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Abstract. Getting a deep insight into the role of coastal flooding drivers is of high interest for the planning of adaptation 

strategies for future climate conditions. Using global sensitivity analysis, we aim to measure the contributions of the offshore 

forcing conditions (wave/wind characteristics, still water level and sea level rise (SLR) projected up to 2200) to the 

occurrence of a flooding event at Gâvres town on the French Atlantic coast in a macrotidal environment. This procedure 10 

faces, however, two major difficulties, namely (1) the high computational time costs of the hydrodynamic numerical 

simulations; (2) the statistical dependence between the forcing conditions. By applying a Monte-Carlo-based approach 

combined with multivariate extreme value analysis, our study proposes a procedure to overcome both difficulties by 

calculating sensitivity measures dedicated to dependent input variables (named Shapley effects) using Gaussian process (GP) 

metamodels. On this basis, our results show the increasing influence of SLR over time, and a small-to-moderate contribution 15 

of wave/wind characteristics, or even negligible importance in the very long term (beyond 2100). These results were 

discussed in relation to our modelling choices, in particular the climate change scenario, as well as the uncertainties of the 

estimation procedure (Monte Carlo sampling and GP error). 

1 Introduction 

Coastal flooding is generally not caused by a unique physical driver, but by a combination of them, including mean sea-level 20 

changes, atmospheric storm surges, tides, waves, river discharges, etc. (e.g., Chaumillon et al., 2017). The intensity of surge 

itself depends on atmospheric pressure and winds as well as on the site-specific shape of shorelines and water depths 

(bathymetry). Hence, compound events, resulting from the co-occurrence of two or more extreme values of these processes 

is a significant reason for concern regarding adaptation. For example, flood severity is significantly increased by the co-

occurrence of extreme waves and surges at a number of major tide gauge locations (Marcos et al., 2019), of high sea-level 25 

and high river discharge in the majority of deltas and estuaries (Ward et al., 2018), of high sea-level and rainfall at major US 

cities (Wahl et al., 2015). This intensification of compound flooding is expected to be exacerbated under climate change 

(Bevacqua et al., 2020). A deeper knowledge of coastal flooding drivers is thus a key element for the planning of adaptation 

strategies such as engineering, sediment-based or ecosystem-based protection, accommodation, planned retreat, or avoidance 

(Oppenheimer et al., 2019); see also discussion by Wahl (2017). 30 

In this study, we analyse compound coastal flooding at Gâvres town on the French Atlantic coast. This site has been 

impacted by 4 major coastal flooding events since 1905 (Idier et al., 2020a); in particular, by the storm event Johanna on 

March 10, 2008, which resulted in about 120 flooded houses (Gâvres mayor: personal communication; Idier et al., 2020a). 

Flooding processes at this site are known to be complex (macro tidal regime and wave overtopping; variety of natural and 

human coastal defences, various exposure to waves due to the complex shape of shorelines); see a thorough investigation by 35 

Idier et al. (2020a). We aim to unravel which offshore forcing conditions among wave characteristics (significant wave 

height, peak period, peak direction), wind characteristics (wind speed at 10m, wind direction) and still water level 

(combination of mean sea-level, tides and atmospheric surges) drive severe compound flood events, considering projected 

sea-level rise (SLR), up to 2200.  
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We adopt here a probabilistic approach to assess flood hazard, i.e. we aim to compute the probability of flooding and to 40 

quantify the contributions of the drivers with respect to the occurrence of the flooding event by means of global sensitivity 

analysis, denoted GSA (Saltelli et al., 2008). This method presents the advantage of exploring the sensitivity in a global 

manner by covering all plausible scenarios for the inputs’ values and by fully accounting for possible interactions between 

them. The method has been applied successfully in different application cases in the context of climate change (e.g., 

Anderson et al., 2014; Wong et al., 2017; Le Cozannet et al., 2015; 2019a; Athanasiou et al. 2020). 45 

Unlike these previous studies, the application of GSA to our study site faces two main difficulties: (1) the physical processes 

related to flooding are modelled with numerical simulations that have an expensive computational time cost (i.e. larger than 

the simulated time). This hampers the Monte-Carlo-based procedure for estimating the sensitivity measures; (2) the offshore 

forcing conditions cannot be considered independent and the probabilistic assessment should necessarily account for their 

statistical dependence. This complicates the decomposition of the respective contributions of each physical drivers in GSA 50 

(see a discussion by Do and Razavi, 2020).  

Our study proposes a procedure to overcome both difficulties by combining multivariate extreme value analysis (Heffernan 

and Tawn, 2004; Coles, 2001) with advanced GSA techniques specifically adapted to handle dependent inputs (Iooss and 

Prieur, 2019) and probabilistic assessments (Idrissi et al., 2021). To overcome the computational burden of the procedure, we 

adopt a metamodelling approach, i.e. we perform a statistical analysis of existing databases of pre-calculated high-fidelity 55 

simulations to construct a costless-to-evaluate statistical predictive model (named “metamodel” or “surrogate”) to replace the 

long running hydrodynamic simulator; see e.g., Rohmer et al. (2020).  

The article is organized as follows. Sect. 2 describes the test case of Gâvres, the data and the numerical hydrodynamic 

simulator used to assess flood hazard. In Sect. 3, we describe the overall procedure to partition the uncertainty contributions 

of dependent offshore forcing conditions for future coastal flooding. The procedure is then applied to Gâvres and results are 60 

analysed in Sect. 4 for future climate conditions. In Sect. 5, the influence of different scenario assumptions in addition to the 

offshore forcing conditions is further discussed, namely the magnitude of the flooding events, the influence of the climate 

change scenario, the digital elevation model (DEM) used as input of the hydrodynamic numerical model, and the intrinsic 

stochastic character of the waves. 

