical Office, 2018) province. Temporal- yearly data
with access to improved available  for  study  period.
water sources) Periodically updated (every 1-2
years). Missing data for 2015; 2014
data was used for this period.
Population density (as PNG National Statistical Office (PNG National Spatial- Average value for each 0.2

Table 3. Indicator thresholds that signal different stages of drought risk. These thresholds have been decided upon based on
use in past studies (Rahmati et al., 2020; Nasrollahi et al., 2018; Aitkenhead et al., 2021), the advice of the PNG National
Weather Service, as well as past data trends in PNG (Chua et al., 2020).

Indicator No to Mild Drought Risk ~ Moderate Drought Risk ~ Severe to Extreme Drought Risk
SPI 0.4 to 2 and above 041t0-04 -0.4 to -2 and above
VHI 50 to 56 and above 42 to 50 30 and below to 42

6 As there is limited data for direct indicators of accessibility in terms of road accessibility and health service accessibility,
population density has been used as an indirect indicator for accessibility as it is associated with the accessibility level for each
province; provinces with low population densities have more rural communities which are expected to have reduced
accessibility to infrastructure (e.g. roads) and health services compared to urban communities.
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Percentage of cChildren w\eighed at cClinics l=ess
than 80% w\Weight for aAge 0 to 4 years old

Agricultural 0©ccupation
Key crop average-replacement cost

Staple crop tolerance scores

| Land use {score}

|| Average-eEIElevation (type)

Population density

| Access to safe drinking water-(%)

I 0to15 151025 25 to 50 and over
Oto 20 20 to 45 45 to 100
0to 2,000 2,000 to 4,000 4,000 to 10,000
0 1 2
Otol 1to25 25106
1 2 3
50 to 100 and above 20t0 50 0to 20
60 to 100 40 to 60 0to 40

1120
region.

1125

literature. Adapted from Allen & Bourke (1997).

Table 4. Risk level pattern observed to determine whether a drought event was suspected as occurring throughout each PNG

Table 5. Information on the types of impacts associated with the three severity classes used to classify drought severity in the

Risk level pattern | Drought Corresponding | Justification

observed across | event strength

PNG Region suspected? | assigned to the

event

Very mild risk levels | No N/A Very mild conditions consistent throughout the country likely indicate that

are present within the socio-economic conditions within PNG are stable, and no drought hazard

region. conditions are being experienced within PNG (Kanua et al., 2016). These
are characteristics of a stable, non-drought period (Bhardwaj et al., 2021b).

Mild risk is detected | No N/A The indication of mild risk within a PNG region could be attributed to

within the region. expected dry conditions resultant of the regular PNG dry season (occurring
from June to September across PNG) (Chua et al., 2020). The detection of
only mild drought risk in a region is not reason enough to assume that a
drought event is occurring.

No mild or very mild | Yes Mild Moderate risk levels suggest that socio-economic conditions are becoming

levels present, with unstable across PNG, and drought hazard conditions are likely being

majority of or all experienced. However, consistent moderate risk levels, without the distinct

provinces within the presence of any higher levels, is characteristic of only a mild drought event.

region at a moderate It has been seen in past drought events across PNG, that have been classified

risk level. as mild, that only a few provinces were affected severely, with majority of
other provinces experiencing only moderate or mild impacts (lese et al.
2021).

No mild or very mild | Yes Moderate Moderate droughts in PNG are generally associated with dry conditions

levels present, and beyond what are commonly experienced during the regular dry season, as

there is an well as unstable social, economic, and agricultural aspects (Bang et al.,

approximately equal 2003). In the past, moderate drought has seen severe and moderate impacts

distribution between consistently distributed across all PNG provinces, but more extreme impacts

severe and moderate are not experienced (lese et al. 2021).

risk, with no extreme

levels present.

Most provinces or all | Yes Severe to | In past severe or extreme drought events, all regions across PNG were

within the region are extreme known to be highly adversely affected. This occurred even when only certain

at severe/extreme
levels.

provinces in the different regions experienced extreme drought conditions
and direct impacts, as other provinces encountered indirect impacts which
were also severe. For example, during the 1997-1998 nationwide drought
event in PNG, dire social, health and economic effects were felt across the
entire country (Kanua et al., 2016). Resources of provinces in non-dry
conditions were pressured with PNG villagers from drought-affected
provinces travelling to areas in non-drought conditions or to relatives living
in urban areas seeking familial help and support (Allen and Bourke, 2009).

