
 

1 

 

Validating a Tailored Disaster Risk Assessment Methodology: Drought 

Risk Assessment in Local Papua New GuineaPNG Regions 

Isabella Aitkenhead1,2 (Isabella.Aitkenhead@bom.gov.au), Yuriy Kuleshov1,2,3 

(Yuriy.Kuleshov@bom.gov.au), Jessica Bhardwaj1,2 (Jessica.Bhardwaj@bom.gov.au), Zhi-Weng Chua1,2 

(Zhi-Weng.chua@bom.gov.au), Chayn Sun1 (Chayn.Sun@rmit.edu.au), Suelynn Choy1 
5 

(Suelynn.Choy@rmit.edu.au)  

1 Royal Melbourne Institute of Technology (RMIT) University, Melbourne, Victoria, Australia 

2 Bureau of Meteorology, Docklands, Victoria, Australia  

3 The University of Melbourne, Parkville, Victoria, Australia 

Correspondence to: Isabella Aitkenhead (Isabella.Aitkenhead@bom.gov.au), Yuriy Kuleshov (Yuriy.Kuleshov@bom.gov.au)  10 

Abstract.  

Climate change is increasing the frequency and intensity of natural hazards, causing disastrous adverse impacts on vulnerable 

communities. Pacific Small Island Developing States (SIDS) are of particular concern, requiring resilient disaster risk 

management consisting of two key elements: proactivity and suitability. User-centred Integrated Early Warning Systems (I-

EWSs) can inform resilient risk management but are only effective when all components are functioning adequately. However, 15 

an EWS is only effectively integrated when all components are functioning adequately. In Pacific SIDS, the risk knowledge 

component of an I-EWS is underexplored. Risk knowledge is improved through efficient risk assessment. A dynamic and tailored 

risk assessment methodology was developed in this research, using drought in Papua New Guinea (PNG) as a case study, by 

selecting rigorous and representative hazard, vulnerability, and exposure indicators, and using integrated Geographic Information 

Systems (GIS) processes to produce hazard, vulnerability, exposure and risk indices and maps. The validity of the risk assessment 20 

was investigated with a retrospective risk assessment of drought in PNG (from 2014-2020) paired with a literature assessment 

(as a ground-truth source), and a sensitivity analysis. The novel drought risk assessment methodology demonstrated in this study 

was overall deemed valid and robust, with supplementary improvements proposed for consideration in future investigation to 

further heighten accuracy. This disaster risk assessment methodology has potential for application in other Pacific SIDS for 

additional disaster types, to enhance the risk knowledge component of a user-centred I-EWS and guide the implementation of 25 

such a system, as well as inform improved resilient disaster risk management practices in local at-risk areas.A case study 

assessing drought risk in PNG provinces was conducted to demonstrate the development and validate the application of a tailored 

risk assessment methodology. Hazard, vulnerability, and exposure indicators appropriate for monitoring drought in PNG 

provinces were selected. Risk indices for past years (2014-2020) were calculated and mapped in Geographic Information Systems 

(GIS). Risk assessment results were validated with a literature investigation of sources presenting information on previous 30 

droughts in PNG. The risk assessment indicated a strong drought event in 2015-2016, and a moderate event in 2019-2020. The 

literature corroborated this, confirming the validity of the risk assessment methodology. The methodology and results can be 

used to inform improved disaster risk management in PNG, by advising decision-makers of their risk and policymakers on which 

provinces are of priority for resource allocation. The methodology can also be used to enhance the risk knowledge component 

of a user-centred I-EWS and guide the implementation of such a system for drought in PNG and other Pacific SIDS. 35 

 

Keywords: Climate Risk; Disaster Risk Assessment; Resilient Management; Early Warning System; Small Island Developing 

States; Papua New Guinea 



 

2 

 

 

1 Introduction 40 

1.1 Disaster risk reduction and resilient risk management of natural hazard events 

Increased intensity and frequency of natural hazards and disaster events resultant of a changing global climate are already seen 

to have destructive impacts on the world’s most vulnerable communities (Mercer, 2010). Future effective climate adaptation and 

disaster risk reduction (DRR) is vital for the resilience of vulnerable communities. Small island developing states (SIDS) in the 

Pacific include some of the most hazard-vulnerable communities in the world. Pacific SIDS are disaster-prone and have low 45 

capacity to cope with resultant impacts, due to limited resource availability, including water and food insecurity, and reactive 

management practices (Kuleshov et al., 2014 ). As Pacific SIDS have a highly hazard-vulnerable nature, they are of priority for 

future disaster risk reduction (DRR) through resilient risk management (Bang and Crimp, 2019). For example, a prolonged 

drought event across the Pacific in 2010-2011 affected multiple SIDS, including Samoa, Tokelau, Tonga, and Tuvalu (Kuleshov 

et al., 2014 ). Impacts were severe in all affected countries, but most extreme in Tuvalu where a water crisis occurred. This 50 

prompted a state of emergency declaration by The Government of Tuvalu and resulted in the rationing of freshwater in 

households. Due to the highly hazard-vulnerable nature of Pacific SIDS, they are of priority for increasing resilient disaster risk 

management efforts to achieve efficient DRR.  

 

Resilient disaster risk management consists of two key elements: proactivity and suitability. In this instance, proactivity is 55 

characterised by controlling a disaster risk situation prior to the occurrence of a natural hazard event, rather than responding to 

disaster after it has reached a crisis level. Suitability is seen as the level of appropriateness that disaster management strategies 

have for application at localised levels in vulnerable places. A disaster management strategy is deemed suitable if it can be 

independently implemented by local stakeholders and/or communities and if it addresses the specific impacts faced by local 

decision-makers (Aitkenhead et al., 2021). Suitability is defined as the quality of disaster management appropriateness for the 60 

independent implementation of management at a localised level in vulnerable places. Thus, when seeking to increase disaster 

resilience in SIDS, the proactivity and suitability of localised disaster risk management is of critical focus (Mercer, 2010). DRR 

policies and resilient management strategies are becoming increasingly established within the international development 

community, however there remains a need to effectively manage climate change at a localised level in SIDS through targeted 

DRR and climate adaptation strategies to ensure community resilience (Mercer, 2010).  65 

1.2 User-centred Integrated-Early Warning Systems 

User-centred Integrated Early Warning Systems (I-EWS) are increasingly recognised as key to informing proactive and suitable 

disaster risk management decisions in local vulnerable areas to increase disaster resilience. The United Nations Office for DRR 

defines an EWS as “The set of capacities needed to generate and disseminate timely and meaningful warning information to 

enable individuals, communities and organisations threatened by a hazard to prepare and to act appropriately and in sufficient 70 

time to reduce the possibility of harm or loss” (United Nations International Strategy for Disaster Reduction (Unisdr), 2006). 

However, for an I-EWS to significantly contribute to enhanced disaster risk management at local disaster resilience, it must be 

effective.  
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An effective user-centred I-EWS consists of four inter-connected components including Risk Knowledge, Warning Service, 75 

Communication and Dissemination, and Response Capability (De León et al., 2007). An effective user-centred I-EWS consists 

of four inter-connected components including 1. ‘Risk Knowledge’, 2. ‘Warning Service’, 3. ‘Communication and 

Dissemination’, and 4. ‘Response Capability’ (De León et al., 2007). Each component is key to the efficiency of the overall I-

EWS, and if one component is lacking, the entire system would not succeed in efficiently informing disaster risk management. 

The first component, risk knowledge, considers the patterns and trends in hazards and vulnerabilities that are present from which 80 

risks arise (De León et al., 2007). Key tools recognised as useful to exploring the risk knowledge component include risk 

assessments and risk mapping. These tools improve hazard, vulnerability, exposure, and overall risk knowledge, set priorities in 

I-EWS needs, and guide response preparedness and risk management (Rahmati et al., 2020; Aitkenhead et al., 2021). The risk 

knowledge component is of particular interest currently as past I-EWS investigations have only explored risk knowledge at a 

broad, rather than local level, while mainly focusing on the warning service component. This component is of particular interest 85 

currently, as past I-EWS investigations have only explored risk knowledge at a broad, rather than local level, while mainly 

focusing on the warning service component (Kuleshov et al., 2020). 

 

As part of the Climate Risk and Early Warning Systems (CREWS) international initiative,  the Australian Bureau of Meteorology 

is developing  a user-centred I-EWS for drought in PNG, that utilises the World Meteorological Organization's (WMO) Space-90 

based Weather and Climate Extremes Monitoring (SWCEM) products (Kuleshov et al., 2019)  and delivers warnings and relevant 

drought hazard information to end-users (Kuleshov et al., 2020). While the warning service, communication and dissemination, 

and response capability components have already been considered (Bhardwaj et al., 2021a,b), the risk knowledge component of 

I-EWSs requires further investigation. While the warning service component has already been developed (Bhardwaj et al., 

2021a,b), the risk knowledge, communication and dissemination, and response capability components of I-EWSs require further 95 

investigation. The implementation of all four components of a user-centred I-EWS to inform proactive and suitable risk 

management in local communities must be investigated at a more targeted level to ensure resilience of vulnerable communities 

in the future (Pulwarty and Sivakumar, 2014). Future consideration for the implementation of the risk knowledge component on 

a localised level is firstly required to begin informing maximum efficiency in I-EWSs for SIDSs. Future consideration for the 

expansion of the risk knowledge component, specifically in vulnerable Pacific SIDS, is required to inform efficiency in I-EWSs 100 

for Pacific SIDSs, inform the resilient management of risk in local vulnerable communities, and improve the adaptive capacity 

of vulnerable locals (Pulwarty and Sivakumar 2014). 

1.3 Investigating natural hazard risk knowledge at a localised level 

A common technique used in global studies investigating disaster risk knowledge, which has the potential for application in 

SIDSs, is disaster risk assessment (Chen et al., 2003; Rahmati et al., 2020).to investigating risk knowledge in SIDSs is disaster 105 

risk assessment. Disaster risk assessments analyse the risk of natural hazards in a particular area. Disaster risk is defined as the 

probability of harmful consequences, or expected losses resulting from interactions between disaster hazard (the possible future 

occurrence of natural hazard events); disaster exposure (the total population, its livelihoods and assets in an area in which natural 

hazard events may occur); and disaster vulnerability (the tendency of exposed factors to suffer negative impacts when natural 

hazard events occur) (Sharafi et al., 2020). Risk assessments are vital to indicating the most at-risk places to natural hazards in 110 

a given area that are of priority for improved risk management. 
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It is widely accepted that there are two types of risk assessments: static and dynamic. Dynamic disaster risk assessments consider 

both the spatial and temporal aspects of disasters, using historic and periodically updated data. Additionally, dynamic 

assessments incorporate not only hazard monitoring indicators, but also vulnerability and exposure indicators (Mosquera-115 

Machado and Dilley, 2009). Most risk assessments that have been previously conducted have been static assessments (van Riet, 

2009). Static assessments provide an estimate of risk factors for a discrete moment in time and space, usually considering only 

one or two components of risk (e.g only hazard) (Aerts et al., 2018) (Hagenlocher et al., 2020). Dynamic assessments are 

recommended for use over static assessments as they provide a more holistic assessment of disaster risk; disaster risk is not static, 

but rather dynamic in both space and time (Hagenlocher et al., 2020).  120 

 

The vitality of such dynamic risk assessments is demonstrated by Rahmati et al. (2020) in their a study of drought risk in a 

vulnerable area of south-east Queensland, Australia. As a result of their study, Rahmati et al. (2020) provided recommendations 

detailing areas that are likely to experience adverse drought impacts, within which drought resilience should be improved. The 

dynamic drought risk assessment also had implications for utilising integrated Geographic Information System (GIS)-based 125 

mapping techniques to accurately map and visualise drought risk levels in an area to better inform drought preparedness.  which 

provided recommendations detailing areas within which drought resilience could be improved. The drought risk index developed 

as part of the drought risk assessment by Rahmati et al. (2020) also had implications for utilising integrated Geographic 

Information System (GIS)-based mapping techniques to accurately map and visualise drought risk levels of particular places to 

better inform drought relief preparedness strategies in those areas.  130 

 

Integrated GIS-based mapping techniques for risk assessment include three key components: data integration into GIS, risk 

assessment tasks, and consideration of risk decision-making (Chen et al., 2003). The first component, data integration into GIS, 

consists of data collection and assimilation onto a GIS platform and data transformation and standardisation. Risk assessment 

tasks are then performed on the GIS platform, including individual hazard, vulnerability, and exposure assessments with 135 

accompanying mathematic calculations (Hagenlocher et al., 2019). The consideration of risk decision-making is incorporated 

through efficient data visualization on GIS risk maps and appropriate dissemination of such products to decision-makers.   

 

Although disaster risk assessments have been conducted for a variety of natural hazards in numerous countries throughout the 

world, there has been minimal risk assessment conducted for natural hazards in Pacific SIDSs. Out of those that have been 140 

conducted in Pacific SIDS, they have not utilised the most efficient methodology (Hagenlocher et al., 2019; D’Haeyer et al 

2017). It is evident in the literature that the most efficient risk assessment methodology includes the following elements: the risk 

assessment is dynamic (Hagenlocher et al., 2020), it is conducted on the most localised scale possible (Wilhelmi and Wilhite, 

2002), is tailored1 to the area of study (e.g. specific country, state/s or province/s, or local community) (Wilhelmi and Wilhite, 

2002), includes integrated GIS methodology to calculate and map risk indices as recommended by Rahmati et al. (2020), 145 

Hagenlocher et al. (2019), and Chen et al. (2003), and incorporates spaced-based monitoring products (Hagenlocher et al., 2019). 

Out of the disaster risk assessments that have been conducted in SIDS, they have been conducted on a broader level rather than 

local area or community level (Hagenlocher et al., 2019). For risk assessments to effectively inform proactive and suitable 

disaster risk management in local areas and vulnerable communities, they must be tailored to the area of study (e.g. the specific 

country, states or provinces, and/or local communities being investigated) (Wilhelmi and Wilhite, 2002). Tailored risk 150 

 
1 Tailored risk assessments would use specific hazard, vulnerability, and exposure indicators appropriate for monitoring hazard 

risk of the hazard under investigation, in the study area. 
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assessments would use specific hazard, vulnerability, and exposure indicators appropriate for monitoring hazard risk of the 

hazard under investigation, in the study area. Additionally, those risk assessments that have been conducted in SIDS have not 

utilised the integrated GIS methodology recommended by Rahmati et al. (2020), Hagenlocher et al. (2019), and Chen et al. 

(2003). Therefore, there is room for future investigation of risk knowledge in SIDSs to implement a tailored, localised risk 

assessment with specific spaced-based monitoring hazard indicators and appropriate vulnerability and exposure indicatorshazard, 155 

vulnerability and exposure indicators, and map indices produced by such assessment using integrated GIS methodology.  

1.4. Validating disaster risk assessments to ensure accuracy and usability of results 

In addition to past disaster risk assessments not utilising the most efficient methodology, they also commonly lack adequate 

validation (Asare-Kyei et al., 2017). In a review of past disaster risk assessment methodology, Hagenlocher et al. (2019) state 

that comprehensive validation “has proven to provide relevant information on the reliability, validity, and methodological 160 

robustness of risk assessments and their outcomes. However, its application in the field of risk assessment remains largely 

underdeveloped.” Molinari et al. (2019)  explain further that risk assessment validation is crucial; results can be used to inform 

large investments and allocation of resources, as well as other important risk management decisions, so results need to be 

credible. Among the few studies seeking to validate a risk assessment methodology, various validation techniques have emerged.   

 165 

Validation through result comparison with historical data has been used in several studies, however the preciseness of this method 

has been criticised (Fekete, 2019). To validate the agricultural drought risk assessment methodology which they developed for 

use in Nebraska (U.S), Wu and Wilhite (2004) estimated the probability of correct risk classification with independent, historical 

crop data. This historical data was then compared to the risk assessment results to verify accuracy. Similarly, Fekete (2019) 

validated the results of a flood vulnerability assessment through comparison with social data from the time period assessed. 170 

However, Fekete (2019) explains that the absence of globally accepted benchmarks for social, exposure and hazard data explicitly 

focused on revealing disaster risk, leaves too much to author interpretation when using this validation method. Molinari et al. 

(2019) provides a critique of this validation method, Molinari et al. (2019) also critics the validation through comparison with 

historical data technique, stating that there is “the need of higher quality data to perform validation and of benchmark solutions 

to be followed in different contexts, along with a greater involvement of end-users”.  175 

 

An alternative technique, incorporating the views of end-users as a ‘ground-truth’ source, called participatory research is 

becoming increasingly utilised to validate drought monitoring outcomes, including risk assessment results. This technique 

includes collaboration with stakeholders in a capacity building process as well as consideration of local peoples and expert 

observations into knowledge systems (Mckenna and Yakam, 2021; Fragaszy et al., 2020). For example, Fragaszy et al. (2020) 180 

used participatory validation by conducting interviews, focus groups and workshops to assess the extent of drought impacts 

experienced during the study period, to verify the results of a drought assessment conducted in the Middle East and North Africa.  