2 Case study 65 

2.1 Numerical modelling of flooding 

The considered case study corresponds to the coastal town of Gâvres on the French Atlantic coast in a macrotidal 

environment (mean spring tidal range: 4.2m). Since 1864, more than ten coastal flooding events hit Gâvres (Le Cornec et al., 

2012). The flooding modelling is based on the non-hydrostatic phase-resolving model SWASH (Zijlema et al., 2011), which 

allows simulating wave overtopping and overflow. The implementation and validation on the study site is described in (Idier 70 

et al., 2020a), and we summarize here the main aspects. The computational domain as well as the Digital Elevation Model 

(DEM) are shown in Fig. 1 (red domain). The DEM (denoted DEM 2015) is representative of the 2015 local bathymetry and 

topography and of the 2018 coastal defences. The space and time resolution are respectively 3m in horizontal, 2 layers along 

the vertical dimension, and more than 10Hz. The offshore wave conditions (south of Groix island) are propagated to the 

boundaries of the SWASH model using the spectral wave model WW3 (Ardhuin et al., 2010) taking into account the local 75 

tide, atmospheric surge and wind (see large spatial domain in Fig. 1(a)). The combined WW3-SWASH model chain has been 

validated with respect to the area that was flooded during the Johanna storm event (which occurred on 10 March 2008): the 

model slightly overestimates the number of flooded houses by about 3%, which can be considered very satisfactory for such 

complex environments.  
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Figure 1: Digital Elevation Model (DEM) and computational domain of the study site of Gâvres for the spectral wave model WW3 
(a), and for the non-hydrostatic phase-resolving model SWASH (b). The insert in (a) provides the regional setting. The point P 
indicates an observation point on the coast. Adapted from Idier et al. (2020a). 

 

The inland impact of a storm event is assessed by estimating the total water volume Y that has entered the territory at high 85 

tide. This is performed by first running the WW3 model (over 2 hours to reach steady wave conditions), and then the 

SWASH model by considering a time span of 20 minutes (with 5 minutes spin up) and steady state offshore forcing 

conditions. The value of Y is the volume at the end of the simulation. Such simulation costs about 1h30 of time computation 

on 48 cores approximately. Fig. 2 provides the maps of water depth and the corresponding value of Y computed with the 

afore-described simulator for five different storm events. In the study, we use the volume value Y=50m3, 2,000m3 and 90 

15,000m3 to categorize the flooding event as “minor”, “moderate” and “very large”. In addition, to account for the random 

character of waves, the modelling of the coastal flood induced by overtopping processes is combined with a random 

generation of wave characteristics in SWASH as described by Idier et al. (2020b). For given offshore forcing conditions, the 

simulation is repeated nr=20 times, and the median value (denoted mY) of Y is calculated as well as the quartiles (25th and 

75th percentiles, respectively denoted Q25 and Q75). For sake of presentation conciseness, we denote also by Y the median 95 

value. The impact of wave stochasticity is further discussed in Sect. 5.1. 



4 
 

 

Figure 2: Examples of five maps of water depth modelled by the numerical simulator described in Sect. 2 using DEM 2015. The 
value of the flood-induced inland water volume Y is indicated for the five cases. In the study, the volume value 50m3, 2,000m3 and 
15,000m3 have been selected to categorize the flooding event as minor, moderate and very large. Note that due to lack of numerical 100 
results with Y close to 15,000m3 in the database of simulation results (see Sect. 5), map (d) is provided for DEM 2008 instead. 

2.2 Offshore forcing conditions 

The modelling chain is forced by six offshore conditions, namely the still water level (SWL) – expressed with respect to the 

mean sea level, the significant wave height (Hs), the peak period (Tp), the direction (Dp), the wind speed at 10m (U) and 

wind direction (Du). These are defined using a database composed of hindcasts of past conditions offshore of the study site 105 

over the period 1900-2016. This dataset was built via the concatenation of hindcasts of different sources (see Idier et al., 

2020a: Table 1 for further details) completed by bias corrections using a quantile-quantile correction method. A total of 

>80,000 past events characterized by sixplets (SWL, Hs, U, Tp, Dp, and Du) taken at the time instant of the high tide, are 

used in the following to constrain the statistical methods of Sect. 3. The visual analysis of the extracted conditions (blue dots 

in Fig. 3) suggests a moderate-to-large statistical dependence between the forcing conditions, because we can clearly see a 110 

structure between the points: if they were independent, no structure would be noticed. The analysis of the pairwise Pearson’s 

correlation highlights a high and statistically significant correlation coefficient of 62% and of 50% for (Hs, U) and (Hs, Tp) 

respectively. In addition, the examination of the extremal dependence using the summary statistics described by Coles et al. 

