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Abstract.
Climate change is increasing the frequency and intensity of natural hazards, causing disastrous adverse-impacts on vulnerable
communities. Pacific Small Island Developing States (SIDS) are of particular concern, requiring resilient disaster risk

management consisting of two key elements: proactivity and suitability. User-centred Integrated Early Warning Systems (I-

EWSs) can inform resilient risk management but are only effective when all components are functioning adequately. Hewever;

yv—In Pacific SIDS, the risk knowledge
component of an I-EWS is underexplored. Risk knowledge is improved through efficient risk assessment. A dynamic and tailored

risk assessment methodology was developed in this research, using drought in Papua New Guinea (PNG) as a case study, by

selecting rigorous and representative hazard, vulnerability, and exposure indicators, and using integrated Geographic Information

Systems (GIS) processes to produce hazard, vulnerability, exposure and risk indices and maps. The validity of the risk assessment

was investigated with a retrospective risk assessment of drought in PNG (from 2014-2020) paired with a literature assessment

(as a ground-truth source), and a sensitivity analysis. The novel drought risk assessment methodology demonstrated in this study

was overall deemed valid and robust, with supplementary improvements proposed for consideration in future investigation to

further heighten accuracy. This disaster risk assessment methodology has potential for application in other Pacific SIDS for

additional disaster types, to enhance the risk knowledge component of a user-centred I-EWS and guide the implementation of

such a system, as well as inform improved resilient disaster risk management practices in local at-risk areas.A—case-study

Keywords: Climate Risk; Disaster Risk Assessment; Resilient Management; Early Warning System; Small Island Developing

States; Papua New Guinea
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1 Introduction
1.1 Disaster risk reduction and resilient risk management of natural hazard events

Increased intensity and frequency of natural hazards and disaster events resultant of a changing global climate are already seen
to have destructive impacts on the world’s most vulnerable communities (Mercer, 2010). Future-effectiveclimate-adaptation-and
disasterrisk-reduction(DRR)Hs-vital-for-theresthience-ofvulnerable-communities-Small island developing states (SIDS) in the
Pacific include some of the most hazard-vulnerable communities in the world. Pacific SIDS are disaster-prone and have low
capacity to cope with resultant impacts, due to limited resource availability, including water and food insecurity, and reactive
management practices_(Kuleshov et al., 2014 ). As Pacific SIDS have a highly hazard-vulnerable nature, they are of priority for
future disaster risk reduction (DRR) through resilient risk management (Bang and Crimp, 2019). Fer-example,—aprolonged

Resilient disaster risk management consists of two key elements: proactivity and suitability. In this instance, proactivity is
characterised by controlling a disaster risk situation prior to the occurrence of a natural hazard event, rather than responding to

disaster after it has reached a crisis level. Suitability is seen as the level of appropriateness that disaster management strategies

have for application at localised levels in vulnerable places. A disaster management strategy is deemed suitable if it can be

independently implemented by local stakeholders and/or communities and if it addresses the specific impacts faced by local
decision-makers (Aitkenhead et al., 2021). i

independent-implementation-of-manageren j velin-v ~Thus, when seeking to increase disaster
resilience in SIDS, the proactivity and suitability of localised disaster risk management is of critical focus (Mercer, 2010). BRR

1.2 User-centred Integrated-Early Warning Systems

User-centred Integrated Early Warning Systems (I-EWS) are increasingly recognised as key to informing proactive and suitable
disaster risk management decisions in local vulnerable areas to increase disaster resilience. Fhe-United-Nations-Office-for BRR

define: A EWS “Th t of 141 ded-—t 1 nd-di mate-timel nd H ful 1 1 1
aeHResanEWo i +H tot-capacttes+ t nerate-ana-aisseptnate-timeryana-meamnghi—warnhgintormation
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of four inter-connected components including 1. ‘Risk Knowledge’, 2. ‘Warning Service’, 3. ‘Communication and

Dissemination’, and 4. ‘Response Capability’ (De Leodn et al., 2007). Each component is key to the efficiency of the overall I-

EWS, and if one component is lacking, the entire system would not succeed in efficiently informing disaster risk management.
The first component, risk knowledge, considers the patterns and trends in hazards and vulnerabilities that are present from which
risks arise (De Leon et al., 2007). ¥ i i b i i

currently, as past I-EWS investigations have only explored risk knowledge at a broad, rather than local level, while mainly

focusing on the warning service component (Kuleshov et al., 2020).

As part of the Climate Risk and Early Warning Systems (CREWS) international initiative, the Australian Bureau of Meteorology
is developing a user-centred I-EWS for drought in PNG, that utilises the World Meteorological Organization's (WMO) Space-
based Weather and Climate Extremes Monitoring (SWCEM) products (Kuleshov et al., 2019) and delivers warnings and relevant

drought hazard information to end-users (Kuleshov et al., 2020). While the warning service, communication and dissemination

and response capability components have already been considered (Bhardwaj et al., 2021a,b), the risk knowledge component of

expansion of the risk knowledge component, specifically in vulnerable Pacific SIDS, is required to inform efficiency in I-EWSs

for Pacific SIDSs, inform the resilient management of risk in local vulnerable communities, and improve the adaptive capacity

of vulnerable locals (Pulwarty and Sivakumar 2014).

1.3 Investigating natural hazard risk knowledge at a localised level

A common technique used in global studies investigating disaster risk knowledge, which has the potential for application in

SIDSs, is disaster risk assessment (Chen et al., 2003; Rahmati et al., 2020).to-investigating-risk-knowledge-in-SIDSs-is-disaster
risk-assessment. Disaster risk assessments analyse the risk of natural hazards in a particular area. Disaster risk is defined as the

probability of harmful consequences, or expected losses resulting from interactions between disaster hazard (the possible future
occurrence of natural hazard events); disaster exposure (the total population, its livelihoods and assets in an area in which natural
hazard events may occur); and disaster vulnerability (the tendency of exposed factors to suffer negative impacts when natural
hazard events occur) (Sharafi et al., 2020). Risk assessments are vital to indicating the most at-risk places to natural hazards i
a-ghven-area-that are of priority for improved risk management.
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1t is widely accepted that there are two types of risk assessments: static and dynamic. Dynamic disaster risk assessments consider

both the spatial and temporal aspects of disasters, using historic and periodically updated data. Additionally, dynamic

assessments _incorporate not only hazard monitoring indicators, but also vulnerability and exposure indicators (Mosquera-

Machado and Dilley, 2009). Most risk assessments that have been previously conducted have been static assessments (van Riet,

2009). Static assessments provide an estimate of risk factors for a discrete moment in time and space, usually considering only

one or two components of risk (e.qg only hazard) (Aerts et al., 2018) (Hagenlocher et al., 2020). Dynamic assessments are

recommended for use over static assessments as they provide a more holistic assessment of disaster risk; disaster risk is not static

but rather dynamic in both space and time (Hagenlocher et al., 2020).

The vitality of such dynamic risk assessments is demonstrated by Rahmati et al. (2020) in thei~a study of drought risk in a
vulnerable area of south-east Queensland, Australia. As a result of their study, Rahmati et al. (2020) provided recommendations

detailing areas that are likely to experience adverse drought impacts, within which drought resilience should be improved. The

dynamic drought risk assessment also had implications for utilising integrated Geographic Information System (GIS)-based

mapping techniques to accurately map and visualise drought risk levels in an area to better inform drought preparedness. -which

Integrated GIS-based mapping techniques for risk assessment include three key components: data integration into GIS, risk
assessment tasks, and consideration of risk decision-making (Chen et al., 2003). The first component, data integration into GIS,
consists of data collection and assimilation onto a GIS platform and data transformation and standardisation. Risk assessment
tasks are then performed on the GIS platform, including individual hazard, vulnerability, and exposure assessments with
accompanying mathematic calculations (Hagenlocher et al., 2019). The consideration of risk decision-making is incorporated
through efficient data visualization on GIS risk maps and appropriate dissemination of such products to decision-makers.

Although disaster risk assessments have been conducted for a variety of natural hazards in numerous countries throughout the

world, there has been minimal risk assessment conducted for natural hazards in Pacific SIDSs. Out of those that have been

conducted in Pacific SIDS, they have not utilised the most efficient methodology (Hagenlocher et al., 2019; D’Haeyer et al

2017). Itis evident in the literature that the most efficient risk assessment methodology includes the following elements: the risk

assessment is dynamic (Hagenlocher et al., 2020), it is conducted on the most localised scale possible (Wilhelmi and Wilhite,

2002), is tailored* to the area of study (e.g. specific country, state/s or province/s, or local community) (Wilhelmi and Wilhite,

2002), includes integrated GIS methodology to calculate and map risk indices as recommended by Rahmati et al. (2020),

! Tailored risk assessments would use specific hazard, vulnerability, and exposure indicators appropriate for monitoring hazard
risk of the hazard under investigation, in the study area.
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{2003)—Therefore, there is room for future investigation of risk knowledge in SIDSs to implement a tailored, localised risk

assessment with specific spaced-based monitoring hazard indicators and appropriate vulnerability and exposure indicatorshazard;
vulnerability-and-expesure-indicaters, and map indices produced by such assessment using integrated GIS methodology.

1.4. Validating disaster risk assessments to ensure accuracy and usability of results

In addition to past disaster risk assessments not utilising the most efficient methodology, they also commonly lack adequate
validation (Asare-Kyei et al., 2017). In a review of past disaster risk assessment methodology, Hagenlocher et al. (2019) state
that comprehensive validation “has proven to provide relevant information on the reliability, validity, and methodological
robustness of risk assessments and their outcomes. However, its application in the field of risk assessment remains largely

underdeveloped.” Molinari-et-ak-{(2019)—explain-further-tha assessment-validation-is-crucialresy an-be-used-to-inforn

eredible-Among the few studies seeking to validate a risk assessment methodology, various validation techniques have emerged.

Validation through result comparison with historical data has been used in several studies, however the preciseness of this method
has been criticised (Fekete, 2019). To validate the agricultural drought risk assessment methodology which they developed for
use in Nebraska (U.S), Wu and Wilhite (2004) estimated the probability of correct risk classification with independent, historical
crop data. This historical data was then compared to the risk assessment results to verify accuracy. Simiarly,Fekete {2019}

histerical-data-technigue-stating that there is “the need of higher quality data to perform validation and of benchmark solutions
to be followed in different contexts, along with a greater involvement of end-users”.

An alternative technique, incorporating the views of end-users as a ‘ground-truth’ source, called participatory research is
becoming increasingly utilised to validate drought monitoring outcomes, including risk assessment results. This technique
includes collaboration with stakeholders in a capacity building process as well as consideration of local peoples and expert
observations into knowledge systems (Mckenna and Yakam, 2021; Fragaszy et al., 2020). For-example-Fragaszy-et-al(2020)

Although participatory research is a promising validation methodology (Fragaszy et al. 2020), some past investigations using

this method have used an additional ‘ground-truth’ source to strengthen validation adequacy. To verify results of remotely sensed
drought risk monitoring in Morocco, Bijaber (2018) compared results to historical on the ground precipitation and crop
production data at the national scale as well as the views of experts regarding what was experienced on the ground during the

investigated period. Asare-Kyei-et-al(2017)-employed-an-analogous-technigue-to-validate floodrisk nent results for the
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In Pacific SIDS, data availability is scare, thus validation through comparison with historical independent data is unlikely to be

credible. Overall, a strengthened validation methodology using multiple ground-truth sources seems most promising for future
study regarding the verification of disaster risk assessments_in SIDS.

1.5 Disaster risk assessment for PNG

To continue upon past research regarding integrated GIS-based risk mapping (Rahmati et al., 2020) and I-EWS development
(Bhardwaj et al., 2021a), PNG is deemed an appropriate country in which to investigate the risk knowledge component of an I-
EWS through disaster risk assessment and mapping. PNG is a Pacific SIDS vulnerable to climate extremes and disaster events.

It is predicted to be increasingly affected by impacts from tropical cyclones, floods, and drought in the future. Such hazard events

are mainly a result of two key climate drivers: the El Nifio Southern Oscillation (ENSO) and the Indian Ocean Dipole (I10D).

In Pacific SIDS, ENSO alters the distribution of precipitation, often causing natural hazard events (Horton et al., 2021). ENSO
has two key phases: El Nifio (warm phase of ENSO) and La Nifia (cold phase of ENSO). La Nifia-associated prolonged rainfall
has contributed to floods, whilst El Nifio-associated prolonged aridity has contributed to droughts in PNG (Smith et al., 2013).
Historically, the 1997-1998 EIl Nifio contributed to severe drought in PNG causing immense loss of life, destruction of crops,
and forest fires subsequently causing regional pollution problems (Nicholls, 2001). However, different regions of PNG
experience varying climactic affects from El Nifio and La Nifia (Figure 1). For example, a moderate La Nifia event which
occurred in PNG during 2011-2012 resulted in drought conditions in several PNG provinces, particularly Milne Bay Province.

The effects of ENSO can be influenced by the 10D to further weaken or strengthen these trends in rainfall variability (Bhardwaj

et al., 2021b). Defined as consistent changes in sea surface temperature variability across the tropical western and eastern Indian

Ocean, the 10D can be negative, positive, or neutral.; Each 10D phase interacts with ENSO impacts differently (Bhardwaj et al.,
2021b).with-each-phase-interacting- with ENSO-impacts differently (Bhardwaj-et-al-2021b). The impacts of interactive 10D and

ENSO phases experienced in PNG are shown in Figure 2.

PNG has a lack of coping capacity for managing the risks posed by the natural hazard events which occur across the country
(Kuleshov et al., 2020). Particularly, drought poses an immense concern as it historically has disastrous impacts on PNG
communities but has not been extensively investigated compared to other hazards like tropical cyclones and floods. Considering
the restricted knowledge of drought risk in the context of PNG, and the critical threat which it poses to communities, drought is

an appropriate hazard to investigate in terms of assessing disaster risk to local areas in PNG.

Generally, drought can be described as an extended dry period resulting from rainfall deficiency. However, drought has many

definitions for its various types: meteorological (when climactic factors result in dry conditions within an area), hydrological
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(when water shortages occur after a period of meteorological drought), agricultural (when agricultural productivity is inhibited
and crops are affected by meteorological and hydrological drought), and socioeconomic (when dry conditions restrict the supply
and demand of commodities) (Wilhite et al., 2014). As drought impacts all major sectors (agriculture, economy, social, health,

etc.), an effective drought risk assessment would not only use indicators tailored for monitoring drought in PNG, but also use a
variety of sectoral indicators to encompass the overall drought risk. Such an effective drought risk assessment in PNG has the

potential to inform community/provincial-scale DRR (Webb, 2020).a-rought-risk-assessment-must-not-only-use-indicators

This study will expand on previous research with an aim to address the risk knowledge components of a user-centred I-EWS-for

nforming-beottom-up-resilient-management-on-the-local-areascale-in-PNG. This research seeks to demonstrate the potential for
tailored risk assessments to accurately inform on disaster risk levels before, during and after a disaster event and thus contribute
to more resilient disaster risk management in local areas, using drought in PNG as a case study. Fhisresearch-seeks-to-build

resitient-disasterrisk-management-inlocal-SIDS-areas—The study intends to develop an effective, dynamic risk assessment

methodology utilising GIS integrated technique and space-based weather and climate extremes observations, conduct a unique

and tailored, dynamic drought risk assessment for a retrospective period in PNG, and perform a comprehensive validation of the

risk assessment results using literature records as a ‘ground-truth’ source. The developed risk assessment methodology is

purposeful for potential future application to other disaster types in additional Pacific SIDSs. use-the-mest-effective—risk

2. Data and Methodology

2.1 Study Area: PNG

PNG has a population of approximately 8.8 million across its mainland and six hundred islands, which have a total land area of
452,860 km?. The country consists of four major regions, within which the 22 provinces of PNG are divided (Figure 3).

The four major PNG regions and their provinces are as follows:

-Highlands Region: Chimbu (Simbu), Eastern Highlands, Enga, Hela, Jiwaka, Southern Highlands, and Western Highlands.
-New Guinea Islands Region: Bougainville (North Solomons), East New Britain, Manus, New Ireland, and West New Britain.
-Momase Region: East Sepik, Madang, Morobe, and Sandaun (West Sepik).