 

Although participatory research is a promising validation methodology (Fragaszy et al. 2020), some past investigations using 

this method have used an additional ‘ground-truth’ source to strengthen validation adequacy. To verify results of remotely sensed 185 

drought risk monitoring in Morocco, Bijaber (2018) compared results to historical on the ground precipitation and crop 

production data at the national scale as well as the views of experts regarding what was experienced on the ground during the 

investigated period. Asare-Kyei et al. (2017) employed an analogous technique to validate flood risk assessment results for the 

urban area of Shanwei City in People's Republic of China. Records of impacts and results of household interviews were intended 
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to be used as ground-truth sources for impact data which the risk assessment results could be compared to for verification. 190 

However, Asare-Kyei et al. (2017) found no systematically documented records of the impacts, and thus had to rely on local’s 

recounts which were focused on the high intensity impacts, and often forgetful of small impacts.  

 

In Pacific SIDS, data availability is scare, thus validation through comparison with historical independent data is unlikely to be 

credible. Overall, a strengthened validation methodology using multiple ground-truth sources seems most promising for future 195 

study regarding the verification of disaster risk assessments in SIDS.  

1.5 Disaster risk assessment for PNG 

To continue upon past research regarding integrated GIS-based risk mapping (Rahmati et al., 2020) and I-EWS development 

(Bhardwaj et al., 2021a), PNG is deemed an appropriate country in which to investigate the risk knowledge component of an I-

EWS through disaster risk assessment and mapping. PNG is a Pacific SIDS vulnerable to climate extremes and disaster events. 200 

It is predicted to be increasingly affected by impacts from tropical cyclones, floods, and drought in the future. Such hazard events 

are mainly a result of two key climate drivers: the El Niño Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD). 

PNG is one of Pacific SIDS, it is vulnerable to climate extremes and disaster events and is predicted to be increasingly affected 

by impacts from tropical cyclones, floods, and drought in the future. The El Niño Southern Oscillation (ENSO) and the Indian 

Ocean Dipole (IOD) are key drivers of climate variability and resultant hazard events in PNG, and other Pacific SIDS.  205 

 

In Pacific SIDS, ENSO alters the distribution of  precipitation, often causing natural hazard events (Horton et al., 2021). ENSO 

has two key phases: El Niño (warm phase of ENSO) and La Niña (cold phase of ENSO). La Niña-associated prolonged rainfall 

has contributed to floods, whilst El Niño-associated prolonged aridity has contributed to droughts in PNG (Smith et al., 2013). 

Historically, the 1997-1998 El Niño contributed to severe drought in PNG causing immense loss of life, destruction of crops, 210 

and forest fires subsequently causing regional pollution problems (Nicholls, 2001). However, different regions of PNG 

experience varying climactic affects from El Niño and La Niña (Figure 1). For example, a moderate La Niña event which 

occurred in PNG during 2011-2012 resulted in drought conditions in several PNG provinces, particularly Milne Bay Province.  

 

The effects of ENSO can be influenced by the IOD to further weaken or strengthen these trends in rainfall variability (Bhardwaj 215 

et al., 2021b). Defined as consistent changes in sea surface temperature variability across the tropical western and eastern Indian 

Ocean, the IOD can be negative, positive, or neutral., Each IOD phase interacts with ENSO impacts differently (Bhardwaj et al., 

2021b).with each phase interacting with ENSO impacts differently (Bhardwaj et al., 2021b). The impacts of interactive IOD and 

ENSO phases experienced in PNG are shown in Figure 2.  

 220 

PNG has a lack of coping capacity for managing the risks posed by the natural hazard events which occur across the country 

(Kuleshov et al., 2020). Particularly, drought poses an immense concern as it historically has disastrous impacts on PNG 

communities but has not been extensively investigated compared to other hazards like tropical cyclones and floods. Considering 

the restricted knowledge of drought risk in the context of PNG, and the critical threat which it poses to communities, drought is 

an appropriate hazard to investigate in terms of assessing disaster risk to local areas in PNG.  225 

 

Generally, drought can be described as an extended dry period resulting from rainfall deficiency. However, drought has many 

definitions for its various types: meteorological (when climactic factors result in dry conditions within an area), hydrological 
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(when water shortages occur after a period of meteorological drought), agricultural (when agricultural productivity is inhibited 

and crops are affected by meteorological and hydrological drought), and socioeconomic (when dry conditions restrict the supply 230 

and demand of commodities) (Wilhite et al., 2014). As drought impacts all major sectors (agriculture, economy, social, health, 

etc.), an effective drought risk assessment would not only use indicators tailored for monitoring drought in PNG, but also use a 

variety of sectoral indicators to encompass the overall drought risk. Such an effective drought risk assessment in PNG has the 

potential to inform community/provincial-scale DRR (Webb, 2020).a drought risk assessment must not only use indicators 

tailored for monitoring drought in PNG, but also use a variety of sectoral indicators to encompass the overall drought risk to a 235 

local area. Remote communities in PNG continue to have limited resources and capacity to effectively manage such a variety of 

sectoral impacts. Local areas, for example individual provinces, in PNG must be able to self-initiate strategies that are effective 

and appropriate to them. In this context, I-EWS and risk assessment informed community/provincial-scale DRR is an 

increasingly important focus for PNG (Webb, 2020). 

 240 

This study will expand on previous research with an aim to address the risk knowledge components of a user-centred I-EWS for 

informing bottom-up resilient management on the local area scale in PNG. This research seeks to demonstrate the potential for 

tailored risk assessments to accurately inform on disaster risk levels before, during and after a disaster event and thus contribute 

to more resilient disaster risk management in local areas, using drought in PNG as a case study. This research seeks to build 

capacity for the natural hazard monitoring through an I-EWS in PNG, as well as demonstrate the potential for tailored risk 245 

assessments to accurately inform on drought risk levels before, during and after a hazard event and thus contribute to more 

resilient disaster risk management in local SIDS areas. The study intends to develop an effective, dynamic risk assessment 

methodology utilising GIS integrated technique and space-based weather and climate extremes observations, conduct a unique 

and tailored, dynamic drought risk assessment for a retrospective period in PNG, and perform a comprehensive validation of the 

risk assessment results using literature records as a ‘ground-truth’ source. The developed risk assessment methodology is 250 

purposeful for potential future application to other disaster types in additional Pacific SIDSs. use the most effective risk 

assessment methodology recommended by Rahmati et al. (2020), Hagenlocher et al. (2019), Giardino et al. (2018) and Bhardwaj 

et al. (2021a) (GIS integrated technique and space-based weather and climate extremes observations) to conduct a unique and 

tailored risk assessment and mapping of drought in PNG, and seeks to perform a comprehensive validation of the risk assessment 

results using literature records as a ‘ground-truth’ source.  255 

 

2. Data and Methodology 

2.1 Study Area: PNG 

PNG has a population of approximately 8.8 million across its mainland and six hundred islands, which have a total land area of 

452,860 km2. The country consists of four major regions, within which the 22 provinces of PNG are divided (Figure 3).  260 

The four major PNG regions and their provinces are as follows: 

-Highlands Region: Chimbu (Simbu), Eastern Highlands, Enga, Hela, Jiwaka, Southern Highlands, and Western Highlands. 

-New Guinea Islands Region: Bougainville (North Solomons), East New Britain, Manus, New Ireland, and West New Britain. 

-Momase Region: East Sepik, Madang, Morobe, and Sandaun (West Sepik). 

-Southern Region: Central, Gulf, Milne Bay, Oro (Northern), and Western (Fly River). 265 
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PNG is largely mountainous, and much of it is covered with tropical rainforest. The climate of PNG can be described as tropical 

throughout, however each region of PNG experiences differences in seasonal climactic factors (Figure 3) (Bhardwaj et al., 

2021b). PNG climate also varies between years, with a dominant driver being ENSO (Figure 1).   

PNG society consists of traditional village-based life, dependent on subsistence and small cash-crop agriculture, as well as 

modern urban life in the main cities.  270 

Economic performance in PNG has historically been based on international prices for exports (including for agriculture), fiscal 

policies and construction activity. As of 2015, over 2 million Papua New Guineans are poor and/or face hardship, particularly 

those based in rural areas (Pacific Islands Forum Secretariat, 2015). Agricultural occupation is consistently important for local 

livelihoods, with approximately 80-85% of the rural population directly deriving their livelihood from farming (Pacific Islands 

Forum Secretariat, 2015). 275 

2.2 Study Design 

The methodology proposed here addresses the limitations identified in previous studies (Hagenlocher et al., 2019) to achieve a 

tailored and accurate risk assessment. As hazard, vulnerability, and exposure components are equally considered, and the spatial 

and temporal aspects of drought are investigated, using retrospective and periodically updated data, the risk assessment 

developed here is seen as a “dynamic” risk assessment intended to highlight areas in PNG most at-risk to experiencing adverse 280 

drought impacts. This research is conducted on the provincial level within a 2014-2020 study period. 

 

The methodology for this study was fourthree-part:  

1. Selection of tailored hazard, vulnerability, and exposure indicators appropriate for monitoring drought risk in PNG 

provinces.  285 

2. Calculation and GIS mapping of hazard, vulnerability, exposure, and risk indices for retrospective2 years historical 

years (2014-2020) to determine the occurrence of drought events in PNG in the past.  

3. Validation of drought risk assessment accuracy through a comparison of the drought risk index results with literature 

detailing severity of drought conditions and impacts experienced on the ground at the time of each drought event 

indicated by the retrospective risk assessment.  290 

3.4. Implementation of a sensitivity analysis to enhance the evaluation and validity of the risk assessment. 

2.2.1 Methodology: Part 1 

Tailored risk indicators were selected for monitoring drought in PNG as the development of a region-specific drought risk index 

is the key to accurate drought risk calculation and mapping (Santos et al., 2014).  A comprehensive indicator selection process 

is especially important for risk assessments in Pacific SIDS as Pacific SIDS experience a diverse array of climactic conditions 295 

that are commonly managed on the local scale by sectoral stakeholders or communities, so they require tailored, specific risk 

assessments to indicate disaster risk.All types of droughts were considered when selecting indicators, as well as all major sectors 

across PNG provinces. This was done to provide a holistic risk index for PNG provinces, as each type of drought is known to 

impact PNG communities (Kuleshov et al., 2020), with each major sector experiencing the effects (Bhardwaj et al., 2021b).   

 300 

 
2 This methodology follows the process of historical risk assessment validation, as in Wu and Wilhite (2004), however due to 

the limited data range available for selected indices, it is inappropriate to call this a historical risk assessment. It is therefore 

deemed a retrospective risk assessment. 
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The risk index developed here incorporates equal components of hazard, vulnerability, and exposure, with specific indicators 

selected to contribute to these three components. With drought hazard covering the possible occurrence of drought events in the 

future, exposure considering the total population, its livelihoods and assets in an area in which drought events occur, and drought 

vulnerability reflecting the tendency of exposed factors to suffer adverse impacts when a drought event occurs (Sharafi et al., 

2020). The equal inclusion of hazard, vulnerability, and exposure components for formulating the drought risk index is an 305 

innovative approach as past studies commonly focus on hazard without inclusion of vulnerability and exposure, especially those 

conducted in Pacific SIDS.  

 

Hazard, vulnerability, and exposure indicators most applicable to drought risk assessment in the 22 provinces of PNG were 

determined by integrating information regarding the socio-economic, geographic, and climactic characteristics of PNG provinces 310 

and analysis of indicator selection used in earlier studies of characteristically similar areas (Refer to Appendix A for a detailed 

table describing the reasons for selection of each indicator). PNG National Weather Service advice was also sought to approve 

indicator selection. Additionally, hazard indicators were assessed against recommendations made by WMO in their Handbook 

of Drought Indicators and Indices (Svoboda and Fuchs, 2016). All types of droughts were considered when selecting indicators, 

as well as all major sectors across PNG provinces. This was done to provide a holistic risk index for PNG provinces, as each 315 

type of drought is known to impact PNG communities (Kuleshov et al., 2020), with each major sector experiencing the effects 

(Bhardwaj et al., 2021b). 

 

Note, data was only available for certain indicators as data availability is poor in PNG, thus indicators which could have been 

more appropriate for use in hindsight had to be omitted. The most applicable and representative indicators were selected from 320 

what was available. Additionally, indicator data was only available at certain spatial resolutions. Because of this, a standard 

spatial resolution was chosen for the recording of data; data was recorded at the provincial level. It is also key to note that space-

based monitoring products were used when gathering data for hazard index calculations to ensure accuracy. There is a commonly 

recognised need to increase the utilisation of monitoring of climate extremes from space. Institutions like the WMO Regional 

Climate Centres observe weather and climate extremes to produce warnings for climate monitoring including the generation of 325 

space-based monitoring products. 

 

Table 1 displays the chosen hazard, vulnerability, and exposure indicators, indicator data sources, data resolution for each 

indicator, and the weight applied to each indicator. Two indicators: Standardised Precipitation Index (SPI) and Vegetation Health 

Index (VHI) were selected to be used in the hazard index. Four indicators: Percentage of children weighed at clinics less than 330 

80% weight for age 0 to 4 years old, Agricultural occupation, Staple crop tolerance score, and Key crop replacement cost were 

selected for the vulnerability index. Four indicators: Land Use, Elevation, Access to safe drinking water, and Population density 

were chosen for the exposure index.  

 

Each of the chosen hazard, vulnerability and exposure indicators define drought risk levels differently. Table 2 provides the 335 

thresholds for each indicator in which ‘no to mild drought risk, ‘moderate drought risk’, and ‘severe to extreme drought risk’ is 

signalled. To further ensure that indicators were representative of varying risk levels for PNG provinces, indicator data was 

checked for variance using the thresholds presented in Table 2. Data from the 2020 year was used as an example year. Provincial 

data was compared to determine whether there was variance in signalled drought risk levels between PNG provinces. If there 

was minimal variance between provinces for a given indicator, then that indicator would not likely give much insight to the 340 
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differing levels of risk across PNG and would not be highly appropriate for the inclusion in the calculation of drought risk indices. 

In the case of this study, all selected indicators displayed variance, and therefore were confirmed for inclusion in the calculation 

of risk indices. Once it was clear that each indicator had variance in the PNG provincial data, the raw data was uploaded to 

ArcGIS Pro. 

The indicators that were selected for use in assessing PNG provincial drought risk are shown in Table 1. Refer to Appendix B 345 

for a list of indicator data sources. It is key to note that space-based monitoring products were used when gathering data for 

hazard index calculations to ensure accuracy
3
. 

2.2.2 Methodology: Part 2 

Retrospective (2014-2019) and current (2020) Historical and current data detailing hazard, vulnerability, and exposure conditions 

in each of the 22 PNG provinces for each year within the 2014-2020 period in PNG, was used to develop a risk index for each 350 

year to determine the yearly drought risk levels and whether it is suspected that a drought event(s) occurredin this historic period 

to see if it would have indicated high disaster risk and whether it is suspected that a drought event(s) actually occurred during 

this period. The historical assessment was conducted from 2014 onwards due to no data availability for space-based Vegetation 

Health Index (VHI) before 2014. Integrated-GIS methodology for mapping risk in each study region was used to display yearly 

risk levels for 2014-2020risk levels for the overall years 2014-2020. It was then determined whether a drought event was 355 

suspected as occurring across PNG in each of the years assessed. Risk levels were also determined for the months of November, 

and December in 2014, January to December of 2015 and November and December in 2016 to demonstrate the transition into 

and out of drought during any strong drought event indicated by the risk assessment.  

 

A nationwide drought event was suspected when the majority of provinces were in severe to extreme drought risk conditions 360 

and was not suspected when the majority of provinces were in mild to moderate drought risk conditions. This is deemed a fair 

assumption since in past drought events, when only certain provinces in PNG experienced drought conditions and direct impacts, 

other provinces encountered indirect impacts and PNG as a nation was adversely affected. For example, during the 1997-1998 

nationwide drought event in PNG, dire social, health and economic effects were felt across the entire country (Kanua et al., 

2016). Resources of provinces in non-dry conditions were pressured with PNG villagers from drought-affected provinces 365 

travelling to areas in non-drought conditions or to relatives living in urban areas seeking familial help and support (Allen and 

Bourke, 2009). Additionally, a major mine was closed in response to the dry conditions in Western Province, impacting the 

national economy (Kanua et al., 2016).   

 

The years suspected of experiencing a nationwide drought event were recorded; this record was used in the validation of risk 370 

assessment results against literature review results. Risk levels were also determined for the months of November, and December 

in 2014, January to December of 2015 and November and December in 2016 to demonstrate the transition into and out of drought 

during any strong drought event indicated by the risk assessment.  