(1999) shows that (SWL, Hs, U) present statistically significant positive dependence in the class of asymptotic independence 

(ranging between 28 and 46%). Further details are provided in Supplementary Materials A. 115 
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Figure 3: Overview of the N=50,000 randomly generated samples of offshore conditions (red dots). Blue dots correspond to the 
hindcast conditions used to fit the statistical methods described in Sect. 3.3. Green dots and squares correspond to the n=144 
training data used to set-up the GP metamodel (the selection approach is detailed in Sect. 3.2). The squares correspond to cases 
that are deliberately selected outside the range of the red dots to cover a broader range of situations.  120 

2.3 Sea level projections 

The analysis is conducted for future climate conditions by computing future still water level as 𝑆𝑊𝐿୤(𝑡) = 𝑆𝐿𝑅ୖେ୔(𝑡) +

𝑆𝑊𝐿 , where 𝑆𝐿𝑅ୖେ୔(𝑡) is the value of local mean sea level change in the future (relative to a given reference date) for a 

given a climate change scenario, i.e. a RCP (Representative Concentration Pathway) scenario, and 𝑆𝑊𝐿 is the present day 

still water level expressed with respect to the mean sea level of the considered reference date.  125 

In this study, we use the 𝑆𝐿𝑅ୖେ୔(𝑡) projections provided by Kopp et al. (2014) in the vicinity of the study site (including 

corrections of vertical ground motion of -0.25 +/- 0.16 mm/y). These projections and associated uncertainty were based on a 

combination of expert community assessment (the IPCC-AR5), expert elicitation (e.g., Bamber and Aspinall, 2013), and 

process modelling (e.g., the 5th phase of the Coupled Model Intercomparison Project or CMIP5) for most sea-level 

contributors, i.e. thermal expansion and ocean dynamical changes, ice-sheet melting, glaciers melting and groundwater 130 

storage changes. The data are provided with reference date 2000 for five time horizons (2030, 2050, 2100, 2150 and 2200), 

for 33 percentile levels 𝑝ௌ௅ோ  and for three RCP scenarios (RCP2.6, RCP4.5 and RCP8.5). The values for intermediate time 

instants as well as percentile levels are obtained via interpolation (linear for percentile levels, and kriging-based (Williams 

and Rasmussen, 2006) for time horizons).  

In summary, time-series of 𝑆𝐿𝑅ୖେ୔ are defined by combining a RCP scenario with a percentile level 𝑝ௌ௅ோ (ranging between 135 

0 and 1). Fig. 4 shows the projections for the three RCP scenarios considering 𝑝ௌ௅ோ=50% (median in red) and 𝑝ௌ௅ோ = 5 and 

95% (90% interval in blue). To account for the uncertainty of 𝑆𝐿𝑅ୖେ୔ , the following random sampling procedure is 

proposed: (1) a percentile level 𝑝ௌ௅ோ  is randomly and uniformly sampled between 0 and 1; (2) the inverse cumulative 

distribution function estimated from the data by Kopp et al. (2014) is then used to sample a time series of projected 

𝑆𝐿𝑅ୖେ୔(𝑡) values for a given RCP scenario, i.e. the same 𝑝ௌ௅ோ level is considered over the period 2030-2200 (with a time 140 

step of 10 years). See some examples in Fig. 4 of random realisations following this procedure. 
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Figure 4: Future projection of regional SLR for 3 different RCP scenarios. The red line indicates the median, and the blue lines 
indicate the bounds of the 90% confidence interval provided by Kopp et al. (2014). The different black lines correspond to a subset 145 
of 75 randomly generated time series using the procedure described in Sect. 2.3. 

3 Statistical methods 

3.1 Overall procedure 

The objective is twofold. First, we aim to estimate the flooding probability Pf defined as the probability that the median 

value 𝑚௒ (related to wave stochasticity, see Sect. 2.1) of the inland water volume Y induced by the flood exceeds a given 150 

threshold YC, namely: 

𝑃௙ = Prob(𝑚௒ > 𝑌஼) = E൫I{௠ೊவ௒಴}൯ = E(I൛୤(౤౨)(𝐱)வ௒಴ൟ)      (1) 

where E(.) is the expectation operator, I{A} is the indicator function which takes up 1 if A is true and 0 otherwise, and f (௡ೝ)(. ) 

denotes the hydrodynamic simulator f(.) described in Sect. 2 which takes the vector x of offshore forcing conditions as inputs 

to compute 𝑚௒ by conducting nr=20 repeated numerical simulations. Second, we aim to quantify the contributions of each 155 

offshore forcing conditions to the occurrence of the flooding event defined by {𝑚௒ > 𝑌஼} . The different steps of the 

procedure are depicted in Fig. 5 and described below. 
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Figure 5: Flowchart of the procedure. The sections describing the methods/data are indicated in grey next to the boxes.  

 160 

Step 1. To overcome the large computation time cost to estimate 𝑚௒, we set up a metamodel (see details in Sect. 3.3) which 

is trained using a number n of inputs 𝐱୧ୀଵ,…,୬ and the corresponding median value 𝑚௒
୧ = f (୬౨)(𝐱୧) (computed by running the 

hydrodynamic simulator nr times). As metamodel, we opt for the Gaussian process (GP) regression method (Williams and 

Rasmussen, 2006) whose implementation and validation are described in Sect. 3.2. One advantage of GP is to be capable to 

account for the metamodel error, i.e. the uncertainty related to the approximation of the true numerical model by a 165 

metamodel that is built using only a finite number of simulation results (see Step 3); 

Step 2. Using the database of hindcasts described in Sect. 2.2, a multivariate extreme value analysis is conducted to 

randomly generate a large number N of “extreme-but-realistic” random realisations x of the scalar offshore meteo-oceanic 

conditions via a Monte-Carlo procedure (Sect. 3.3). The effect of SLR is accounted for by following the random procedure 

described in Sect. 2.3; 170 

Step 3. Using the validated GP metamodel, Pf is estimated using the N randomly generated realisations of the offshore 

conditions. The respective contribution of the different offshore forcing conditions to the occurrence of the flooding event 

{𝑚௒ > 𝑌஼} is quantified using the tools of GSA (Sect. 3.4). We account for two sources of uncertainty in the estimation 

procedure, namely the Monte-Carlo sampling, and the GP error by replicating B times the estimation within a Monte-Carlo-

based approach described in Sect. 3.5. 175 
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3.2 Step 1. Gaussian Process Metamodel 

