
 

1 

 

How to use empirical data to improve transportation infrastructure 1 

risk assessment 2 

Weihua Zhu1,2, Kai Liu 1, 2*, Ming Wang 1,2, Sadhana Nirandjan3, Elco E. Koks3 3 

1 School of national security and emergency management, Beijing Normal University, Beijing 4 

100875, China 5 

2 Academy of Disaster Reduction and Emergency Management, Faculty of Geographical Science, 6 

Beijing Normal University, Beijing 100875, China 7 

3Institute for Environmental Studies (IVM), Vrije Universiteit Amsterdam, 1081 HV Amsterdam, 8 

The Netherlands 9 

Correspondence to Kai Liu (liukai@bnu.edu.cn). 10 

Abstract: 11 

Rainfall-induced hazards, such as landslides, debris flows, and floods cause significant 12 

damage to transportation infrastructure. However, an accurate assessment of rainfall-induced 13 

hazard risk to transportation infrastructure is limited by the lack of regional and asset-tailored 14 

vulnerability curves. This study aims to use multi-source empirical damage data to generate 15 

vulnerability curves and assess the risk of transportation infrastructure to rainfall-induced 16 

hazards. The methodology is exemplified through a case study for the Chinese national railway 17 

infrastructure. In doing so, regional and national-level vulnerability curves are derived based 18 

on historical railway damage records. This is combined with daily precipitation data and the 19 

railway infrastructure market value to estimate regional- and national-level risk. The results 20 

show large variations in the shape of the vulnerability curves across the different regions. The 21 

railway infrastructure in Northeast and Northwest China is more vulnerable to rainfall-induced 22 

hazards due to low protection standards. The expected annual damage (EAD) ranges from 1.88 23 
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to 5.98 billion RMB for the Chinese railway infrastructure, with a mean value of 3.91 billion 1 

RMB. However, the risk of railway infrastructure in China shows high spatial differences due 2 

to the spatially uneven precipitation characteristics, exposure distribution, and vulnerability 3 

curves. The South, East and Central provinces have a high risk to rainfall-induced hazards, 4 

resulting in an average EAD of 184 million RMB, 176 and 156 million RMB, respectively, 5 

whereas the risk in the Northeast and Northwest provinces are estimated to be relatively lower. 6 

The usage of multi-source empirical data offer opportunities to perform risk assessments that 7 

include spatial detail among regions. These risk assessments are highly needed in order to make 8 

effective decisions to make our infrastructure resilient. 9 

Keywords: multi-source empirical data, vulnerability curve, risk estimate, damage 10 

length factor 11 

1. Introduction 12 

In recent years, extreme precipitation events have increased in both frequency and intensity 13 

in the context of global warming (Shi et al., 2018; Cardoso Pereira et al., 2020; Li et al., 2020). 14 

Extreme precipitation may generate landslides, debris flows, and floods, which have the 15 

potential to damage transportation infrastructure and disrupt transportation functions, thereby 16 

posing a severe threat to the economy and society (Pregnolato et al., 2017; Diakakis et al., 2020; 17 

Petrova, 2020). In July 2021, Zhengzhou was hit by a heavy downpour, that reached a 18 

cumulative precipitation of 617.1mm in three days. The associated flash floods resulted in the 19 

destruction of the Zhengzhou metro system; suspension of more than 80 bus lines; damage to 20 

67 urban bridges, culverts and tunnels; cancellation and delay of more than 200 flights from 21 
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Zhengzhou airport; and flooded lines, collapsed roadbeds, and waterlogging of equipment 1 

forcing railway operators to shut down for several days (Fig. 1a). On May 23, 2010, a landslide 2 

occurred in the Yujiang-Dongxiang section of the Shanghai-Kunming Railway in Jiangxi 3 

Province, causing the derailment of passenger train K859 (Fig. 1b). The sliding body was 60 4 

metres long, 30 metres wide, and 3-8 metres thick, resulting in a volume of approximately 9,000 5 

cubic metres. The cumulative precipitation in the 11 days before the incident was 251.5 mm in 6 

Xiaogang town, Dongxiang County. In China, the average annual direct damage of railway 7 

infrastructure caused by rainfall-induced hazards was approximately 3.29 billion RMB from 8 

2000 to 2017 and has increased in recent years (Editorial Board of China Railway Yearbook, 9 

2001-2017). 10 

 11 

Fig. 1 (a) Transportation infrastructure damaged by floods triggered by extreme precipitation 12 

at Zhengzhou, Henan province (2021); (b) Railroad damage by a debris flow triggered by 13 

extreme precipitation at Xiaogang, Jiangxi Province (2010). 14 

Accurate assessment of transportation infrastructure damage and risk due to hazards 15 

triggered by rainfall is an essential component in transportation infrastructure risk management 16 

(Liu et al., 2018a, 2021). In general, transportation infrastructure impacts due to natural hazards 17 

include two aspects: (1) direct damage to the structure (Koseki et al., 2012; Kellermann et al., 18 

2015; Koks et al., 2019); and (2) indirect impact to the transportation service and associated 19 
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macroeconomic impact (Lamb et al., 2019). Determining direct damage is commonly done 1 

using vulnerability curves (Englhardt et al., 2019; Koks et al., 2019), which typically present 2 

the damage degree of infrastructure assets that would occur at specific hazard intensities 3 