 

 
3 There is a commonly recognised need to increase the utilisation of monitoring of climate extremes from space. Institutions like 

the WMO Regional Climate Centres observe weather and climate extremes to produce warnings for climate monitoring including 

the generation of space-based monitoring products. 
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Thresholds were applied prior to index calculations and mapping to determine the variance of indicator data between each of the 375 

PNG provinces. Thresholds suitable for PNG drought risk indices were adapted from earlier studies in similar areas to ensure 

accuracy (Dayal et al., 2018; Frischen et al., 2020b). Once indicator variance was confirmed, raw data was uploaded to ArcGIS 

Pro.  

 

To calculate the hazard index, vulnerability index, and exposure index, yearly indicator data To calculate the hazard index, data 380 

was first reclassified by a linear function on a 1-10 scale and then standardised using fuzzy logic in ArcGIS Pro (Environmental 

Systems Research Institute (Esri) Inc., 2019). Fuzzy logic is processed in ArcGIS Pro through the fuzzy function which requires 

the assignment of fuzzy membership classes to data. Prior to the performance of the fuzzy function, fuzzy membership classes 

were assigned to each indicator, describing the relationship between it and drought risk as recommended in Rahmati et al. (2020) 

and Aitkenhead et al. (2021).  Two classes of fuzzy membership were assigned in this study: fuzzy small4 and fuzzy large5. Fuzzy 385 

values scaled between 0-1 based on the possibility of the indicator data contributing to drought risk, where 0 was assigned to 

values unlikely to contribute to drought risk, and 1 was assigned to values most likely to contribute.  Data for the vulnerability 

and exposure indices was also standardised using fuzzy logic. Prior to the performance of the fuzzy function, fuzzy membership 

classes were assigned to each indicator, describing the relationship between it and drought risk as recommended in Rahmati et 

al. (2020) and Aitkenhead et al. (2021).  Two classes of fuzzy membership were assigned in this study: fuzzy small
6
 and fuzzy 390 

large
7
. Fuzzy values scaled between 0-1 based on the possibility of the indicator data contributing to drought risk, where 0 was 

assigned to values unlikely to contribute to drought risk, and 1 was assigned to values most likely to contribute. The default 

midpoint was not used when performing the fuzzy function; the midpoint used for each indicator was based on the mean value 

in the historical records for indicator data (historical records meaning all available past data; this differs for each indicator e.g. 

SPI data is available from 2001 onwards). This ensured that the data was standardised on both a spatial and temporal scale.  395 

 

The indicator fuzzy values for each province were mapped on the provincial scale as yearly raster layers in ArcGIS Pro
8
. Thus, 

a 2014, 2015, 2016, 2017, 2018, 2019, and 2020 raster layer was mapped on the provincial scale for each of the ten indicators. 

Indicator fuzzy values, displayed on these yearly maps, were recorded and used to calculate hazard, vulnerability, and exposure 

indices for the each of the 22 PNG provinces. Fuzzy values of each indicator were used to calculate hazard, vulnerability, and 400 

exposure indices.  

 

Prior to index calculations, numericalNumerical weights were assigned to each indicator contributing to the hazard, vulnerability 

and exposure indices based on an expert weighting scheme informed by past studies and advice from the PNG National Weather 

Service (Appendix C). The weights assigned reflected the relative importance and contribution of each indicator to the specific 405 

index it informs. This weighting scheme was on a 0-1 scale, with 0 indicating no probable contribution to the relative index and 

1 being total probable contribution to the relative index (Frischen et al., 2020; Dayal et al., 2018). The weights assigned to each 

 
4Fuzzy small: a transformation function used when smaller input values are most likely to influence drought risk. 

5Fuzzy large: a transformation function used when larger input values are most likely to influence drought risk.  

6Fuzzy small: a transformation function used when smaller input values are most likely to influence drought risk. 

7Fuzzy large: a transformation function used when larger input values are most likely to influence drought risk.  

8The base map used for all mapping in this study was gathered from the open-sourced platform, GISMap. 
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hazard, vulnerability and exposure indicator are shown in Table 1. By applying weights to indicators, the potential affect of 

anomalies in individual indicator data is reduced. For example, hazard data anomalies are expected as there is commonly a lag 

between dry signals from SPI and VHI. The effects of dry conditions recorded in SPI are commonly seen leading up to and 410 

during a drought event, whereas the vegetative affects recorded by VHI can sometimes lag and can only become evident once a 

drought event has commenced. Thus, SPI is likely to be more informative in signalling drought events, meaning it is appropriate 

to give it a greater weighting than VHI in the hazard index. 

 

The hazard, vulnerability and exposure indices were calculated using equations (1), (2) and (3), respectively for each province 415 

in the years and months under investigation.  

𝐻𝐼 = ∑ ( 𝑤𝑖  ∗  𝑥𝑖′ )𝑛
𝑖=1                                                              (1), 

𝑉𝐼 = ∑ ( 𝑤𝑖  ∗  𝑥𝑖′ )
𝑛
𝑖=1                                                              (2),  

𝐸𝐼 = ∑ ( 𝑤𝑖  ∗  𝑥𝑖′ )
𝑛
𝑖=1                                                              (3),  

where HI is the Hazard Index, VI is the Vulnerability Index, EI is the Exposure Index, n is the number of Hazard, Vulnerability 420 

or Exposure Indicators, xi′ refers to the standardised indicators and wi refers to the respective indicator weight. 

 

Once the vulnerability, hazard and exposure indices were calculated for each province, spatial maps of the area covering the 22 

provinces of PNG, representing vulnerability, exposure, and hazard per unit area, were produced. The final drought risk index 

value for each PNG province was determined through the integration of the drought vulnerability, hazard and exposure index 425 

maps using the Fuzzy Gamma Overlay function (using a gamma of 0.75) in ArcGIS Pro. A final drought risk map was then 

generated. The extent of drought vulnerability, hazard, exposure, and risk displayed on the respective maps was classified into 

four levels: mild, moderate, severe, and extreme. These classifications are commonly used in drought risk assessments (Dayal et 

al., 2018; Frischen et al., 2020a). This process was repeated to calculate a drought risk index for each year and month under 

investigation.  430 

 

The years suspected of experiencing a nationwide drought event were recorded; this record was used in the validation of risk 

assessment results against literature review results. A nationwide drought event was suspected when most provinces were in 

severe to extreme drought risk conditions and was not suspected when the majority of provinces were in mild to moderate drought 

risk conditions. This is deemed a fair assumption since in past drought events, when only certain provinces in PNG experienced 435 

drought conditions and direct impacts, other provinces encountered indirect impacts and PNG as a nation was adversely affected. 

For example, during the 1997-1998 nationwide drought event in PNG, dire social, health and economic effects were felt across 

the entire country (Kanua et al., 2016). Resources of provinces in non-dry conditions were pressured with PNG villagers from 

drought-affected provinces travelling to areas in non-drought conditions or to relatives living in urban areas seeking familial help 

and support (Allen and Bourke, 2009). Additionally, a major mine was closed in response to the dry conditions in Western 440 

Province, impacting the national economy (Kanua et al., 2016). 

2.2.3 Methodology: Part 3 

Risk level accuracy was validated through comparison with documented records of observed impacts during the study period as 

a ground-truth source. Literature sources on this topic were analysed for the period of 2014-2020 to determine when drought 

events were recorded. The events recorded in the literature were compared to those identified by the risk assessment. The events 445 
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identified by both the literature and risk assessment were further analysed by comparing the severity of each event indicated by 

the risk assessment and the severity described in the literature.  

 

Two events were indicated in the risk assessment and confirmed in a literature investigation of openly accessible sources 

mentioning drought conditions in PNG from 2014-2020 (a 2015-2016 drought event and a 2019-2020 drought event). Reputable 450 

literature sources detailing drought conditions around the time of each event indicated by the risk assessment were analysed to 

determine the ground-truth of the drought event severity and impact.  

 

Three severity levels were used to classify the strength of the events indicated in the assessment and literature: mild, moderate, 

and severe to extreme. For the risk assessment, the strength of each identified drought event was determined as mild, moderate, 455 

or severe to extreme, based on the risk level pattern observed across PNG overall (Table 3). Table 4 displays the information 

used to formalise the link between impacts reported by literature sources and the three severity classes. The level most clearly 

aligned with the details provided by each source was recorded. Additionally, any mention of specific provinces experiencing 

impacts was recorded. 

 460 

 

Eight reputable literature sources detailing drought conditions around the time of each event indicated by the risk assessment 

(2015-2016 and 2019-2020) were analysed assessed for each drought event, thus to determine the ground-truth of the drought 

event severity and impact. As two drought events were investigated, and eight sources were assessed for each event, a total of 

16 sources were assessed overall (2015-2016 (Chua et al., 2020; Gwatirisa et al., 2017; Burivalova et al., 2018; Jacka, 2020; 465 

Varotsos et al., 2018; Kuleshov et al., 2020; Schmidt et al., 2021; Rimes and Papua New Guinea National Weather Service, 

2017) and 2019-2020 (Johnson et al., 2019; Food and Agriculture Organisation of the United Nations, 2021; Golden Gate 

Weather Services, 2021Null, 2021; Mckenna and Yakam, 2021; Food Security Cluster et al., 2021; Bidault et al., 2019; Papua 

New Guinea National Weather Service, 2020; Bang and Crimp, 2019)). The records in the literature were not extensive for the 

2019-2020 drought event in PNG with only eight reputable sources identified as having mention of this event, whereas an array 470 

of records was available for the 2015-2016 drought event. This may have been due to the 2019-2020 event being so recent, 

meaning that investigations of the event may still be ongoing and/or peer reviewed literature not being published as of when this 

research was conducted. To account for the limited availability of literature records for the 2019-2020 drought and to make the 

comparison with literature equal for both drought events assessed, an equal number of eight sources each were selected for the 

analysis for each event. Three severity levels were identified as being commonly implied in sources: mild, moderate, and severe 475 

to extreme. The level most clearly aligned with the details provided by each source was recorded. Additionally, any mention of 

specific provinces experiencing impacts was recorded.  

 

The records in the literature were not extensive for the 2019-2020 drought event in PNG. An array of records was available for 

the 2016-2020 drought event, but only a few were available for the 2019-2020 event. This may have been due to the 2019-2020 480 

event being so recent, meaning that investigations of the event may still be ongoing and/or peer reviewed literature not being 

published as of when this research was conducted. To account for the limited availability of literature records for the 2019-2020 

drought and to make the comparison with literature equal for both drought events assessed,  an equal number of sources were 

selected for the analysis for each event (eight each). The small number of sources investigated for each drought event was 
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statistically analyzed; a two-tailed p-value was used to determine significance in the statistical tests as a two-tailed p-value 485 

accounts for smaller sample sizes and tests for the possibility of positive or negative differences in the samples.  

 

To determine if there were significant differences between the drought risk level indicated by the risk assessment and the risk 

level indicated by the literature for each PNG province for each of the drought years under investigation (2015-16 and 2019-20) 

two types of statistical tests were performed: F-test and t-test9. Both tests were conducted for each event investigated (2015-2016 490 

and 2019-2020). The F-test was firstly conducted to determine whether there were equal variances between the provincial risk 

levels displayed in the risk assessment, and the impact levels within provinces expressed in the literature, for each drought event. 

The F-value (test statistic), degrees of freedom and the two-tailed p-value indicating the level of marginal significance within 

the test, were recorded. A Student’s t-test (assuming equal or unequal variances depending on F-test results) was then conducted 

to determine the significance of difference between the drought risk levels indicated by the assessment and the impact levels 495 

indicated in literature for each province during each drought event. The t-value (test statistic), degrees of freedom and the two-

tailed p-value were recorded. The use of two-tailed p values instead of one-tailed p values was due to the small number of 

literature sources investigated. Two-tailed p-value accounts for smaller sample sizes and tests for the possibility of positive or 

negative differences in the samples. Statistical analyses were conducted to determine if there were significant differences between 

the drought risk level indicated by the risk assessment and the risk level indicated by the literature for each PNG province for 500 

each of the drought years under investigation (2015-16 and 2019-20)
10

. An F-test was firstly conducted to determine whether 

there were equal variances between the levels displayed in the risk assessment and the levels expressed in the literature for the 

2015-2016 drought event. The F-value (test statistic), degrees of freedom and the two-tailed p-value indicating the level of 

marginal significance within the test, were recorded. A Student’s t-test (assuming equal or unequal variances depending on F-

test results) was then conducted to determine the significance of difference of the drought risk levels indicated by the assessment 505 

and the levels indicated in literature for each province. The t-value (test statistic), degrees of freedom and the two-tailed p-value 

were recorded. This process was repeated for the 2019-2020 drought event results. T-test assumptions were checked by plotting 

the data distribution on boxplots. All assumptions were met, thus the aforementioned tests proceeded. All statistical tests used α 

= 0.05. 

 510 

2.2.4 Methodology: Part 4 

A sensitivity analysis was conducted for the risk assessment results to determine the likely contribution of indicators to the index 

they inform. Sensitivity analysis is used to determine how different values of an independent variable (in this case individual 

indicators) affect a particular dependent variable (in this case the hazard, vulnerability of exposure index) under a provided set 

of assumptions. A Sensitivity Index (SI) was calculated, indicating the sensitivity of the index in question to the individual 515 

indicator in question. A high SI means high sensitivity, vice versa, with ‘sensitivity’ meaning the magnitude of the index reaction 

to changes in indicator data.  

 

 

9 Statistical analyses were performed in Microsoft Excel. 

10 Statistical analyses were performed in Microsoft Excel.  
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The 2015 year was used as a case study for the sensitivity analysis, as it was the most critical drought year indicated by the risk 

assessment and identified in the literature. All indicator and index data for each province in the 2015 year, was inputted into 520 

excel. Data tables were created for each indicator in each index. For example, a separate data table was made for SPI and VHI 

which contribute to the hazard index. In the data table, the indicator data value in question was instructed to change in 0.1 

increments (spanning from 0.1 to 1). Using the What-If analysis function in Microsoft Excel, these data tables were populated 

with output results, in this case the relevant index (hazard, vulnerability, or exposure) output in response to the change in the 

indicator value in question. The output values were then used to calculate the Sensitivity Index (SI). The SI was calculated based 525 

on an equation (equation 4) deemed useful in past studies (Farok and Homayouni, 2018). 

 

SI = (Dmax - Dmin)/ Dmax                      (4) 

where Dmax is the output result (hazard, vulnerability, or exposure value) when the indicator value in question is set at its 

maximum value and Dmin is the result for the minimum indicator value.  530 

 

This process was repeated for all provinces, meaning an SI was produced for each of the 10 indicators used in this study, for 

each of the 22 provinces investigated. An overall SI for each of the 10 indicators was calculated from averaging the provincial 

SI values. The higher the indicator SI is, the more sensitive the relative index (hazard, vulnerability, or exposure) is to that 

indicator. The average SI value was used to rank each indicator in terms of sensitivity (first being the most sensitive) in each of 535 

the three indices (hazard, vulnerability, and exposure). As it is known that indices comprising of indicators with a high sensitivity 

index (SI) have a likely reduced robustness, a credibility rank was able to be given to each indicator in each of the three indices, 

based on the sensitivity results (first being the most credible for inclusion in the index) (Anand e t al., 2019).  

 

3. Results 540 

3.1 Selected indicators for risk assessment 

The selected indicators are listed, and the comprehensive selection criteria is described in Tables 5, 7 and 9 in which details are 

provided on the reasoning behind hazard, vulnerability, and exposure indicator selection respectively. Tables 6, 8 and 10 list 

other potential hazard, vulnerability, and exposure indicators respectively and why each was omitted from this study.  

 545 

For hazard, SPI and VHI were chosen for use in this study, and Rainfall Deficiency, the Soil Moisture Deficit Index, and the 

Standardised Water Level Index Normalized Difference Vegetation Index (NDVI) were not chosen for inclusion in this study. 

 

For vulnerability, Percentage of Children Weighed at Clinics Less than 80% Weight for Age 0 to 4 years old, Key Crop 

Replacement Cost, Staple Crop Tolerance Scores, and Agricultural Occupation were selected as indicators, and Average 550 

household consumption of staple food, Average Household Income, Education, and Key crop production were not chosen for 

this study. 

 

For exposure, Land Use, Elevation Type, Population Density, and Access to Safe Drinking Water were chosen as indicators for 

this study, and Access to Roads, Access to Land Resources, Access to Technology, Access to Social Networks, Access to Market, 555 

On-farm Diversification, and the Aridity Index were not selected for use in this study. 
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3.2 Risk assessment and validation results 

The 2014, 2015 and 2016 drought risk assessments determined that most the majority of provinces had severe or extreme drought 

risk levels (Fig. 4)(Table 2), thus a drought event is suspected as occurring or commencing across the country during these years. 