Let us consider the set of n training data (𝐱୧, 𝑚௒
୧ = f (௡ೝ)(𝐱୧))୧ୀଵ,…,୬. In the context of GP modelling (also named as kriging, 

Williams and Rasmussen, 2006), we assume, prior to any numerical model run, that f (୬౨)(. ) is a realisation of a GP (𝑀௒(𝐱)) 

with  

- mean (also named trend) µ(𝐱) = ∑ 
୨
𝑔୨(𝐱)୩

୨ୀଵ  (where 𝑔୨  are fixed basis functions, and 
୨
 are the regression 180 

coefficients of the k input variables); 

- stationary covariance function k(.,.), (named kernel) written as ∀𝐱, 𝐱ᇱ, k(𝐱, 𝐱ᇱ) = cov൫𝑀௒(𝐱), 𝑀௒(𝐱ᇱ)൯ with 𝜎ଶ the 

variance parameter.  

For new offshore forcing conditions 𝐱∗, the predictive probability distribution 𝑀௒(𝐱∗)| {𝑀௒(𝐱ଵ) = 𝑚௒
ଵ , … , 𝑀௒(𝐱୬) = 𝑚௒

୬} 

follows a GP with mean µୋ୔(𝐱∗) and variance 𝑉(𝐱∗) defined using the universal kriging equations (e.g. Roustant et al., 185 

2012) as follows: 

 

µୋ୔(𝐱∗) = 𝐠(𝐱∗)ᇱ෠ + 𝐜(𝐱∗) 
ᇱ. 𝐂ିଵ. (𝐦௒ − 𝐆෠),        (2a) 

𝑉(𝐱∗) = 𝑉ௌ + ൫𝐠(𝐱∗)ᇱ෠ − 𝐜(𝐱∗) 
ᇱ. 𝐂ିଵ. 𝐆൯

ᇱ
. (𝐆ᇱ. 𝐂ିଵ. 𝐆)ିଵ. ൫𝐠(𝐱∗)ᇱ෠ − 𝐜(𝐱∗) 

ᇱ. 𝐂ିଵ. 𝐆൯,    (2b) 

 190 

where 𝐦௒ = (𝑀௒(𝐱ଵ) = 𝑚௒
ଵ , … , 𝑀௒(𝐱୬) = 𝑚௒

୬), C is the covariance matrix between the points 𝑀௒(𝐱ଵ),…,𝑀௒(𝐱୬) whose 

element is 𝐶[i, j] = 𝑘(𝐱୧, 𝐱୨); 𝐜(𝐱∗)  is the vector composed of the covariance between 𝑀௒(𝐱∗) and the points 𝑀௒(𝐱ଵ),…, 

𝑀௒(𝐱୬); 𝐠(𝐱∗) is the vector of trend functions values at 𝐱∗ , 𝐆 = (g(𝐱ଵ), … , g(𝐱୬))ᇱ  is the experimental matrix, the best 

linear estimator ෠  of   is (𝐆ᇱ𝐂ିଵ𝐆)ିଵ𝐆ᇱ𝐂ିଵ𝐦௒ , and 𝑉ௌ = 𝜎ଶ − 𝐜(𝐱∗) 
ᇱ. 𝐂ିଵ. 𝐜(𝐱∗)  by assuming k(. , . )  to be stationary 

(Williams and Rasmussen, 2006). 195 

The n numerical experiments used to train the GP model are selected by combining two techniques: (1) for the extreme 

values, we use the approach developed by Gouldby et al. (2014) by means of a clustering algorithm applied to a large dataset 

of extreme forcing conditions. This database is constructed through a combination of Monte Carlo random sampling and 

multivariate extreme value analysis performed on the database of hindcast conditions described in Sect. 2.2; (2) for low and 

moderate values, we use the conditioned latin hypercube sampling procedure of Minasny and McBratney (2006). The reader 200 

can refer to Rohmer et al. (2020) for further details on the implementation for the site of interest here.  

To validate the assumption of replacing the true numerical simulator by the kriging mean (Eq. 2a), we measure whether the 

GP model is capable of predicting “yet-unseen” input configurations, i.e. samples that have not been used for training. This 

can be examined by using a K-fold cross-validation approach (e.g. Hastie et al., 2009: Sect. 7.10). To do so, the training data 

is first randomly split into K roughly equal-sized parts (named folds). For the kth fold, we fit the GP model to the other K−1 205 

parts of the data, and calculate the prediction error of the fitted model when predicting the kth part of the data. We do this at 

each iteration k = 1,2,…, K of the procedure and compute the coefficient of determination denoted 𝑄(௞)
ଶ  as follows: 

 

𝑄(𝑘)
2

= 1 −
∑ ቀ௠ೊ

౟  ି𝑚ෞ𝑌
−(𝑘)

(𝒙౟) ቁ
మ

౟స౤(ೖ)
౟సభ

∑ ൫௠ೊ
౟  ି௠ഥ  ൯

మ౟స౤(ೖ)
౟సభ

,   (3) 

  210 

where n(௞) is the size of the kth part of the data (k = 1,2,...,K), 𝒙୧ is the ith element of the kth part of the data, 𝑚ෝ௒
ି୩(𝒙୧) is the 

prediction at 𝒙୧ using the GP model fitted using the kth part of the data removed (i.e. the GP model is fitted using K-1 parts of 

the data), 𝑚௒
୧  is the median value of Y related to 𝒙୧computed using the modelling procedure of Sect. 2, and 𝑚ഥ  is the average 

value of the numerically computed median values for the kth part of the data. A coefficient 𝑄(௞)
ଶ  close to 1.0 indicates that the 



9 
 

GP model is successful in matching the new observations that have not been used for the training. The spread of 𝑄(௞)
ଶ  further 215 

informs on the stability of the predictive capability across the k folds. 