-Southern Region: Central, Gulf, Milne Bay, Oro (Northern), and Western (Fly River).
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PNG is largely mountainous, and much of it is covered with tropical rainforest. The climate of PNG can be described as tropical
throughout, however each region of PNG experiences differences in seasonal climactic factors (Figure 3) (Bhardwaj et al.,
2021b). PNG climate also varies between years, with a dominant driver being ENSO (Figure 1).

PNG society consists of traditional village-based life, dependent on subsistence and small cash-crop agriculture, as well as
modern urban life in the main cities.

Economic performance in PNG has historically been based on international prices for exports (including for agriculture), fiscal
policies and construction activity. As of 2015, over 2 million Papua New Guineans are poor and/or face hardship, particularly
those based in rural areas (Pacific Islands Forum Secretariat, 2015). Agricultural occupation is consistently important for local
livelihoods, with approximately 80-85% of the rural population directly deriving their livelihood from farming (Pacific Islands
Forum Secretariat, 2015).

2.2 Study Design

The methodology proposed here addresses the limitations identified in previous studies (Hagenlocher et al., 2019) to achieve a

tailored and accurate risk assessment. As hazard, vulnerability, and exposure components are equally considered, and the spatial

and temporal aspects of drought are investigated, using retrospective and periodically updated data, the risk assessment

developed here is seen as a “dynamic” risk assessment intended to highlight areas in PNG most at-risk to experiencing adverse

drought impacts. This research is conducted on the provincial level within a 2014-2020 study period.

The methodology for this study was fourthree-part:

1. Selection of tailored hazard, vulnerability, and exposure indicators appropriate for monitoring drought risk in PNG
provinces.

2. Calculation and GIS mapping of hazard, vulnerability, exposure, and risk indices for retrospective? years histerical
years-(2014-2020) to determine the occurrence of drought events in PNG in the past.

3. Validation of drought risk assessment accuracy through a comparison of the drought risk index results with literature
detailing severity of drought conditions and impacts experienced on the ground at the time of each drought event
indicated by the retrospective risk assessment.

3-4. Implementation of a sensitivity analysis to enhance the evaluation and validity of the risk assessment.

2.2.1 Methodology: Part 1

Tailored risk indicators were selected for monitoring drought in PNG as the development of a region-specific drought risk index

is the key to accurate drought risk calculation and mapping (Santos et al., 2014). A comprehensive indicator selection process

is especially important for risk assessments in Pacific SIDS as Pacific SIDS experience a diverse array of climactic conditions

that are commonly managed on the local scale by sectoral stakeholders or communities, so they require tailored, specific risk

assessments to indicate disaster risk.A

2 This methodology follows the process of historical risk assessment validation, as in Wu and Wilhite (2004), however due to
the limited data range available for selected indices, it is inappropriate to call this a historical risk assessment. It is therefore
deemed a retrospective risk assessment.
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The risk index developed here incorporates equal components of hazard, vulnerability, and exposure, with specific indicators

selected to contribute to these three components. With drought hazard covering the possible occurrence of drought events in the

future, exposure considering the total population, its livelihoods and assets in an area in which drought events occur, and drought

vulnerability reflecting the tendency of exposed factors to suffer adverse impacts when a drought event occurs (Sharafi et al.

2020). The equal inclusion of hazard, vulnerability, and exposure components for formulating the drought risk index is an

innovative approach as past studies commonly focus on hazard without inclusion of vulnerability and exposure, especially those

conducted in Pacific SIDS.

Hazard, vulnerability, and exposure indicators most applicable to drought risk assessment in the 22 provinces of PNG were
determined by integrating information regarding the socio-economic, geographic, and climactic characteristics of PNG provinces
and analysis of indicator selection used in earlier studies of characteristically similar areas-{Referto-Appendix-A-fora-detatled
table-deseribing-the-reasens-for-selection-of-each-indicator). PNG National Weather Service advice was also sought to approve
indicator selection. Additionally, hazard indicators were assessed against recommendations made by WMO in their Handbook
of Drought Indicators and Indices (Svoboda and Fuchs, 2016). All types of droughts were considered when selecting indicators,

as well as all major sectors across PNG provinces. This was done to provide a holistic risk index for PNG provinces, as each

type of drought is known to impact PNG communities (Kuleshov et al., 2020), with each major sector experiencing the effects

(Bhardwaj et al., 2021b).

Note, data was only available for certain indicators as data availability is poor in PNG, thus indicators which could have been
more appropriate for use in hindsight had to be omitted. The most applicable and representative indicators were selected from
what was available. Additionally, indicator data was only available at certain spatial resolutions. Because of this, a standard

spatial resolution was chosen for the recording of data; data was recorded at the provincial level. It is also key to note that space-

based monitoring products were used when gathering data for hazard index calculations to ensure accuracy. There is a commonly

recognised need to increase the utilisation of monitoring of climate extremes from space. Institutions like the WMO Regional

Climate Centres observe weather and climate extremes to produce warnings for climate monitoring including the generation of

space-based monitoring products.

Table 1 displays the chosen hazard, vulnerability, and exposure indicators, indicator data sources, data resolution for each

indicator, and the weight applied to each indicator. Two indicators: Standardised Precipitation Index (SPI) and Vegetation Health

Index (VHI) were selected to be used in the hazard index. Four indicators: Percentage of children weighed at clinics less than

80% weight for age 0 to 4 years old, Agricultural occupation, Staple crop tolerance score, and Key crop replacement cost were

selected for the vulnerability index. Four indicators: Land Use, Elevation, Access to safe drinking water, and Population density

were chosen for the exposure index.

Each of the chosen hazard, vulnerability and exposure indicators define drought risk levels differently. Table 2 provides the

thresholds for each indicator in which ‘no to mild drought risk, ‘moderate drought risk’, and ‘severe to extreme drought risk’ is

signalled. To further ensure that indicators were representative of varying risk levels for PNG provinces, indicator data was

checked for variance using the thresholds presented in Table 2. Data from the 2020 year was used as an example year. Provincial

data was compared to determine whether there was variance in signalled drought risk levels between PNG provinces. If there

was minimal variance between provinces for a given indicator, then that indicator would not likely give much insight to the
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differing levels of risk across PNG and would not be highly appropriate for the inclusion in the calculation of drought risk indices.

In the case of this study, all selected indicators displayed variance, and therefore were confirmed for inclusion in the calculation

of risk indices. Once it was clear that each indicator had variance in the PNG provincial data, the raw data was uploaded to
ArcGIS Pro.

2.2.2 Methodology: Part 2

Retrospective (2014-2019) and current (2020) Historical-and-eurrent-data detailing hazard, vulnerability, and exposure conditions

in each of the 22 PNG provinces for each year within the 2014-2020 period in PNG, was used to develop a risk index for each
year to determine the yearly drought risk levels and whether it is suspected that a drought event(s) occurredin-this-historic-period

Health-lndex-(\/H1)-before- 2014 -Integrated-GIS methodology for mapping risk in each study region was used to display yearly
risk levels for 2014-2020risk—tevels—for-the-overall-years2014-2020. 1t was then determined whether a drought event was

suspected as occurring across PNG in each of the years assessed. Risk levels were also determined for the months of November,

and December in 2014, January to December of 2015 and November and December in 2016 to demonstrate the transition into

and out of drought during any strong drought event indicated by the risk assessment.

10
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To calculate the hazard index, vulnerability index, and exposure index, yearly indicator data Fe-calcwlate-the-hazard-index—data

was first reclassified by a linear function on a 1-10 scale and then standardised using fuzzy logic in ArcGIS Pro (Environmental
Systems Research Institute (Esri) Inc., 2019). Fuzzy logic is processed in ArcGIS Pro through the fuzzy function which requires

the assignment of fuzzy membership classes to data. Prior to the performance of the fuzzy function, fuzzy membership classes

were assigned to each indicator, describing the relationship between it and drought risk as recommended in Rahmati et al. (2020)

and Aitkenhead et al. (2021). Two classes of fuzzy membership were assigned in this study: fuzzy small* and fuzzy large®. Fuzzy

values scaled between 0-1 based on the possibility of the indicator data contributing to drought risk, where 0 was assigned to
values unlikely to contribute to drought risk, and 1 was assigned to values most likely to contribute. Bata-forthe-vulnerability

midpoint was not used when performing the fuzzy function; the midpoint used for each indicator was based on the mean value

in the historical records for indicator data _(historical records meaning all available past data; this differs for each indicator e.q.

SPI data is available from 2001 onwards). This ensured that the data was standardised on both a spatial and temporal scale.

The indicator fuzzy values for each province were mapped_on the provincial scale as yearly raster layers in ArcGIS Pro®. Thus

a 2014, 2015, 2016, 2017, 2018, 2019, and 2020 raster layer was mapped on the provincial scale for each of the ten indicators.

Indicator fuzzy values, displayed on these yearly maps, were recorded and used to calculate hazard, vulnerability, and exposure
indices for the each of the 22 PNG provinces. ili

Prior to index calculations, numericalNumerical weights were assigned to each indicator contributing to the hazard, vulnerability

and exposure indices based on an expert weighting scheme informed by past studies and advice from the PNG National Weather
Service-{Appendix-C). The weights assigned reflected the relative importance and contribution of each indicator to the specific

index it informs. This weighting scheme was on a 0-1 scale, with 0 indicating no probable contribution to the relative index and

1 being total probable contribution to the relative index (Frischen et al., 2020; Dayal et al., 2018). The weights assigned to each

4Fuzzy small: a transformation function used when smaller input values are most likely to influence drought risk.

SFuzzy large: a transformation function used when larger input values are most likely to influence drought risk.

8The base map used for all mapping in this study was gathered from the open-sourced platform, GISMap.

11
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hazard, vulnerability and exposure indicator are shown in Table 1. By applying weights to indicators, the potential affect of

anomalies in individual indicator data is reduced. For example, hazard data anomalies are expected as there is commonly a lag

between dry signals from SPI and VHI. The effects of dry conditions recorded in SPI are commonly seen leading up to and

during a drought event, whereas the vegetative affects recorded by VHI can sometimes lag and can only become evident once a

drought event has commenced. Thus, SP1 is likely to be more informative in signalling drought events, meaning it is appropriate

to give it a greater weighting than VHI in the hazard index.

The hazard, vulnerability and exposure indices were calculated using equations (1), (2) and (3), respectively for each province
in the years and months under investigation.

HI =¥ (w; * x") @),
VI =Y (w; + x') @),
El =¥y (w; * x") @)

where HI is the Hazard Index, VI is the Vulnerability Index, El is the Exposure Index, n is the number of Hazard, Vulnerability

or Exposure Indicators, X;’ refers to the standardised indicators and Wi refers to the respective indicator weight.

Once the vulnerability, hazard and exposure indices were calculated for each province, spatial maps of the area covering the 22
provinces of PNG, representing vulnerability, exposure, and hazard per unit area, were produced. The final drought risk index
value for each PNG province was determined through the integration of the drought vulnerability, hazard and exposure index
maps using the Fuzzy Gamma Overlay function (using a gamma of 0.75) in ArcGIS Pro. A final drought risk map was then
generated. The extent of drought vulnerability, hazard, exposure, and risk displayed on the respective maps was classified into
four levels: mild, moderate, severe, and extreme. These classifications are commonly used in drought risk assessments (Dayal et
al., 2018; Frischen et al., 2020a). This process was repeated to calculate a drought risk index for each year and month under

investigation.

The years suspected of experiencing a nationwide drought event were recorded; this record was used in the validation of risk

assessment results against literature review results. A nationwide drought event was suspected when most provinces were in

severe to extreme drought risk conditions and was not suspected when the majority of provinces were in mild to moderate drought

risk conditions. This is deemed a fair assumption since in past drought events, when only certain provinces in PNG experienced

drought conditions and direct impacts, other provinces encountered indirect impacts and PNG as a nation was adversely affected.

For example, during the 1997-1998 nationwide drought event in PNG, dire social, health and economic effects were felt across

the entire country (Kanua et al., 2016). Resources of provinces in non-dry conditions were pressured with PNG villagers from

drought-affected provinces travelling to areas in non-drought conditions or to relatives living in urban areas seeking familial help

and support (Allen and Bourke, 2009). Additionally, a major mine was closed in response to the dry conditions in Western

Province, impacting the national economy (Kanua et al., 2016).

2.2.3 Methodology: Part 3

Risk level accuracy was validated through comparison with documented records of observed impacts during the study period as
a ground-truth source. Literature sources on this topic were analysed for the period of 2014-2020 to determine when drought

events were recorded. The events recorded in the literature were compared to those identified by the risk assessment. The events

12



identified by both the literature and risk assessment were further analysed by comparing the severity of each event indicated by
the risk assessment and the severity described in the literature.

Two events were indicated in the risk assessment and confirmed in a literature investigation of openly accessible sources
mentioning drought conditions in PNG from 2014-2020 (a 2015-2016 drought event and a 2019-2020 drought event). Reputable
literature sources detailing drought conditions around the time of each event indicated by the risk assessment were analysed to

determine the ground-truth of the drought event severity and impact.

Three severity levels were used to classify the strength of the events indicated in the assessment and literature: mild, moderate,

and severe to extreme. For the risk assessment, the strength of each identified drought event was determined as mild, moderate,

or severe to extreme, based on the risk level pattern observed across PNG overall (Table 3). Table 4 displays the information

used to formalise the link between impacts reported by literature sources and the three severity classes. The level most clearly

aligned with the details provided by each source was recorded. Additionally, any mention of specific provinces experiencing

impacts was recorded.

were analysed-assessed for each drought event, thus

ed-by-the-risk neAt

16 sources were assessed overall (2015-2016 (Chua et al., 2020; Gwatirisa et al., 2017; Burivalova et al., 2018; Jacka, 2020;
Varotsos et al., 2018; Kuleshov et al., 2020; Schmidt et al., 2021; Rimes and Papua New Guinea National Weather Service,
2017) and 2019-2020 (Johnson et al., 2019; Food and Agriculture Organisation of the United Nations, 2021; Golden Gate
Weather Services, 2021NuH-2021; Mckenna and Yakam, 2021; Food Security Cluster et al., 2021; Bidault et al., 2019; Papua
New Guinea National Weather Service, 2020; Bang and Crimp, 2019)). The records in the literature were not extensive for the

2019-2020 drought event in PNG with only eight reputable sources identified as having mention of this event, whereas an array

of records was available for the 2015-2016 drought event. This may have been due to the 2019-2020 event being so recent,

meaning that investigations of the event may still be ongoing and/or peer reviewed literature not being published as of when this

research was conducted. To account for the limited availability of literature records for the 2019-2020 drought and to make the

comparison with literature equal for both drought events assessed, an equal number of eight sources each were selected for the

analysis for each event. Three severity levelswere-identified-as being-commonly-implied-in-sources: mild.-moderate, and severe
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To determine if there were significant differences between the drought risk level indicated by the risk assessment and the risk

level indicated by the literature for each PNG province for each of the drought years under investigation (2015-16 and 2019-20)

two types of statistical tests were performed: F-test and t-test®. Both tests were conducted for each event investigated (2015-2016

and 2019-2020). The F-test was firstly conducted to determine whether there were equal variances between the provincial risk

levels displayed in the risk assessment, and the impact levels within provinces expressed in the literature, for each drought event.

The F-value (test statistic), degrees of freedom and the two-tailed p-value indicating the level of marginal significance within

the test, were recorded. A Student’s t-test (assuming equal or unequal variances depending on F-test results) was then conducted

to determine the significance of difference between the drought risk levels indicated by the assessment and the impact levels

indicated in literature for each province during each drought event. The t-value (test statistic), degrees of freedom and the two-

tailed p-value were recorded. The use of two-tailed p values instead of one-tailed p values was due to the small number of

literature sources investigated. Two-tailed p-value accounts for smaller sample sizes and tests for the possibility of positive or

negative differences in the samples.

~T-test assumptions were checked by plotting
the data distribution on boxplots. All assumptions were met, thus the aforementioned tests proceeded. All statistical tests used o
=0.05.

2.2.4 Methodology: Part 4

A sensitivity analysis was conducted for the risk assessment results to determine the likely contribution of indicators to the index

they inform. Sensitivity analysis is used to determine how different values of an independent variable (in this case individual
indicators) affect a particular dependent variable (in this case the hazard, vulnerability of exposure index) under a provided set
of assumptions. A Sensitivity Index (SI) was calculated, indicating the sensitivity of the index in question to the individual

indicator in question. A high ST means high sensitivity, vice versa, with ‘sensitivity” meaning the magnitude of the index reaction

to changes in indicator data.