The 2017 and 2018 drought risk assessments indicated most provinces as having mild or moderate drought risk levels (Fig. 560 

4)(Table 2), thus a drought event is not suspected, and these were likely non-drought years. In the 2019 and 2020 drought risk 

assessments, slightly more provinces displayed a severe or extreme level than a mild or moderate drought risk levels (Fig. 

4)(Table 2), therefore a drought event is suspected as occurring or commencing in this period.  

 

The literature investigated expressed that a drought event occurred in 2015-2016 as well as in 2019-2020 with all sources 565 

describing 2015-2016 as experiencing severe to extreme drought impacts and most sources describing 2019-2020 as experiencing 

moderate drought impact (Table 11)(Table 3), whilst 2017 and 2018 were reported as non-drought years (Kuleshov et al., 2020).  

 

In all but one source, 2014 was reported as a non-drought year. This is consistent with the drought risk assessment results, with 

2014 being the exception as it was suspected as a drought year from the risk assessment results and was only mentioned as a 570 

drought year in one of the literature sources investigated (Burivalova et al., 2018). Refer to Fig. 5 Figure 4 for the mapped hazard, 

vulnerability, exposure, and risk results for 2014.  

 

The 2014 anomaly was further investigated by the production of monthly drought risk maps throughout the year which were 

used to determine how the risk assessment was performing throughout the year. Results show drought conditions commencing 575 

or occurring in March-July and again in November-December, with the risk levels in November and December being slightly 

more intense than those expressed in March-July (Fig. 6)(Table 4).  

 

No statistically significant variation was displayed between the severity levels described in the risk assessment versus the 

literature for the 2015-2016 event (F18=0.86, p=0.37) (Appendix A) and the 2019-2020 event (F17=0.71, p=0.25) (Appendix B). 580 

There was no significant difference between the severity levels recorded for the 22 PNG provinces given by the risk assessment 

compared to the literature for both the 2015-2016 drought event (t36=-1.70, p=0.10) (Appendix C) and the 2019-2020 drought 

event (t34=1.51, p=0.14) (Appendix D). Refer to Table 12 Table 5 for the severity levels of each province during the 2015-2016 

and 2019-2020 drought periods given by the literature. Refer to Fig. 7, 8, 9 and 10 Figures 5, 6, 7 and 8 for the severity levels of 

each province during the 2015-2016 and 2019-2020 drought periods given by the risk assessment.  585 

 

The risk assessment reported the five most at-risk provinces during the 2015-2016 period as Central (average risk index value 

of 0.82), West Sepik (average risk index value of 0.81), Northern (average risk index value of 0.76), Gulf Province (average risk 

index value of 0.75), and West New Britain (average risk index value of 0.74) (Fig. 7 and 8)(Figures 5 and 6). Similarly, during 

the 2019-2020 period, Central (average risk index value of 0.70), Southern Highlands (average risk index value of 0.67), Gulf 590 

Province (average risk index value of 0.66), West Sepik (average risk index value of 0.64), and Northern (average risk index 

value of 0.64) were the five most at-risk provinces (Fig. 9 and 10)(Figures 7 and 8).  

 

Northern, West Sepik and West New Britain were mentioned in the literature among the most affected provinces during the 

2015-2016 period, however Central and Gulf Province were not included among the most affected (Table 12)(Table 5). For the 595 
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2019-2020 period, Central, Southern Highlands, Gulf Province and Northern (Oro) were mentioned among the most affected 

provinces in the literature (Table 12)(Table 5). However, West Sepik was not mentioned in any of the sources investigated.  

 

Results display a valid identification of a strong drought event in 2015-2016 and moderate drought event in 2019-2020 by the 

risk assessment. The strong event which occurred in 2015-2016 is further detailed by monthly risk index maps indicating the 600 

transition of most provinces into extreme drought risk levels in July 2015. Figure 11 Table 6 shows the heightening of drought 

risk from November 2014 to July 2015 for most provinces, with drought risk levels peaking in October-December 2015 and then 

slightly reducing at the commencement of 2016.  

3.3 Sensitivity Analysis Results 

The validity of the risk assessment is further confirmed by sensitivity analysis results examining the robustness of the individual 605 

indices (hazard, vulnerability, and exposure) used in the assessment. All indicator SI’s were below or just over 0.5, the highest 

being SPI with 0.56. SI values 0.5 or below are considered low, with SPI’s 0.56 value still deemed relatively low, meaning that 

the hazard, vulnerability, and exposure indices are essentially robust rather than sensitive (Anand e t al., 2019).  

 

The results of the 2015 case study sensitivity analysis show that the hazard index is more sensitive to SPI compared to VHI, 610 

meaning that changes in SPI affect the hazard index more greatly than changes in VHI. Thus, SPI is the indicator ranked as 1st 

in hazard sensitivity and 2nd in likely credibility (Table 13). 

 

The vulnerability index is seen to be most sensitive to the Staple Crop Tolerance Score Indicator, thus it is ranked as 1st in 

vulnerability sensitivity, and is likely the least credible vulnerability index. Agricultural Occupation is ranked 2nd with a slightly 615 

lower SI value than Staple Crop Tolerance Score. Child Malnourishment and Key Crop Replacement Cost have similar SI values, 

with the SI given for Child Malnourishment being slightly greater than that for Key Crop Replacement cost, therefore they are 

ranked 3rd and 4th respectively in terms of vulnerability sensitivity (Table 13).  

 

The exposure index sensitivity analysis results show that the exposure index is most sensitive to land use, thus land use is ranked 620 

1st in exposure sensitivity with the greatest SI value, and 4th in likely credibility. The SI values for the remaining three exposure 

indicators are similar, with elevation type giving an SI of 0.34, population density 0.32 and access to safe drinking water 0.31, 

resulting in a 2nd, 3rd and 4th ranking respectively for exposure sensitivity (Table 13). 

 

Overall, the SI values of each indicator within each of the three indices did not greatly differ, the greatest being a 0.1 difference 625 

between key crop replacement cost (SI of 0.31) and staple crop tolerance score (SI of 0.41). Thus, credibility was similar for all 

indicators within each of the hazard, vulnerability, and exposure indices.  

4. Discussion 

4.1 PNG drought events indicated by risk assessment  

The drought risk assessment methodology used in this study was validated through a retrospective, dynamic historical risk 630 

assessment paired with a literature review. 2014 was identified as an anomalous year, in which a mild drought was suspected as 

occurring. 2017 and 2018 were both identified as non-drought years. As expected, the drought risk assessment identified a 
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suspected drought event occurring or commencing in 2015-2016 as well as in 2019-2020; literature confirmed the occurrence of 

these suspected drought events in PNG.  

 635 

There was one discrepancy in the risk assessment results for 2014. The drought risk assessment indicated that it was a moderate 

drought year, whereas most literature describe it as a non-drought year, with only one source including it as a year in the 2015-

2016 drought event (Burivalova et al., 2018). The monthly risk assessment conducted for all months during 2014 indicated two 

periods in which drought was suspected, in March-July and November-December. In most PNG provinces, seasonal rainfall 

usually peaks between December-April with drier conditions commonly following in July-August (Regional Bureau for Asia & 640 

the Pacfic and Food Security Markets and Vulnerability Analysis Unit, 2015). Thus, the drought conditions indicated during 

March-July may have been due to normal seasonal rainfall patterns. The November-December drought period is not consistent 

with the normal seasonal patterns of PNG. However, this may be explained by the commencement of the strong El Niño event 

which then heightened into a widely reported drought event during 2015-2016. Reports of below-average rainfall were recorded 

as early as October 2014, for the 2015-2016 El Niño event (Regional Bureau for Asia & the Pacfic and Food Security Markets 645 

and Vulnerability Analysis Unit, 2015). For this study, this discrepancy does not invalidate the risk assessment methodology as 

there is a logical reason for its occurrence. In future research, the results should be validated with further ‘ground truth’ 

investigation.  

 

Although 2017 and 2018 were indicated as non-drought years, most provinces still displayed moderate levels of drought risk. 650 

Only one mild risk level was observed throughout the entire retrospective risk assessment, in Manus province during the 2017 

year. This is not an unexpected result, as PNG is a highly vulnerable and exposed country to drought. Therefore, the vulnerability 

and exposure indices are likely to be consistently high for most years across PNG provinces. With two out of the three indices 

likely being at high levels, it is not radical to suggest that the final drought risk index would be higher than mild for most years. 

In non-drought years such as 2017 and 2018, where hazard is low but vulnerability and/or exposure is high across PNG provinces, 655 

it is the time to be proactive and improve adaptive capacity. If management practices are put in place during non-drought years 

to reduce the levels of vulnerability and exposure, when a drought hazard event commences the risk of destructive impacts can 

be reduced. If preparedness measures were put into place during 2017 and 2018, the impacts experienced during the 2019-2020 

drought event could have potentially been lessened. 

 660 

It is widely reported that a strong drought event commenced in PNG at the beginning of 2015 and reached its peak during 2016 

(Kuleshov et al., 2020; Chua et al., 2020; Gwatirisa et al., 2017; Jacka, 2020; Varotsos et al., 2018; Rimes and Papua New Guinea 

National Weather Service, 2017). Kuleshov et al. (2020) attributed the drought of 2015-2016 to a strong El Niño which occurred 

during these years. This strong El Niño phase was paired with a positive IOD phase; the interacting impacts of both climate 

drivers resulted in devastating negative rainfall anomalies across the entirety of PNG (Bhardwaj et al., 2021b). It is explained in 665 

the literature that the 2015-2016 drought event affected approximately 40% of PNG’s population, with drought-caused food 

shortages impacting half a million people throughout PNG’s provinces (Kuleshov et al., 2020).  

 

A recent drought event occurring in PNG, which commenced in 2019 and continued throughout 2020, has been recently reported 

by various sources (Johnson et al., 2019; Bang and Crimp, 2019; Null, 2021; Papua New Guinea National Weather Service, 670 

2020). Unlike the 2015-2016 drought event, drought conditions in PNG during 2019-2020 were due to a La Niña event. The 

second half of 2020 saw the emergence of a moderate to strong La Niña event that is causing extreme weather in many parts of 



 

19 

 

the world. A neutral IOD phase was also evident, thus La Niña impacts were not exacerbated by the IOD. The impacts of La 

Niña on rainfall patterns vary across PNG. In the past, La Niña has resulted in wetter conditions over most of the country, except 

in the eastern islands of Milne Bay region (Food and Agriculture Organisation of the United Nations, 2021). The 2019-2020 La 675 

Niña caused below-average rainfall in PNG, particularly in the Northern parts of PNG (Food Security Cluster et al., 2021). With 

La Niña alone influencing the 2019-2020 event, it was expected to be weaker than the strong drought of 2015-2016 (driven by 

both El Niño and positive IOD). 

 

The risk assessment further showed that the drought risk severity levels identified for each PNG province during each identified 680 

drought event (2015-2016 and 2019-2020) differed. The 2015-2016 drought risk maps displayed severe and extreme drought 

risk levels throughout all PNG provinces, whereas provinces showed moderate drought risk levels during the 2019-2020 drought. 

Thus, the 2015-2016 event was accurately reported as more extreme, in terms of drought risk, than the 2019-2020 event, and 

would therefore be expected to have caused more extreme impacts on PNG communities. As anticipated, the literature details 

extreme negative impacts of the 2015-2016 drought and moderate negative impacts of the 2019-2020 drought.  685 

The results also provided evidence as to which specific provinces were most at risk during each drought period. Central, West 

Sepik, Northern and Gulf Province were indicated by the risk assessment to be among the five most at-risk provinces for both 

the 2015-2016 and the 2019-2020 drought periods. This suggests that these four provinces are consistently at high-risk to drought 

compared to other PNG provinces, likely to persist in the future, and therefore should be of focus for improved management 

resilience in the future. However, slight discrepancies were observed when the 2015-2016 period results were compared with 690 

literature findings, which challenges the validity of this conclusion.  

 

The importance and usability of the risk assessment results is further demonstrated by the monthly drought risk maps produced 

for the 2015-2016 drought event. The risk assessment accurately displayed high drought risk levels leading up to the peak of the 

drought in mid-2015 until November/December 2015 (Chua et al., 2020). Most provinces were indicated to have severe drought 695 

risk levels from November 2014 until June 2015, after which the drought heightened to an extreme point. Thus, the risk 

assessment may have informed the decision-makers of each PNG province of the severity of drought risk which the commencing 

drought event posed to them. As a result, local communities in PNG provinces could have implemented proactive drought 

management strategies and been better prepared for the impacts of the drought event before the drought peaked, potentially 

saving lives (Kanua et al., 2016).  700 

4.2 Comparison to Literature Findings 

The risk assessment not only indicated when a drought event was likely occurring, but it also showed the differing severity levels 

experienced by each PNG province during each indicated drought event (2015-2016 and 2019-2020). The 2015-2016 drought 

risk maps displayed a severe to extreme drought event likely occurring, whereas a moderate drought event was shown as likely 

occurring in 2019-2020. When compared to literature findings, these results are corroborated.  705 

 

The 2015-2016 drought event is consistently described in the literature as having extreme impact on local communities in each 

PNG province. A poverty analysis in the lowlands of PNG conducted by Schmidt et al. (2021) stated that the severe El Niño 

event of 2015-2016 decimated a critical amount of PNG’s local crop production which left PNG communities in a food crisis. A 

detailed survey found that such a climate shock had critical consequences for household welfare, contributing to a rise in 710 

households below the poverty line, particularly in rural and lowland areas (Schmidt et al., 2021). A study by Mckenna and Yakam 
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(2021) similarly sought to understand the effects of climate change felt by local people in PNG, specifically focusing on the local 

market sellers in Madang Province. Interview results indicated that adverse effects of the 2015-2016 drought hazard event were 

experienced by locals in Madang Province, particularly by farmers, who described serious negative impacts on planting and 

overall agricultural production (Mckenna and Yakam, 2021). In an assessment of village food needs after a disaster event in 715 

PNG by Kanua et al. (2016), the negative impacts of the 2015-2016 drought are further emphasized. It is stated that even in 

locations that commonly experience drier conditions, where farmers adjust their agricultural processes accordingly, the dry 

conditions were so extreme throughout 2015-2016 that such farmers suffered crop loss (Kanua et al., 2016). Resultant food 

shortages, as well as the loss of clean drinking water particularly in Western Province and the highlands, caused death rates to 

increase (Kanua et al., 2016). 720 

 

In comparison, the impacts of the 2019-2020 drought event are primarily discussed as moderate rather than severe or extreme. 

However, the effects of the 2019-2020 drought event have not been widely discussed in peer-reviewed literature as it is such a 

recent event, but there are some sources that have similarly investigated drought conditions in PNG and the resulting impacts 

during 2019-2020. These sources have described the negative affect of dry conditions on agricultural production and food 725 

security (Food and Agriculture Organisation of the United Nations, 2021; Food Security Cluster et al., 2021). Areas mentioned 

as being of concern include the Gulf and Western Area, along with northern provinces and southern coastal provinces; this is 

consistent with the risk assessment results. The moderate rather than severe or extreme drought impacts on the agriculture sector, 

as a result of the 2019-2020 drought event, may be due to soil moisture levels being relatively well maintained across PNG 

during this time (2019).  730 

 

There were no irregularities with what was reported by the risk assessment and the literature regarding the most at-risk provinces 

for the 2019-2020 event, which suggests a high level of accuracy within the risk assessment results for 2019-2020. Whereas, 

when comparing risk levels indicated for specific provinces, slight discrepancies were detected for the 2015-2016 drought event 

results. Central and Gulf Province were indicated among the five most at-risk provinces by the risk assessment but were included 735 

in the most at-risk provinces described by the literature. This might have been because the majority (five out of eight) of the 

‘ground-truth’ sources used to investigate the impacts of the 2015-2016 drought event focused on only one aspect of drought 

(meteorological, agricultural, hydrological, or socioeconomic), and thus did not consider the holistic impacts suffered by specific 

provinces like Central and Gulf Province (Chua et al., 2020; Burivalova et al., 2018; Varotsos et al., 2018; Schmidt et al., 2021; 

Gwatirisa et al., 2017). Comparatively, the risk assessment methodology of this study incorporated indicators for all types of 740 

drought’s impacts to provide a comprehensive risk level for each province. It is not likely that discrepancy negates the overall 

validity of the risk assessment methodology as it is only slight, with all other results proving the methodology to be accurate.; 

further research should be conducted with a stronger ‘ground-truth’ comparison using first-hand local and expert perspectives 

(gathered through interviews) rather than what was recorded in the literature to verify.  

 745 

Overall, the literature findings corroborate the drought risk assessment results. Thus, it is likely that the disaster risk assessment 

methodology developed and tested in this research is valid. Validity can be further confirmed in additional investigations.  