(Jongman et al., 2012; Ward et al., 2013). As the critical link of hazard characteristics and 4 

damage loss, few studies (e.g. Sande and C.J, 2001; Kok et al., 2004; Huizinga et al., 2017) 5 

tried to work on vulnerability curves for transportation infrastructure assets in different regions. 6 

In these studies, empirical and synthetic approaches are usually adopted to develop curves 7 

based on damage data (Merz et al., 2010) and expert judgement (Gerl et al., 2016). 8 

Unfortunately, due to the lack of detailed damage data, such damage curves are unavailable for 9 

most regions. Habermann and Hedel (2018) conducted a literature review on the damage 10 

functions for transportation infrastructure due to wildfires and floods. They found that damage 11 

functions for the transportation sector are scarce in the literature, and damage curves for the 12 

transportation sector in different publications vary in shapes and values.  13 

This article aims to use multi-source empirical damage data to assess the vulnerability and 14 

risk of transportation infrastructure associated with rainfall-induced hazards (i.e. landslides, 15 

debris flows, and floods). We develop a first set of regional and national vulnerability curves 16 

for Chinese railway infrastructure that relates the damage degree of railway assets to 17 

precipitation intensities. Based on these vulnerability curves, the risk of the railway 18 

infrastructure associated with rainfall-induced hazards is estimated.  19 

The remainder of the article is organized as follows. Section 2 describes this work's datasets, 20 

including data on precipitation, historical railway damage, yearly railway damage and railway 21 
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market value. Section 3 describes the methodological framework, thereby elaborating on the 1 

method for: (1) vulnerability assessment, (2) and risk estimation. Section 4 presents the main 2 

results. Sections 5 and 6 discuss the results and conclude the article. 3 

2. Data collection 4 

2.1 Precipitation data 5 

The CN05.1 dataset provides information on the observed daily precipitation from 1961 to 6 

2018 at a 0.25° spatial resolution (Wu and Gao, 2013; Zhang et al., 2019). The dataset is derived 7 

from more than 2,400 in situ gauging stations by the Chinese Meteorological Administration 8 

(CMA). The CN05.1 product has been recognized to be more reliable than its previous versions 9 

because of the inclusion of more ground stations (Yatagai et al., 2009; Zhang et al., 2019). The 10 

resolution of the CN05.1, however, is too coarse to accurately capture local extreme 11 

precipitation events. As a complementary precipitation dataset, we therefore extract local 12 

precipitation information from multiple news sources for 37% of the damage records (see 13 

section 2.2). These news sources contain precipitation data obtained from rain gauges installed 14 

by the railway department, thus measuring local extreme precipitation.  15 

https://doi.org/10.5194/nhess-2021-277
Preprint. Discussion started: 19 October 2021
c© Author(s) 2021. CC BY 4.0 License.



 

6 

 

2.2 Historical railway damage by rainfall-induced hazards 1 

 2 

Fig. 2 (a) Spatial distribution of national railway damage records. We divide the mainland of 3 

China into seven geographical divisions: Central China (I), East China (II), North China (III), 4 

Northeast China (IV), Northwest China (V), South China (VI), and Southwest China (VII). 5 

(b) Temporal distribution of historical damage to the national railway infrastructure by 6 

rainfall-induced hazards from 2000 to 2016. Railway geometries © OpenStreetMap 7 

contributors 2019. Distributed under the Open Data Commons Open Database License 8 

(ODbL) v1.0. 9 

 Zhao et al. (2020) catalogued 464 railway disasters caused by rainfall-induced hazards in the 10 

Chinese railway system between 2000 and 2016. After removing service disruption disasters 11 

(i.e. trains that slow down or stop for safety reasons) that are irrelevant for this study, we found 12 

a total of 236 railway damage records that represent structural damage to railway assets or 13 

debris covering the rail. The spatial distribution of the filtered set of national railway damage 14 

records is presented in Fig. 2a. For all these records, we collect information about the 15 

occurrence date of the damage, the damage location, and the descriptive damage state by using 16 

online publicly available news sources. In this study, if damages induced by a precipitation 17 

event occurred in the segment between two adjacent stations, one damage record is counted. 18 
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Table 1 gives some typical railway damage records over 1981–2016. The information of the all 1 

damage records used in this study can be found in supplement material.  2 

Table 1 Typical railway damage records over 1981–2016. 3 

Damage date Url 
Railway 

name 
Damag segment Damage state 

2005/6/21 
http://news.sina.com.cn/c/2005-

06-25/10586266797s.shtml  

Yingxia 

railway 

Panfang-

Yangkou  

Geological, 

severe 

2005/6/21 
http://news.sina.com.cn/c/2005-

06-25/10586266797s.shtml  

Yingxia 

railway 

Xiawangtang-

Shaikou  

Geological, 

severe 

2013/7/13 
http://www.eeb.cn/tabid/372/info

id/1521/frtid/89/default.aspx  

Baoxi 

railway 
Yanan-Yananbei 

Embankment, 

Moderate 

2016/7/17 
https://baike.so.com/doc/244253

72-25257771.html  

Jiaoliu 

railway 

Wanyan-

Longbizui 
Track, severe 

For the available 236 railway damage records, 84% occurred in the summer (June, July, and 4 