9 Statistical analyses were performed in Microsoft Excel.

JP— tormec in Microsoft Excel.

14



20

25

30

35

140

45

50

55

The 2015 year was used as a case study for the sensitivity analysis, as it was the most critical drought year indicated by the risk

assessment and identified in the literature. All indicator and index data for each province in the 2015 year, was inputted into

excel. Data tables were created for each indicator in each index. For example, a separate data table was made for SPI and VHI

which contribute to the hazard index. In the data table, the indicator data value in question was instructed to change in 0.1

increments (spanning from 0.1 to 1). Using the What-If analysis function in Microsoft Excel, these data tables were populated
with output results, in this case the relevant index (hazard, vulnerability, or exposure) output in response to the change in the

indicator value in question. The output values were then used to calculate the Sensitivity Index (SI). The SI was calculated based

on an equation (equation 4) deemed useful in past studies (Farok and Homayouni, 2018).

S| = (Dmax - Diin)/ Dinay (4)
where Dmax_is the output result (hazard, vulnerability, or exposure value) when the indicator value in question is set at its

maximum value and Dmin is the result for the minimum indicator value.

This process was repeated for all provinces, meaning an Sl was produced for each of the 10 indicators used in this study, for

each of the 22 provinces investigated. An overall Sl for each of the 10 indicators was calculated from averaging the provincial

Sl values. The higher the indicator Sl is, the more sensitive the relative index (hazard, vulnerability, or exposure) is to that

indicator. The average S| value was used to rank each indicator in terms of sensitivity (first being the most sensitive) in each of

the three indices (hazard, vulnerability, and exposure). As it is known that indices comprising of indicators with a high sensitivity

index (SI) have a likely reduced robustness, a credibility rank was able to be given to each indicator in each of the three indices,

based on the sensitivity results (first being the most credible for inclusion in the index) (Anand e t al., 2019).

3. Results

3.1 Selected indicators for risk assessment

The selected indicators are listed, and the comprehensive selection criteria is described in Tables 5, 7 and 9 in which details are

provided on the reasoning behind hazard, vulnerability, and exposure indicator selection respectively. Tables 6, 8 and 10 list

other potential hazard, vulnerability, and exposure indicators respectively and why each was omitted from this study.

For hazard, SPI and VHI were chosen for use in this study, and Rainfall Deficiency, the Soil Moisture Deficit Index, and the

Standardised Water Level Index Normalized Difference Vegetation Index (NDVI) were not chosen for inclusion in this study.

For vulnerability, Percentage of Children Weighed at Clinics Less than 80% Weight for Age 0 to 4 years old, Key Crop

Replacement Cost, Staple Crop Tolerance Scores, and Agricultural Occupation were selected as indicators, and Average

household consumption of staple food, Average Household Income, Education, and Key crop production were not chosen for

this study.

For exposure, Land Use, Elevation Type, Population Density, and Access to Safe Drinking Water were chosen as indicators for

this study, and Access to Roads, Access to Land Resources, Access to Technology, Access to Social Networks, Access to Market

On-farm Diversification, and the Aridity Index were not selected for use in this study.
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3.2 Risk assessment and validation results « [Formatted: Heading 2

The 2014, 2015 and 2016 drought risk assessments determined that most the-majerity-efprovinces had severe or extreme drought
risk levels (Fig. 4)(Fable-2}, thus a drought event is suspected as occurring or commencing across the country during these years.
560 The 2017 and 2018 drought risk assessments indicated most provinces as having mild or moderate drought risk levels (Fig.
4)(Fable-2}, thus a drought event is not suspected, and these were likely non-drought years. In the 2019 and 2020 drought risk
assessments, slightly more provinces displayed a severe or extreme level than a mild or moderate drought risk levels (Fig.

4){(Fable-2}, therefore a drought event is suspected as occurring or commencing in this period.

565 The literature investigated expressed that a drought event occurred in 2015-2016 as well as in 2019-2020 with all sources
describing 2015-2016 as experiencing severe to extreme drought impacts and most sources describing 2019-2020 as experiencing
moderate drought impact (Table 11){Fable-3}, whilst 2017 and 2018 were reported as non-drought years (Kuleshov et al., 2020).

In all but one source, 2014 was reported as a non-drought year. This is consistent with the drought risk assessment results, with

570 2014 being the exception as it was suspected as a drought year from the risk assessment results and was only mentioned as a
drought year in one of the literature sources investigated (Burivalova et al., 2018). Refer to Fig. 5 Figure-4 for the mapped hazard,
vulnerability, exposure, and risk results for 2014.

The 2014 anomaly was further investigated by the production of monthly drought risk maps throughout the year which were
575  used to determine how the risk assessment was performing throughout the year. Results show drought conditions commencing

or occurring in March-July and again in November-December, with the risk levels in November and December being slightly
| more intense than those expressed in March-July (Fig. 6){Fable-4}.

No statistically significant variation was displayed between the severity levels described in the risk assessment versus the
5180 literature for the 2015-2016 event (F15=0.86, p=0.37) (Appendix A) and the 2019-2020 event (F1,=0.71, p=0.25) (Appendix B).

There was no significant difference between the severity levels recorded for the 22 PNG provinces given by the risk assessment

compared to the literature for both the 2015-2016 drought event (tss=-1.70, p=0.10) (Appendix C) and the 2019-2020 drought

event (t34=1.51, p=0.14) (Appendix D). Refer to Table 12 Table 5 for the severity levels of each province during the 2015-2016

and 2019-2020 drought periods given by the literature. Refer to Fig. 7, 8, 9 and 10 Figures 5,6, 7-and-8-for the severity levels of
585  each province during the 2015-2016 and 2019-2020 drought periods given by the risk assessment.

The risk assessment reported the five most at-risk provinces during the 2015-2016 period as Central (average risk index value
of 0.82), West Sepik (average risk index value of 0.81), Northern (average risk index value of 0.76), Gulf Province (average risk
| index value of 0.75), and West New Britain (average risk index value of 0.74) (Fig. 7 and 8)(Figures-5-and-6). Similarly, during
590  the 2019-2020 period, Central (average risk index value of 0.70), Southern Highlands (average risk index value of 0.67), Gulf
Province (average risk index value of 0.66), West Sepik (average risk index value of 0.64), and Northern (average risk index

| value of 0.64) were the five most at-risk provinces (Fig. 9 and 10)(Figures-7-and-8).

Northern, West Sepik and West New Britain were mentioned in the literature among the most affected provinces during the
5195 2015-2016 period, however Central and Gulf Province were not included among the most affected (Table 12)(Fable-5). For the
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2019-2020 period, Central, Southern Highlands, Gulf Province and Northern_ (Oro) were mentioned among the most affected
provinces in the literature (Table 12)(Fable-5). However, West Sepik was not mentioned in any of the sources investigated.

Results display a valid identification of a strong drought event in 2015-2016 and moderate drought event in 2019-2020 by the
risk assessment. The strong event which occurred in 2015-2016 is further detailed by monthly risk index maps indicating the
transition of most provinces into extreme drought risk levels in July 2015. Figure 11 Fable-6 shows the heightening of drought
risk from November 2014 to July 2015 for most provinces, with drought risk levels peaking in October-December 2015 and then
slightly reducing at the commencement of 2016.

3.3 Sensitivity Analysis Results

The validity of the risk assessment is further confirmed by sensitivity analysis results examining the robustness of the individual

indices (hazard, vulnerability, and exposure) used in the assessment. All indicator SI’s were below or just over 0.5, the highest

being SPI with 0.56. SI values 0.5 or below are considered low, with SPI’s 0.56 value still deemed relatively low, meaning that

the hazard, vulnerability, and exposure indices are essentially robust rather than sensitive (Anand e t al., 2019).

The results of the 2015 case study sensitivity analysis show that the hazard index is more sensitive to SPI compared to VHI,

meaning that changes in SPI affect the hazard index more greatly than changes in VHI. Thus, SPI is the indicator ranked as 1%

in hazard sensitivity and 2" in likely credibility (Table 13).

The vulnerability index is seen to be most sensitive to the Staple Crop Tolerance Score Indicator, thus it is ranked as 1% in

vulnerability sensitivity, and is likely the least credible vulnerability index. Agricultural Occupation is ranked 2" with a slightly

lower Sl value than Staple Crop Tolerance Score. Child Malnourishment and Key Crop Replacement Cost have similar Sl values

with the Sl given for Child Malnourishment being slightly greater than that for Key Crop Replacement cost, therefore they are

ranked 3" and 4™ respectively in terms of vulnerability sensitivity (Table 13).

The exposure index sensitivity analysis results show that the exposure index is most sensitive to land use, thus land use is ranked

1% in exposure sensitivity with the greatest SI value, and 4" in likely credibility. The SI values for the remaining three exposure

indicators are similar, with elevation type giving an Sl of 0.34, population density 0.32 and access to safe drinking water 0.31,

resulting in a 2", 3" and 4" ranking respectively for exposure sensitivity (Table 13).

Overall, the Sl values of each indicator within each of the three indices did not greatly differ, the greatest being a 0.1 difference<

between key crop replacement cost (Sl of 0.31) and staple crop tolerance score (SI of 0.41). Thus, credibility was similar for all

indicators within each of the hazard, vulnerability, and exposure indices.

4. Discussion
4.1 PNG drought events indicated by risk assessment

The drought risk assessment methodology used in this study was validated through a retrospective, dynamic histerical-risk

assessment paired with a literature review. 2014 was identified as an anomalous year, in which a mild drought was suspected as

occurring. 2017 and 2018 were both identified as non-drought years. As expected, the drought risk assessment identified a
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suspected drought event occurring or commencing in 2015-2016 as well as in 2019-2020; literature confirmed the occurrence of

these suspected drought events in PNG.

There was one discrepancy in the risk assessment results for 2014. The drought risk assessment indicated that it was a moderate

drought year, whereas most literature describe it as a non-drought year, with only one source including it as a year in the 2015-

2016 drought event (Burivalova et al., 2018). The monthly risk assessment conducted for all months during 2014 indicated two

periods in which drought was suspected, in March-July and November-December. In most PNG provinces, seasonal rainfall

usually peaks between December-April with drier conditions commonly following in July-August (Regional Bureau for Asia &
the Pacfic and Food Security Markets and Vulnerability Analysis Unit, 2015). Thus, the drought conditions indicated during

March-July may have been due to normal seasonal rainfall patterns. The November-December drought period is not consistent

with the normal seasonal patterns of PNG. However, this may be explained by the commencement of the strong El Nifio event

which then heightened into a widely reported drought event during 2015-2016. Reports of below-average rainfall were recorded
as early as October 2014, for the 2015-2016 EI Nifio event (Regional Bureau for Asia & the Pacfic and Food Security Markets

and Vulnerability Analysis Unit, 2015). For this study, this discrepancy does not invalidate the risk assessment methodology as

there is a logical reason for its occurrence. In future research, the results should be validated with further ‘ground truth’

investigation.

Although 2017 and 2018 were indicated as non-drought years, most provinces still displayed moderate levels of drought risk.

Only one mild risk level was observed throughout the entire retrospective risk assessment, in Manus province during the 2017

year. This is not an unexpected result, as PNG is a highly vulnerable and exposed country to drought. Therefore, the vulnerability

and exposure indices are likely to be consistently high for most years across PNG provinces. With two out of the three indices

likely being at high levels, it is not radical to suggest that the final drought risk index would be higher than mild for most years.

In non-drought years such as 2017 and 2018, where hazard is low but vulnerability and/or exposure is high across PNG provinces,

it is the time to be proactive and improve adaptive capacity. If management practices are put in place during non-drought years

to reduce the levels of vulnerability and exposure, when a drought hazard event commences the risk of destructive impacts can

be reduced. If preparedness measures were put into place during 2017 and 2018, the impacts experienced during the 2019-2020

drought event could have potentially been lessened.

It is widely reported that a strong drought event commenced in PNG at the beginning of 2015 and reached its peak during 2016
(Kuleshov et al., 2020; Chua et al., 2020; Gwatirisa et al., 2017; Jacka, 2020; Varotsos et al., 2018; Rimes and Papua New Guinea
National Weather Service, 2017). Kuleshov et al. (2020) attributed the drought of 2015-2016 to a strong EI Nifio which occurred
during these years. This strong El Nifio phase was paired with a positive IOD phase; the interacting impacts of both climate
drivers resulted in devastating negative rainfall anomalies across the entirety of PNG (Bhardwaj et al., 2021b). It is explained in
the literature that the 2015-2016 drought event affected approximately 40% of PNG’s population, with drought-caused food
shortages impacting half a million people throughout PNG’s provinces (Kuleshov et al., 2020).

A recent drought event occurring in PNG, which commenced in 2019 and continued throughout 2020, has been recently reported
by various sources (Johnson et al., 2019; Bang and Crimp, 2019; Null, 2021; Papua New Guinea National Weather Service,
2020). Unlike the 2015-2016 drought event, drought conditions in PNG during 2019-2020 were due to a La Nifia event. The

second half of 2020 saw the emergence of a moderate to strong La Nifia event that is causing extreme weather in many parts of
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the world. A neutral 10D phase was also evident, thus La Nifia impacts were not exacerbated by the 10D. The impacts of La
Nifia on rainfall patterns vary across PNG. In the past, La Nifia has resulted in wetter conditions over most of the country, except
in the eastern islands of Milne Bay region (Food and Agriculture Organisation of the United Nations, 2021). The 2019-2020 La
Nifia caused below-average rainfall in PNG, particularly in the Northern parts of PNG (Food Security Cluster et al., 2021). With

La Nifia alone influencing the 2019-2020 event, it was expected to be weaker than the strong drought of 2015-2016 (driven by
both EI Nifio and positive 10D).

The importance and usability of the risk assessment results is further demonstrated by the monthly drought risk maps produced

for the 2015-2016 drought event. The risk assessment accurately displayed high drought risk levels leading up to the peak of the

drought in mid-2015 until November/December 2015 (Chua et al., 2020). Most provinces were indicated to have severe drought

risk levels from November 2014 until June 2015, after which the drought heightened to an extreme point. Thus, the risk

assessment may have informed the decision-makers of each PNG province of the severity of drought risk which the commencing

drought event posed to them. As a result, local communities in PNG provinces could have implemented proactive drought

management strategies and been better prepared for the impacts of the drought event before the drought peaked, potentially

saving lives (Kanua et al., 2016).

4.2 Comparison to Literature Findings

The risk assessment not only indicated when a drought event was likely occurring, but it also showed the differing severity levels
experienced by each PNG province during each indicated drought event (2015-2016 and 2019-2020). The 2015-2016 drought
risk maps displayed a severe to extreme drought event likely occurring, whereas a moderate drought event was shown as likely

occurring in 2019-2020. When compared to literature findings, these results are corroborated.

The 2015-2016 drought event is consistently described in the literature as having extreme impact on local communities in each
PNG province. A poverty analysis in the lowlands of PNG conducted by Schmidt et al. (2021) stated that the severe El Nifio
event of 2015-2016 decimated a critical amount of PNG’s local crop production which left PNG communities in a food crisis. A
detailed survey found that such a climate shock had critical consequences for household welfare, contributing to a rise in
households below the poverty line, particularly in rural and lowland areas (Schmidt et al., 2021). A-stuch-by-Mekenna-and-Yakam
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overal-agricultural-production(Mekenna-and-Yakam,2021)—In an assessment of village food needs after a disaster event in
PNG by Kanua et al. (2016), the negative impacts of the 2015-2016 drought are further emphasized. It is stated that even in

locations that commonly experience drier conditions, where farmers adjust their agricultural processes accordingly, the dry
conditions were so extreme throughout 2015-2016 that such farmers suffered crop loss (Kanua et al., 2016). Resultant food
shortages, as well as the loss of clean drinking water particularly in Western Province and the highlands, caused death rates to

increase (Kanua et al., 2016).

In comparison, the impacts of the 2019-2020 drought event are primarily discussed as moderate rather than severe or extreme.
However, the effects of the 2019-2020 drought event have not been widely discussed in peer-reviewed literature as it is such a
recent event, but there are some sources that have similarly investigated drought conditions in PNG and the resulting impacts
during 2019-2020. These sources have described the negative affect of dry conditions on agricultural production and food
security (Food and Agriculture Organisation of the United Nations, 2021; Food Security Cluster et al., 2021). Areas mentioned
as being of concern include the Gulf and Western Area, along with northern provinces and southern coastal provinces; this is
consistent with the risk assessment results. The moderate rather than severe or extreme drought impacts on the agriculture sector,
as a result of the 2019-2020 drought event, may be due to soil moisture levels being relatively well maintained across PNG
during this time (2019).