4.3 The anomalous year of 2014 

There was one discrepancy in the risk assessment results for 2014. The drought risk assessment indicated that it was a moderate 

drought year, whereas most literature describe it as a non-drought year, with only one source including it as a year in the 2015-750 
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2016 drought event (Burivalova et al., 2018). Upon further consideration, it is not illogical that 2014 was indicated as a year in 

which a drought was commencing or occurring by the risk assessment. The risk assessment may have indicated 2014 to be a 

drought year as it was leading up to the extreme drought risk levels during the 2015-2016 drought event, and therefore may have 

reflected the strong risk which the following drought years posed. As the risk index provides information on not only the hazard 

conditions at the time investigated, but also the vulnerability and exposure conditions of the area investigated, it may be able to 755 

give some indication on the chance of drought occurring within the investigated area in the future.  

 

The monthly risk assessment conducted for all months during 2014 indicated two periods in which drought was suspected as 

commencing or occurring, in March-July and November-December. In most PNG provinces, seasonal rainfall usually peaks 

between December-April with drier conditions commonly following in July-August (Regional Bureau for Asia & the Pacfic and 760 

Food Security Markets and Vulnerability Analysis Unit, 2015). Thus, the dry conditions indicated during March-July may have 

been due to normal seasonal rainfall patterns which usually cause drier conditions around July across PNG provinces. The 

November-December period is more of an anomaly as it is not consistent with the normal seasonal patterns of PNG, which has 

rainfall peaking around December. However, this may be explained by the commencement of the strong El Niño event which 

then heightened into a widely reported drought event during 2015-2016. Reports of below-average rainfall were recorded as 765 

early as October 2014, for the 2015-2016 El Niño event (Regional Bureau for Asia & the Pacfic and Food Security Markets and 

Vulnerability Analysis Unit, 2015). For this study, this discrepancy does not reduce the accuracy or invalidate the risk assessment 

methodology as there is a logical reason for its occurrence. In the future research, the results should be validated with further 

‘ground truth’ investigation of what drought risk conditions were like in PNG throughout 2014 through surveys or interviews 

with local PNG people.  770 

4.3 Sensitivity analysis 

The calibre and reliability of the risk indices (hazard, vulnerability, and exposure) depend on the theoretical framework, indicator 

data availability, and how each index is accumulated. To enhance insight into the validity of selected indicators, and risk 

assessment results, a sensitivity analysis was performed. Sensitivity analysis is essential for reducing the uncertainties of the 

indices in the risk assessment and is therefore key to validating the risk assessment and strengthening confidence in insights 775 

users gain from the risk assessment results (Gorris and Yoe, 2014). The sensitivity analysis examines how the selected indicators 

affect the indices which they inform. If the dependant variable (index) noticeably changes when the input variable (indicator) 

changes over a range, then the dependant variable is sensitive to the independent variable. If the dependant variable does not 

change a lot when the independent variable varies, the dependant variable is deemed as insensitive or robust. If the indices remain 

robust when changing the values of the indicators that inform them, the credibility of the overall risk assessment is strengthened 780 

(Anand e t al., 2019). 

 

As no single indicator displayed a seriously high SI value, each indicator selected for use in the risk assessment is likely credible, 

meaning that each of the hazard, exposure and vulnerability indices is robust and able of representing the complex processes that 

lead to drought risk (Anand e t al., 2019). This improves the confidence able to be had in the results presented in this paper 785 

(Anand e t al., 2019). However, a review of the weighting applied to each indicator may be appropriate, based on the different 

SI values expressed and differences in likely credibility for inclusion in index calculations.  
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The expert weighting scheme applied to the hazard indicators gave SPI a weighting of 0.75, and VHI 0.25. The sensitivity 

analysis ranked SPI as 1st, with an SI value greater than VHI, meaning that the hazard component is more sensitive to changes 790 

in SPI rather than VHI. Results suggest that VHI is a more credible indicator compared to SPI, therefore more weight could be 

distributed to VHI than what is currently.  

  

Sensitivity analysis results suggest that the weighting of vulnerability indicators could be slightly reviewed. The vulnerability 

index is evidently most sensitive to changes in the staple crop tolerance score indicator; it is likely incorrect that it is weighted 795 

highest over the other indicators. Key crop average replacement cost was identified as the most credible indicator; it is logical 

that it should be weighted the highest among vulnerability indicators. Currently, it is weighted the second greatest. Similarly, 

more weight should be applied to the percentage of children weighed at clinics less than 80% weight for age 0 to 4 years old 

indicator as it was identified as the second most credible vulnerability indicator but is currently weighted the least. The weighting 

of agricultural occupation is likely valid as it is weighted second lowest and is seen to be the second lowest indicator in terms of 800 

credibility.  

 

Similarly, results suggest that the weighting of exposure indicators could undergo minor reassignment. The exposure index 

sensitivity analysis results show land use to be the 1st ranked indicator in terms of index sensitivity with the greatest SI value and 

ranked last among exposure indicators in terms of credibility. Currently, land use is weighted the greatest among exposure 805 

indicators; it is suggested that the weighting assigned to land use should be reduced. Elevation type, population density and 

access to safe drinking water gave similarly low SI values, therefore they likely have similarly high credibility. However, the 

exposure index was seen to be slightly more sensitive to changes in elevation type over population density, and population 

density over access to safe drinking water. As the most credible exposure indicator, access to safe drinking water should be 

weighted the greatest; it is currently weighted as the second greatest. Population density is weighted the second least among 810 

exposure indicators but is identified as the second most credible exposure indicator. Therefore, it may be appropriate to assign 

more weight to population density in the future.  

 

Whilst refinements to the weightings applied to hazard, vulnerability and exposure indicators are recommended in the future 

based on their likely credibility for inclusion in index calculations, these refinements would be minimal as the differences in SI 815 

values between indicators within each index were not serious. Thus, it is likely that the index calculations presented in this 

research are still valid.  

4.4 Increasing resilience through risk assessment and Integrated-Early Warning Systems 

This disaster risk assessment methodology has been developed with the intention of collaborating with an I-EWS. The combined 

results of this study, using drought in PNG as a case study, demonstrate that the risk assessment methodology is valid; thus, this 820 

novel methodology can be recommended for use in the future to inform the risk knowledge component of an I-EWS for disasters 

like drought and increase the disaster risk resilience of Pacific SIDS, like PNG. increase the disaster risk resilience of PNG 

communities and inform the risk knowledge component of an I-EWS for drought. Real-time monitoring information would be 

provided through the I-EWS, and risk assessment would complement this by providing dynamic disaster risk information. At a 

policy level, it would be intended that the risk assessment would come in at a higher level than the I-EWS, so that local decision 825 

makers are informed of their disaster risk to know what to look out for in the warnings given by the I-EWS and how to act in 

response to such warnings (e.g. prioritizing resources in the most at-risk provinces, planning water restrictions in certain areas 
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to avoid critical water shortages, formation and implementation of disease prevention and management plans in the most at-risk 

regions, etc.). Warnings that are framed in the context of risk would be provided on various timescales (mainly weekly and 

monthly updates), depending on user needs. Such warnings could be provided in climate bulletins, through warnings issued by 830 

National Weather Services (NWSs), and via online platforms. These products would include I-EWS information and results, like 

those given by Bhardwaj et al. (2021), paired with dynamic risk assessment information and results, and final recommendations 

for the proactive and suitable management of disasters in Pacific SIDS communities. Ideally, a risk assessment platform 

communicating risk information to local decision-makers and a platform disseminating user-centered I-EWS warnings would be 

developed and used as ‘side-by-side’ products.  835 

The adverse impacts caused by drought events seriously threaten PNG provinces, and if resilience to such disasters is not 

increased in the future, heightened drought events under climate change are likely to decimate local communities (Kuleshov et 

al., 2020). An I-EWS like the one conceptualised by Bhardwaj et al. (2021a,b) would have the potential to efficiently inform 

community preparedness to drought events if implemented in PNG. However, such a system would not be efficient without 

accurate risk knowledge. Thus, an accurate risk assessment methodology, such as the one developed in this study, could be vital 840 

for the development of an I-EWS for drought in PNG, as well as critical to informing proactive and suitable disaster risk 

management strategies in local PNG communities.  

 

The importance and usability of the novel risk assessment methodology developed in this research is further demonstrated by 

the monthly drought risk maps produced for the 2015-2016 drought event. The risk assessment accurately displayed high drought 845 

risk levels leading up to the peak of the drought in mid-2015 until November/December 2015 (Chua et al., 2020). Most provinces 

were indicated to have severe drought risk levels from November 2014 until June 2015, after which the drought heightened to 

an extreme point. The risk assessment may have informed the decision-makers of each PNG province of the severity of drought 

risk which the commencing drought event posed to them. As a result, local communities in PNG provinces could have 

implemented proactive drought management strategies and been better prepared for the impacts of the drought event before the 850 

drought peaked, potentially saving lives (Kanua et al., 2016).  

4.5 Study limitations and Further Research 

The disaster risk methodology developed and validated in this study provides the foundation for further research regarding 

disaster risk management and the implementation of an I-EWS for disasters like drought in SIDS like PNG; however, this study 

was limited by several factors.  855 

 

The indicator selection process used in the drought risk assessment methodology was comprehensive but could be improved. To 

propose a set of indicators really tailored to local users, the potential users and academic experts should be consulted, as 

recommended by Benzie et al., (2016). In this study it was not feasible to formally gauge the perspectives of users, but advice 

on relevant indicators was sought by PNG NWS. In future investigation, surveys and interviews will be conducted to formally 860 

gain the perspective of locals regarding what vulnerability and exposure indicators are most appropriate for use. This feedback 

will inform further refinements of the risk index for drought in PNG, given data is accurate and available.  

 

Although the risk assessment methodology was overall deemed accurate, this study was limited by several factors. The validation 

used literature sources discussing each drought period as the ground truth for what occurred during that time. A more reliable 865 

ground-truth would have been the perspectives of local PNG people who personally experienced the drought conditions and 
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ensuing impacts. Interviews could have been conducted like those executed by Mckenna and Yakam (2021) and Fragaszy et al. 

(2020). However, due to the COVID-19 situation in both PNG and Australia at the time of this study, interviews were not viable. 

Future research should consider interviewing local communities in each PNG province to determine a more robust ground truth 

of the conditions and effects of each drought event investigated. The validation method was also constrained by the fact that 870 

there were limited numbers of scientifically robust literature sources reporting on the 2019-2020 drought event, as it was a recent 

event. The PNG National Weather Service was consulted to ensure that the results from the 2019-2020 literature sources were 

true and accurate.  

 

This research presents a preliminary validation of a tailored risk assessment methodology which is conceptually applicable to 875 

the local level. The developed risk assessment methodology was intended to be tailored to a highly localized level, however due 

to data restraints, the provincial level was the most localized level able to be assessed in PNG. Data is severely limited at 

heightened local scales, e.g. for individual villages/cities. In the future, it would be useful to further validate the applicability of 

such a risk assessment methodology at a more localized scale through conducting a drought risk assessment for a specific local 

PNG village. Currently, such an investigation is beyond the scope of the research presented in the paper. 880 

 

Data was further limited for the hazard indicator of VHI. Space-based VHI data is only available from 2014 onwards. Whereas 

the SPI data record dates to 2001. To have a complete hazard index in the retrospectivehistorical risk assessment, the 

retrospectivehistorical period investigated had to begin from 2014. 2014-2020 is a shorter period of analysis, which limits the 

number of drought events and non-drought periods occurring within, resulting in lower confidence in results. A longer analysis 885 

would provide greater confidence in the risk assessment methodology. It is possible that the risk assessment could be performed 

for years prior to 2014 by using only SPI to inform the hazard index, or by replacing VHI with a different hazard indicator with 

data available for a longer period. However, it is deemed that for the risk assessment to be holistic and tailored, the hazard index 

should not rely only on one indicator. Additionally, different hazard indicators that could potentially replace VHI, like the 

Normalized difference vegetation index (NDVI) (which has raw data from the 80s onwards, and SEMDP processed data from 890 

2013 onwards) are not as accurate as VHI; VHI has been proven to be efficient and accurate, specifically for across PNG (Chua 

et al., 2020). 

 

Data availability was also limited for the exposure and vulnerability indicators, thus, the data available closest to the time 

investigated was used. This meant that the vulnerability and exposure indices were the same for both 2014 and 2015 as the data 895 

was not updated throughout those two years. However, as half the indicators in both the vulnerability and exposure are more 

static rather than dynamic (excluding agricultural occupation, key crop replacement cost, population density and access to safe 

drinking water), it is not expected that values would largely change on a yearly basis regardless, rather it would be more likely 

for values to change every two or three years (Aitkenhead et al., 2021). Therefore, the limited data availability for vulnerability 

and exposure indicators in 2014-2015 will not likely have a large effect on the credibility of the results.  900 

 

Data availability is constrained throughout many SIDS like PNG; investment in open-sourced and cloud-based data platforms 

would allow for collaboration between separate entities that have collected data so that all relevant data can be combined, stored, 

and accessed from the same place (Sun et al., 2020).  

 905 
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Additionally, the hazard variables used were 3-month cumulated values (3-month SPI and VHI), which potentially reduces the 

informative value of the hazard and risk index to give a warning of high risk early enough in advance to act proactively. 

Furthermore, the vulnerability and exposure indicator data do not include forecasted data at all. Although forecasted data is not 

available for the vulnerability and exposure indicators, as a holistic drought risk index requires these two components in addition 

to the hazard component. The risk assessment is not intended to predict drought events before they happen, it is used to determine 910 

the risk of a drought event occurring and the relative impact that might be faced by specific provinces during a drought. Therefore, 

this limitation is not likely to reduce the value of the risk assessment methodology.  

4.6 Research Significance and Conclusions 

The occurrence of natural hazards is expected to be exacerbated under anthropogenic climate change, with the impacts of hazards 

predicted to critically affect agricultural productivity, food security, and general economic productivity, severely reducing the 915 

financial and social health of local communities in Pacific SIDS. The development of a tailored and accurate disaster risk 

assessment methodology is vital to improving risk knowledge for the development and implementation of an I-EWS and resilient 

disaster risk management strategies in vulnerable communities. The risk assessment methodology developed and validated in 

this research is novel; it combined the most efficient approaches of past risk assessment investigations to formulate and deem 

valid a holistic, accurate and tailored risk assessment methodology to effectively improve risk knowledge in Pacific SIDS. The 920 

novel, dynamic disaster risk assessment methodology demonstrated in this study was overall deemed valid and robust, through 

a case study of drought risk assessment in PNG, and thus can be recommended for use in future disaster risk management 

practices in vulnerable Pacific SIDS. 

 

In the past, risk knowledge is consistently inadequate and a standard, integrated risk assessment methodology has not been 925 

developed (Hagenlocher et al. 2019). There is a need to develop an accurate, integrated risk assessment methodology that can 

be applied on a multi-hazard and multi-country scale across Pacific SIDS. This is the intention of this risk assessment 

methodology. This methodology establishes a replicable, standard practice for expanding risk knowledge in Pacific SIDS, 

negating the need to develop a new methodological process for each country and each hazard experienced, which would in turn 

conserve time and resources. In Pacific SIDS, both time and resources are limited for risk management decision makers, thus 930 

the development of such a risk assessment methodology would be critical (Finucane 2009). 

This risk assessment methodology is not only easily replicable, but it also utilises effective methodological aspects. For risk 

assessments to effectively inform proactive and suitable disaster risk management in local areas and vulnerable communities, 

they must be tailored to the area of study (Wilhelmi and Wilhite 2002). This research presents a methodology emphasising 

tailored risk assessment. Out of the disaster risk assessments that have been conducted in Pacific SIDS, they have been 935 

conducted on a broader (national/regional) level rather than local area (provinces) or community level (Hagenlocher et al. 

2019). This assessment is conducted at the most local level possible at this time, the provincial level. In the future, it would be 

beneficial to investigate risk at the town/village level, however this is beyond the scope of the current research because of 

travel limitations, etc.  

Overall, this research establishes a strong foundation for tailored and accurate disaster risk assessments, using drought in PNG 940 

as a case study, with potential for application to other disaster types in other Pacific SIDS. However, improvements are vital for 

future investigations applying the disaster risk assessment methodology. To increase the robustness of the hazard, vulnerability, 

exposure indices and subsequent risk index, the indicator selection process should include consultation with locals and other 
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relevant users. To further verify the accuracy of the methodology, risk assessment results should be compared to local and expert 

perspectives as a ground-truth source, rather than literature. Additionally, future research should also consider dissemination of 945 

risk assessment results to local communities to ensure that results are user-centered and accessible. Effective future 

implementation of valid risk assessments to inform risk knowledge of a user-centred I-EWS and resilient risk management in 

local communities is critical for improving disaster risk management and the adaptive capacity of local communities to disaster 

events (Pulwarty and Sivakumar 2014). 