August). Most of the disasters occurred in July, accounting for 40% of the 236 railway damage 5 

records; 30% and 14% occurred in June and August, respectively. These numbers correspond 6 

to most parts of China's rainy seasons in which precipitation is a crucial trigger of rainfall-7 

induced hazards. Fig. 2a shows the spatial distribution of railway damage for the years 2000-8 

2016. The results show that the national railway lines suffered widespread rainfall-induced 9 

damage, especially in South China. Detailed spatial distributions of damages and associated 10 

reasons were explored in previous research of Liu et al.(2018) and Zhao et al. (2020). To explore 11 

the spatial distribution of railway vulnerability in different regions, China was divided into 12 

seven sub-regions based on seven geographical divisions (Liu et al., 2020), as shown in Fig. 2a: 13 

Central China (I), East China (II), North China (III), Northeast China (IV), Northwest China 14 
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(V), South China (VI), and Southwest China (VII) (Liu et al., 2020). 1 

2.3 Railway damage yearly data  2 

Two datasets are used to obtain railway damage yearly data: the national railway yearbooks 3 

(Editorial Board of China Railway Yearbook, 2001-2017) and the Zhengzhou regional 4 

administrator’s yearbooks (Editorial Board of Zhengzhou Administrator’s Railway Yearbook, 5 

2001-2017). The national railway yearbooks cover data on the direct damage, total damage 6 

length and the number of total damage events (one damage event is defined as a main railway 7 

line is damaged by a precipitation event) per year for the national railway system. The 8 

Zhengzhou regional administrator’s yearbooks provide information on the number of total 9 

damage events and the total number of damaged places (i.e. a continuous section of damage) 10 

per year for the Zhengzhou administrator railway system (ZHR), from 2000 to 2017 by rainfall-11 

induced hazards.  12 

An overview of the yearly railway damage obtained from the two sources is shown in Table 13 

2. Fig. 2b shows the direct damage per year from 2000 to 2017 (missing data in 2003 and 2004); 14 

the economic damage significantly increased from 2000 to 2017, which is due to the increased 15 

railway exposure and extreme precipitation events (Zhao et al., 2020). The average annual 16 

economic damage is estimated to be 3.29 billion RMB. The ZHR damage data shows that each 17 

damage event causes multiple damage places on railway infrastructure, with an average of nine 18 

damage places per event. Assuming that the number is the same for the national railway system, 19 

we calculate that the average damage length is 753 m per damage place for an event using the 20 

total number of damage events and total damage length at a national level.  21 
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Table 2 Railway damage for the period 2000-2017 1 

 

Year 

National Zhengzhou Administrator 

Damage event 

times 

Damage length 

(km) 

Direct damage 

(billon) 

Damage event 

times 
Damage places 

2000 183 478.6 1.179     

2001 98 358.8 1.266 42 469 

2002 106 441.1 1.156 21 174 

2003 142     81 125 

2004 122     114 224 

2005 203   2.105 36 169 

2006 128 922.8 2.073 34 170 

2007 121 832.6 2.081 40 247 

2008 75 802.1 1.911 7 272 

2009 86 511.1 1.741 17 226 

2010 177 1066.6 6.473 20 354 

2011 109 1107.0 2.767 8 144 

2012 99 1606.0 4.833 41 160 

2013 113 709.0 6.280 65 144 

2014 82 654.0 4.774 52 206 

2015 91 265.0 3.576 37 90 

2016 211 388.0 5.923 53 246 

2017 165 488.0 4.531 37 205 

2.4 Railway market value 2 

The railway market value is from the World Bank Office, China (Gerald Ollivier, 2014). 3 

They provide the range of average unit costs for the 200 km/h double-track railway (AUC-4 

200D) shown in Table 3. The AUC-200D divides the cost of the railway into five elements, (1) 5 
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land acquisition and resettlement, and four first-level structures: (2) civil works (embankment, 1 

bridge or trunk), (3) track, (4) signalling, and (5) communications and electrifications. We use 2 

the mean value to present the unit cost of the element (e.g. the mean value is 6 million/per km 3 

of track element). The average railway market value used in this work is 56 million RMB, 4 

which does not consider land acquisition and resettlement costs since those parts were paid 5 

before construction. 6 

Table 3 Range of average unit costs (RMB million/per km of double track) 7 

Element 
RMB million/per 

km of double track 

Average unit costs 

(RMB million/per km 

of double track) 

Land acquisition 

and resettlement 
  5-8   6.5 

Civil Works 

Embankment 23-28 

42-43 42.5 Bridges/viaducts 59-62 

Tunnels 51-68 

Track (ballasted)   5-7   6 

Signalling and 

communications 
  3-4   3.5 

Electrification   4   4 

3. Methods 8 

Figure 3 presents an overview of the methodological framework used in this study. The 9 

methods in this study are divided into two parts: (1) vulnerability assessment and (2) risk 10 

estimation. In the first part, national and regional vulnerability curves that characterize the 11 

railway susceptibility by relating the damage degree to precipitation intensity are generated. In 12 
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the second part of the research, we estimate the risk to the Chinese railway system. The railway 1 

market value is combined with the vulnerability curve developed in the first part of the research 2 

and spatial data on the precipitation intensity to calculate the risk represented by expected 3 

annual damage (EAD).  4 

 5 

Fig. 3 Methodology of using the multiple sources of data to estimate vulnerability and risk. 6 