3.3 Step 2. Multivariate Extreme Value Analysis 

The flooding probability (Eq. 1) is computed via a Monte-Carlo sampling approach based on the random generation of the 

offshore conditions. To do so, two classes of offshore conditions are considered: ‘amplitude’ random variables X=(SWL, Hs, 

U), which can take up very large values, and covariates Xc=(Tp, Dp, Du), which are dependent on the values of the 220 

‘amplitude’ variables. Considering ‘amplitude’ variables, a multivariate extreme value analysis (Coles, 2001) is conducted to 

extrapolate their joint probability density to extreme values by taking into account the dependence structure. A three-step 

approach is performed: 

Step (1) Fitting of the marginals of ‘amplitude’ variables through the combination of the empirical distribution, below a 

suitable high threshold u, and of the Generalised Pareto distribution (GPD) above the selected threshold u (Coles and Tawn, 225 

1991) using the method of moments. Note that the marginal of SWL is estimated by combining the marginal of the skew 

surge with the empirical probability distribution of tides by following the convolution approach of Simon (1994). The 

threshold value u of the ‘amplitude’ random variables is selected using the Bayesian cross-validation procedure developed 

by Northrop et al (2017); 

Step (2) The dependence structure of the ‘amplitude’ variables is modelled using the approach of Heffernan and Tawn 230 

(2004). Let us denote 𝐗෩ି୧ the vector of all variables (with prior transformation onto common standard Laplace margins, Keef 

et al., 2013) except the ith variable Xi. A multivariate non-linear regression model is set up as follows: 

 

𝐗෩ି୧|{𝑋෨୧ = 𝑥෤଴} = 𝒂. 𝑥෤଴ +  𝑥෤଴
𝒃. 𝑾,          (4) 

where 𝑥෤଴> (i.e. 𝑋෨୧ having large values), a and b are parameters vectors (one value per parameter for each pair of variables), 235 

 is a threshold that is selected using the diagnostic tools described in Heffernan and Tawn (2004: Sect. 4.4) and W is a 

vector of residuals. The model is adjusted using the maximum likelihood method assuming that the residuals W are Gaussian 

and independent of Xi with a mean and variance to be calculated. Once fitted, a Monte Carlo simulation procedure is used to 

randomly generate realisations of the ‘amplitude’ variables X (after transformation back on physical scales) by following the 

algorithm described by Heffernan and Tawn (2004): Sect. 4.3; 240 

Step (3) Based on the generated dataset of amplitude variables, the random samples for the directional covariates Dp and Du 

are generated by using the empirical distribution conditional on the values of Hs and of U respectively. The peak period Tp 

values are generated by following the approach described by Gouldby et al. (2014) based on a regression model using wave 

steepness conditional on Hs. 

3.4 Step 3. Global Sensitivity Analysis and Shapley effect 245 

The objective is to investigate the influence of the offshore conditions with respect to the occurrence of the event {𝑚௒ > 𝑌஼} 

in relation to the flooding probability defined in Eq. 1. To do so, we opt for the GSA approach based on the Shapley effects 

proposed by Idrissi et al. (2021) and applied in the field of reliability assessment. For sake of presentation clarity, we first 

present the Shapley effect by considering the current situation where the variable of interest is a scalar variable (Sect. 3.4.1). 

Second, we present the adaptation in relation to the problem of flooding probability (Sect. 3.4.2). 250 

3.4.1 Shapley effect for a scalar variable of interest 

Among all the GSA methods (Iooss and Lemaitre, 2015), we opt for a variance-based GSA, denoted VBSA (Saltelli et al., 

2008), which aims to decompose the total variance of the scalar variable of interest denoted here Z into the respective 

contributions of each uncertainty; this percentage being a measure of sensitivity. 
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Recall that f(.) is the numerical simulator. Consider the k-dimensional vector x as a random vector of k random input 255 

variables Xi (i=1,2,…,k) related to the different offshore forcing conditions. Then, the variable of interest Z=f(x) is also a 

random variable (as a function of a random vector). VBSA determines the part of the total unconditional variance Var(Z) of 

the output Z resulting from each input random variable Xi. Formally, VBSA relies on the first-order Sobol’ indices (ranging 

between 0 and 1), which can be defined as: 

 260 

𝑆௜ =
୚ୟ୰൫୉(௓|௑౟)൯

୚ୟ୰(௓)
,            (5) 

where E(.) is the expectation operator. 

 

When the input variables are independent, the index Si corresponds to the main effect of Xi, i.e. the share of variance of Y that 

is due to a given Xi. The higher the influence of Xi, the lower the variance when fixing Xi to a constant value, hence the closer 265 

Si to one.  