There were no irregularities with what was reported by the risk assessment and the literature regarding the most at-risk provinces
for the 2019-2020 event, which suggests a high level of accuracy within the risk assessment results for 2019-2020. Whereas,
when comparing risk levels indicated for specific provinces, slight discrepancies were detected for the 2015-2016 drought event
results. Central and Gulf Province were indicated among the five most at-risk provinces by the risk assessment but were included
in the most at-risk provinces described by the literature. This might have been because the majority (five out of eight) of the
‘ground-truth’ sources used to investigate the impacts of the 2015-2016 drought event focused on only one aspect of drought
(meteorological, agricultural, hydrological, or socioeconomic), and thus did not consider the holistic impacts suffered by specific
provinces like Central and Gulf Province (Chua et al., 2020; Burivalova et al., 2018; Varotsos et al., 2018; Schmidt et al., 2021;
Gwatirisa et al., 2017). Comparatively, the risk assessment methodology of this study incorporated indicators for all types of

drought’s impacts to provide a comprehensive risk level for each province. It is not likely that discrepancy negates the overall

validity of the risk assessment methodology as it is only slight, with all other results proving the methodology to be accurate.;

Overall, the literature findings corroborate the drought risk assessment results. Thus, it is likely that the disaster risk assessment

methodology developed and tested in this research is valid. Validity can be further confirmed in additional investigations.
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4.3 Sensitivity analysis

The calibre and reliability of the risk indices (hazard, vulnerability, and exposure) depend on the theoretical framework, indicator

data availability, and how each index is accumulated. To enhance insight into the validity of selected indicators, and risk

assessment results, a sensitivity analysis was performed. Sensitivity analysis is essential for reducing the uncertainties of the

indices in the risk assessment and is therefore key to validating the risk assessment and strengthening confidence in insights

users gain from the risk assessment results (Gorris and Yoe, 2014). The sensitivity analysis examines how the selected indicators
affect the indices which they inform. If the dependant variable (index) noticeably changes when the input variable (indicator)

changes over a range, then the dependant variable is sensitive to the independent variable. If the dependant variable does not

change a lot when the independent variable varies, the dependant variable is deemed as insensitive or robust. If the indices remain

robust when changing the values of the indicators that inform them, the credibility of the overall risk assessment is strengthened

(Anand e tal., 2019).

As no single indicator displayed a seriously high SI value, each indicator selected for use in the risk assessment is likely credible

meaning that each of the hazard, exposure and vulnerability indices is robust and able of representing the complex processes that

lead to drought risk (Anand e t al., 2019). This improves the confidence able to be had in the results presented in this paper

(Anand e t al., 2019). However, a review of the weighting applied to each indicator may be appropriate, based on the different

Sl values expressed and differences in likely credibility for inclusion in index calculations.
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The expert weighting scheme applied to the hazard indicators gave SPI a weighting of 0.75, and VHI 0.25. The sensitivity

analysis ranked SPI as 1%, with an Sl value greater than VVHI, meaning that the hazard component is more sensitive to changes

in SPI rather than VHI. Results suggest that VVHI is a more credible indicator compared to SPI, therefore more weight could be

distributed to VHI than what is currently.

Sensitivity analysis results suggest that the weighting of vulnerability indicators could be slightly reviewed. The vulnerability

index is evidently most sensitive to changes in the staple crop tolerance score indicator; it is likely incorrect that it is weighted

highest over the other indicators. Key crop average replacement cost was identified as the most credible indicator; it is logical

that it should be weighted the highest among vulnerability indicators. Currently, it is weighted the second greatest. Similarly

more weight should be applied to the percentage of children weighed at clinics less than 80% weight for age 0 to 4 years old

indicator as it was identified as the second most credible vulnerability indicator but is currently weighted the least. The weighting

of agricultural occupation is likely valid as it is weighted second lowest and is seen to be the second lowest indicator in terms of
credibility.

Similarly, results suggest that the weighting of exposure indicators could undergo minor reassignment. The exposure index

sensitivity analysis results show land use to be the 1% ranked indicator in terms of index sensitivity with the greatest SI value and

ranked last among exposure indicators in terms of credibility. Currently, land use is weighted the greatest among exposure

indicators; it is suggested that the weighting assigned to land use should be reduced. Elevation type, population density and

access to safe drinking water gave similarly low Sl values, therefore they likely have similarly high credibility. However, the

exposure index was seen to be slightly more sensitive to changes in elevation type over population density, and population

density over access to safe drinking water. As the most credible exposure indicator, access to safe drinking water should be

weighted the greatest; it is currently weighted as the second greatest. Population density is weighted the second least among

exposure indicators but is identified as the second most credible exposure indicator. Therefore, it may be appropriate to assign

more weight to population density in the future.

Whilst refinements to the weightings applied to hazard, vulnerability and exposure indicators are recommended in the future«— [ Formatted: Tab stops: 4.46 cm, Left

based on their likely credibility for inclusion in index calculations, these refinements would be minimal as the differences in S|

values between indicators within each index were not serious. Thus, it is likely that the index calculations presented in this

research are still valid.,

4.4 Increasing resilience through risk assessment and Integrated-Early Warning Systems

This disaster risk assessment methodology has been developed with the intention of collaborating with an I-EWS. The combined

results of this study, using drought in PNG as a case study, demonstrate that the risk assessment methodology is valid; thus, this

novel methodology can be recommended for use in the future to inform the risk knowledge component of an I-EWS for disasters
like drought and increase the disaster risk resilience of Pacific SIDS, like PNG. increase-the-disasterrisk—resilienceof PNG

ught—Real-time monitoring information would be

provided through the I-EWS, and risk assessment would complement this by providing dynamic disaster risk information. At a

policy level, it would be intended that the risk assessment would come in at a higher level than the I-EWS, so that local decision

makers are informed of their disaster risk to know what to look out for in the warnings given by the I-EWS and how to act in

response to such warnings (e.g. prioritizing resources in the most at-risk provinces, planning water restrictions in certain areas
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to avoid critical water shortages, formation and implementation of disease prevention and management plans in the most at-risk
regions, etc.). Warnings that are framed in the context of risk would be provided on various timescales (mainly weekly and

monthly updates), depending on user needs. Such warnings could be provided in climate bulletins, through warnings issued by

National Weather Services (NWSs), and via online platforms. These products would include I-EWS information and results, like

those given by Bhardwaj et al. (2021), paired with dynamic risk assessment information and results, and final recommendations

for the proactive and suitable management of disasters in Pacific SIDS communities. Ideally, a risk assessment platform

communicating risk information to local decision-makers and a platform disseminating user-centered I-EWS warnings would be

developed and used as ‘side-by-side’ products.

4.5 Study limitations_ and Further Research

The disaster risk methodology developed and validated in this study provides the foundation for further research regarding

disaster risk management and the implementation of an I-EWS for disasters like drought in SIDS like PNG; however, this study
was limited by several factors.

The indicator selection process used in the drought risk assessment methodology was comprehensive but could be improved. To

propose a set of indicators really tailored to local users, the potential users and academic experts should be consulted, as

recommended by Benzie et al., (2016). In this study it was not feasible to formally gauge the perspectives of users, but advice

on relevant indicators was sought by PNG NWS. In future investigation, surveys and interviews will be conducted to formally

gain the perspective of locals regarding what vulnerability and exposure indicators are most appropriate for use. This feedback
will inform further refinements of the risk index for drought in PNG, given data is accurate and available.

~The validation

used literature sources discussing each drought period as the ground truth for what occurred during that time. A more reliable

ground-truth would have been the perspectives of local PNG people who personally experienced the drought conditions and
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ensuing impacts. Interviews could have been conducted like those executed by Mckenna and Yakam (2021) and Fragaszy et al.
(2020). However, due to the COVID-19 situation in both PNG and Australia at the time of this study, interviews were not viable.
Future research should consider interviewing local communities in each PNG province to determine a more robust ground truth
of the conditions and effects of each drought event investigated. The validation method was also constrained by the fact that
there were limited numbers of scientifically robust literature sources reporting on the 2019-2020 drought event, as it was a recent
event. The PNG National Weather Service was consulted to ensure that the results from the 2019-2020 literature sources were
true and accurate.

This research presents a preliminary validation of a tailored risk assessment methodology which is conceptually applicable to

the local level. The developed risk assessment methodology was intended to be tailored to a highly localized level, however due

to data restraints, the provincial level was the most localized level able to be assessed in PNG. Data is severely limited at

heightened local scales, e.qg. for individual villages/cities. In the future, it would be useful to further validate the applicability of

such a risk assessment methodology at a more localized scale through conducting a drought risk assessment for a specific local

PNG village. Currently, such an investigation is beyond the scope of the research presented in the paper.

Data was further limited for the hazard indicator of VHI. Space-based VVHI data is only available from 2014 onwards. Whereas

the SPI data record dates to 2001. To have a complete hazard index in the retrospectivehistorical risk assessment, the
retrospectivehistorical period investigated had to begin from 2014. 2014-2020 is a shorter period of analysis, which limits the

number of drought events and non-drought periods occurring within, resulting in lower confidence in results. A longer analysis

would provide greater confidence in the risk assessment methodology. It is possible that the risk nent could be performed

for years prior to 2014 by using only SPI to inform the hazard index, or by replacing VHI with a different hazard indicator with

data available for a longer period. However, it is deemed that for the risk assessment to be holistic and tailored, the hazard index

should not rely only on one indicator. Additionally, different hazard indicators that could potentially replace VHI, like the

Normalized difference vegetation index (NDVI) (which has raw data from the 80s onwards, and SEMDP processed data from

2013 onwards) are not as accurate as VHI; VHI has been proven to be efficient and accurate, specifically for across PNG (Chua

et al., 2020)

Data availability was also limited for the exposure and vulnerability indicators, thus, the data available closest to the time
investigated was used. This meant that the vulnerability and exposure indices were the same for both 2014 and 2015 as the data
was not updated throughout those two years. However, as half the indicators in both the vulnerability and exposure are more
static rather than dynamic (excluding agricultural occupation, key crop replacement cost, population density and access to safe
drinking water), it is not expected that values would largely change on a yearly basis regardless, rather it would be more likely
for values to change every two or three years (Aitkenhead et al., 2021). Therefore, the limited data availability for vulnerability

and exposure indicators in 2014-2015 will not likely have a large effect on the credibility of the results.
Data availability is constrained throughout many SIDS like PNG; investment in open-sourced and cloud-based data platforms

would allow for collaboration between separate entities that have collected data so that all relevant data can be combined, stored,
and accessed from the same place (Sun et al., 2020).
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Additionally, the hazard variables used were 3-month cumulated values (3-month SPI and VHI), which potentially reduces the

informative value of the hazard and risk index to give a warning of high risk early enough in advance to act proactively.

Furthermore, the vulnerability and exposure indicator data do not include forecasted data at all. Although forecasted data is not

available for the vulnerability and exposure indicators, as a holistic drought risk index requires these two components in addition
to the hazard component. The risk assessment is not intended to predict drought events before they happen, it is used to determine

the risk of a drought event occurring and the relative impact that might be faced by specific provinces during a drought. Therefore,

this limitation is not likely to reduce the value of the risk assessment methodology.

4.6 Research Significance and Conclusions

The occurrence of natural hazards is expected to be exacerbated under anthropogenic climate change, with the impacts of hazards

predicted to critically affect agricultural productivity, food security, and general economic productivity, severely reducing the

financial and social health of local communities in Pacific SIDS. The development of a tailored and accurate disaster risk

assessment methodology is vital to improving risk knowledge for the development and implementation of an I-EWS and resilient

disaster risk management strategies in vulnerable communities. The risk assessment methodology developed and validated in

this research is novel; it combined the most efficient approaches of past risk assessment investigations to formulate and deem
valid a holistic, accurate and tailored risk assessment methodology to effectively improve risk knowledge in Pacific SIDS. The

novel, dynamic disaster risk assessment methodology demonstrated in this study was overall deemed valid and robust, through

a case study of drought risk assessment in PNG, and thus can be recommended for use in future disaster risk management

practices in vulnerable Pacific SIDS.

In the past, risk knowledge is consistently inadequate and a standard, integrated risk assessment methodology has not been
developed (Hagenlocher et al. 2019). There is a need to develop an accurate, integrated risk assessment methodology that can
be applied on a multi-hazard and multi-country scale across Pacific SIDS. This is the intention of this risk assessment

methodology. This methodology establishes a replicable, standard practice for expanding risk knowledge in Pacific SIDS,

negating the need to develop a new methodological process for each country and each hazard experienced, which would in turn

conserve time and resources. In Pacific SIDS, both time and resources are limited for risk management decision makers, thus

the development of such a risk assessment methodology would be critical (Finucane 2009).

This risk assessment methodology is not only easily replicable, but it also utilises effective methodological aspects. For risk

assessments to effectively inform proactive and suitable disaster risk management in local areas and vulnerable communities,

they must be tailored to the area of study (Wilhelmi and Wilhite 2002). This research presents a methodology emphasising

tailored risk assessment. Out of the disaster risk assessments that have been conducted in Pacific SIDS, they have been
conducted on a broader (national/regional) level rather than local area (provinces) or community level (Hagenlocher et al.
2019). This assessment is conducted at the most local level possible at this time, the provincial level. In the future, it would be

beneficial to investigate risk at the town/village level, however this is beyond the scope of the current research because of

travel limitations, etc.

Overall, this research establishes a strong foundation for tailored and accurate disaster risk assessments, using drought in PNG<— { Formatted: Normal

as a case study, with potential for application to other disaster types in other Pacific SIDS. However, improvements are vital for

future investigations applying the disaster risk assessment methodology. To increase the robustness of the hazard, vulnerability.

exposure indices and subsequent risk index, the indicator selection process should include consultation with locals and other
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relevant users. To further verify the accuracy of the methodology, risk assessment results should be compared to local and expert

perspectives as a ground-truth source, rather than literature. Additionally, future research should also consider dissemination of

risk_assessment results to local communities to ensure that results are user-centered and accessible. Effective future

implementation of valid risk assessments to inform risk knowledge of a user-centred I-EWS and resilient risk management in

local communities is critical for improving disaster risk management and the adaptive capacity of local communities to disaster

events (Pulwarty and Sivakumar 2014),

6. Appendices

6.1 Appendix A

Table displaying F-test results for the 2015-2016 drought period risk assessment versus literature results.

Statistic df (degrees of freedom) F statistic P-value
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6.2 Appendix B

Table displaying F-test results for the 2019-2020 drought period risk assessment versus literature results.

Statistic df (degrees of freedom) F statistic P-value
Value 17 0.71 0.25
6.3 Appendix C

Table displaying t-test results for the 2015-2016 drought period risk assessment versus literature results.

Statistic df (degrees of freedom) t statistic P-value
Value 36 -1.70 0.10
6.4 Appendix D

Table displaying t-test results for the 2019-2020 drought period risk assessment versus literature results.

Statistic df (degrees of freedom) t statistic P-value
Value 34 1.51 0.14

27

[ Formatted: Normal




28



1qoo

1005

1015

ey Crop-Replacement Cost 03
Staple-Crop-Tolerance-Score o4
et -
Exposure Land Use 035
el s
e Dol b a2
Population-Density 02
Total 10

Declarations and Ethics Statements

This research required no ethic approvals as no human ethics research or animal ethics research was conducted. The data used
in this research was open-sourced data gathered from public databases. Spaced-based observation data underwent transformation
from what is publicly available. This data may be available upon reasonable request.

29



8. Competing Interests

The authors declare no conflict of interest.

1020 9. Author contribution

I.A. was lead for conceptualisation, methodology, software, validation, formal analysis, writing- original draft preparation and
review and editing, and visualisation. Y.K. contributed to conceptualisation, methodology, writing- review and editing, research
supervision, and funding acquisition. J.B. and Z-W.C. aided in formal analysis and writing- review and editing. C.S. and S.C.
contributed to writing- review and editing and supervision. All authors have read and agreed to the published version of the

1025 manuscript.

10. Acknowledgements

This research was supported by the Climate Risk and Early Warning Systems (CREWS) international initiative and the World
Meteorological Organization (WMO) through "Weather and Climate Early Warning System for Papua New Guinea” (CREWS-
PNG) project.