Railway geometries © OpenStreetMap contributors 2019. Distributed under the Open Data 7 

Commons Open Database License (ODbL) v1.0. 8 

3.1 Vulnerability curve estimation 9 

3.1.1 Precipitation intensity estimated for damage records 10 

The 88 damage records that are provided with additional local precipitation information from 11 

the news are shown in Fig. 4a with red lines. For each remaining damage record, we use the 12 

maximum 1-day precipitation amount along the damaged segment in the five consecutive days 13 

(M1-5d) before the damage occurred to present the precipitation intensity, shown in Fig. 4a 14 
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with black lines. To keep the consistency of the precipitation, we use the extracted precipitation 1 

information from the news to correct the M1-5d. The relationship between precipitation from 2 

news and M1-5d is given in Eq. (1) and derived using a least-squares fitting method, as 3 

presented in Fig. 4b, with R square 0.63. The constructed curve allows us to transform the 4 

precipitation in CN05.1(𝑝𝑟𝑒(𝐶𝑁05.1)) to the local precipitation as far as possible.  5 

pre(news) = 1.87 ∗ pre(CN05.1) + 27.35                   (1) 6 

  7 

Fig. 4 (a) Spatial distribution of precipitation extracted from news and CN05.1; (b) The 8 

relationship between precipitation extracted from news and CN05.1. 9 

3.1.2 Calculation of the damage ratio 10 

The damage ratio is the ratio of the cost of repairing to the cost of rebuilding (Mazzorana et 11 

al., 2009), which is estimated by the news information and AUC-200D. First, we generate a 12 

custom damage ratio table based on the AUC-200D and the descriptive damage state is given 13 

in Sections 2.2 and 2.4. Second, we transform the descriptive damage state into a numerical 14 

damage ratio using the damage ratio table. There are three steps that we use to build the custom 15 

damage ratio table: 16 
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1. Determine the cost ratio of the railway value for first-level structures. Based on AUC-1 

200D in Table 3, we calculate the cost ratio among four first-level structures. Taking 2 

the civil works: embankment as an example, the ‘total cost’ ratio is 0.65, 0.25, 0.09, 3 

0.1 for embankment track, signalling, communications and electrifications, 4 

respectively. For bridges and tunnels, the total cost ratios are shown in Appendix Table 5 

A2. 6 

2. Classify the damage state for each first-level structure and give the numerical damage 7 

ratio range for each classification. The final damage states and the associated 8 

numerical ratio are divided into four classifications, namely, total damage (1), severe 9 

damage (0.66-0.99), moderate damage (0.33-0.66), and light damage (0.01-0.33), as 10 

shown in Table 4. 11 

3. Calculate the numerical damage ratio range for a combination of a railway structure 12 

and a damaged state, and determine associated damage descriptive information based 13 

on news sources for each combination. The final damage ratio table is presented in 14 

Table 4, which is multiplied by the cost ratio of a first-level structure and the range 15 

ratio of the damage state classification. We then classify the damage state in sec 2.2 16 

into each category. 17 

Based on the damage ratio table and the historical news, we obtain the numerical damage 18 

ratio for each record. For each event, three damage ratios, namely, minimum ratio, average ratio, 19 

and maximum ratio, are obtained based on the damage ratio range. For example, the minimum 20 

ratio for the embankment's severe damage state is 0.644, and the average and maximum ratios 21 
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are 0.536 and 0.429, respectively. 1 

Table 4 Damage ratio table 2 

Element 
Unit cost 

ratio 

Damage 

state 
Damage ratio Description 

Embankment 0.6500 

Total 0.6500 Total damage 

Severe 0.4290-0.6435 Suspended sleepers; Hanging rails 

Moderate 0.2145-0.4290 

Subgrade shoulder, drainage ditch, side 

drain, revetment slope protection, 

protecting wall: moderate damage, 

collapse 

Slight 0.0065-0.2145 

Subgrade shoulder, drainage ditch, side 

drain, revetment slope protection, 

protecting wall: mild damage, cracks, 

blockage, loose, wash out 

Track 0.1500 

Total 0.1500 Total damage 

Severe 0.0990-0.1485 
Near-failure of components: sleepers, 

rail, track bed 

Moderate 0.0495-0.0990 
Two-component failure: sleepers, rail, 

track bed 

Slight 0.0015-0.4950 
Single-component failure: sleepers, 

rail, track bed 

Signalling and 

communications 
0.0900 

Total 0.0900 Total damage 

Severe 0.0594-0.0891 
Near-destruction of components: 

digital tuning and TDCS equipment 

Moderate 0.0297-0.0594 
One-component destruction: digital 

tuning and TDCS equipment 
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Slight 0.0009-0.0297 Communication equipment interrupted 