When dependence/correlation exists among the input variables (as it is the case in our study, see Sect. 2.2), a more careful 

interpretation of Eq. 5 should be given: in this situation, a part of the sensitivity of all the other input variables correlated 

with the considered variable contributes to Si, which cannot be interpreted as the proportion of variance reduction related to 

fixing Xi. To overcome this difficulty, an extension of the Sobol’ indices have been proposed in the literature, namely the 270 

Shapley effects (Owen, 2014; Iooss and Prieur, 2019; Song et al., 2016). The advantage of these effects is to allocate a 

percentage of the model output's variance to each input variable which includes not only the individual effect, but also the 

higher-order interaction and above all, the (statistical) dependence. By summing to the total variance (i.e. the sum of all 

normalized effects is one) and by being non-negative, the Shapley effects allow for an easy interpretation (Iooss and Prieur, 

2019).  275 

Formally, the sensitivity indices are defined based on the Shapley value (Shapley, 1953) that is used in game theory to 

evaluate the “fair share” of a player in a cooperative game, i.e. it is used to fairly distribute both gains and costs to multiple 

players working cooperatively. Formally, a k-player game with the set of players K={1,2,…,k} is defined as a real-valued 

function that maps a subset of K to its corresponding cost 𝑐: 2௄ → ℝ so that c(A) is the cost that arises when the players in 

the subset A of K participate in the game. The Shapley value of player i with respect to c(.) is defined as: 280 

 

𝑣௜ =
ଵ

௞
∑ ൬

𝑘 − 1
|𝐴|

൰
ିଵ

(𝑐(𝐴 ∪ {𝑖}) − 𝑐(𝐴)஺⊆௄\{௜} ),        (6) 

where |A| is the size of the set A. 

 

In the context of GSA, the set of players K can be seen as the set of inputs of f(.), and c(.) can be defined so that for 𝐴 ⊆ 𝐾, 285 

c(A) measures the variance of Z caused by the uncertainty of the inputs in A. Owen (2014) proposed the so-called “closed 

Sobol' indices” as the cost function: 

𝑐(𝐴) = 𝑆஺
௖௟௢௦௘ௗ =

୚ୟ୰(ா(௓|௑ಲ))

୚ୟ୰(௓)
,          (7) 

where XA is the subset of inputs selected by the indices in A, namely (XA=(Xi)iA). 

The Shapley effect can thus be defined as: 290 

 

𝑆ℎ୧ =
ଵ

௞
∑ ൬

𝑘 − 1
|𝐴|

൰
ିଵ

(𝑆஺∪{୧}
௖௟௢௦௘ௗ − 𝑆஺

௖௟௢௦௘ௗ
஺⊆௄\{୧} ),        (8) 
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3.4.2 Shapley effect for the occurrence of a flooding event 

In our study, the Shapley effect cannot be directly applied because we are not interested in the variance of a scalar variable 

(denoted Z in Sect. 3.4.1), but in the occurrence of an exceedance event in relation to the flooding probability defined in Eq. 295 

1. Thus, we rely on the adaptation of the Shapley effect to this case, namely ‘Target Shapley effects’ proposed by Idrissi et 

al. (2021) as follows: 

 

𝑇𝑆ℎ୧ =
ଵ

௞
∑ ൬

𝑘 − 1
|𝐴|

൰
ିଵ

(𝑇𝑆஺∪{୧} − 𝑇𝑆஺஺⊆௄\{୧} ),        (9) 

where 𝑇𝑆஺ =
୚ୟ୰(୉(୍൛೘ೊಭೊ಴ൟ)|௑ಲ)

୚ୟ୰(୍൛೘ೊಭೊ಴ൟ)
 300 

The Target Shapley effects 𝑇𝑆ℎ୧ can be interpreted as a percentage of the variance of the indicator function allocated to the 

input Xi, and measures the influence of the input to the occurrence of the flooding event (defined by the exceedance of the 

median value 𝑚௒ of Y above YC). 

3.5 Estimation procedure 

In practice, the Shapley effects defined in Eq. 9 are evaluated using a “given data” approach, i.e. through the post-processing 305 

of the Monte-Carlo-based results using the nearest neighbor search-based estimator developed by Broto et al. (2020) with the 

sobolshap_knn function of the R package sensitivity1 using 5 neighbors and a pre-whitening of the inputs with the ZCA-cor 

procedure (Kessy et al., 2018). 

In this estimation, two major sources of uncertainty should be accounted for, namely the Monte-Carlo sampling and the GP 

error (related to the approximation of the true numerical model by a GP built using a finite number of simulation results). 310 

This is done as follows: 

Step (1) a set of N random realisations of the forcing conditions are generated using the methods described in Sect. 3.3; 

Step (2) for the N randomly generated forcing conditions, a conditional (stochastic) N-dimensional simulation of the GP 

(knowing the training data) is generated using Eq. 2a and 2b, and the N values of 𝑚௒ are estimated; 

Step (3) using the set of N values of 𝑚௒, the flooding probability is estimated using Eq. 1 and the Shapley effects are 315 

computed using the nearest neighbor search-based estimator. 

Steps (1) to (3) are repeated B times to generate a set of B Shapley effects (one effect per forcing condition). The variability 

in these estimates then reflects the use of different sets of random samples (sampling error) and the use of different 

conditional simulations of the GP (GP error).  