4.6 Further research 950 

The risk assessment methodology developed in this research is novel; it combined the most efficient approaches of past risk 

assessment investigations to formulate a holistic, accurate and tailored risk assessment methodology to effectively improve risk 

knowledge in Pacific SIDS. This methodology provides the foundation for further research regarding disaster risk management 

and the implementation of an I-EWS for drought in SIDS like PNG. Future research on the communication of risk assessment 

results to local communities is required to ensure that the risk assessment results are user centered. Additionally, further work is 955 

needed to integrate the risk assessment with the I-EWS being developed as part of CREWS activities.  

 

At a policy level, it would be intended that the risk assessment would come in at a higher level than the I-EWS, so that local 

decision makers are informed of their disaster risk to know what to look out for in the warnings given by the I-EWS and how to 

act in response to such warnings (e.g. prioritizing resources in the most at-risk provinces, planning water restrictions in certain 960 

areas to avoid critical water shortages, formation and implementation of disease prevention and management plans in the most 

at-risk regions, etc.). Ideally, a risk assessment platform communicating risk information to local decision-makers and a user-

centered I-EWS would be developed and used as ‘side-by-side’ products aimed at informing proactive and suitable management 

of natural hazards in local communities.  

5. Conclusion 965 

The occurrence of natural hazards is expected to be exacerbated under anthropogenic climate change, with the impacts of hazards 

predicted to critically affect agricultural productivity, food security, and general economic productivity, severely reducing the 

financial and social health of local communities in Pacific SIDS. The novel drought risk assessment methodology demonstrated 

in this study was overall deemed valid, and thus can be recommended for use in future disaster risk management practices in 

vulnerable Pacific SIDS. A strong foundation for tailored and accurate disaster risk assessments has been developed, with future 970 

research required to further verify the accuracy of the methodology by comparing the results to local and expert perspectives. 

The development of this tailored and accurate disaster risk assessment methodology is vital to improving risk knowledge for the 

development and implementation of an I-EWS and resilient disaster risk management strategies in vulnerable communities.  

6. Appendices 

6.1 Appendix A 975 

Table displaying F-test results for the 2015-2016 drought period risk assessment versus literature results.  

Statistic df (degrees of freedom) F statistic P-value 
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Value 18 0.86 0.37 

 

6.2 Appendix B 

Table displaying F-test results for the 2019-2020 drought period risk assessment versus literature results.  

Statistic df (degrees of freedom) F statistic P-value 

Value 17 0.71 0.25 

 980 

6.3 Appendix C 

Table displaying t-test results for the 2015-2016 drought period risk assessment versus literature results.  

Statistic df (degrees of freedom) t statistic P-value 

Value 36 -1.70 0.10 

 

6.4 Appendix D 

Table displaying t-test results for the 2019-2020 drought period risk assessment versus literature results.  985 

Statistic df (degrees of freedom) t statistic P-value 

Value 34 1.51 0.14 

 

Indicator selection for the Hazard, Vulnerability and Exposure Indices which contributed to the drought risk assessment of each 

drought event investigated is shown below.  

Index Indicator Reason for Selection 

Hazard Standardised 

Precipitation Index 

(SPI) (3-month) 

 

- Meteorological drought indicator.  

- Given ‘green light’ by World Meteorological Organisation (WMO) and 

recommended as starting point for drought hazard assessment. 

- Proven reliable as a drought hazard indicator in a previous drought detection 

study in PNG (Chua et al., 2020). 

- Used consistently in past drought risk assessments conducted in other 

countries with a drought-prone climate like PNG (Khan et al., 2008; Rahmat 

et al., 2014) 

- Quality data from Space-Based Monitoring Observations available through 

National Oceanic Atmospheric Administration (NOAA) and Japan 

Aerospace Exploration Agency (JAXA).  

Vegetation Health 

Index (VHI) (3-

month) 

- Meteorological drought indicator.  

- Given ‘green light’ by World Meteorological Organisation (WMO). 

- Proven reliable as a drought hazard indicator in a previous drought detection 

study in PNG (Chua et al., 2020). 

- Used consistently in past drought risk assessments conducted in other 

countries with a drought-prone climate like PNG (Bhardwaj et al., 2021a; 

Dalezios et al., 2014).  

- Quality data from Space-Based Monitoring Observations available through 

NOAA and JAXA. 
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6.2 Appendix B 990 

List of Indicator Data Sources: 

1. Hazard indicators: SPI and VHI from NOAA database (National Oceanic Atmospheric Administration (NOAA), 

2020) and JAXA database (Japan Aerospace Exploration Agency (JAXA), 2020).  

Vulnerability Percentage of 

Children Weighed at 

Clinics Less than 

80% Weight for Age 

0 to 4 years old (%) 

- Indicator for Health Sector.  

- Use in reliable past studies investigating and assessing the effects of drought 

within study areas with similar socioeconomic characteristics as PNG 

(Hirvonen et al., 2020; Cooper et al., 2019).  

- Data is available for recent years from PNG National Weather Service (NWS) 

and United Nations Development Programme (UNDP).  

Agricultural 

Occupation (% of 

population employed 

in agriculture) 

- Indicator for Agricultural Sector.  

- Use in reliable past studies investigating and assessing the effects of drought 

within study areas with similar socioeconomic characteristics as PNG 

(Nasrollahi et al., 2018; Mainali and Pricope, 2019). 

- Data is available for recent years from PNG National Statistical Office.  

Key crop 

replacement cost 

(USD) 

- Indicator for Economy (also considers socioeconomic drought).  

- Use in reliable past studies investigating and assessing the effects of drought 

within study areas with similar socioeconomic characteristics as PNG 

(Mohmmed et al., 2018; Abid et al., 2016). 

- Data is available for recent years from PNG National Weather Service (NWS) 

and United Nations Development Programme (UNDP). 

Staple crop tolerance 

scores (maximum 

consecutive drought 

days tolerated (days) 

(14-30)).  

- Indicator for Environment and Agricultural Sector (considers agricultural 

drought).  

- Use in reliable past studies investigating and assessing the effects of drought 

within study areas with similar socioeconomic characteristics as PNG (Antwi 

et al., 2015; Ayantunde et al., 2015). 

- Data is available for recent years from PNG National Weather Service (NWS) 

and United Nations Development Programme (UNDP). 

Exposure Land use (type) - Indicator for Environment and Agricultural Sector.  

- Use in reliable past studies investigating and assessing the effects of drought 

within study areas with similar socio-geographic characteristics as PNG 

(Rahmati et al., 2020; Shahid and Behrawan, 2008). 

- Data is available for recent years from PNG National Weather Service (NWS) 

and United Nations Development Programme (UNDP). 

Elevation (type) 

(Highland/Lowland/

Average) 

- Indicator for Environment and Agricultural Sector.  

- Use in reliable past studies investigating and assessing the effects of drought 

within study areas with similar socio-geographic characteristics as PNG (Han 

et al., 2015; Sun et al., 2020). 

- Data is available from open-sourced GIS platforms. 

Population density - Indicator for Social Sector as it is an indirect indicator for infrastructure and 

health service accessibility.  

- Use in reliable past studies investigating and assessing the effects of drought 

within study areas with similar socio-geographic characteristics as PNG 

(Nasrollahi et al., 2018; Pei et al., 2018). 

- Data is available for recent years from PNG National Statistical Office. 

Access to safe 

drinking water (% of 

population with 

access to safe 

drinking water) 

- Indicator for Social Sector and Households (also considers hydrological 

drought).  

- Use in reliable past studies investigating and assessing the effects of drought 

within study areas with similar socio-geographic characteristics as PNG 

(Limones et al., 2020; Frischen et al., 2020b). 

- Data is available for recent years from PNG National Statistical Office. 
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2. Vulnerability indicators: Percentage of Children Weighed at Clinics Less than 80% Weight for Age 0 to 4 years old, 

Key crop replacement cost and Staple crop tolerance scores -from PNG National Weather Service (NWS) (PNG 995 

National Weather Service (NWS), 2017) and United Nations Development Programme (UNDP) (United Nations 

Development Programme (UNDP), 2017); Agricultural Occupation -from PNG National Statistical Office (PNG 

National Statistical Office, 2018).  

3. Exposure indicators: Land use -from PNG National Weather Service (NWS) (PNG National Weather Service (NWS), 

2017) and United Nations Development Programme (UNDP) (United Nations Development Programme (UNDP), 1000 

2017); Elevation -Open-sourced GIS platforms; Population density and Access to safe drinking water -(PNG National 

Statistical Office, 2018).  

6.3 Appendix C 

An expert weighting scheme for the relative hazard, vulnerability and exposure indicators was developed, based on the relative 

importance and contribution of each factor for the specific index which it informs. This weighting scheme was developed on a 1005 

0-1 scale, with 0 indicating no probable contribution to the relative index and 1 being total probable contribution to the relative 

index (Frischen et al., 2020a; Dayal et al., 2018). The numerical weightings assigned to each indicator were determined by 

investigating expert weights provided in earlier studies as well as seeking advice from PNG NWS. The weights assigned to each 

Hazard, Vulnerability and Exposure indicator are shown below. 

 1010 
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in this research was open-sourced data gathered from public databases. Spaced-based observation data underwent transformation 

from what is publicly available. This data may be available upon reasonable request. 

Index Indicator Assigned Weight 

Hazard SPI 0.75 

VHI 0.25 

Total 1.0 

Vulnerability Agricultural Occupation 0.2 

Percentage of Children Weighed at Clinics Less than 80% Weight for Age 0-4 

years old 

0.1 

Key Crop Replacement Cost 0.3 

Staple Crop Tolerance Score 0.4 

Total 1.0 

Exposure Land Use 0.35 

Elevation 0.15 

Access to Safe Drinking Water 0.3 

Population Density  0.2 

Total 1.0 
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 1390 

Figure 11: Multi-Source Weighted-Ensemble Precipitation (MSWEP) rainfall deciles in (a) La Niña events (La Niña years being 1988, 1989, 

1995, 1998, 1999, 2000, 2007, 2010, 2011 and 2020) and (b) El Niño events (El Niño years being 1982, 1987, 1991, 1992, 1994, 1997, 2002, 

2006, and 2015) compared to a base period of 1980–2020. Figure adapted from Bhardwaj et al. 2021b. 
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 1395 

Figure 22. Multi-Source Weighted-Ensemble Precipitation (MSWEP) rainfall deciles in response to various climate drivers: (a) Negative IOD 

phase (during 1981, 1989, 1992, 1996, 1998, 2010, 2014, and 2016 years), (b) Positive IOD phase (during 1982, 1983, 1994, 1997, 2006, 2012, 

2015, and 2019 years), (c) Negative IOD phase and La Niña ENSO phase (during 1989, 1998, and 2010 years) and (d) Positive IOD phase and 

El Niño ENSO phase (during 1982, 1994, 1997, 2006, and 2015 years). Deciles are compared to a 1980–2020 base period. Figure adapted 

from Bhardwaj et al. 2021b. 1400 
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Figure 3. PNG Map indicating each of the 22 PNG provinces with shortened names for Eastern Highlands (EH), Southern Highlands (SH) and 

Western Highlands (WH). Map was produced using ArcGIS Pro with an open-source base map.   

 1420 

Table 1. Hazard, Vulnerability and Exposure indicators selected for the PNG Drought Risk Assessment. The data source, data resolution 

and coverage, and weighting for each indicator is included.  
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11 As there is limited data for direct indicators of accessibility in terms of road accessibility and health service accessibility, 

population density has been used as an indirect indicator for accessibility as it is associated with the accessibility level for each 

province; provinces with low population densities have more rural communities which are expected to have reduced accessibility 

to infrastructure (e.g. roads) and health services compared to urban communities. 

Index Indicator 

Hazard Standardised Precipitation Index (SPI) (3-month) 

Vegetation Health Index (VHI) (3-month) 

Vulnerability Percentage of Children Weighed at Clinics Less than 80% Weight for Age 0 to 4 years 

old (%) 

Agricultural Occupation (% of population employed in agriculture) 

Key crop replacement cost (USD) 

Staple crop tolerance scores (maximum consecutive drought days tolerated (days) (14-

30)).  

Exposure Land use (type) 

Elevation (type) (Highland/Lowland/Average) 

Access to safe drinking water (% of population with access to improved water sources)  

Population density (as an indicator of accessibility11) 

Index Indicator Data Source Data Resolution and Coverage Weighting 

Hazard Standardised 

Precipitation Index 

(SPI) (3-month) 

NOAA database (National Oceanic 

Atmospheric Administration (NOAA), 2020) 

and JAXA database (Japan Aerospace 

Exploration Agency (JAXA), 2020). 

Spatial- Average value for each 

province. Temporal- monthly 

and averaged yearly data 

available from 2001 onwards. 

Updated every month.  

0.75 

Vegetation Health 

Index (VHI) (3-

month) 

NOAA database (National Oceanic 

Atmospheric Administration (NOAA), 2020) 

and JAXA database (Japan Aerospace 

Exploration Agency (JAXA), 2020). 

Spatial- Average value for each 

province. Temporal- monthly 

and averaged yearly data 

available from 2014 onwards.  

Updated every month. 

0.25 

Vulnerability Percentage of 

Children Weighed at 

Clinics Less than 80% 

Weight for Age 0 to 4 

years old (%) 

PNG National Weather Service (NWS) (PNG 

National Weather Service (NWS), 2017) and 

United Nations Development Programme 

(UNDP) (United Nations Development 

Programme (UNDP), 2017) 

Spatial- Average value for each 

province. Temporal- yearly data 

available for study period. 

Periodically updated (every 1-2 

years). Missing data for 2015; 

2014 data was used for this 

period. 

0.1 

Agricultural 

Occupation (% of 

population employed 

in agriculture) 

PNG National Statistical Office (PNG National 

Statistical Office, 2018) 

Spatial- Average value for each 

province. Temporal- yearly data 

available for study period.  

Periodically updated (every 1-2 

years).  Missing data for 2015; 

2014 data was used for this 

period. 

0.2 

Key crop replacement 

cost (USD) 

PNG National Weather Service (NWS) (PNG 

National Weather Service (NWS), 2017) and 

United Nations Development Programme 

Spatial- Average value for each 

province. Temporal- yearly data 

available for study period.  

Periodically updated (every 1-2 

0.3 
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Table 2. Indicator thresholds that signal different stages of drought risk. These thresholds have been decided upon based on use 1425 

in past studies, as well as past data trends in PNG (Rahmati et al., 2020; Nasrollahi et al., 2018; Aitkenhead et al., 2021).  

Indicator No to Mild 

Drought Risk 

Moderate 

Drought Risk 

Severe to Extreme 

Drought Risk 

SPI 0.1 to 2 0 to -0.9 -1 to -2 

VHI >45 40 to 44 0 to 39 

Percentage of Children Weighed at Clinics 

Less than 80% Weight for Age 0 to 4 years old  

0 to 22 23 to 39 >40 

Agricultural Occupation  0 to 24 25 to 50 >50 

Key crop average replacement cost  0 to 1500 1501 to 3000 >3000 

Staple crop tolerance scores  0 1 2 

Land use (score) 0> to 2 >2 to 4 >4 to 6 

Average Elevation (type)  1 2 3 

 
12 As there is limited data for direct indicators of accessibility in terms of road accessibility and health service accessibility, 

population density has been used as an indirect indicator for accessibility as it is associated with the accessibility level for each 

province; provinces with low population densities have more rural communities which are expected to have reduced accessibility 

to infrastructure (e.g. roads) and health services compared to urban communities. 

(UNDP) (United Nations Development 

Programme (UNDP), 2017) 

years).  Missing data for 2015; 

2014 data was used for this 

period. 

Staple crop tolerance 

scores (maximum 

consecutive drought 

days tolerated (days) 

(14-30)).  

PNG National Weather Service (NWS) (PNG 

National Weather Service (NWS), 2017) and 

United Nations Development Programme 

(UNDP) (United Nations Development 

Programme (UNDP), 2017) 

Spatial- Average value for each 

province. Temporal- yearly data 

available for study period.  

Periodically updated (every 1-2 

years).  Missing data for 2015; 

2014 data was used for this 

period. 

0.4 

Exposure Land use (type) PNG National Weather Service (NWS) (PNG 

National Weather Service (NWS), 2017) and 

United Nations Development Programme 

(UNDP) (United Nations Development 

Programme (UNDP), 2017) 

Spatial- Land use details 

available for each province; 

these details were used to score 

land use type exposure for each 

province. Temporal- static data 

available for study period.   

0.35 

Elevation (type) 

(Highland/Lowland/

Average) 

Open-sourced GIS platforms Spatial- Elevation details 

available for each province, 

average type across the province 

was recorded. Temporal- static 

data available for study period. 

0.15 

Access to safe 

drinking water (% of 

population with 

access to improved 

water sources)  

PNG National Statistical Office (PNG National 

Statistical Office, 2018) 

Spatial- Average value for each 

province. Temporal- yearly data 

available for study period.  