Electrification 0.1000 

Total 0.1000 Total damage 

Severe 0.0660-0.0990 
Power supply equipment damage and 

Catenary pillar destruction 

Moderate 0.0330-0.0660 Power supply equipment damage 

Light 0.0010-0.0330 Catenary pillar destruction 

3.1.3 Fitting the vulnerability curves 1 

We choose the log-normal distribution to fit the vulnerability curve. The cumulative 2 

distribution function of log-normal distribution is shown in Eq. 2, 3 

P(x) = ∅[
ln(x/φ)

ξ
]                               (2) 4 

which has two parameters, the location parameter φ and the scale parameter 𝜉, namely, the 5 

median and standard values, respectively (Porter et al., 2007). We use the precipitation intensity 6 

as the 𝑥 value and the damage ratio as the 𝑃(𝑥) value. A log-normal vulnerability function is 7 

chosen because it is a parsimonious two-parameter distribution with positive support (ensuring 8 

that unrealistic negative loads cannot occur) and has many precedents for its use in fragility 9 

analysis (Porter et al., 2007). 10 

In this study, we generate a total of seven vulnerability curves for the railway system: one 11 

for each of the six sub-regions (we combine North China into Central China since the damage 12 

records are less in North China), and one at the national level. To eliminate the noise and 13 

significant changes in the damage ratio, a moving average method is used to smooth the damage 14 

ratio in each precipitation intensity range. We use the criteria for classifying the precipitation 15 

intensity issued by the China Meteorological Administrator (2008), which is presented in Table 16 
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5, to apply the moving average method.  1 

Table 5 Classification of the precipitation intensity 2 

Precipitation intensity Total precipitation, in 24 h/mm 

Light rain 0.1-9.9 

Light rain-Moderate rain 5.0-16.9 

Moderate rain 10.0-24.9 

Moderate rain-Heavy rain 17.0-37.9 

Heavy rain 25.0-49.9 

Heavy rain-Torrential rain 33.0-74.9 

Torrential rain 50.0-99.9 

Torrential rain-Downpour 75.0-174.9 

Downpour 100.0-249.9 

Downpour-Heavy downpour 175.0-299.9 

Heavy downpour ≥ 250.0 

3.2 Risk assessment 3 

To calculate the direct risk to the Chinese railway infrastructure, we develop precipitation 4 

maps for different return periods based on the Gumbel distribution. From the daily precipitation 5 

time series in the CN05.1 product (1961-2018), we extract an annual time series of maximum 6 

precipitation volumes for 1961-2018. For each cell, we then fit a Gumbel distribution 7 

(Nadarajah, 2010) through this time series based on non-zero data. These Gumbel parameters 8 

are used to calculate precipitation volumes per grid cell for selected return periods (2, 5, 10, 25, 9 

50, 100, 200, 250, 500, and 1000 years). Precipitation volumes are calculated conditionally on 10 

the exceedance probability of zero precipitation volume. For those cells where less than five 11 

non-zero data points are available, the precipitation volume is assumed to be zero (Ward et al., 12 
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2013). 1 

Risk is generally calculated by combining the hazard intensity, vulnerability, and exposure 2 

(Merz et al., 2009; Lamb et al., 2019). In this study, we present risk as expected annual damage 3 

(EAD) (Merz et al., 2009). The EAD is defined as the average expected yearly market loss and 4 

is estimated based on selected discrete hazard events with different return periods. The EAD is 5 

calculated using the trapezoidal rule (Espinet et al., 2018). The EAD of the Chinese railway 6 

system is expressed in Eq. 5 as follows: 7 

EAD =
1

2
∑ (

1

Tr
−

1

Tr+1
) (Di + Dr+1)n

r=1                      (3) 8 

 where 𝑇𝑟  is the 𝑟𝑡ℎ  return period, 𝐷𝑖  is associated with damage to the railway 9 

infrastructure, which is defined in Eqs. (4) and (5) : 10 

𝐷𝑖 = ∑ 𝐻𝑟
𝑖 ∗ 𝑉 ∗ 𝐸𝑖

𝑁
𝑖 ∗ 𝐶DL                          (4) 11 

𝐶DL =
𝐷𝐿

𝐿
                                 (5) 12 

where 𝐻𝑟
𝑖  is the precipitation intensity amount of raster cell 𝑖  with a return period of 13 

T- year, 𝑉 is the vulnerability curve, 𝐸𝑖 is the railway market value of raster cell 𝑖, 𝑁 is the 14 

number of raster cells that intersect the railway line, and 𝐶DL is a damage length factor for 15 

calibration. In Eq. 5, 𝐷𝐿 is the average damage length (753 m) per damage place in an event, 16 

and 𝐿 is the average railway length for all raster cells that intersect with railway lines. This 17 

study and previous studies assume that assets exposed in one raster cell are exposed to the same 18 

damage degree for a certain hazard intensity. Based on the yearly railway damage data (sec 2.3), 19 

the average damage length in one damage place per event is 753 m. This is much shorter 20 

compared to the precipitation resolution (ca. 28 km) used in this work and is also shorter than 21 

the average railway length in each cell (ca. 14.6 km for double-track lines). We, therefore, 22 
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introduce a damage length factor (𝐶DL) to calibrate the estimated damage, assuming that not 1 

the entire railway section in a specific cell suffers damage from an event.  2 

4. Results  3 

4.1 Vulnerability curves 4 

The national- and regional-level vulnerability curves are presented in Fig. 5. The upper 5 

boundary is the maximum vulnerability curve, the lower boundary is the minimum vulnerability 6 

curve, and the middle black line is the average vulnerability curve, fitted by maximum, 7 

minimum, and average ratios, respectively. Vulnerability curves have noticeable regional 8 

differences across the country. When considering relatively low precipitation intensities, 9 

railway lines in Northwest China are vulnerable to rainfall-induced hazards. Damage ratios in 10 