4 Application 320 

In this section, we apply the procedure described in Sect. 3 to partition the uncertainty in the occurrence of the event 

{𝑚௒ > 𝑌஼} by considering a base (reference) case defined by a volume threshold YC=2,000 m3 which corresponds to a 

flooding event of moderate magnitude (see Fig. 2b), and by the effect of SLR for RCP4.5 scenario (see Fig. 4b). The latter 

RCP scenario is selected because it approximately corresponds to the Intended Nationally Determined Contributions 

submitted in 2015 ahead of the Paris Agreement approval2. The impact of these assumptions is further discussed in Sect. 5. 325 

                                                           

1 https://cran.r-project.org/web/packages/sensitivity/sensitivity.pdf  

2 https://unfccc.int/process-and-meetings/the-paris-agreement/nationally-determined-contributions-ndcs/nationally-determined-

contributions-ndcs  
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4.1 Step 1. GP metamodel training and validation 

Using the approach described in Sect. 3.2, we first select 100 offshore conditions used as inputs to the modelling chain to 

calculate the corresponding median value 𝑚௒ (green circles in Fig. 3). In addition, 44 extra cases (squares in Fig. 3) were 

defined using the set of high tide conditions that were randomly generated for the design of the early-warning system at 

Gâvres (Idier et al., 2021: Sect. 2.5). These conditions were used as inputs of the metamodel implemented by Rohmer et al. 330 

(2020) to predict the flooding-induced water height at the observation point P (Fig. 1b), which is a critical location with 

respect to sea water entry during a storm event; the conditions leading to a positive water height were then selected. In total, 

n=144 computer experiments were performed. 

The GP model is trained by assuming a linear trend µ and a Matérn 5/2 kernel model in Eq. 2a,b and using a maximum 

likelihood estimation of the GP parameters (e.g. Roustant et al., 2012). The GP metamodel is validated using a 10-fold cross 335 

validation procedure as described in Sect. 3.2. Due to the highly skew distribution of 𝑚௒, we use a logarithm transformation 

i.e. logଵ଴ (𝑚௒ + 1). The cross-validation, procedure shows a high predictive capability of the trained metamodel with a 

median value Q²99.35% (calculated across the 10 folds) and a small spread (as shown by the small inter-quartile width of 

1.25%, see Fig. 6a). Our preliminary tests also showed that the logarithm transformation improved the predictive capability 

with an increase of Q² by 10%. The scatterplot in Fig. 6b confirms that the predictive capability of the trained GP model is 340 

very satisfactory (the dots almost align along the first bisector). However, we can notice some deviations; in particular in the 

vicinity of the volume threshold defining minor flooding event i.e. log10(50+1)1.7. This provides a clear justification for 

accounting for the GP error in the GSA results by following the procedure described in Sect. 3.5. 

 

Figure 6: (a) Boxplot of performance indicator values Q² (for the 10 folds of the cross validation procedure). Each colour indicates 345 
the number index of the corresponding fold. (b) Comparison between the volume (log10-transformed) estimated using the “true” 
numerical simulator and the ones predicted using the GP model for each of the 10 folds of the cross-validation procedure. The 
closer the dots to the first bisector, the more satisfactory the predictive capability of the trained GP model. The vertical dashed 
lines indicate the threshold YC (log10-transformed) used in the study (50, 2,000 and 15,000 m3).  

4.2 Step 2. Multivariate Extreme value analysis 350 

We use the database of hindcast conditions described in Sect. 2.2 to extract >80,000 offshore forcing conditions 

characterized by the sixplets (SWL, Hs, U, Tp, Dp, and Du) taken at the time instant of the high tide (blue dots in Fig. 3). 

Following Step (1) described in Sect. 3.3, the extracted data are used to fit the marginals of the ‘amplitude’ variables using 

the GPD distribution with the selected threshold value uHs=3.59m, uSWL=2.37m, and uU=9.51m/s by applying the Northrop et 
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al. (2017)’s procedure over the quantile range [85.0, 99.9%]corresponding to ~2 extreme events / year. The goodness of 355 

GPD fit is also checked by analysing the different diagnostic plots provided in Supplementary Materials B.  

Following Step (2) in Sect. 3.3, the dependence is modelled with the selected threshold  of Eq. (4) set up at 0.97 (expressed 

as a probability of non-exceedance) using the diagnostic tools described in Heffernan and Tawn (2004: Sect. 4.4). On this 

basis, the Monte Carlo simulation procedure described by Heffernan and Tawn (2004) is used to randomly generate 

N=50,000 events (representative of 1,000 years) using the R package texmex 3 . Based on the generated dataset, the 360 

corresponding covariate values are also generated (Step (3) in Sect. 3.2). Fig. 3 provides an overview of the randomly 

generated samples (red dots) for the ‘amplitude’ variables and for the covariates. Note that some delineations (on the bottom 

left hand corner) can be noticed, which results from the threshold-based procedure to model the probabilistic distributions 

(see Sect. 3.3). The visual analysis of this figure confirms the moderate-to-large statistical dependence between the sampled 

forcing conditions (if they were independent, no structure would be noticed) with satisfactory reproduction of the structure of 365 

the observations (blue dots). The examination of the (a,b)-parameters of the dependence model (as defined in Eq. 4) 

indicates a non-negligible positive strength of dependence in the class of asymptotic independence (Supplementary Materials 

A) in agreement with the analysis made on the hindcast database (Sect. 2.2).  

4.3 Step 3. Uncertainty partitioning over time 

The N=50,000 randomly generated forcing conditions in addition to the random SLR time series (see some examples in Fig. 370 

4) are used as inputs of the validated GP models to evaluate the time evolution of Pf for YC=2,000m3 given RCP4.5 (Fig. 7). 

Preliminary convergence analysis showed that 50,000 Monte-Carlo samples were sufficient to reach stable results; this is 

also shown by the very small uncertainty band’s width in Fig. 7 (see in particular the inserted plot) defined by the lower and 

upper bounds computed using B=50 replicates of the estimation procedure (described in Sect. 3.5). This also shows that both 

error sources (GP and sampling) have minor influence. Fig. 7 shows that Pf increases over time in a non-linear manner and 375 

reaches values of ~1.5% in the long term, by 2100 and ~22% in the very long term, by 2200., i.e. equivalent to a return 

period (inverse of Pf) of respectively 67 years and about 4.5 years. 