Severity Class

Types of impacts associated
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Mild

Moderate

markets.
Severe to Extreme

Unusually dry, but no major food supply, or drinking water or health problems OR some inconvenience
with shortages in staple food but other food available, and/or must

travel further to collect drinking water. Health satisfactory.

Conditions are difficult, with food reduced and some famine food being eaten,

and/or water available only at a distance, and/or some babies and elderly people

unwell. No lives at risk and no related deaths reported. Affects may begin to be felt in industry and/or

No food in gardens, famine food only being eaten, and/or water in short supply and possibly polluted, and/or
increasing disease, and/or the lives of small children and elderly people at risk OR Extreme situation with
only famine food available, and/or water very short, and/or many people ill, and/or small children and
elderly people seriously at risk and/or related deaths reported OR workplaces/industry closures

Table 6. Inclusion and exclusion criteria for the selection of literature sources to be used in the risk assessment validation.
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Criteria for inclusion Criteria for exclusion
Literature in English Literature in other languages
Mention of a specific time period in Papua New Guinea | Vague mention of drought events overall in the history of Papua New
within which drought was present and/or drought impacts | Guinea, with specific years not mentioned and/or mention of drought in
were experienced. years prior to the study period.
Impacts of drought are mentioned in a detailed manner, with | Drought conditions are briefly mentioned, with no reference to specific
the specific type of impacts described. Mention of specific | drought impacts experienced in PNG, or in specific provinces.
impacts in particular PNG provinces.
Drought impacts described are not  only | Only meteorological/hazard impacts are described (e.g temperature
meteorological/hazard impacts, socio- | anomalies)
economic/vulnerability/exposure impacts are also
mentioned.
Publicly available government/relevant organisation | Restricted access books/book chapters, journal/ review articles, and grey
documents, Open access Journal articles, review articles and | literature other than relevant organisation documents (meteorological
book chapters organisation documents), for example newspaper articles
Table 7. Search parameters used to gather literature sources for the risk assessment validation.
Database Search Parameters Result
Google Scholar 1t search: 1t search:
“Papua New Guinea” AND “drought impacts” 101 items found, 7 Included, 94
Filtered date from 2014-2020 (study period) Excluded
2" search: 2" search:
"Papua New Guinea" AND "drought impacts” AND “La Nina" AND "El | 16 items found, 2 Included, 10
Nino" Excluded, 4 Repeated
Filtered date from 2020-2021
ScienceDirect 1%t search: 1%t search:
Drought AND Papua New Guinea 502 items found, O Included, 500,
Filtered date from 2014-2020 (study period) Excluded, 2 Repeated
2" search: 2nd search:
Papua New Guinea AND drought impacts AND La Nina AND El Nino | 2 items found, 0 included, 2 excluded, 0
Filtered date from 2020-2021 repeated
Springer Link 1%t search: 1t search:
Drought event AND Papua New Guinea AND impacts 48 items found, 2 Included, 45
Filtered date from 2014-2020 (study period) Excluded, 1 Repeated
2" search: 2M search:
Papua New Guinea AND drought impacts AND La Nina AND El Nino | 3 items found, 0 included, 2 excluded, 1
Filtered date from 2020-2021 Repeated
Wiley Online | 1% search: 1t search:
Library Drought AND Papua New Guinea AND impact AND province 134 items found, 3 Included, 129
Filtered date from 2014-2020 (study period) Excluded, 2 Repeated
2" search: 2" search:
Drought AND Papua New Guinea AND impact AND province 27 items found, 0 included, 14 excluded,
Filtered date from 2020-2021 13 repeated
1135
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Risk Index Level
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No Data

Figure 4. Risk index levels for each PNG province calculated from the Drought Risk Assessment conducted for 2014, 2015,
2016, 2017, 2018, 2019, and 2020. Risk index levels are classified on a deepening orange colour scale from Very Mild (index
values from 0.01-0.20) to Extreme (index values from 0.81-1.00).