Northwest China are higher than other regional- and national-level damage ratios with the same 11 

precipitation intensity. For example, when the precipitation is 100 mm (torrential rain), the 12 

national railway damage ratio is 0.124, whereas the railway damage ratio in Northwest China 13 

is about 0.148. Railway lines in Northwest and Northeast China are particularly vulnerable to 14 

rainfall events with high precipitation intensities. In case of extensive precipitation of more than 15 

200 mm (downpour), the national railway damage ratio is approximately 0.175, the railway 16 

damage ratio in Northeast China is about 0.180, and the railway damage ratio in Northwest 17 

China can reach 0.212. In Northwest China, the precipitation amount over 100 years is less than 18 

100 mm. Considering the low frequency of extreme precipitation and the expensive cost of high 19 

protection standards, the Northwest China railway infrastructures are not robust relative to other 20 

areas when looking at the same precipitation. In Northeast China, the oldest railway lines, which 21 
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have not been updated, have relatively low design standards and inadequate drainage facilities 1 

to defend against extreme precipitation, resulting in higher vulnerabilities compared to other 2 

regions. 3 

 4 

Fig. 5 National and regional vulnerability curves between precipitation (mm) and damage 5 

ratio. The maximum 𝑅2 is the 𝑅 square for the maximum vulnerability curve, the average 6 

𝑅2 is the 𝑅 square for the average vulnerability curve, the minimum 𝑅2 is the 𝑅 square for 7 

the minimum vulnerability curve. 8 

4.2 Risk analysis 9 

To incorporate the regional characteristics of the vulnerability for the Chinese railway system, 10 

we use the regional vulnerability curves to assess the risk of the Chinese railway system. We 11 

calculated the annual direct damage to railway infrastructure from 2000 to 2017, of which the 12 

results are presented in Fig. 6. The grey area is the range of annual direct damage, with the 13 

upper boundary calculated based on the maximum vulnerability curve, the lower boundary 14 

calculated based on the minimum vulnerability curve, and the middle darker grey line 15 

calculated based on the average vulnerability curve, thereby using the regional vulnerability 16 

curves. The darker yellow dots are the annual statistical damage in the yearbook with a 10% 17 
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error scale. Compared to the statistical damage, we find that estimated damage is 1 

underestimated for high annual damage and overestimated for small annual damage, which is 2 

a consequence of using mean damage ratios for each precipitation range in the vulnerability 3 

curves. Damage in 2000, 2001 and 2002 is overestimated, and the estimated damage is 4 

calculated with the minimum vulnerability with 38%, 15% and 22% deviation from the 5 

statistical damage. For the left, 81.25% of the statistically damaged points are located in the 6 

estimated damage range. These results illustrate that the fitted vulnerability curves can be used 7 

to calculate the damage. 8 

 9 

 10 

Fig. 6 Annual direct damage due to damage to railway infrastructure from 2000 to 2017 in 11 

China. 12 

The regional and national EAD to railway infrastructure due to rainfall-induced hazards are 13 

presented in Fig. 7 using regional vulnerability curves. The national railway EAD is 14 
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approximately 3.91 billion RMB when calculated with average vulnerability curves. When 1 

calculated with minimum and maximum vulnerability curves, the national EAD is 1.88 billion 2 

RMB and 5.98 billion RMB, respectively. Regionally, damage among areas differs substantially. 3 

Using the results calculated with average vulnerability as an example, East China has the 4 

highest risk with approximately 1.0 billion RMB, which exceeds the national EAD with 25.5%. 5 

North, South and Southwest China face a similar risk, with approximately 15%, 14%, and 13% 6 

of total national damage, respectively. High-density railway infrastructure exposure combined 7 

with a high frequency of extreme precipitation in these regions results in railway infrastructure 8 

with the highest risk. 9 

 10 

Fig. 7 Rainfall-induced hazard risk per region using different vulnerability curves. (a) The 11 

minimum vulnerability curve; (b) The average vulnerability curve; (c) The maximum 12 

vulnerability curve. The numbers on top of each stacked column chart are the national EAD 13 

values using the different vulnerability curves. 14 

The national EAD per kilometre ranges from 32 to 86 thousand RMB, with an average of 15 

65.38 thousand RMB using the average vulnerability curve. The EAD per kilometre is the 16 

highest in South China using the average vulnerability curves, which is 116.11 thousand RMB, 17 

followed by East China and Southwest China, for which the numbers are 96.30 and 87.37 18 

thousand RMB, respectively. The railways in South, East and Southwest China require much 19 
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attention and must improve their robustness. 1 