1030 11. References

93 [ Formatted: Normal

90 day period Drought Observation, last access: 5 May 2020.

Abid, M., Schilling, J., Scheffran, J., and Zulfigar, F.: Climate change vulnerability, adaptation and risk perceptions at farm level in Punjab
Pakistan, Science of The Total Environment, 547, 447-460, https://doi.org/10.1016/j.scitotenv.2015.11.125, 2016.

1035 Aerts, J. C. J. H., Botzen, W. J., Clarke, K. C., Cutter, S. L., Hall, J. W., Merz, B., Michel-Kerjan, E., Mysiak, J., Surminski, S., and Kunreuther
H.: Integrating human behaviour dynamics into flood disaster risk assessment, Nat. Clim. Change, 8, 193-199, https://doi.org/10.1038/s41558-
018-0085-1, 2018.

Aitkenhead, 1., Kuleshov, Y., Watkins, A. B., Bhardwaj, J., and Asghari, A.: Assessing agricultural drought management strategies in the
Northern Murray—Darling Basin, Natural Hazards, 10.1007/s11069-021-04884-6, 2021.

1040 Allen, B. and Bourke, R.: The 1997-98 Drought in Papua New Guinea: Failure of Policy or Triumph of the Citizenry?, in: Policy Making and
Implementation Studies from Papua New Guinea, edited by: May, R., State, Society and Governance in Melanesia, ANU Press, Australia, 325-
343, 2009.

Anand, A., Agrawal, M., Bhatt, N., and Ram, M.: Software Patch Scheduling Policy Incorporating Functional Safety Standards, in: Advances
in System Reliability Engineering, Academic Press, 267-279, https://doi.org/10.1016/B978-0-12-815906-4.00011-7, 2019.

1045 Antwi, Effah K., Boakye-Danquah, J., Barima Owusu, A., Loh, Seyram K., Mensah, R., Boafo, Yaw A., and Apronti, Priscilla T.: Community
vulnerability assessment index for flood prone savannah agro-ecological zone: A case study of Wa West District, Ghana, Weather and Climate
Extremes, 10, 56-69, https://doi.org/10.1016/j.wace.2015.10.008, 2015.

Asare-Kyei, D., Renaud, F. G., Kloos, J., Walz, Y., and Rhyner, J.: Development and validation of risk profiles of West African rural
communities facing multiple natural hazards, PLOS ONE, 12, 0171921, 10.1371/journal.pone.0171921, 2017.

1050 Ayantunde, A. A., Turner, M. D., and Kalilou, A.: Participatory analysis of vulnerability to drought in three agro-pastoral communities in the
West African Sahel, Pastoralism, 5, 13, 10.1186/s13570-015-0033-x, 2015.

Bang, S. and Crimp, S.: Accessible weather forecasts, advisories key to PNG farm resilience, 3, Australian Centre for International Agricultural
Research, 14-17 pp., 10.3316/informit.950510834174223, 2019.

Benzie, M., Hedlund, J., and Carlsen, H.: Introducing the Transnational Climate Impacts Index: Indicators of country-level exposure
1055 methodology report, Stockholm Environment Institute, 7, 3-43, 2016.

Bhardwayj, J., Kuleshov, Y., Watkins, A. B., Aitkenhead, |., and Asghari, A.: Building capacity for a user-centred Integrated Early Warning
System (I-EWS) for drought in the Northern Murray-Darling Basin, Natural Hazards, 10.1007/s11069-021-04575-2, 2021a.

Bhardwaj, J., Kuleshov, Y., Chua, Z.-W., Watkins, A. B., Choy, S., and Sun, Q.: Building Capacity for a User-Centred Integrated Early
Warning System for Drought in Papua New Guinea, Remote Sensing, 13, 10.3390/rs13163307, 2021b.

1060 Bidault, N., Bodamaev, S., and Istanto, B.: Papua New Guinea: The Impact of Drought related to El Nifio, Analysis Report, World Food
Programme, pp. 19, 2019.

Bijaber, N.: Developing a remotely sensed drought monitoring indicator for Morocco, Geosciences, 8, 55, 10.3390/geosciences8020055, 2018.
Burivalova, Z., Towsey, M., Boucher, T., Truskinger, A., Apelis, C., Roe, P., and Game, E. T.: Using soundscapes to detect variable degrees
of human influence on tropical forests in Papua New Guinea, Conservation Biology, 32, 205-215, https://doi.org/10.1111/cobi.12968, 2018.

30


https://doi.org/10.1016/j.scitotenv.2015.11.125
https://doi.org/10.1038/s41558-018-0085-1
https://doi.org/10.1038/s41558-018-0085-1
https://doi.org/10.1016/B978-0-12-815906-4.00011-7
https://doi.org/10.1016/j.wace.2015.10.008
https://doi.org/10.1111/cobi.12968

10

10

10

10

10

14

10

11

11

11

11

11

11

65

70

75

80

85

90

95

00

05

10

15

20

25

Carréo, H., Naumann, G., and Barbosa, P.: Mapping global patterns of drought risk: An empirical framework based on sub-national estimates
of hazard, exposure and vulnerability, Glob Environ Change, 39, 108-124, https://doi.org/10.1016/j.gloenvcha.2016.04.012, 2016.

Chand, S.: Registration and release of customary-land for private enterprise: Lessons from Papua New Guinea, Land use policy, 61, 413-419,
https://doi.org/10.1016/j.landusepol.2016.11.039, 2017.

Chen, K., Blong, R., and Jacobson, C.: Towards an integrated approach to natural hazards risk assessment using GIS: with reference to
bushfires, Environ Manage, 31, 546-560, 10.1007/s00267-002-2747-y, 2003.

Chua, Z.-W., Kuleshov, Y., and Watkins, A. B.: Drought Detection over Papua New Guinea Using Satellite-Derived Products, Remote Sensing
12, 10.3390/rs12233859, 2020.

Cooper, M. W., Brown, M. E., Hochrainer-Stigler, S., Pflug, G., McCallum, 1., Fritz, S., Silva, J., and Zvoleff, A.: Mapping the effects of
drought on child stunting, Proceedings of the National Academy of Sciences, 116, 17219, 10.1073/pnas.1905228116, 2019.

Dalezios, N. R., Blanta, A., Spyropoulos, N. V., and Tarquis, A. M.: Risk identification of agricultural drought for sustainable Agroecosystems
Nat. Hazards Earth Syst. Sci., 14, 2435-2448, 10.5194/nhess-14-2435-2014, 2014.

Dayal, K. S., Deo, R. C., and Apan, A. A.: Spatio-temporal drought risk mapping approach and its application in the drought-prone region of
south-east Queensland, Australia, Natural Hazards, 93, 823-847, 10.1007/s11069-018-3326-8, 2018.

de Ledn, J. C. V., Bogardi, J., Dannenmann, S., and Basher, R.: Early warning systems in the context of disaster risk management, agriculture
& rural development, 1, 43-45, 2007.

Environmental Systems Research Institute (ESRI) Inc.: ArcGIS Pro (10.7.1), Environmental Systems Research Institute (ESRI) Inc. [code
2019.

Fallon, A. L., Villholth, K. G., Conway, D., Lankford, B. A., and Ebrahim, G. Y.: Agricultural groundwater management strategies and seasonal
climate forecasting: perceptions from Mogwadi (Dendron), Limpopo, South Africa, J. Water Clim. Change, 10, 142-157
https://doi.org/10.2166/wcc.2018.042, 2018.

Farok, G., and Homayouni, S.: Foundations of mathematics play the baseline for data exploring, forecasting and analyzing of risks to get an
economic decision, 6, 25-31, https://doi.org/10.30918/AJER.62.18.006, 2018.

Fekete, A.: Social Vulnerability (Re-)Assessment in Context to Natural Hazards: Review of the Usefulness of the Spatial Indicator Approach
and Investigations of Validation Demands, International Journal of Disaster Risk Science, 10, 220-232, 10.1007/s13753-019-0213-1, 2019.
Food and Agriculture Organisation of the United Nations: FAO 2020-2021 La Nifia advisory, Food and Agriculture Organisation of the United
Nations, Rome, 1-14, 2021.

Food Security Cluster, Secretariat of the Pacific Regional Environment Programme, and World Food Programme: Anticipatory Action
Advisory for Pacific Food Security - La Nifia 2021, Italy, 2021.

Fragaszy, S. R., Jedd, T., Wall, N., Knutson, C., Fraj, M. B., Bergaoui, K., Svoboda, M., Hayes, M., and McDonnell, R.: Drought Monitoring
in the Middle East and North Africa (MENA) Region: Participatory Engagement to Inform Early Warning Systems, Bulletin of the American
Meteorological Society, 101, E1148-E1173, 10.1175/BAMS-D-18-0084.1, 2020.

Frischen, J., Meza, |., Rupp, D., Wietler, K., and Hagenlocher, M.: Drought Risk to Agricultural Systems in Zimbabwe: A Spatial Analysis of
Hazard, Exposure, and Vulnerability, Sustainability, 12, 752, 10.3390/su12030752, 2020.

Gaikwad, S. V., Kale, K., Kulkarni, S. B., and Varpe, A.: Agricultural Drought Severity Assessment using Remotely Sensed Data: A Review,
Int. j. adv. remote sens. GIS, 4, 1195-1203, 10.23953/cloud.ijarsg.128, 2015.

Ghimire, Y. N., Shivakoti, G. P., and Perret, S. R.: Household-level vulnerability to drought in hill agriculture of Nepal: implications for
adaptation planning, Int. J. Sustain, 17, 225-230, https://doi.org/10.1080/13504501003737500, 2010.

Giardino, A., Nederhoff, K., and Vousdoukas, M.: Coastal hazard risk assessment for small islands: assessing the impact of climate change
and disaster reduction measures on Ebeye (Marshall Islands), Regional Environmental Change, 18, 2237-2248, 10.1007/s10113-018-1353-3
2018.

Golden Gate Weather Services: https://ggweather.com/enso/oni.htm, last access: 16 August 2021.

Gorris, L. G. M., and Yoe, C.: Risk Analysis: Risk Assessment: Principles, Methods, and Applications, J. Food Sci., 1, 65-72,
https://doi.org/10.1016/B978-0-12-378612-8.00031-7, 2014.

Gwatirisa, P. R., Pamphilon, B., and Mikhailovich, K.: Coping with Drought in Rural Papua New Guinea: A Western Highlands Case Study
Ecology of Food and Nutrition, 56, 393-410, 10.1080/03670244.2017.1352504, 2017.

Hagenlocher, M., Meza, 1., Anderson, C. C., Min, A., Renaud, F. G., Walz, Y., Siebert, S., and Sebesvari, Z.: Drought vulnerability and risk
assessments: state of the art, persistent gaps, and research agenda, Environmental Research Letters, 14, 083002, 10.1088/1748-9326/ab225d
2019.

Hagenlocher, M., Thieken, A., Schneiderbauer, S., Aguirre Ayerbe, |., Dobes, P., Donovan, A., Morsut, C., Paris, N., Pedoth, L., and Tonmoy,
F.: Risk Assessment, in: Science for Disaster Risk Management 2020: acting today, protecting tomorrow, edited by: Casajus Valles, A., Marin
Ferrer, M., Poljansek, K., and Clark, I.. Publications Office of the European Union, Luxembourg, 54-65, 10.2760/571085, 2020.

Han, L., Zhang, Q., Ma, P., Jia, J., and Wang, J.: The spatial distribution characteristics of a comprehensive drought risk index in southwestern
China and underlying causes, Theoretical and Applied Climatology, 124, 10.1007/s00704-015-1432-z, 2015.

Hirvonen, K., Sohnesen, T. P., and Bundervoet, T.: Impact of Ethiopia’s 2015 drought on child undernutrition, World Development, 131,
104964, https://doi.org/10.1016/j.worlddev.2020.104964, 2020.

Horton, J. B., Lefale, P., and Keith, D.: Parametric Insurance for Solar Geoengineering: Insights from the Pacific Catastrophe Risk Assessment
and Financing Initiative, Global Policy, 12, 97-107, https://doi.org/10.1111/1758-5899.12864, 2021.

1bok, O., Osbahr, H., and Srinivasan, C.: Advancing a new index for measuring household vulnerability to food insecurity, Food Policy, 84
10-20, https://doi.org/10.1016/j.foodpol.2019.01.011, 2019.

lese, V., Kiem, A. S., Mariner, A., Malsale, P., Tofaeono, T., Kirono, D. G. C., Round, V., Heady, C., Tigona, R., Veisa, F., Posanau, K.
Aiono, F., Haruhiru, A., Daphne, A., Vainikolo, V., and lona, N.: Historical and future drought impacts in the Pacific islands and atolls, Clim.
Change, 19, https://doi.org/10.1007/s10584-021-03112-1, 2021.

Jacka, J. K.: In the Time of Frost: El Nifio and the Political Ecology of Vulnerability in Papua New Guinea, Anthropological Forum, 30, 141 -
156, 10.1080/00664677.2019.1647832, 2020.

31


https://doi.org/10.1016/j.gloenvcha.2016.04.012
https://doi.org/10.1016/j.landusepol.2016.11.039
https://doi.org/10.30918/AJER.62.18.006
https://doi.org/10.1080/13504501003737500
https://ggweather.com/enso/oni.htm
https://doi.org/10.1016/B978-0-12-378612-8.00031-7
https://doi.org/10.1016/j.worlddev.2020.104964
https://doi.org/10.1111/1758-5899.12864
https://doi.org/10.1016/j.foodpol.2019.01.011
https://doi.org/10.1007/s10584-021-03112-1

11

11

11

11

11

11

11

11

11

11

11

11

11

30

35

40

45

50

55

60

65

70

75

80

85

90

Jiménez-Donaire, M. D. P., Tarquis, A., and Giraldez, J. V.: Evaluation of a combined drought indicator and its potential for agricultural
drought prediction in southern Spain, Nat. Hazards Earth Syst. Sci., 20, 21-33, https://doi.org/10.5194/nhess-20-21-2020, 2020.

Johnson, N. C., L'Heureux, M. L., Chang, C. H., and Hu, Z. Z.: On the Delayed Coupling Between Ocean and Atmosphere in Recent Weak El
Nifio Episodes, Geophysical Research Letters, 46, 11416-11425, https://doi.org/10.1029/2019GL 084021, 2019.

Kanua, M., Bourke, R., Jinks, B., and Lowe, M.: Assessing Village Food Needs Following a Natural Disaster in Papua New Guinea, 2016.
Khan, S., Gabriel, H. F., and Rana, T.: Standard precipitation index to track drought and assess impact of rainfall on watertables in irrigation
areas, Irrigation and Drainage Systems, 22, 159-177, 10.1007/s10795-008-9049-3, 2008.

Kuleshov, Y., Inape, K., Watkins, A., Bear-Crozier, A., Chua, Z.-W., Xie, P., Kubota, T., Tashima, T., Stefanski, R., and Kurino, T.: Climate
Risk and Early Warning Systems (CREWS) for Papua New Guinea, in, Drought - Detection and Solutions, edited by: Ondrasek, G.
IntechOpen, 10.5772/intechopen.85962, 2020.

Kuleshov, Y., Kurino, T., Kubota, T., Tashima, T. and Xie, P.: WMO Space-based Weather and Climate Extremes Monitoring Demonstration
Project (SEMDP): First Outcomes of Regional Cooperation on Drought and Heavy Precipitation Monitoring for Australia and Southeast Asia.
in: Rainfall - Extremes, Distribution and Properties, edited by Abbot, J. and Hammond, A., IntechOpen, 10.5772/intechopen.85824, 2019.
Kuleshov, Y., McGree, S., Jones, D., Charles, A., Cottrill, A., Prakash, B., Atalifo, T., Nihmei, S., and Seuseu, F. L. S. K.: Extreme weather
and climate events and their impacts on island countries in the Western Pacific: cyclones, floods and droughts, Atmospheric and Climate
Sciences, 4, 803-818, 10.4236/acs.2014.45071, 2014.

Limones, N., Marzo-Artigas, J., Wijnen, M., and Serrat-Capdevila, A.: Evaluating drought risk in data-scarce contexts. The case of southern
Angola, Journal of Water and Climate Change, 11, 44-67, 10.2166/wcc.2020.101, 2020.

Lindoso, D. P., Rocha, J. D., Debortoli, N., Parente, I. ., Eird, F., Bursztyn, M., and Rodrigues-Filho, S.: Integrated assessment of smallholder
farming’s vulnerability to drought in the Brazilian Semi-arid: a case study in Ceara, Clim. Change, 127, 93-105
https://doi.org/10.1007/s10584-014-1116-1, 2014.