Table 8. Literature sources used as a ground-truth. The source is listed and described with the types of impacts listed in the

Source Drought Severity of | Types of Impacts Described for PNG
Period Drought
Mentioned Mentioned
Annamalai et | 2015-2016 Severe  to | -Famine
al. 2015 extreme -Compromised freshwater supplies and food security
-Impacts on public health, economies, and food distribution
Whitfield et | 2015-2016 Severe  to | -Climatological effect, which varied with elevation.
al., 2019 extreme -Extreme high temperatures were recorded at lower elevations, coinciding with bush fires and
severe drought impacts
-At mid-elevation, there were reductions in dry season rainfall and the increases in temperature
were less severe, due to the mediation of cloud effects
-intermittent frosts occurred at particularly high elevations.
-impacted crops both directly through drought and frost, and indirectly, through changes in
ecosystem services and disservices, including pest pressure and predation of pests.
Bonnafous et | 2015-2016 Severe  to | -the Ok Tedi mine experienced several months of shutdown after a drought induced by the 2015
al., 2017 extreme El Nifio event.
Government 2015-2016 Severe  to | -reduced rainfall in many areas of PNG from April 2015
of Australia, extreme -reduced cloud cover in high altitude locations in July-August led to damaging frosts.
2017 -the rural population experienced reduced access to clean drinking water and staple foods, which
resulted in health problems.
-there was an increase in mortality
Allan et al., 2014-2016 Severe  to | -the drought event had very severe societal, agricultural, environmental, and ecological impacts
2019 extreme -severe drought and associated food shortages impacted Papua New Guinea
De Deckker, 2015 Severe  to | -El Nifio conditions in mid-2015 led to almost a third of the PNG population experiencing famine
2016 extreme due to crop failure
Schmidtetal., | 2015-2016 Severe  to | -the severe 2015-2016 El Nifio event decimated a critical share of PNG’s local crop production,
2021 extreme leaving 10 per cent of the population with significant food shortages.
Burivalova et | 2014-2015 Severe to | -the 2014-2015 EIl Nifio event, which caused unusual precipitation patterns in Papua New
al., 2017 extreme Guinea, had severe drought impacts
Bhardwaj et | 2015-2016 Severe  to | -there was a strong El Nifio-induced drought event in 2015
al., 2021b and 2019- | extreme for | -there was a weaker La Nifia-induced dry period in 2020
2020 2015-2016
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Mild for | -the 2015-2016 event led to devastating negative rainfall anomalies, particularly in the southern
2019-2021 mainland

-the weak dry event in 2019-2020 was evidently detected over the entire country of PNG, with
the first provinces to experience dry conditions being New Ireland, East and West New Britain,
Bougainville, and Manus in the north-east of the nation. Impacts experienced in such provinces
were likely mild.

Johnson et al., | 2019 Mild -mild drought impacts were detected in PNG during a weak 2019 drought episode

2019

Bang and | 2015-2016 Severe -widespread hunger

Crimp, 2019 extreme -malnutrition and in some cases even death due to starvation.
-recovery crops like sweet potato were crushed by unseasonal frosts.

World Food | 2019 Moderate -below average vegetation across most of the country

Programme, -Western and Gulf Province experienced moderate to severe dry conditions and subsequent

2019 impacts.
-prolonged drought conditions and moderate drought impacts were recorded in southeast areas
of the country.
-soil moisture was impacted in the coastal areas and southern part of the country, affecting water
storage, irrigation and raising the risk of bushfire.

Mckenna and | 2019-2020 Moderate -negative impacts were experienced by market sellers

Yakam, 2021

Table 9. Individual PNG Province mentions in literature for each drought event as well as the severity level indicated for each

province in the literature. Note, not all 22 provinces were mentioned.