The risk per province calculated using the regional average vulnerability curves of the 2 

railway infrastructure to the rainfall-induced hazards are presented in Fig. 8. The risk differs 3 

considerably between regions when expressed in total EAD and EAD per kilometre. An 4 

examination of the total EAD shows that the provinces in North China, such as Hebei, Shanxi, 5 

Shandong, Henan, Southwest Sichuan and South Guangdong, experience the highest risks and 6 

is estimated to be larger than 200 million RMB. Hebei, Shandong have the most extended 7 

infrastructure assets in China. The railway in Shanxi and Sichuan are vulnerable to rainfall-8 

induced hazards, as shown in Fig. 5. When looking at EAD per kilometre for each province, 9 

the provinces in Southwest China, such as Sichuan and coastal provinces(e.g. Guangdong, 10 

Fujian, and Hainan), have the highest risks. The total EAD and EAD per kilometre are high in 11 

Sichuan, Shanxi and Guangdong provinces. From the provincial perspective, these two 12 

provinces need to allocate more resources to reduce the risk of rainfall-induced hazards. 13 

 14 

Fig. 8 Rainfall-induced hazard risk per province using the average vulnerability curve (a) 15 

EAD per province (million RMB) and (b) EAD per km of each province (1000 RMB). Fig. 16 

A.1 provides a map of provinces of China. 17 
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5. Discussion 1 

This study uses multi-source empirical data to assess the vulnerability and risk to railway 2 

infrastructure in China associated with rainfall-induced hazards. For this purpose, the damage 3 

news information and a custom damage ratio table are used to fit regional and national 4 

vulnerability curves. Previous studies (e.g. Quan Luna et al., 2011; Papathoma-Köhle et al., 5 

2012; Silva and Pereira, 2014; Stephenson and D'Ayala, 2014; Tsubaki et al., 2016; Pregnolato 6 

et al., 2017) have tried to use empirical data to fit the fragility or vulnerability curves to hazard 7 

intensity and object damage ratio in some regions. In these studies, detailed photos (Papathoma-8 

Köhle et al., 2012; Pregnolato et al., 2017) or hazard model results (Quan Luna et al., 2011) are 9 

mostly used to drive the hazard intensity, and adequate documentation of the damage and 10 

reconstruction cost can be used to calculate damage ratios. Due to the strict requirement of 11 

spatiotemporal damage and hazard intensity information, regional and national vulnerability 12 

curves to link hazard characteristics and exposures are rare in many regions. This work tries to 13 

overcome the universal problem of the lack of detailed vulnerability data. The fitted 14 

vulnerability curves are used as the descriptive damage state in the information on damage and 15 

precipitation derived from the news and exited precipitation dataset; these data are more easily 16 

collected. Combining the fitted vulnerability curve, precipitation product, and railway 17 

infrastructure exposure, the estimated risk of the national railway infrastructure, after 18 

calibration with a damage length factor, is approximately 3.91 billion RMB. The overall railway 19 

infrastructure risk results are broadly correlated with the yearbook average direct economic 20 

damage from 2000 to 2017, which is 3.29 billion RMB. The results reveal that vulnerability 21 
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and risk can be estimated accurately using multi-source empirical data. 1 

Several assumptions and limitations are acknowledged in this study. First, for damage 2 

records without local precipitation information, we use the maximum daily precipitation 5 days 3 

before damage occurrence (M1-5d) along the damaged segment to present the precipitation 4 

intensity. However, there exists deviation for the local damage places along with the damaged 5 

segments. In addition, the resolution of the CN05.1 precipitation data is too coarse to accurately 6 

capture local extreme precipitation events. We hence use the extracted precipitation information 7 

from the news to correct the M1-5d. In a certain way, it would decrease the uncertainty and 8 

keep the consistency of the precipitation. Second, due to a lack of different railway market 9 

values and detailed information on each railway infrastructure, this work uses the railway 10 

market value for 200 km/h railways of double tracks as the value for all types of railway 11 

infrastructure. This leads to an overestimation of risk because most conventional railway speeds 12 

are lower than 200 km/h, and the relative price has a high probability of being lower than 56 13 

million RMB. Post-disaster reconstruction using higher design standards to improve railways' 14 

ability to defend against disasters can reduce the risk for future hazards. 15 

From approximate and common news information to national datasets (e.g. railway damage 16 

data), the method used in this work can be a new direction to assess vulnerability and risk by 17 

combining multiple sources of empirical data. In addition, the low resolution of the 18 

spatiotemporal hazard map smooths the extreme values and cannot capture the hazardous 19 

damage. Future research needs to develop a high-resolution spatiotemporal hazard map to 20 

prevent this issue. 21 
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6. Conclusion 1 

In this study, we use multi-source empirical data to assess the vulnerability and risk to railway 2 

infrastructure in China associated with rainfall-induced hazards. Regional- and national-level 3 

precipitation vulnerability curves are derived based on news information and a custom damage 4 

ratio table. Based on precipitation data, fitted vulnerability curves, the market value of railway 5 

infrastructure, and a damage length factor, we assess and calibrate the annual direct damage 6 

from 2000 to 2017 caused by rainfall-induced hazards to Chinese railway infrastructure. 7 