Luh, J., Christenson, E. C., Toregozhina, A., Holcomb, D. A., Witsil, T., Hamrick, L. R., Ojomo, E., and Bartram, J.: Vulnerability assessment
for loss of access to drinking water due to extreme weather events, Clim. Change, 133, 665-679, https://doi.org/10.1007/s10584-015-1493-0,
2015.

Mainali, J. and Pricope, N. G.: Mapping the need for adaptation: assessing drought vulnerability using the livelihood vulnerability index
approach in a mid-hill region of Nepal, Climate and Development, 11, 607-622, 10.1080/17565529.2018.1521329, 2019.
Martinez-Fernandez, J., Gonzélez-Zamora, A., Sanchez, N., and Gumuzzio, A.: Satellite soil moisture for agricultural drought monitoring:
Assessment of the SMOS derived Soil Water Deficit Index, Remote Sens. Environ., 177, 277-286, 10.1016/j.rse.2016.02.064, 2016.
Mckenna, K. and Yakam, L.: Signs of "The End Times": Perspectives on Climate Change Among Market Sellers in Madang, Papua New
Guinea, in: Beyond Belief: Opportunities for Faith-engaged Approaches to Climate-change Adaptation in the Pacific Islands, edited by: Luetz,
J., and Nunn, P., Springer Nature, Switzerland, 139-153, 2021.

Mdungela, N. M., Bahta, Y. T., and Jordaan, A. J.: Indicators for economic vulnerability to drought in South Africa, Dev Pract, 27, 1050-1063,
https://doi.org/10.1080/09614524.2017.1361384, 2017.

Mercer, J.: Disaster risk reduction or climate change adaptation: Are we reinventing the wheel?, Journal of International Development, 22
247-264, 2010.

Mohmmed, A., Li, J., Elaru, J., Elbashier, M. M. A., Keesstra, S., Artemi, C., Martin, K., Reuben, M., and Teffera, Z.: Assessing drought
vulnerability _and _adaptation _among farmers in _Gadaref region, Eastern Sudan, Land Use Policy, 70, 402-413,
https://doi.org/10.1016/j.landusepol.2017.11.027, 2018.

Molinari, D., De Bruijn, K. M., Castillo-Rodriguez, J. T., Aronica, G. T., and Bouwer, L. M.: Validation of flood risk models: Current practice
and possible improvements, International Journal of Disaster Risk Reduction, 33, 441-448, https://doi.org/10.1016/j.ijdrr.2018.10.022, 2019.
Mosquera-Machado, S., and Dilley, M.: A comparison of selected global disaster risk assessment results, Nat Hazards, 48, 439456
https://doi.org/10.1007/s11069-008-9272-0, 2009.

Nakamura, S., Bundervoet, T., and Nuru, M.: Rural Roads, Poverty, and Resilience: Evidence from Ethiopia, World Bank policy res. work.
pap., 2019.

Nasrollahi, M., Khosravi, H., Moghaddamnia, A., Malekian, A., and Shahid, S.: Assessment of drought risk index using drought hazard and
vulnerability indices, Arabian Journal of Geosciences, 11, 606, 10.1007/s12517-018-3971-y, 2018.

Nicholls, N.: Atmospheric and Climatic Hazards: Improved Monitoring and Prediction for Disaster Mitigation, Natural Hazards, 23, 137-155
10.1023/A:1011130223164, 2001.

Pacific Islands Forum Secretariat: 2015 Pacific Regional MDG Tracking Report, Fiji, 1-166, 2015.

Pangan, D. K., and Pertanian, K.: Food Security and Vulnerability Atlas of Indonesia 2015, Report, World Food Programme, pp. 196, 2015.
Pei, W., Fu, Q., Liu, D., Li, T.-x., Cheng, K., and Cui, S.: Spatiotemporal analysis of the agricultural drought risk in Heilongjiang Province.
China, Theoretical and Applied Climatology, 133, 151-164, 10.1007/s00704-017-2182-x, 2018.

Pulwarty, R. S. and Sivakumar, M. V. K.: Information systems in a changing climate: Early warnings and drought risk management, Weather
and Climate Extremes, 3, 14-21, https://doi.org/10.1016/j.wace.2014.03.005, 2014.

Rahmat, S. N., Jayasuriya, N., and Bhuiyan, M.: Assessing droughts using meteorological drought indices in Victoria, Australia, Hydrology
Research, 46, 463-476, 10.2166/nh.2014.105, 2014.

Rahmati, O., Panahi, M., Kalantari, Z., Soltani, E., Falah, F., Dayal, K. S., Mohammadi, F., Deo, R. C., Tiefenbacher, J., and Tien Bui, D.:
Capability and robustness of novel hybridized models used for drought hazard modeling in southeast Queensland, Australia, Science of The
Total Environment, 718, 134656, https://doi.org/10.1016/j.scitotenv.2019.134656, 2020.

Regional Bureau for Asia & the Pacfic and Food Security Markets and Vulnerability Analysis unit: PAPUA NEW GUINEA EI Nino 2015-16,
World Food Programme, Bangkok, 1-6, 2015.

RIMES and Papua New Guinea National Weather Service: ENSO Impact Outlook: Papua New Guinea 2017/2018 (La Nifia), Papua New
Guinea, 2017.

Saha, D.K., Kar, A., and Roy, M. M.: Indicators of drought vulnerability for assessing coping mechanism in arid Western Rajasthan, Ann.
Arid Zone, 51, 1-9, 2012.

32


https://doi.org/10.5194/nhess-20-21-2020
https://doi.org/10.1029/2019GL084021
https://doi.org/10.1007/s10584-014-1116-1
https://doi.org/10.1007/s10584-015-1493-0
https://doi.org/10.1080/09614524.2017.1361384
https://doi.org/10.1016/j.landusepol.2017.11.027
https://doi.org/10.1016/j.ijdrr.2018.10.022
https://doi.org/10.1007/s11069-008-9272-0
https://doi.org/10.1016/j.wace.2014.03.005
https://doi.org/10.1016/j.scitotenv.2019.134656

11

12

12

12

12

12

12

12

12

12

12

12

12

95

00

05

10

15

20

25

30

35

140

45

50

55

12

60

Sahani, J., Kumar, P., Debele, S., Spyrou, C., Loupis, M., Aragao, L., Porcu, F., Rahman Shah, M. A., and Di Sabatino, S.: Hydro-
meteorological _risk _assessment methods and management by nature-based solutions, Sci. Total Environ., 696, 133-936,
https://doi.org/10.1016/j.scitotenv.2019.133936 , 2019.

Saiful Islam, M. S., Samreth, S., Saifu Islam, A. H.. and Sato, M.: Climate change, climatic extremes, and households’ food consumption in
Bangladesh: A longitudinal data analysis, Environmental Challenges, 7, 100-495, https://doi.org/10.1016/j.envc.2022.100495, 2022.

Santos, J. R., Pagsuyoin, S. T., Herrera, L. C., Tan, R. R., and Yu, K. D.: Analysis of drought risk management strategies using dynamic
inoperability input—output modeling and event tree analysis, Environment Systems and Decisions, 34, 492-506, 10.1007/510669-014-9514-5,
2014.

Schmidt, E., Gilbert, R., Holtemeyer, B., and Mahrt, K.: Poverty analysis in the lowlands of Papua New Guinea underscores climate
vulnerability and need for income flexibility*, Australian Journal of Agricultural and Resource Economics, 65, 171-191,
https://doi.org/10.1111/1467-8489.12404, 2021.

Shahid, S. and Behrawan, H.: Drought risk assessment in the western part of Bangladesh, Natural Hazards, 46, 391-413, 10.1007/s11069-007-
9191-5, 2008.

Sharafi, L., Zarafshani, K., Keshavarz, M., Azadi, H., and Van Passel, S.: Drought risk assessment: Towards drought early warning system
and sustainable environment in western Iran, Ecol. Indic., 114, 106276, https://doi.org/10.1016/j.ecolind.2020.106276, 2020.

Stenekes, N., Kancans, R., Randall, L., Lawson, K., Reeve, I., and Stayner, R.: Revised indicators of community vulnerability and adaptive
capacity across the Murray—Darling Basin, Report to client prepared for the Murray—Darling Basin Authority, ABARES, Canberra, 2012.
Sun, C,, Choy, S., Chua, Z., Aitkenhead, I., and Kuleshov, Y.: Geographic Information System for Drought Risk Mapping in Australia —
Drought Risk Analyser Web App, http://dx.doi.org/10.5194/isprs-archives-XLI1V-3-W1-2020-139-2020, 2020.

Smith, 1., Moise, A., Inape, K., Murphy, B., Colman, R., Power, S., and Chung, C.: ENSO-Related Rainfall Changes over the New Guinea
Region. Journal of Geophysical Research - Atmosphere, 118, 10,665-10,675, 10.1002/jgrd.50818, 2013.

Svoboda, M. and Fuchs, B.: Handbook of Drought Indicators and Indices, 2016.

United Nations International Strategy for Disaster Reduction (UNISDR): Global Survey of Early Warning Systems, Bonn, Germany, 2006.
Varotsos, C. A., Cracknell, A. P., and Efstathiou, M. N.: The global signature of the EIl Nifio/La Nifia Southern Oscillation, International
Journal of Remote Sensing, 39, 5965-5977, 10.1080/01431161.2018.1465617, 2018.

Webb, J.: What difference does disaster risk reduction make? Insights from Vanuatu and tropical cyclone Pam, Regional Environmental
Change, 20, 20, 10.1007/510113-020-01584-y, 2020.

Wilhelmi, O. V. and Wilhite, D. A.: Assessing Vulnerability to Agricultural Drought: A Nebraska Case Study, Natural Hazards, 25, 37-58,
10.1023/A:1013388814894, 2002.

Wilhite, D. A., Sivakumar, M. V. K., and Pulwarty, R.: Managing drought risk in a changing climate: The role of national drought policy,
Weather and Climate Extremes, 3, 4-13, https://doi.org/10.1016/j.wace.2014.01.002, 2014.

Wu, H. and Wilhite, D. A.: An Operational Agricultural Drought Risk Assessment Model for Nebraska, USA, Natural Hazards, 33, 1-21,
10.1023/B:NHAZ.0000034994.44357.75, 2004.

T O T

Dang S and f‘rimp S A ibl ther forecasts—advisories |/ny to PNGfarmresilience—3 Australian-Centre for
T T T T

A__Apelis— G Roe
A i

g

33


https://doi.org/10.1016/j.envc.2022.100495
https://doi.org/10.1111/1467-8489.12404
https://doi.org/10.1016/j.ecolind.2020.106276
http://dx.doi.org/10.5194/isprs-archives-XLIV-3-W1-2020-139-2020
https://doi.org/10.1016/j.wace.2014.01.002

12

12

12

12

12

12

12

13

65

70

75

80

85

90

95

and-di reduction-measures-on El—\nyu (l\/larcl—\:\ll Icl:\nrlc) R
0

TV SR o (A ] e o VaFh—£0 vHHRera ahé
ents-state-of the-art i gaps—and h-agenda—Envi al-R h-Letters 14083002 10-1088/1748-9326/ab225¢-
- T P g T T T v - v

nd d-A_lntech

Kuleshow Inapn K_\Watkins— A Bear-Crozier-A—Chua—Z W Xie P _Kubota T Tashima—T—S:
) T e R T A T T

J-and-NunnP--Spri Nature Switzerland 139-153 2021

& P 5 5 5 g

Mercer_ 1. Disasterrisk reduction—or—eli hange-ad ion—Are-we-reinventing-the-wheel2-Journal-of ional-Develop 22

9= t f + % t 22

247-264, 2010,

Mot A Li 1 Elaru_J_Elbashier-M-_M_A__Keesstra_ S Artemi—C-Martin—K__Reuben M-_and Teffera Z: A ing-drought
A I TNV o IRl A At L

vulnerability —and—adaptation—among—farmers—in— Gadaref—region,—East Sudan,—Land—Use—Policy. 0 402-413
t i T b g H 7 o T 0 d

34



-
risk reduction-make:

35




Multi-Source Weighted-Ensemble

Precipitation (MSWEP) Rainfall Deciles

(b)

“= { Formatted: Normal

36



(a)

(b)

M40.7°E

143.2°E

MS.7°E 148 2°E 150.7°E 153.2°E

155.7°E

s

45°'s

s |4

95's

140.7°E

143 2°F

U5 T°E 1482°€ 150.7°€ 153.2°E

155.7°€

10

sa)193( |leJurey (d3IMSIN) uonendidaig

a|quiasug-pajybiap) 921nos-NN

JFigure 1%: Multi-Source Weighted-Ensemble Precipitation (MSWEP) rainfall deciles in (a) La Nifia events (La Nifia years being 1988, 1989,

1995, 1998, 1999, 2000, 2007, 2010, 2011 and 2020) and (b) El Nifio events (EI Nifio years being 1982, 1987, 1991, 1992, 1994, 1997, 2002,
2006, and 2015) compared to a base period of 1980-2020. Figure adapted from Bhardwaj et al. 2021b.
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Figure 22. Multi-Source Weighted-Ensemble Precipitation (MSWEP) rainfall deciles in response to various climate drivers: (a) Negative IOD

phase (during 1981, 1989, 1992, 1996, 1998, 2010, 2014, and 2016 years), (b) Positive 10D phase (during 1982, 1983, 1994, 1997, 2006, 2012,

El Nifio ENSO phase (during 1982, 1994, 1997, 2006, and 2015 years). Deciles are compared to a 19802020 base period. Figure adapted
1400 from Bhardwaj et al. 2021b.
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JFigure 3. PNG Map indicating each of the 22 PNG provinces with shortened names for Eastern Highlands (EH), Southern Highlands (SH) and
Western Highlands (WH). Map was produced using ArcGIS Pro with an open-source base map.

Table 1. Hazard, Vulnerability and Exposure indicators selected for the PNG Drought Risk Assessment. The data source, data resolution
and coverage, and weighting for each indicator is included.
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Index Indicator Data Source Data Resolution and Coverage Weighting
Hazard Standardised NOAA database (National Oceanic Spatial- Average value for each 0.75
Precipitation  Index Atmospheric Administration (NOAA), 2020) province. Temporal- monthly
(SP1) (3-month) and JAXA database (Japan Aerospace and _averaged yearly data
Exploration Agency (JAXA), 2020). available from 2001 onwards.
Updated every month.
Vegetation Health NOAA database (National Oceanic  Spatial- Average value for each 0.25
Index  (VHI) _ (3- Atmospheric Administration (NOAA), 2020) province. Temporal- _monthly
month) and JAXA database (Japan Aerospace and averaged yearly data
Exploration Agency (JAXA), 2020). available from 2014 onwards.
Updated every month.
Vulnerability Percentage of PNG National Weather Service (NWS) (PNG  Spatial- Average value for each 0.1
Children Weighed at National Weather Service (NWS), 2017) and province. Temporal- yearly data
Clinics Lessthan 80% United Nations Development Programme available for study period.
Weight for Age0to4 (UNDP) (United Nations Development Periodically updated (every 1-2
years old (%) Programme (UNDP), 2017) years). Missing data for 2015;
2014 data was used for this
period.
Agricultural PNG National Statistical Office (PNG National ~Spatial- Average value for each 0.2
Occupation (% _of Statistical Office, 2018) province. Temporal- yearly data
population _employed available for study period.
in agriculture) Periodically updated (every 1-2
years). Missing data for 2015;
2014 data was used for this
period.
Key crop replacement PNG National Weather Service (NWS) (PNG Spatial- Average value for each 0.3

cost (USD)

National Weather Service (NWS), 2017) and

province. Temporal- yearly data

United Nations Development Programme

available for study period.

Periodically updated (every 1-2
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(UNDP)  (United Nations Development

years). Missing data for 2015;

Programme (UNDP), 2017)

2014 data was used for this
period.