Drought  event | Province No. of | Level of impact | Quantified Yearly drought risk level given by the
identified sources that | mentioned in the | drought impact | risk assessment (for the 2015-2016
mentioned literature level indicated | event the 2015 yearly risk and 2016
province in the literature | yearly risk were averaged)
2015-2016 Central 5 Severe 0.61-0.8 0.82
Chimbu (Simbu) 7 Severe 0.61-0.8 0.63
East New Britain 3 Extreme 0.81-1 0.70
East Sepik 1 Extreme 0.81-1 0.71
Eastern Highlands 8 Severe 0.61-0.8 0.62
Enga 6 Severe 0.61-0.8 0.66
Gulf province 2 Severe 0.61-0.8 0.75
Hela 2 Severe 0.61-0.8 0.67
Madang 2 Extreme 0.81-1 0.68
Manus 2 Severe 0.61-0.8 0.49
Milne Bay Province 2 Severe 0.61-0.8 0.65
Morobe 6 Severe 0.61-0.8 0.60
New Ireland 2 Extreme 0.81-1 0.51
Northern (Oro) 1 Extreme 0.81-1 0.76
Southern Highlands 7 Severe 0.61-0.8 0.72
West New Britain 2 Extreme 0.81-1 0.74
West Sepik (Sandaun) 1 Extreme 0.81-1 0.81
Western 4 Severe 0.61-0.8 0.67
Western Highlands 8 Severe 0.61-0.8 0.54
2019 Bougainville 1 Moderate 0.41-0.6 0.38
Central 3 Severe 0.61-0.8 0.81
Chimbu 1 Moderate 0.41-0.6 0.67
East Sepik 2 Moderate 0.41-0.6 0.51
Eastern Highlands 2 Moderate 0.41-0.6 0.45
Gulf Province 1 Severe 0.61-0.8 0.83
Hela 3 Severe 0.61-0.8 0.65
Jiwaka 1 Moderate 0.41-0.6 0.51
Madang 1 Moderate 0.41-0.6 0.53
Manus 2 Moderate 0.41-0.6 0.38
Milne Bay Province 3 Severe 0.61-0.8 0.63
Morobe 1 Moderate 0.41-0.6 0.41
New Ireland 2 Mild 0.21-0.4 0.38
Northern (Oro) 1 Severe 0.61-0.8 0.80
Southern Highlands 3 Severe 0.61-0.8 0.78
West New Britain 1 Moderate 0.41-0.6 0.55
Western 3 Severe 0.61-0.8 0.70
Western Highlands 3 Moderate 0.41-0.6 0.37
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Figure 5. Overall drought risk maps of PNG provinces for 2014 including a drought hazard, drought vulnerability, drought
exposure and drought risk map detailing the index level of each province. The index level is classified on a deepening orange
colour scale from Very Mild (index values from 0.01-0.20) to Extreme (index values from 0.81-1.00).
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1150 Figure 6. Overall drought risk maps of PNG provinces for 2015 including a drought hazard, drought vulnerability, drought
exposure and drought risk map detailing the index level of each province. The index level is classified on a deepening orange
colour scale from Very Mild (index values from 0.01-0.20) to Extreme (index values from 0.81-1.00).
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Figure 7. Overall drought risk maps of PNG provinces for 2016 including a drought hazard, drought vulnerability, drought

1155  exposure and drought risk map detailing the index level of each province. The index level is classified on a deepening orange
colour scale from Very Mild (index values from 0.01-0.20) to Extreme (index values from 0.81-1.00).
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Figure 8. Overall Drought Risk Maps of PNG Provinces for 2019 including a Drought Hazard, Drought Vulnerability, Drought
Exposure and Drought Risk Map detailing the index level of each province. The index level is classified on a deepening orange
1160  colour scale from Very Mild (index values from 0.01-0.20) to Extreme (index values from 0.81-1.00).
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Figure 9. Overall Drought Risk Maps of PNG Provinces for 2020 including a Drought Hazard, Drought Vulnerability, Drought
Exposure and Drought Risk Map detailing the index level of each province. The index level is classified on a deepening orange
colour scale from Mild (index values from 0.01-0.25) to Extreme (index values from 0.76-1.00).
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Figure 10. Drought risk levels calculated from monthly risk assessments for each province during the transition into the strong
2015-2016 drought conditions. Drought risk levels are given for November and December 2014, January to December 2015,
and January and February 2016. The drought risk level is classified on a deepening orange colour scale from Mild (index

values from 0.01-0.25) to Extreme (index values from 0.76-1.00).

Table 10. Average Sensitivity Index Values across PNG provinces for each indicator and the index which they inform using
2015 data as a case study. Rankings are shown for SI with highest sensitivity ranked first and lowest sensitivity ranked last.
The likely credibility is also ranked amongst indicators, with first being the most credible for inclusion in the index and last

being the least credible.

Index Indicator Sensitivity Sensitivity Rank (highest to Likely Credibility
across provinces) lowest Sl) Rank
Hazard SPI 0.56 1st ond
VHI 0.47 2nd st
Vulnerability ~ Staple cGrop tFolerance sScore 0.41 1t 4th
Agricultural oOccupation 0.36 ond 3rd
Percentage of cChildren w\/eighed 0.33 3rd ond
at cClinics ILess than 80% w\A/eight
for Age 0 to 4 years old
Key cCrop rReplacement cCost 0.31 4th 15t
Exposure Land uJse 0.39 1t 4th
Elevation tFype 0.34 ond 3rd
Population dBensity 0.32 3rd ond
Access to sSafe dBrinking wiater ~ 0.31 4th 1st
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