Due to the spatial unevenness of protection standards, the regional vulnerability curves of 8 

railway infrastructure to rainfall-induced hazards show high spatial inconsistency. Railways in 9 

South, Southwest, North, East, and Central China are robust to rainfall-induced hazards since 10 

higher protection standards have been used to defend the heaviest rainfall. Railways in 11 

Northwest and Northwest China are relatively vulnerable to rainfall-induced hazards. In 12 

addition, the regional curves generated in this study can be applied in other works after 13 

adjusting the length factor based on the methodology illustrated in sec 3.2. 14 

The national railway infrastructure risk is approximately 3.91 billion RMB, and we find that 15 

the estimated annual direct damage of railway infrastructure to rainfall-induced hazards 16 

increases due to increasing extreme precipitation and railway exposure. Due to the spatially 17 

uneven precipitation intensity, exposure distribution and vulnerability curves, the risk in China 18 

show high spatial differences. The heaviest rainfall and high exposure density lead to a high 19 

absolute risk to railway infrastructure in South, East and Southwest China, even though they 20 

are robust to rainfall-induced hazards. Provinces such as Sichuan and Guangdong have high 21 
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absolute and relative risks. For railway infrastructure risk reduction and sustainable 1 

development of railway transportation in China, more attention and high protection standards 2 

need to be allocated to these high-risk areas. This work provides regional and national 3 

vulnerability and risk information for decision-makers. 4 
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Appendix 1 

 2 

Fig. A.1 Map showing the distribution of Chinese provinces. The China Provincial Map layer 3 

comes from the Data Center for Resources and Environmental Sciences, Chinese Academy of 4 

Sciences, which is accessible from the Resource and Environment Data Cloud Platform 5 

(http://www.resdc.cn/, last access: 19 May 2020). 6 

Table A1 (a) Damage ratio table 7 

Element 
Unit cost 

ratio 

Damage 

state 
Damage ratio Description 

Bridges/viadu

cts 
0.8176 

Total 0.8176 Total damage 

Severe 0.5396-0.8094 

Almost components destruction:  

superstructure, bearing substructure and 

accessory structure damage 

Moderate 0.2698-0.5396 

Two-components destruction:  

superstructure, bearing substructure and 

accessory structure damage 
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Slight 0.0082-0.2698 

One-component destruction:  

superstructure, bearing substructure and 

accessory structure damage 

Track 0.0811 

Total 0.0811 Total damage 

Severe 0.0535-0.0803 
Near-failure of components: sleepers, 

rail, trackbed 

Moderate 0.0268-0.0535 
Two-component failure: sleepers, rail, 

trackbed 

Slight 0.0008-0.0268 
Single-component failure: sleepers, rail, 

trackbed 

Signalling and 

communicatio

ns 

 

0.0473 

Total 0.0473 Total damage 

Severe 0.0312-0.0468 
Near-destruction of components: digital 

tuning and TDCS equipment 

Moderate 0.156-0.0312 
One-component destruction: digital 

tuning and TDCS equipment 

Slight 0.0005-0.0156 Communication equipment interrupted 

Electrification 
 

0.0540 

Total 0.0541 Total damage 

Severe 0.0357-0.0535 
Power supply equipment damage and 

Catenary pillar destruction 

Moderate 0.0178-0.0357 Power supply equipment damage 

Light 0.0005-0.0178 Catenary pillar destruction 

 1 

Table A1 (b) Damage ratio table 2 

Element 
Unit cost 

ratio 

Damage 

state 
Damage ratio Description 

Tunnels 0.8095  
Total 0. 8095 Total damage 

Severe 0.5379-0.8069 Almost components destruction:  the 
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slope, portal, lining of portal and lining, 

road or invert, surrounding rock of 

Tube 

Moderate 0.2690-0.5379 

Two of third of components 

destruction: the slope, portal, lining of 

portal and lining, road or invert, 

surrounding rock of Tube 

Slight 0.0082-0.2690 

One of third of component destruction: 

the slope, portal, Lining of portal and 

lining, road or invert, surrounding rock 

of Tube 

Track 0.0794  

Total 0.0822 Total damage 

Severe 0.0542-0.0814 
Near-failure of components: sleepers, 

rail, track bed 

Moderate 0.0271-0.0542 
Two-component failure: sleepers, rail, 

track bed 

Slight 0.0008-0.0271 
Single-component failure: sleepers, rail, 

track bed 

Signalling and 

communications 
0.0476  

Total 0.0479 Total damage 

Severe 0.0316-0.0475 
Near-destruction of components: digital 

tuning and TDCS equipment 

Moderate 0.0158-0.0316 
One-component destruction: digital 

tuning and TDCS equipment 

Slight 0.0005-0.0158 Communication equipment interrupted 

Electrification 0.0635 

Total 0.0548 Total damage 

Severe 0.0362-0.0542 
Power supply equipment damage and 

Catenary pillar destruction 

Moderate 0.0181-0.0362 Power supply equipment damage 
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Light 0.0005-0.0181 Catenary pillar destruction 

 1 
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