Staple crop tolerance PNG National Weather Service (NWS) (PNG  Spatial- Average value for each 0.4
scores maximum National Weather Service (NWS), 2017) and province. Temporal- yearly data
consecutive drought United Nations Development Programme available for study period.
days tolerated (days) (UNDP) (United Nations Development Periodically updated (every 1-2
(14-30)). Programme (UNDP), 2017) years). Missing data for 2015;
2014 data was used for this
period.
Exposure Land use (type) PNG National Weather Service (NWS) (PNG Spatial- Land use details 0.35
National Weather Service (NWS), 2017) and available for each province;
United Nations Development Programme these details were used to score
(UNDP)  (United Nations Development land use type exposure for each
Programme (UNDP), 2017) province. Temporal- static data
available for study period.
Elevation (type) Open-sourced GIS platforms Spatial- Elevation  details 0.15
Highland/Lowland/ available for each province,
Average) average type across the province
was recorded. Temporal-_static
data available for study period.
Access to safe  PNG National Statistical Office (PNG National Spatial- Average value for each 0.3
drinking water (% of Statistical Office, 2018) province. Temporal- yearly data
population with available for study period.
access to improved Periodically updated (every 1-2
water sources) years). Missing data for 2015;
2014 data was used for this
period.
Population density (as PNG National Statistical Office (PNG National ~Spatial- Average value for each 0.2
an indicator of Statistical Office, 2018) province. Temporal- yearly data
accessibility!?) available for study period.
Periodically updated (every 1-2
years). Missing data for 2015;
2014 data was used for this
period.
1425 Table 2. Indicator thresholds that signal different stages of drought risk. These thresholds have been decided upon based on use

in past studies, as well as past data trends in PNG (Rahmati et al., 2020; Nasrollahi et al., 2018; Aitkenhead et al., 2021).

Indicator No to Mild Moderate Severe to Extreme
Drought Risk  Drought Risk ~ Drought Risk

SP1 0.1to2 0to-0.9 -1t0 -2

VHI >45 40to 44 0to39

Percentage of Children Weighed at Clinics 0 to 22 23t0 39 >40

Less than 80% Weight for Age 0 to 4 years old

Agricultural Occupation 0to24 251050 >50

Key crop average replacement cost 0 to 1500 1501 to 3000 >3000

Staple crop tolerance scores 0 1 2

Land use (score) 0>to2 >2t04 >4106

Average Elevation (type) 1 2 3

12 As there is limited data for direct indicators of accessibility in terms of road accessibility and health service accessibility,

population density has been used as an indirect indicator for accessibility as it is associated with the accessibility level for each

province; provinces with low population densities have more rural communities which are expected to have reduced accessibility

to infrastructure (e.g. roads) and health services compared to urban communities.
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Population density >50 49 to0 15 <15
Access to safe drinking water (%) >60 60 to 40 <40
Table 3. The correspondence between risk level pattern observed across PNG in the risk assessment for each drought event
identified, and the corresponding strength level assigned to the event.
1430
Risk level pattern observed across PNG for indicated event Corresponding strength assigned to the event
An approximately even number of provinces expressing Mild drought event.
moderate/severe risk level, with slightly more displaying severe.
Almost all provinces are at a severe risk level. Moderate drought event.
Almost all provinces are at least at a severe risk level, with many Severe to extreme drought event.
expressing extreme risk levels.
Table 4. Information on the types of impacts associated with the three severity classes used to classify drought severity in the
literature. Adapted from Allen & Bourke (1997).
Severity Class Types of impacts associated
Mild Unusually dry, but no major food supply, or drinking water or health problems OR some
inconvenience with shortages in staple food but other food available, and/or must
travel further to collect drinking water. Health satisfactory.
Moderate Conditions are difficult, with food reduced and some famine food being eaten
and/or water available only at a distance, and/or some babies and elderly people
unwell. No lives at risk and no related deaths reported.
Severe to Extreme No food in gardens, famine food only being eaten, and/or water in short supply and possibly
polluted, and/or increasing disease, and/or the lives of small children and elderly people at risk
OR Extreme situation with only famine food available, and/or water very short, and/or many
people ill, and/or small children and elderly people seriously at risk and/or related deaths
reported.
1435
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Table 5. Drought hazard indicators that were investigated and found to be fit for use when measuring drought hazard in PNG provinces.

Inflicator Past use description Listed by Reason for Selection
WMO?

SRI Used in a similar drought ~ Yes- SP1 is a space-based monitoring drought hazard indicator. It can inform on whether an El Nifio or La
assessment conducted in  Green. Nifia event is occurring; low precipitation is most often associated with an EI Nifio phase in many PNG
Iran _(Nasrollahi et al. provinces, vice versa. It has been given ‘green light” by World Meteorological Organisation (WMO) and
2018). It has also been recommended as starting point for drought hazard assessment (Svoboda and Fuchs, 2016). It has also
used in various other past been proven reliable as a drought hazard indicator in a previous drought detection study in PNG (Chua
drought vulnerability et al., 2020) and used consistently in past drought risk assessments conducted in other countries with a
assessments (Nagarajan drought-prone climate like PNG (Khan et al., 2008; Rahmati et al., 2014) For example, it was used in the
and Ganapuram, 2015: study by Nasrollahi et al. (2018) to detect drought hazard in Iran. Iran has a hot, dry climate characterized
Fallon et al., 2018). by long, hot, dry summers and short, cool winters (Nasrollahi et al., 2018). The climate has some
Has been evaluated and similarities to PNG and therefore hazard indicators are likely to be climatically suited to this study.
proven to be effective by Although the study in Iran was very broad and used nonspecific indicators that were averaged across a
Chua et al., 2020 large range of areas being assessed, SPI has been similarly used to indicate drought hazard in additional
through a case study studies and proven to be useful when assessing drought on both broad and specific scales [13, 14]. Quality
investigating how well data for SPI is available from Space-Based Monitoring Observations available through National Oceanic
SWCEM __ precipitation Atmospheric Administration (NOAA) and Japan Aerospace Exploration Agency (JAXA).
products  characterised
drought in PNG during
the 2015/2016 El Nifio
event.

VHI Used in a study of Yes- VHI is a spaced-based monitoring drought hazard indicator that can inform on whether an El Nifio or La
agricultural drought in  Green Nifia event is occurring. Chua et al. (2020) determined VVHI to be highly effective in indicating the spatial
Zimbabwe (Frischen et and temporal aspects of the severe 2015/16 El Nifio event in PNG. It has been given the ‘green light’ by
al., 2020). World Meteorological Organisation (WMO) due to its ease of use and reliability (Svoboda and Fuchs,
Has been evaluated and 2016). Furthermore, it has been proven useful through consistent inclusion in past drought risk
proven to be highly assessments conducted in other countries with a drought-prone climate like PNG (Bhardwaj et al., 2021a;

effective by (Chua et al.,
2020) through a case
study investigating how
well SWCEM
precipitation products
characterised drought in
PNG during the
2015/2016 EIl Nifio event.

Dalezios et al., 2014). For example, in the Zimbabwe study conducted by Frischen et al. (2020) VHI was
included as a drought hazard indicator. Although the climate of Zimbabwe is dissimilar to that of PNG,
the study in Zimbabwe focused on agricultural drought risk and investigated this on specific, local
community levels (Frischen et al., 2020). Therefore, the indicators used by Frischen et al. (2020) would
be advantageous for use in this research, due to the importance of agriculture in PNG provinces and the
subsequent focus on assessing agricultural risk in local communities with a risk assessment. However,
the weighting of VHI will be reduced as it is primarily an indicator for agricultural drought risk, and
although the agricultural impact of drought is of key focus in this research, a more holistic investigation
is intended with additional focus on other sectors. Quality data for VVHI is available through NOAA and
JAXA.

Table 6. Additional drought hazard indicators investigated and found to be unfit for use when measuring drought hazard in PNG provinces.
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Ingicator Past use description Listed by Reason for Omission
WMO?

R4infall Rainfall deficiency is a major factor No This indicator is too broad and has questionable accuracy at the provincial level (Svoboda
Deficiency responsible for occurrence of drought and Fuchs, 2016). There are more efficient indicators that similarly measure water

as it is the cause of subsequent soil availability that would be preferable.

moisture shortage for crops (Dayal et

al., 2018).
Sdqil Has been used to indicate salinity levels Yes- Red This indicator is marked with a red light by WMO because of significant obstacles that
Mpisture (Martinez-Fernadndez et al., 2016). This threaten the ability for use of this indicator in research. This indicator requires weekly
Déficit is_important as salinity levels affect calculations at different soil depths, which is complicated to collect and calculate
Inflex agricultural  production  (Martinez- (Svoboda and Fuchs, 2016).

Fernandez et al., 2016).
Stpndardised It has been used in past studies to  Yes- This indicator is marked as yellow due to some challenges when using this indicator for
ﬁter Level evaluate the hazard level of drought Yellow research. This indicator produces similar results to SPI, but it uses groundwater or well-
Inflex through the identification of the amount level data instead of precipitation, which is more complex to collect and calculate

of salt in the water, hence by its salinity (Svoboda and Fuchs, 2016).

concentration (Sahani et al., 2019).
Normalized NDVI is used to identify and monitor  Yes- This indicator is a popular drought hazard indicator, but it has several limitations reducing
Difference droughts that are affecting agriculture  Green the accuracy and efficiency for use in indicating drought. Past studies have shown that
Végetation specifically (Svoboda and Fuchs, anomalies are common in temporal NDVI data (Gaikwad et al. 2015). Additionally.
Inflex 2016). NDVI is known to be influenced by other atmospheric and environmental factors that are
(NDVI) It is a remote sensing indicator that has not related to drought. This threatens the accuracy of NDVI for indicating drought hazard

openly available data from spaced- conditions as NDVI values may reflect non-drought-related stress conditions in

based monitoring organisations like vegetation (Jiménez-Donaire et al. 2020).

NOAA (Svoboda and Fuchs, 2016).

Table 7. Drought vulnerability indicators that were investigated and found to be fit for use when measuring drought vulnerability in the PNG
1440 Provinces.

Inflicator Past use description Reason for Selection
Pdrcentage Used in reliable past This vulnerability is an indicator specific for the health sector. It has been used in reliable past studies investigating and
off Children studies investigating assessing the effects of drought within study areas with similar socioeconomic characteristics as PNG (Hirvonen et al.,
Weighed at and  assessing  the 2020; Cooper et al., 2019). For example, the study by Hirvonen et al. (2020) used this indicator in a case study of the

effects of drought 2015 drought event in Ethiopia to determine the association between drought risk and health impacts. Results of the

W

Cliinics Less
Etn 80%

within study areas with

study indicated that chronic undernutrition rates increased in drought-exposed areas that had a limited road network.

pight for

similar _socioeconomic

The socio-economic characteristics, including those of the health sector, of Ethiopia are like PNG as they are both

A

e 0 to 4

characteristics as PNG

developing nations. Both Ethiopia and PNG have malnutrition as a main health concern, as well as lack of access to

clean water and sanitation. Given the similarities between Ethiopia and PNG, and the past usefulness of this indicator

XEFTS old
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(Hirvonen et al., 2020;

in the study by Hirvonen et al. (2020), it is likely that this indicator will be an efficient drought vulnerability indicator

Cooper et al., 2019).

for PNG provinces. Data is available at the provincial level in PNG for recent years from PNG National Weather Service

(NWS) and United Nations Development Programme (UNDP).

X

Y crop

Used in_reliable past

eplacement
st

12 |2

studies investigating
and  assessing the

This vulnerability indicator is an indicator specific for the economic sector, considering socioeconomic drought affects.
1t has been used in reliable past studies investigating and assessing the effects of drought within study areas with similar
socioeconomic characteristics as PNG (Mohmmed et al., 2018; Abid et al., 2016). For example, a drought vulnerability

effects of drought

assessment conducted by Mohmmed et al. (2018) in five agricultural-based regions of Gadaref, Eastern Sudan used key

within study areas with

crop replacement as an indicator to examine the susceptibility of farmers. The assessment resulted in the identification

similar _socioeconomic

of the most vulnerable regions in the study area. Sudan has similar socioeconomic characteristics to PNG, as they are

characteristics as PNG

both least developing countries according to the United Nations General Assembly. Like PNG, Sudan has a population

(Mohmmed et al., 2018;

vulnerable to poverty and malnourishment, with most of the population depending on agriculture for their livelihood.

Abid et al., 2016).

Due to the similarity between Sudan and PNG regarding socio-economic factors, and the usefulness of this indicator in

the past study by Mohmmed et al. (2018), key crop replacement cost is likely an effective indicator of drought
vulnerability in PNG provinces. Data is available on the provincial level for recent years from PNG National Weather
Service (NWS) and United Nations Development Programme (UNDP).

Staple Crop

Used in reliable past

Tqlerance
Sqores

studies investigating
and assessing climate

This vulnerability indicator is specific for the environment and agricultural sector, considering agricultural drought

effects. It has been used in reliable past studies investigating and assessing climate vulnerability and the effects of
drought within study areas with similar socioeconomic characteristics as PNG (Antwi et al., 2015; Ayantunde et al.,

vulnerability and the

2015). For example, in the study by Ayantunde et al. (2015) staple crop tolerance score was used as an indicator in a

effects _of  drought

drought vulnerability assessment of three agro-pastoral communities in Niger. Niger is a least developed country with

within study areas with

similar socio-economic characteristics to PNG, with a like reliance on the agricultural industry. As in PNG, farmers in

similar _socioeconomic

Niger are frequently impacts by disaster events like drought, reporting detrimental impacts to crops. Due to the related

characteristics as PNG

socio-economic characteristics of PNG and Niger, and the usefulness of staple crop tolerance score for indicating

(Antwi_ et al., 2015;

drought vulnerability in the study by Ayantunde et al. (2015), this indicator is likely effective for assessing drought

Ayantunde et al., 2015).

vulnerability in PNG provinces. Data is available for recent years from PNG National Weather Service (NWS) and

United Nations Development Programme (UNDP). Data is available on the provincial level in PNG.

Agricultural

Used in_reliable past

Ogcupation

studies investigating

This vulnerability indicator is specific for the economic and agricultural sector. It has been used in reliable past studies
investigating drought vulnerability and assessing the effects of drought within study areas with similar socioeconomic

© of

drought _vulnerability

pdpulation
enployed in

and  assessing  the

characteristics as PNG (Nasrollahi et al., 2018; Mainali and Pricope, 2019). For example, the study by Mainali and
Pricope (2019) in Nepal used agricultural occupation as an indicator for mapping climate vulnerability of ten drought-

effects of drought

prone villages. Results displayed that most of the study area falls in the high vulnerability category with significant

agriculture)

within study areas with

similar _socioeconomic
characteristics as PNG

spatial variation. Nepal and PNG have a similar reliance on the agricultural industry, with a significant amount of the
populations employed in agriculture. The similarity between PNG and Nepal regarding the reliance on agriculture, as
well as the usefulness of this indicator in the past study by Mainali and Pricope (2019) means that this indicator is most

(Nasrollahi et al., 2018;

likely effective for indicating drought vulnerability in PNG provinces. Data is available for recent years from PNG

Mainali _and Pricope
2019).

National Statistical Office. Data is available on the provincial level in PNG.

Table 8. Additional drought vulnerability indicators unfit for use when measuring drought vulnerability in PNG provinces.
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Ing#icator

Past use description

Reason for Omission

Sokial

Used by Frischen et al. (2020) as a drought vulnerability indicator in a drought

Although this indicator has been used in past studies in areas

risk_assessment in Zimbabwe. Like PNG, Zimbabwe is severely affected by
drought leading to adverse impacts like water shortages, declining yields, and

with similar characteristics to PNG, it is unlikely this would
be a representative indicator of drought vulnerability in PNG

periods of food insecurity, accompanied by economic downturns. Both countries

provinces. This is because there is unlikely to be spatial

heavily rely on the agricultural sector. The risk index gave differing risk severity

variation in indicator data, thus would not indicate the varying

levels for the different regions of Zimbabwe (Frischen et al. 2020).

vulnerability levels of PNG provinces. PNG has a similarly
young population across all provinces.