Periodically updated (every 1-2 

years).  Missing data for 2015; 

2014 data was used for this 

period. 

0.3 

Population density (as 

an indicator of 

accessibility12) 

PNG National Statistical Office (PNG National 

Statistical Office, 2018) 

Spatial- Average value for each 

province. Temporal- yearly data 

available for study period. 

Periodically updated (every 1-2 

years).  Missing data for 2015; 

2014 data was used for this 

period. 

0.2 
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Population density >50 49 to 15 <15 

Access to safe drinking water (%) >60 60 to 40 <40 

 

Table 3. The correspondence between risk level pattern observed across PNG in the risk assessment for each drought event 

identified, and the corresponding strength level assigned to the event. 

 1430 

Risk level pattern observed across PNG for indicated event Corresponding strength assigned to the event 

An approximately even number of provinces expressing 

moderate/severe risk level, with slightly more displaying severe. 

Mild drought event.  

 

Almost all provinces are at a severe risk level. Moderate drought event. 

Almost all provinces are at least at a severe risk level, with many 

expressing extreme risk levels.  

Severe to extreme drought event.  

 

 

Table 4. Information on the types of impacts associated with the three severity classes used to classify drought severity in the 

literature. Adapted from Allen & Bourke (1997). 

 

Severity Class Types of impacts associated 

Mild Unusually dry, but no major food supply, or drinking water or health problems OR some 

inconvenience with shortages in staple food but other food available, and/or must 

travel further to collect drinking water. Health satisfactory. 

Moderate Conditions are difficult, with food reduced and some famine food being eaten, 

and/or water available only at a distance, and/or some babies and elderly people 

unwell. No lives at risk and no related deaths reported. 

Severe to Extreme No food in gardens, famine food only being eaten, and/or water in short supply and possibly 

polluted, and/or increasing disease, and/or the lives of small children and elderly people at risk 

OR Extreme situation with only famine food available, and/or water very short, and/or many 

people ill, and/or small children and elderly people seriously at risk and/or related deaths 

reported. 

1435 
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Table 5. Drought hazard indicators that were investigated and found to be fit for use when measuring drought hazard in PNG provinces.  

Indicator Past use description Listed by 

WMO? 

Reason for Selection 

SPI Used in a similar drought 

assessment conducted in 

Iran (Nasrollahi et al., 

2018). It has also been 

used in various other past 

drought vulnerability 

assessments (Nagarajan 

and Ganapuram, 2015: 

Fallon et al., 2018).  

Has been evaluated and 

proven to be effective by 

(Chua et al., 2020) 

through a case study 

investigating how well 

SWCEM precipitation 

products characterised 

drought in PNG during 

the 2015/2016 El Niño 

event.  

Yes- 

Green.  

SPI is a space-based monitoring drought hazard indicator. It can inform on whether an El Niño or La 

Niña event is occurring; low precipitation is most often associated with an El Niño phase in many PNG 

provinces, vice versa. It has been given ‘green light’ by World Meteorological Organisation (WMO) and 

recommended as starting point for drought hazard assessment (Svoboda and Fuchs, 2016). It has also 

been proven reliable as a drought hazard indicator in a previous drought detection study in PNG (Chua 

et al., 2020) and used consistently in past drought risk assessments conducted in other countries with a 

drought-prone climate like PNG (Khan et al., 2008; Rahmati et al., 2014) For example, it was used in the 

study by Nasrollahi et al. (2018) to detect drought hazard in Iran. Iran has a hot, dry climate characterized 

by long, hot, dry summers and short, cool winters (Nasrollahi et al., 2018). The climate has some 

similarities to PNG and therefore hazard indicators are likely to be climatically suited to this study.  

Although the study in Iran was very broad and used nonspecific indicators that were averaged across a 

large range of areas being assessed, SPI has been similarly used to indicate drought hazard in additional 

studies and proven to be useful when assessing drought on both broad and specific scales [13, 14]. Quality 

data for SPI is available from Space-Based Monitoring Observations available through National Oceanic 

Atmospheric Administration (NOAA) and Japan Aerospace Exploration Agency (JAXA).  

VHI Used in a study of 

agricultural drought in 

Zimbabwe (Frischen et 

al., 2020). 

Has been evaluated and 

proven to be highly 

effective by (Chua et al., 

2020) through a case 

study investigating how 

well SWCEM 

precipitation products 

characterised drought in 

PNG during the 

2015/2016 El Niño event. 

Yes- 

Green 

VHI is a spaced-based monitoring drought hazard indicator that can inform on whether an El Niño or La 

Niña event is occurring. Chua et al. (2020) determined VHI to be highly effective in indicating the spatial 

and temporal aspects of the severe 2015/16 El Niño event in PNG. It has been given the ‘green light’ by 

World Meteorological Organisation (WMO) due to its ease of use and reliability (Svoboda and Fuchs, 

2016). Furthermore, it has been proven useful through consistent inclusion in past drought risk 

assessments conducted in other countries with a drought-prone climate like PNG (Bhardwaj et al., 2021a; 

Dalezios et al., 2014). For example, in the Zimbabwe study conducted by Frischen et al. (2020) VHI was 

included as a drought hazard indicator. Although the climate of Zimbabwe is dissimilar to that of PNG, 

the study in Zimbabwe focused on agricultural drought risk and investigated this on specific, local 

community levels (Frischen et al., 2020). Therefore, the indicators used by Frischen et al. (2020) would 

be advantageous for use in this research, due to the importance of agriculture in PNG provinces and the 

subsequent focus on assessing agricultural risk in local communities with a risk assessment. However, 

the weighting of VHI will be reduced as it is primarily an indicator for agricultural drought risk, and 

although the agricultural impact of drought is of key focus in this research, a more holistic investigation 

is intended with additional focus on other sectors. Quality data for VHI is available through NOAA and 

JAXA. 

     

Table 6. Additional drought hazard indicators investigated and found to be unfit for use when measuring drought hazard in PNG provinces.  
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Indicator Past use description Listed by 

WMO? 

Reason for Omission 

Rainfall 

Deficiency 

Rainfall deficiency is a major factor 

responsible for occurrence of drought 

as it is the cause of subsequent soil 

moisture shortage for crops (Dayal et 

al., 2018). 

No This indicator is too broad and has questionable accuracy at the provincial level (Svoboda 

and Fuchs, 2016). There are more efficient indicators that similarly measure water 

availability that would be preferable.  

Soil 

Moisture 

Deficit 

Index 

Has been used to indicate salinity levels 

(Martínez-Fernández et al., 2016). This 

is important as salinity levels affect 

agricultural production (Martínez-

Fernández et al., 2016).  

 

Yes- Red This indicator is marked with a red light by WMO because of significant obstacles that 

threaten the ability for use of this indicator in research. This indicator requires weekly 

calculations at different soil depths, which is complicated to collect and calculate 

(Svoboda and Fuchs, 2016).  

Standardised 

Water Level 

Index 

It has been used in past studies to 

evaluate the hazard level of drought 

through the identification of the amount 

of salt in the water, hence by its salinity 

concentration (Sahani et al., 2019). 

Yes- 

Yellow 

This indicator is marked as yellow due to some challenges when using this indicator for 

research. This indicator produces similar results to SPI, but it uses groundwater or well-

level data instead of precipitation, which is more complex to collect and calculate 

(Svoboda and Fuchs, 2016).  

Normalized 

Difference 

Vegetation 

Index 

(NDVI) 

NDVI is used to identify and monitor 

droughts that are affecting agriculture 

specifically (Svoboda and Fuchs, 

2016).  

It is a remote sensing indicator that has 

openly available data from spaced-

based monitoring organisations like 

NOAA (Svoboda and Fuchs, 2016).  

Yes- 

Green 

This indicator is a popular drought hazard indicator, but it has several limitations reducing 

the accuracy and efficiency for use in indicating drought. Past studies have shown that 

anomalies are common in temporal NDVI data (Gaikwad et al. 2015). Additionally, 

NDVI is known to be influenced by other atmospheric and environmental factors that are 

not related to drought. This threatens the accuracy of NDVI for indicating drought hazard 

conditions as NDVI values may reflect non-drought-related stress conditions in 

vegetation (Jiménez-Donaire et al. 2020).  

 

Table 7. Drought vulnerability indicators that were investigated and found to be fit for use when measuring drought vulnerability in the PNG 

Provinces.  1440 

Indicator Past use description Reason for Selection 

Percentage 

of Children 

Weighed at 

Clinics Less 

than 80% 

Weight for 

Age 0 to 4 

years old  

Used in reliable past 

studies investigating 

and assessing the 

effects of drought 

within study areas with 

similar socioeconomic 

characteristics as PNG 

This vulnerability is an indicator specific for the health sector. It has been used in reliable past studies investigating and 

assessing the effects of drought within study areas with similar socioeconomic characteristics as PNG (Hirvonen et al., 

2020; Cooper et al., 2019). For example, the study by Hirvonen et al. (2020) used this indicator in a case study of the 

2015 drought event in Ethiopia to determine the association between drought risk and health impacts. Results of the 

study indicated that chronic undernutrition rates increased in drought-exposed areas that had a limited road network. 

The socio-economic characteristics, including those of the health sector, of Ethiopia are like PNG as they are both 

developing nations. Both Ethiopia and PNG have malnutrition as a main health concern, as well as lack of access to 

clean water and sanitation. Given the similarities between Ethiopia and PNG, and the past usefulness of this indicator 
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(Hirvonen et al., 2020; 

Cooper et al., 2019). 

in the study by Hirvonen et al. (2020), it is likely that this indicator will be an efficient drought vulnerability indicator 

for PNG provinces. Data is available at the provincial level in PNG for recent years from PNG National Weather Service 

(NWS) and United Nations Development Programme (UNDP).  

Key crop 

replacement 

cost 

Used in reliable past 

studies investigating 

and assessing the 

effects of drought 

within study areas with 

similar socioeconomic 

characteristics as PNG 

(Mohmmed et al., 2018; 

Abid et al., 2016). 

This vulnerability indicator is an indicator specific for the economic sector, considering socioeconomic drought affects. 

It has been used in reliable past studies investigating and assessing the effects of drought within study areas with similar 

socioeconomic characteristics as PNG (Mohmmed et al., 2018; Abid et al., 2016). For example, a drought vulnerability 

assessment conducted by Mohmmed et al. (2018) in five agricultural-based regions of Gadaref, Eastern Sudan used key 

crop replacement as an indicator to examine the susceptibility of farmers. The assessment resulted in the identification 

of the most vulnerable regions in the study area. Sudan has similar socioeconomic characteristics to PNG, as they are 

both least developing countries according to the United Nations General Assembly. Like PNG, Sudan has a population 

vulnerable to poverty and malnourishment, with most of the population depending on agriculture for their livelihood. 

Due to the similarity between Sudan and PNG regarding socio-economic factors, and the usefulness of this indicator in 

the past study by Mohmmed et al. (2018), key crop replacement cost is likely an effective indicator of drought 

vulnerability in PNG provinces. Data is available on the provincial level for recent years from PNG National Weather 

Service (NWS) and United Nations Development Programme (UNDP). 

Staple Crop 

Tolerance 

Scores 

Used in reliable past 

studies investigating 

and assessing climate 

vulnerability and the 

effects of drought 

within study areas with 

similar socioeconomic 

characteristics as PNG 

(Antwi et al., 2015; 

Ayantunde et al., 2015). 

This vulnerability indicator is specific for the environment and agricultural sector, considering agricultural drought 

effects. It has been used in reliable past studies investigating and assessing climate vulnerability and the effects of 

drought within study areas with similar socioeconomic characteristics as PNG (Antwi et al., 2015; Ayantunde et al., 

2015). For example, in the study by Ayantunde et al. (2015) staple crop tolerance score was used as an indicator in a 

drought vulnerability assessment of three agro-pastoral communities in Niger. Niger is a least developed country with 

similar socio-economic characteristics to PNG, with a like reliance on the agricultural industry. As in PNG, farmers in 

Niger are frequently impacts by disaster events like drought, reporting detrimental impacts to crops. Due to the related 

socio-economic characteristics of PNG and Niger, and the usefulness of staple crop tolerance score for indicating 

drought vulnerability in the study by Ayantunde et al. (2015), this indicator is likely effective for assessing drought 

vulnerability in PNG provinces. Data is available for recent years from PNG National Weather Service (NWS) and 

United Nations Development Programme (UNDP). Data is available on the provincial level in PNG. 

Agricultural 

Occupation 

(% of 

population 

employed in 

agriculture) 

Used in reliable past 

studies investigating 

drought vulnerability 

and assessing the 

effects of drought 

within study areas with 

similar socioeconomic 

characteristics as PNG 

(Nasrollahi et al., 2018; 

Mainali and Pricope, 

2019). 

This vulnerability indicator is specific for the economic and agricultural sector. It has been used in reliable past studies 

investigating drought vulnerability and assessing the effects of drought within study areas with similar socioeconomic 

characteristics as PNG (Nasrollahi et al., 2018; Mainali and Pricope, 2019). For example, the study by Mainali and 

Pricope (2019) in Nepal used agricultural occupation as an indicator for mapping climate vulnerability of ten drought-

prone villages. Results displayed that most of the study area falls in the high vulnerability category with significant 

spatial variation. Nepal and PNG have a similar reliance on the agricultural industry, with a significant amount of the 

populations employed in agriculture. The similarity between PNG and Nepal regarding the reliance on agriculture, as 

well as the usefulness of this indicator in the past study by Mainali and Pricope (2019) means that this indicator is most 

likely effective for indicating drought vulnerability in PNG provinces. Data is available for recent years from PNG 

National Statistical Office. Data is available on the provincial level in PNG. 

 

Table 8. Additional drought vulnerability indicators unfit for use when measuring drought vulnerability in PNG provinces.  
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Indicator Past use description Reason for Omission 

Social 

dependency 

(% 

population 

>15 and <64 

years old)  

Used by Frischen et al. (2020) as a drought vulnerability indicator in a drought 

risk assessment in Zimbabwe. Like PNG, Zimbabwe is severely affected by 

drought leading to adverse impacts like water shortages, declining yields, and 

periods of food insecurity, accompanied by economic downturns. Both countries 

heavily rely on the agricultural sector. The risk index gave differing risk severity 

levels for the different regions of Zimbabwe (Frischen et al. 2020). 

Although this indicator has been used in past studies in areas 

with similar characteristics to PNG, it is unlikely this would 

be a representative indicator of drought vulnerability in PNG 

provinces. This is because there is unlikely to be spatial 

variation in indicator data, thus would not indicate the varying 

vulnerability levels of PNG provinces. PNG has a similarly 

young population across all provinces.  

Average 

household 

consumption 

of staple 

food 

This food consumption indicator informs on food security in households (Ibok et 

al. 2019).  

In a study conducted by Islam et al. (2022) in Bangladesh, this indicator was used 

to indicate climate risk of vulnerable households. 

Data is severely scarce for this indicator in PNG. Therefore, it 

cannot readily be used as an indicator for drought vulnerability 

in PNG provinces. 

Average 

Household 

Income  

Average household income has been investigated as an indicator of drought 

vulnerability in previous studies, including in the research conducted by Stenekes 

et al. (2012). In this study, Stenekes et al. (2012) revise indicators of drought 

vulnerability across the Murray-Darling Basin in Australia and propose 

indicators to be included in future risk assessments. Average household income 

is proposed as a vulnerability indicator.  

As a least developed country, PNG is expected to have low 

average household income across most provinces. The likely 

similarity of data for this indicator across PNG provinces 

reduces the value for informing on the varying vulnerability 

levels in PNG.  

 

Education 

(Literacy 

rate in at 

least one 

language % 

of 

population 

over 10 

years old) 

Education level (literacy rate) has been used in past risk assessment studies as an 

indicator for drought vulnerability, particularly for the adaptive capacity element.  

In an investigation of drought risk in Nigeria, focusing on food security impacts, 

Ibok et al. (2019) use education level as a drought vulnerability indicator. 

Although Nigeria is a more developed country compared to PNG, both countries 

have low literacy rates compared to western countries like Australia. This has the 

potential to affects the ability of locals to independently implement effective 

drought management strategies.  

A study of global drought risk by Carrão et al. (2016) use education level as an 

indicator to derive drought vulnerability. Using the drought vulnerability, hazard 

and exposure indices, a drought risk index was mapped across the globe and 

regions of high risk were identified. 

Education levels are similarly low across all PNG provinces, 

including the National Capital District. According to a new 

survey conducted in five provinces of PNG from 2006-2011, 

by the Asia South Pacific Association for Basic and Adult 

Education (ASPBAE), education level is alarmingly low 

across all PNG provinces (less than 5% in some cases). As 

there would be little variation between provinces for this 

indicator, it would not be valuable for informing on the 

varying drought vulnerability levels in PNG.  

Key crop 

production 

In an investigation of drought vulnerability in India, crop production was 

proposed as a useful indicator (Saha et al. 2012).  