Average This food consumption indicator informs on food security in households (Ibok et  Data is severely scarce for this indicator in PNG. Therefore, it
holisehold al. 2019). cannot readily be used as an indicator for drought vulnerability
cohsumption  In astudy conducted by Islam et al. (2022) in Bangladesh, this indicator was used  in PNG provinces.
of | staple to indicate climate risk of vulnerable households.
fogd
Average Average household income has been investigated as an indicator of drought As a least developed country, PNG is expected to have low
Hqusehold vulnerability in previous studies, including in the research conducted by Stenekes — average household income across most provinces. The likely
Ing¢ome et al. (2012). In this study, Stenekes et al. (2012) revise indicators of drought similarity of data for this indicator across PNG provinces
vulnerability across the Murray-Darling Basin _in _Australia_and propose reduces the value for informing on the varying vulnerability
indicators to be included in future risk assessments. Average household income  levels in PNG.
is proposed as a vulnerability indicator.
Education Education level (literacy rate) has been used in past risk assessment studies asan ~ Education levels are similarly low across all PNG provinces,
(L[teracy indicator for drought vulnerability, particularly for the adaptive capacity element.  including the National Capital District. According to a new

Lt

ratein at

Iejst one
%

In an investigation of drought risk in Nigeria, focusing on food security impacts

survey conducted in five provinces of PNG from 2006-2011,

Ibok et al. (2019) use education level as a drought vulnerability indicator.

by the Asia South Pacific Association for Basic and Adult

language %  Although Nigeria is a more developed country compared to PNG, both countries  Education (ASPBAE), education level is alarmingly low
of have low literacy rates compared to western countries like Australia. This has the  across all PNG provinces (less than 5% in some cases). As
population potential to affects the ability of locals to independently implement effective there would be little variation between provinces for this
[)Vi:18 10 drought management strategies. indicator, it would not be valuable for informing on the
years old) A study of global drought risk by Carrédo et al. (2016) use education level as an  varying drought vulnerability levels in PNG.

indicator to derive drought vulnerability. Using the drought vulnerability, hazard

and exposure indices, a drought risk index was mapped across the globe and

regions of high risk were identified.
Kdy crop In an investigation of drought vulnerability in India, crop production was The use in past studies investigating countries with a similar
production proposed as a useful indicator (Saha et al. 2012). reliance on agriculture as PNG, means this indicator has the

Similarly, crop production was used as an indicator in a drought vulnerability
assessment conducted in Indonesia, which specifically focused on food security

potential for use in the PNG risk assessment. However, in this

impacts (Pangan and Pertanian, 2015).

research key crop production is seen more of an impact factor
rather than a vulnerability factor. Staple crop tolerance or crop
replacement cost a could be more specific indicators for
indicating vulnerability to the effects of drought. For example
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if a province was to have low crop tolerance scores and high
replacement cost, it is likely that in a drought period the
production of crops would be reduced as an impact of drought.
Table 9. Drought exposure indicators that were investigated and found to be fit for use when measuring drought exposure in PN G provinces.
Indifator Past use description Reason for Selection
Lanfl  Use Used in reliable past studies This is an exposure indicator specifically considering the environment and agricultural sector. It has been used
investigating and assessing the in reliable past studies investigating and assessing the effects of drought within study areas with similar socio-
effects of drought within study  geographic characteristics as PNG (Rahmati et al., 2020; Shahid and Behrawan, 2008). For example, Land Use
areas _with similar _socio- was used as an indicator in by Shahid and Behrawan (2008) as an exposure indicator included in the vulnerability
geographic _characteristics as index in a spatial risk assessment for drought in Bangladesh. In the Bangladesh study exposure was not
PNG (Rahmati et al., 2020; considered as its own component of drought risk, it was included as part of the vulnerability component.
Shahid and Behrawan, 2008). Although the methodology of Shahid and Behrawan (2008) differs to the one used in this study, the consideration
of land use as an exposure indicator is deemed appropriate for assessing risk in PNG. Like PNG, Bangladesh
heavily relies on agriculture, with a large portion of land use dedicated to agricultural activities which have been
affected by drought in the past. Data is available for recent years from PNG National Weather Service (NWS)
and United Nations Development Programme (UNDP).
Elevation Used in_reliable past studies Ejevation is an exposure indicator specifically considering the environment and Agricultural Sector. Elevation
(type) investigating and assessing the  affects the severity of drought in PNG, with highland areas known to be most exposed to the effects of drought
(Highland/L  effects of drought within study  j, PNG in the form of frost. In the 2015/2016 drought event in PNG, high altitude areas experienced severely
owlgnd/Ave  areas with _similar __socio-  detrimental impacts on crops (lese et al. 2021). Elevation has been used in reliable past studies investigating and
ragd) geographic _ characteristics _as  assessing the effects of drought within study areas with similar socio-geographic characteristics as PNG (Han et
;g‘z%)(Ha” etal., 2015; Sunetal., 4], 2015; Sun et al., 2020). Data is available from open-sourced GIS platforms.
Poplilation Used in reliable past studies Population Density is an exposure indicator for social sector, as it is an indirect indicator for infrastructure,
Denkity investigating and assessing the health service, and water accessibility. It has been used in reliable past studies investigating and assessing the
effects of drought within study effects of drought (Nasrollahi et al., 2018; Pei et al., 2018). More direct indicators of accessibility like access to
areas _with  similar _socio- roads or access to markets would be better for use here, however, data availability for such indicators is
geographic characteristics as extremely limited. Thus, population density is seen as the best possible indicator for accessibility to contribute
PNG (Nasrollahi et al., 2018; Pei  to the exposure index in this research. Data is available for population density in recent years from PNG National
etal., 2018). Statistical Office.
Accpss to Used in reliable past studies Access to safe drinking water is an indicator of drought exposure, particularly considering hydrological drought
safe| investigating and assessing the and its impacts on the social sector. If communities have limited access to safe drinking water, they will be more
drinking effects of drought within study exposed to detrimental drought effects as they may have to travel further to additional water sources in times of
watgr (% of areas with _similar _socio- drought, etc (Limones et al., 2020). It has been used in reliable past studies investigating and assessing the
population geographic characteristics as  effects of drought within study areas with similar socio-geographic characteristics as PNG (Limones et al., 2020;
with] access PNG (Limones et al., 2020; Frischen et al., 2020). For example, when investigating an approach for identifying high drought risk areas in
to safe  Frischen et al., 2020). data-scarce regions of southern Angola, Limones et al. (2020) use access to safe drinking water as an indicator
of drought exposure. Angola is expected to have similarly restricted access to safe drinking water in some areas
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drinking just as with regions in PNG, as it is a Least Developed Country with locals having limited access to core
watér) resources. In the study by Limones et al. (2020) this indicator was able to help in the identification of high-risk
areas to drought in Angola. The similarity between Angola and PNG mean it is likely that this indicator is
suitable for use in informing a drought exposure index in PNG as well. Data is available for this indicator for
recent years from PNG National Statistical Office.
1445
Table 10. Additional drought exposure indicator unsuitable for use when measuring drought exposure in PNG provinces.
Indifator Past use description Reason for Omission
Accpss to  This indicator has been used in several past studies conducting risk assessments  This indicator would be useful for indicating drought exposure;
roads (Luh et al. 2015; Nakamura et al. 2019). however, data is not available/accessible on the provincial level
For example, Nakamura et al. (2019) used this as an indicator for exposure in a for PNG. Thus, this indicator cannot be included in the risk
drought risk assessment in Ethiopia. Results suggested that remote communities —assessment at this time for PNG. In the future if data becomes
with roads connecting them to markets and other services had less exposure to available, then this indicator should be considered for the
drought impacts. drought exposure index.
Accpss to This indicator was used in a study by Ghimire et al. (2010) which describes access ~ This indicator is not appropriate for use in PNG, due to the nature
land to land resources as total landholding in a given area. of customary clan ownership, which over 95% of land in PNG
resources It is explained that the higher the landholding, the lower the exposure to drought remains under (Chand 2017). Customary clan ownership is
impacts. This is because landholding can serve as a cushion to absorb financial defined as the long-established practices of PNG people. Clans
shocks by utilising it as collateral for loans or sale when needed. rather than individual people hold most of the land in PNG
provinces. Additionally, data for clan land holdings is scarce as
the principles of land tenure that arise from custom are not
commonly written down (Chand 2017).
Accpss _to  Ghimire et al. (2010) use this indicator in an assessment of drought risk, explaining This indicator is likely not representative of varied drought
techpology  that this indicator is evidence for the adoption of improved varieties of crops or exposure among PNG provinces as it would be expected that
horticultural plants. Thus, access to technology likely reduces exposure. access to technology would be relatively low across PNG.
Additionally, data for this indicator is limited on the provincial
level in PNG.
Accpss to  Ghimire et al. (2010) use this indicator in an assessment of drought risk, defining Data is restricted for this indicator on the provincial level in
socipl this indicator as membership in social, political, or economic organisation. Itisseen PNG. If data was restricted, it is believed that this would not be
netiorks that access to social networks decreases drought exposure (Ghimire et al. 2010). as ideal as an exposure indicator in PNG as if more relevant
indicators were available like access to markets.

Accpss to Previous drought risk investigations have used access to market as an exposure Data is restricted for this indicator on the provincial level in
market indicator (Ghimire et al. 2010; Mdungela et al. 2017). It is defined as the walking PNG. It would be useful to incorporate this indicator in the risk
distance to reach the nearest public transportation service or walking distance to assessment in the future if data becomes available.
the market itself. The lesser the distance, the more access to a market, which in turn
means lower exposure. Walking distance is preferred over distance in kilometres,

because of difference in topography in different areas of investigation.
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Data is restricted for this indicator on the provincial level in

PNG. Currently, it is expected that information regarding

farming types is included in the land use indicator. However, this

indicator would be more specific for use if data was available.

On-farm Mdungela et al. (2017) used this as an indicator of drought exposure in an
divdrsificat investigation of drought risk. On-farm diversification includes the mixing of crops
ion and the inclusion of drought-resistance crops on farms. Mdungela et al. (2017)

explain that the more diverse a farm is, the less exposed it is to drought conditions.
Aridity The Aridity Index has been used in past drought risk assessment studies like
Indgx Lindoso et al. (2014). It is a real-time indicator in which water balance is considered

Not applicable to long-term or multi-seasonal events (Svoboda
and Fuchs, 2016). Thus, it would not be appropriate to measure

with the comparison of the actual aridity to the normal aridity for a given period

long-term drought; long term drought affects PNG frequently.

(Svoboda and Fuchs, 2016).
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Figure 4. Risk index levels for each PNG province calculated from the Drought Risk Assessment conducted for 2014, 2015,«— { Formatted: Caption

2016, 2017, 2018, 2019, and 2020. Risk index levels are classified on a deepening orange colour scale from Mild (index values

1465 from 0.01-0.25) to Extreme (index values from 0.76-1.00), | [ Formatted: Font: (Default) +Body (Times New Roman)
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1

Table 113. Levels of drought conditions mentioned in the literature for the time period of each of the drought events identified in the risk
475  assessment. The number of literature sources mentioning each drought level is recorded.

[ Formatted: Font: Not Bold

Drought Event

Mention of Mild Drought

Mention of Moderate Drought

Mention of Severe to Extreme Drought

2015-2016

0

0

8 (Chua et al., 2020; Gwatirisa et al.,
2017; Burivalova et al., 2018; Jacka,
2020; Varotsos et al., 2018; Kuleshov et
al., 2020; Schmidt et al., 2021; Rimes and
Papua New Guinea National Weather
Service, 2017)

2019-2020

2 (Johnson et al., 2019;
Food and  Agriculture
Organisation of the United
Nations, 2021)

5 (Golden Gate Weather
Services 2021 Nul,—2021;
Mckenna and Yakam, 2021;
Food Security Cluster et al.,
2021; Bidault et al., 20192019;
Papua New Guinea National
Weather Service, 2020)

1 (Bang and Crimp, 2019)
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JFigure 54. Overall drought risk maps of PNG provinces for 2014 including a drought hazard, drought vulnerability, drought exposure and

" U L | ! ) e / nd___ [ Formatted: Font: Not Bold
drought risk map detailing the index level of each province. The index level is classified on a deepening orange colour scale from Mild
1480 (index values from 0.01-0.25) to Extreme (index values from 0.76-1.00).

Ml =reme (0.76-1.00)
Bl severe (0.51-0.75)

Moderate (0.26-0.50)

1485

Mild (0.01-0.25)

Mo Data

Risktndaxteveal

Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nev | Dee

53



54



1

Province Risk Index Level
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Figure 6. Drought risk levels calculated from monthly risk assessments for each province in 2014. Drought risk levels are<— { Formatted: Caption, Tab stops: Not at 2.75 cm

given for January-December. The drought risk level is classified on a deepening orange colour scale from Mild (index values

490 from 0.01-0.25) to Extreme (index values from 0.76-1.00).,

Table 125. Individual PNG Province mentions in literature for each drought event as well as the severity level indicated for each province

| Formatted: Font: (Default) +Body (Times New Roman), Do
not check spelling or grammar

in the literature.

- f Formatted: Font: Not Bold

Drought Provinces  specifically Number of sources that Level

of impact

mentioned

Event mentioned mentioned province moderate, severe to extreme)

(Mild,

f 4[ Formatted Table
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2015-2016 Central 5 Severe
Chimbu 7 Severe
Eastern Highlands 10 Severe
East New Britain 3 Extreme
East Sepik 1 Extreme
Enga 6 Severe
Gulf Province 2 Severe
Hela 2 Severe
Madang 2 Extreme
Manus 2 Severe
Milne Bay Province 2 Severe
Morobe 6 Severe
New Ireland 2 Extreme
Northern (Oro) 1 Extreme
Southern Highlands 7 Severe
Western 4 Severe
Western Highlands 10 Severe
West New Britain 2 Extreme
West Sepik 1 Extreme

2019-2020 Bougainville 1 Moderate
Central 3 Severe
Chimbu 1 Moderate
Eastern Highlands 2 Moderate
East Sepik 2 Moderate
Gulf Province 1 Severe
Hela 3 Severe
Jiwaka 1 Moderate
Madang 1 Moderate
Manus 2 Moderate
Milne Bay Province 3 Severe
Morobe 1 Moderate
New Ireland 2 Mild
Northern (Oro) 1 Severe
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Southern Highlands 3 Severe
Western 3 Severe
Western Highlands 3 Moderate
West New Britain 1 Moderate
Hazard . Vulnerability . W reme 076.1.00)
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{ A
N
0 180 380 760 Kilometers A
495  Figure 75. Overall drought risk maps of PNG provinces for 2015 including a drought hazard, drought vulnerability, drought exposure and [Formatted: Font: Not Bold
drought risk map detailing the index level of each province. The index level is classified on a deepening orange colour scale from Mild
(index values from 0.01-0.25) to Extreme (index values from 0.76-1.00). [ Formatted: Font: 9 pt
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Figure 86. Overall drought risk maps of PNG provinces for 2016 including a drought hazard, drought vulnerability, drought exposure and

500 drought risk map detailing the index level of each province. The index level is classified on a deepening orange colour scale from Mild
(index values from 0.01-0.25) to Extreme (index values from 0.76-1.00).
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Figure 97. Overall Drought Risk Maps of PNG Provinces for 2019 including a Drought Hazard, Drought Vulnerability, Drought Exposure [ Formatted: Font: Not Bold

and Drought Risk Map detailing the index level of each province. The index level is classified on a deepening orange colour scale from Mild
505  (index values from 0.01-0.25) to Extreme (index values from 0.76-1.00).
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JFigure 108. Overall Drought Risk Maps of PNG Provinces for 2020 including a Drought Hazard, Drought Vulnerability, Drought Exposure
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Risk Index Level
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1520 Figure 11. Drought risk levels calculated from monthly risk assessments for each province during the transition into the strong
2015-2016 drought conditions. Drought risk levels are given for November and December 2014, January to December 2015,
and January and February 2016. The drought risk level is classified on a deepening orange colour scale from Mild (index
values from 0.01-0.25) to Extreme (index values from 0.76-1.00).

Table 13. Average Sensitivity Index Values across PNG provinces for each indicator and the index which they inform using
1525 2015 data as a case study. Rankings are shown for SI with highest sensitivity ranked first and lowest sensitivity ranked last.
The likely credibility is also ranked amongst indicators, with first being the most credible for inclusion in the index and last

being the least credible.

Index Indicator Sensitivity Index (Avg. Sensitivity Rank (highestto Likely Credibility
across provinces) lowest SI) Rank
Hazard SP1 0.56 18 2nd
VHI 0.47 2m 1
Vulnerability Staple Crop Tolerance Score 0.41 1t 4t
Agricultural Occupation 0.36 2nd 3
Percentage of Children Weighed 0.33 3rd 2nd
at Clinics Less than 80% Weight
for Age 0 to 4 years old
Key Crop Replacement Cost 0.31 4t 1%
Exposure Land Use 0.39 18 4t
Elevation Type 0.34 2nd 3rd
Population Density 0.32 3 2nd
Access to Safe Drinking Water 0.31 4t 1%
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