Similarly, crop production was used as an indicator in a drought vulnerability 

assessment conducted in Indonesia, which specifically focused on food security 

impacts (Pangan and Pertanian, 2015).  

The use in past studies investigating countries with a similar 

reliance on agriculture as PNG, means this indicator has the 

potential for use in the PNG risk assessment. However, in this 

research key crop production is seen more of an impact factor 

rather than a vulnerability factor. Staple crop tolerance or crop 

replacement cost a could be more specific indicators for 

indicating vulnerability to the effects of drought. For example, 
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if a province was to have low crop tolerance scores and high 

replacement cost, it is likely that in a drought period the 

production of crops would be reduced as an impact of drought.  

 

Table 9. Drought exposure indicators that were investigated and found to be fit for use when measuring drought exposure in PNG provinces.  

Indicator Past use description Reason for Selection 

Land Use 

(type) 

Used in reliable past studies 

investigating and assessing the 

effects of drought within study 

areas with similar socio-

geographic characteristics as 

PNG (Rahmati et al., 2020; 

Shahid and Behrawan, 2008). 

This is an exposure indicator specifically considering the environment and agricultural sector. It has been used 

in reliable past studies investigating and assessing the effects of drought within study areas with similar socio -

geographic characteristics as PNG (Rahmati et al., 2020; Shahid and Behrawan, 2008). For example, Land Use 

was used as an indicator in by Shahid and Behrawan (2008) as an exposure indicator included in the vulnerability 

index in a spatial risk assessment for drought in Bangladesh. In the Bangladesh study exposure was not 

considered as its own component of drought risk, it was included as part of the vulnerability component. 

Although the methodology of Shahid and Behrawan (2008) differs to the one used in this study, the consideration 

of land use as an exposure indicator is deemed appropriate for assessing risk in PNG. Like PNG, Bangladesh 

heavily relies on agriculture, with a large portion of land use dedicated to agricultural activities which have been 

affected by drought in the past. Data is available for recent years from PNG National Weather Service (NWS) 

and United Nations Development Programme (UNDP). 

Elevation 

(type) 

(Highland/L

owland/Ave

rage) 

Used in reliable past studies 

investigating and assessing the 

effects of drought within study 

areas with similar socio-

geographic characteristics as 

PNG (Han et al., 2015; Sun et al., 

2020). 

Elevation is an exposure indicator specifically considering the environment and Agricultural Sector. Elevation 

affects the severity of drought in PNG, with highland areas known to be most exposed to the effects of drought 

in PNG in the form of frost. In the 2015/2016 drought event in PNG, high altitude areas experienced severely 

detrimental impacts on crops (Iese et al. 2021). Elevation has been used in reliable past studies investigating and 

assessing the effects of drought within study areas with similar socio-geographic characteristics as PNG (Han et 

al., 2015; Sun et al., 2020). Data is available from open-sourced GIS platforms. 

Population 

Density 

Used in reliable past studies 

investigating and assessing the 

effects of drought within study 

areas with similar socio-

geographic characteristics as 

PNG (Nasrollahi et al., 2018; Pei 

et al., 2018). 

Population Density is an exposure indicator for social sector, as it is an indirect indicator for infrastructure, 

health service, and water accessibility. It has been used in reliable past studies investigating and assessing the 

effects of drought (Nasrollahi et al., 2018; Pei et al., 2018). More direct indicators of accessibility like access to 

roads or access to markets would be better for use here, however, data availability for such indicators is 

extremely limited. Thus, population density is seen as the best possible indicator for accessibility to contribute 

to the exposure index in this research. Data is available for population density in recent years from PNG National 

Statistical Office. 

Access to 

safe 

drinking 

water (% of 

population 

with access 

to safe 

Used in reliable past studies 

investigating and assessing the 

effects of drought within study 

areas with similar socio-

geographic characteristics as 

PNG (Limones et al., 2020; 

Frischen et al., 2020). 

Access to safe drinking water is an indicator of drought exposure, particularly considering hydrological drought 

and its impacts on the social sector. If communities have limited access to safe drinking water, they will be more 

exposed to detrimental drought effects as they may have to travel further to additional water sources in times of 

drought, etc (Limones et al., 2020). It has been used in reliable past studies investigating and assessing the 

effects of drought within study areas with similar socio-geographic characteristics as PNG (Limones et al., 2020; 

Frischen et al., 2020). For example, when investigating an approach for identifying high drought risk areas in 

data-scarce regions of southern Angola, Limones et al. (2020) use access to safe drinking water as an indicator 

of drought exposure. Angola is expected to have similarly restricted access to safe drinking water in some areas, 
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drinking 

water) 

just as with regions in PNG, as it is a Least Developed Country with locals having limited access to core 

resources. In the study by Limones et al. (2020) this indicator was able to help in the identification of high-risk 

areas to drought in Angola. The similarity between Angola and PNG mean it is likely that this indicator is 

suitable for use in informing a drought exposure index in PNG as well. Data is available for this indicator for 

recent years from PNG National Statistical Office. 
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Table 10. Additional drought exposure indicator unsuitable for use when measuring drought exposure in PNG provinces.  

Indicator Past use description Reason for Omission 

Access to 

roads  

This indicator has been used in several past studies conducting risk assessments 

(Luh et al. 2015; Nakamura et al. 2019).  

For example, Nakamura et al. (2019) used this as an indicator for exposure in a 

drought risk assessment in Ethiopia. Results suggested that remote communities 

with roads connecting them to markets and other services had less exposure to 

drought impacts.  

This indicator would be useful for indicating drought exposure; 

however, data is not available/accessible on the provincial level 

for PNG. Thus, this indicator cannot be included in the risk 

assessment at this time for PNG. In the future if data becomes 

available, then this indicator should be considered for the 

drought exposure index.  

Access to 

land 

resources 

 

This indicator was used in a study by Ghimire et al. (2010) which describes access 

to land resources as total landholding in a given area.  

It is explained that the higher the landholding, the lower the exposure to drought 

impacts. This is because landholding can serve as a cushion to absorb financial 

shocks by utilising it as collateral for loans or sale when needed.  

This indicator is not appropriate for use in PNG, due to the nature 

of customary clan ownership, which over 95% of land in PNG 

remains under (Chand 2017). Customary clan ownership is 

defined as the long-established practices of PNG people. Clans 

rather than individual people hold most of the land in PNG 

provinces. Additionally, data for clan land holdings is scarce as 

the principles of land tenure that arise from custom are not 

commonly written down (Chand 2017).  

Access to 

technology 

Ghimire et al. (2010) use this indicator in an assessment of drought risk, explaining 

that this indicator is evidence for the adoption of improved varieties of crops or 

horticultural plants. Thus, access to technology likely reduces exposure.  

This indicator is likely not representative of varied drought 

exposure among PNG provinces as it would be expected that 

access to technology would be relatively low across PNG. 

Additionally, data for this indicator is limited on the provincial 

level in PNG.  

Access to 

social 

networks 

Ghimire et al. (2010) use this indicator in an assessment of drought risk, defining 

this indicator as membership in social, political, or economic organisation. It is seen 

that access to social networks decreases drought exposure (Ghimire et al. 2010). 

Data is restricted for this indicator on the provincial level in 

PNG. If data was restricted, it is believed that this would not be 

as ideal as an exposure indicator in PNG as if more relevant 

indicators were available like access to markets. 

Access to 

market 

Previous drought risk investigations have used access to market as an exposure 

indicator (Ghimire et al. 2010; Mdungela et al. 2017). It is defined as the walking 

distance to reach the nearest public transportation service or walking distance to 

the market itself. The lesser the distance, the more access to a market, which in turn 

means lower exposure. Walking distance is preferred over distance in kilometres, 

because of difference in topography in different areas of investigation.  

Data is restricted for this indicator on the provincial level in 

PNG. It would be useful to incorporate this indicator in the risk 

assessment in the future if data becomes available.  
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On-farm 

diversificat

ion 

Mdungela et al. (2017) used this as an indicator of drought exposure in an 

investigation of drought risk. On-farm diversification includes the mixing of crops 

and the inclusion of drought-resistance crops on farms. Mdungela et al. (2017) 

explain that the more diverse a farm is, the less exposed it is to drought conditions. 

Data is restricted for this indicator on the provincial level in 

PNG. Currently, it is expected that information regarding 

farming types is included in the land use indicator. However, this 

indicator would be more specific for use if data was available.  

Aridity 

Index 

The Aridity Index has been used in past drought risk assessment studies like 

Lindoso et al. (2014). It is a real-time indicator in which water balance is considered 

with the comparison of the actual aridity to the normal aridity for a given period 

(Svoboda and Fuchs, 2016).  

Not applicable to long-term or multi-seasonal events (Svoboda 

and Fuchs, 2016). Thus, it would not be appropriate to measure 

long-term drought; long term drought affects PNG frequently.  
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Table 2. Risk index levels for each PNG province calculated from the Drought Risk Assessment conducted for 2014, 2015, 2016, 

2017, 2018, 2019, and 2020. Risk index levels are classified on a deepening orange colour scale from Mild (index values from 0.01-1450 
0.25) to Extreme (index values from 0.76-1.00). 

Province 

Risk Index Level 

2014 2015 2016 2017 2018 2019 2020 

Bougainville        

Central        

Chimbu (Simbu)        

East New Britain        

East Sepik        

Eastern Highlands        

Enga        

Gulf Province        

Hela        

Jiwaka        

Madang        

Manus        

Milne Bay Province        

Morobe        

National Capital District        

New Ireland        

Northern (Oro)        
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Southern Highlands        

West New Britain        

West Sepik (Sandaun)        

Western        

Western Highlands        
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Figure 4. Risk index levels for each PNG province calculated from the Drought Risk Assessment conducted for 2014, 2015, 

2016, 2017, 2018, 2019, and 2020. Risk index levels are classified on a deepening orange colour scale from Mild (index values 

from 0.01-0.25) to Extreme (index values from 0.76-1.00). 1465 
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Table 113. Levels of drought conditions mentioned in the literature for the time period of each of the drought events identified in the risk 

assessment. The number of literature sources mentioning each drought level is recorded. 1475 

Drought Event Mention of Mild Drought Mention of Moderate Drought Mention of Severe to Extreme Drought  

2015-2016 0 0 8 (Chua et al., 2020; Gwatirisa et al., 

2017; Burivalova et al., 2018; Jacka, 

2020; Varotsos et al., 2018; Kuleshov et 

al., 2020; Schmidt et al., 2021; Rimes and 

Papua New Guinea National Weather 

Service, 2017)   

 

2019-2020 2 (Johnson et al., 2019; 

Food and Agriculture 

Organisation of the United 

Nations, 2021) 

5 (Golden Gate Weather 

Services, 2021Null, 2021; 

Mckenna and Yakam, 2021; 

Food Security Cluster et al., 

2021; Bidault et al., 20192019; 

Papua New Guinea National 

Weather Service, 2020) 

1 (Bang and Crimp, 2019) 
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Figure 54. Overall drought risk maps of PNG provinces for 2014 including a drought hazard, drought vulnerability, drought exposure and 

drought risk map detailing the index level of each province. The index level is classified on a deepening orange colour scale from Mild 

(index values from 0.01-0.25) to Extreme (index values from 0.76-1.00).  1480 

Table 4. Drought risk levels calculated from monthly risk assessments for each province in 2014. Drought risk levels are given for 

January-December. The drought risk level is classified on a deepening orange colour scale from Mild (index values from 0.01-0.25) 

to Extreme (index values from 0.76-1.00).  
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Province Risk Index Level 
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Bougainville             
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Central             

Chimbu (Simbu)             

East New Britain             

East Sepik             

Eastern Highlands             

Enga             

Gulf Province             

Hela             

Jiwaka             

Madang             

Manus             

Milne Bay Province             

Morobe             

National Capital 

District 

            

New Ireland             

Northern (Oro)             

Southern Highlands             

West New Britain             

West Sepik (Sandaun)             

Western             

Western Highlands             
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Figure 6. Drought risk levels calculated from monthly risk assessments for each province in 2014. Drought risk levels are 

given for January-December. The drought risk level is classified on a deepening orange colour scale from Mild (index values 

from 0.01-0.25) to Extreme (index values from 0.76-1.00).  1490 

Table 125. Individual PNG Province mentions in literature for each drought event as well as the severity level indicated for each province 

in the literature.  

Drought 

Event 

Provinces specifically 

mentioned  

Number of sources that 

mentioned province  

Level of impact mentioned (Mild, 

moderate, severe to extreme) 
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2015-2016 Central 5 Severe 

Chimbu 7 Severe 

Eastern Highlands 10 Severe 

East New Britain 3 Extreme 

East Sepik 1 Extreme 

Enga 6 Severe 

Gulf Province 2 Severe 

Hela 2 Severe 

Madang 2 Extreme 

Manus 2 Severe 

Milne Bay Province 2 Severe 

Morobe 6 Severe 

New Ireland 2 Extreme 

Northern (Oro) 1 Extreme 

Southern Highlands 7 Severe 

Western  4 Severe 

Western Highlands 10 Severe 

West New Britain  2 Extreme 

West Sepik  1 Extreme 

2019-2020 Bougainville 1 Moderate 

Central 3 Severe 

Chimbu 1 Moderate 

Eastern Highlands 2 Moderate 

East Sepik 2 Moderate 

Gulf Province  1 Severe 

Hela  3 Severe 

Jiwaka 1 Moderate 

Madang 1 Moderate 

Manus 2 Moderate 

Milne Bay Province 3 Severe 

Morobe 1 Moderate 

New Ireland 2 Mild 

Northern (Oro) 1 Severe 
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Southern Highlands 3 Severe 

Western  3 Severe 

Western Highlands 3 Moderate 

West New Britain 1 Moderate 

 

 

Figure 75. Overall drought risk maps of PNG provinces for 2015 including a drought hazard, drought vulnerability, drought exposure and 1495 
drought risk map detailing the index level of each province. The index level is classified on a deepening orange colour scale from Mild 

(index values from 0.01-0.25) to Extreme (index values from 0.76-1.00).  
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Figure 86. Overall drought risk maps of PNG provinces for 2016 including a drought hazard, drought vulnerability, drought exposure and 

drought risk map detailing the index level of each province. The index level is classified on a deepening orange colour scale from Mild 1500 
(index values from 0.01-0.25) to Extreme (index values from 0.76-1.00). 
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Figure 97. Overall Drought Risk Maps of PNG Provinces for 2019 including a Drought Hazard, Drought Vulnerability, Drought Exposure 

and Drought Risk Map detailing the index level of each province. The index level is classified on a deepening orange colour scale from Mild 

(index values from 0.01-0.25) to Extreme (index values from 0.76-1.00).  1505 
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Figure 108. Overall Drought Risk Maps of PNG Provinces for 2020 including a Drought Hazard, Drought Vulnerability, Drought Exposure 

and Drought Risk Map detailing the index level of each province. The index level is classified on a deepening orange colour scale from Mild 

(index values from 0.01-0.25) to Extreme (index values from 0.76-1.00). 

Table 6. Drought risk levels calculated from monthly risk assessments for each province during the transition into the strong 2015-1510 
2016 drought conditions. Drought risk levels are given for November and December 2014, January to December 2015, and January 

and February 2016. The drought risk level is classified on a deepening orange colour scale from Mild (index values from 0.01-0.25) 

to Extreme (index values from 0.76-1.00).  
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Figure 11. Drought risk levels calculated from monthly risk assessments for each province during the transition into the strong 1520 

2015-2016 drought conditions. Drought risk levels are given for November and December 2014, January to December 2015, 

and January and February 2016. The drought risk level is classified on a deepening orange colour scale from Mild (index 

values from 0.01-0.25) to Extreme (index values from 0.76-1.00).  

Table 13. Average Sensitivity Index Values across PNG provinces for each indicator and the index which they inform using 

2015 data as a case study. Rankings are shown for SI with highest sensitivity ranked first and lowest sensitivity ranked last. 1525 

The likely credibility is also ranked amongst indicators, with first being the most credible for inclusion in the index and last 

being the least credible.  

 

Index Indicator Sensitivity Index (Avg. 

across provinces) 

Sensitivity Rank (highest to 

lowest SI) 

Likely Credibility 

Rank 

Hazard SPI 0.56 1st  2nd  

VHI 0.47 2nd  1st  

Vulnerability Staple Crop Tolerance Score 0.41 1st  4th  

Agricultural Occupation 0.36 2nd  3rd  

Percentage of Children Weighed 

at Clinics Less than 80% Weight 

for Age 0 to 4 years old 

0.33 3rd 2nd  

Key Crop Replacement Cost 0.31 4th 1st  

Exposure Land Use  0.39 1st  4th  

Elevation Type 0.34 2nd  3rd  

Population Density 0.32 3rd 2nd  

Access to Safe Drinking Water 0.31 4th  1st  

 

 1530 