 

Figure 7: Time evolution of the probability of the event {𝒎𝒀 > 𝒀𝑪 = 𝟐, 𝟎𝟎𝟎𝐦𝟑} given SLR projections for the scenario RCP4.5. 
The inserted figure indicates the very small uncertainty band’s width whose limits are the lower and upper bounds computed 380 
using B=50 replicates of the estimation procedure (Sect. 3.5) accounting for GP and sampling error. 

                                                           

3 https://cran.r-project.org/web/packages/texmex/index.html  
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The Shapley effects for the flooding event {mY>2,000m3} were evaluated using the 50,000 GP model evaluations using 

B=50 replicates of the estimation procedure (Sect. 3.5) accounting for GP and sampling error. and the nearest neighbor 

search-based estimator (with 5 neighbors and a pre-whitening of the inputs with the ZCA-cor procedure, Kessy et al., 2018). 

Preliminary convergence analysis showed us that 50,000 samples were sufficient to reach low uncertainty estimates as 385 

shown at given time instants in Table 1. This also confirms that both error sources (GP and sampling) have small influence. 

Fig. 8 depicts the time evolution of the Shapley effects, which measure the influence of the inputs on the occurrence of the 

flooding event.  

 

Figure 8: Time evolution of the Shapley effects, relative to the occurrence of the event {𝒎𝒀 > 𝒀𝑪 = 𝟐, 𝟎𝟎𝟎𝐦𝟑}  given SLR 390 
projections for the scenario RCP4.5, estimated by computing the median value from B=50 replicates of the estimation procedure 
(Sect. 3.5) accounting for GP and sampling error. 

Table 1. Shapley effects relative to the occurrence of the event {𝒎𝒀 > 𝒀𝑪 = 𝟐, 𝟎𝟎𝟎𝐦𝟑} given SLR projections for the scenario 
RCP4.5, estimated by computing the median value from B=50 replicates of the estimation procedure (Sect. 3.5) accounting for GP 
and sampling error. The numbers in brackets correspond to the minimum and maximum value computed from the B=50 395 
replicates.  
Year SLR SWL Hs Tp Dp U Du 

2050 0.135 

[0.068, 0.195] 

0.325 

[0.235, 0.435] 

0.110 

[0.049, 0.252] 

0.105 

[0.067, 0.157] 

0.099 

[0.051, 0.161] 

0.108 

[0.072,0.146] 

0.110 

[0.060, 0.158] 

2100 0.323 

[0.301, 0.349] 

0.308 

[0.286,0.333] 

0.077 

[0.072, 0.082] 

0.074 

[0.068, 0.078] 

0.072 

[0.066, 0.079] 

0.073 

[0.068, 0.079] 

0.070 

[0.066, 0.076] 

2200 0.612 

[0.605, 0.619] 

0.279 

[0.269, 0.283] 

0.023 

[0.022, 0.025] 

0.022 

[0.020, 0.023] 

0.021 

[0.019, 0.023] 

0.021 

[0.020, 0.023] 

0.021 

[0.020, 0.023] 

 

Several effects are noticed: 

- The influence of SLR increases over time with a non-negligible contribution of ~13.5% even in the short term 

(<2050) until reaching ~32% in the long term (2100) by following a relatively steep evolution (with an increase by 400 

almost 140% from 2020 to 2100); 
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- After 2100, SLR contribution continues to increase until reaching ~61% in the very long term (2200). but by 

following a relatively gentle linear evolution (with an increase by 37.5% over a 100-year time duration from 2100 

to 2200). This means that by 2200, SLR dominates the cumulative contributions of all remaining uncertainties; 

- In the short term, the major contributor corresponds to SWL. The Shapley effect is of ~32%, while the remaining 405 

forcing conditions have contributions of the order of ~10-11%. By 2100, SLR Shapley effect exceeds the one of 

SWL; 

- Over time, the contributions of all forcing conditions (except SLR) decrease (to compensate the SLR increase 

because the sum of all Shapley effects is one) until reaching a quasi-horizontal plateau by 2100. The Shapley effects 

are of the order of 28% for SWL and 2-3% for Hs and U, hence indicating their quasi- negligible influence; We note 410 

that by 2075 (respectively 2150), the cumulative contribution of both SLR and SWL represents ~50% (respectively 

75%) of the variance.  

- After 2100, the Shapley effects of the wave and wind characteristics (Hs, Tp, Dp, U, Du) reach low levels (~7-8%), 

and after 2150, the contributions are <3%, which provides a strong evidence of their negligible role in the very long 

term, i.e. their individual effect as well as their dependence and their interactions with the other variables are almost 415 

zero. This effect would not have been revealed if ‘traditional’ sensitivity analysis (using Sobol’ indices) had been 

used, because the strong dependence among the inputs would not have been accounted for (Supplementary 

Materials C). 

5 Discussion 

In this section, we first investigate whether the conclusions on the uncertainty partitioning (Sect. 4.3) might change 420 

depending on some key modelling choices (Sect. 5.1). Second, we further discuss the implications of different limitations for 

both the numerical and the statistical modelling (Sect. 5.2).  

5.1 Influence of key modelling choices 

The uncertainty partitioning in Sect. 4.3 underlines the key influence of SLR on the occurrence of the event {𝑚௒ > 𝑌஼ =

2,000mଷ}. We investigate here to which extent alternative assumptions underlying our approach might change the afore-425 

described conclusions, namely:  

- the volume threshold YC used to define when a flooding event occurs: the analysis was performed given a threshold 

YC=2,000m3 related to a moderate flooding event (Fig. 2), and it is re-conducted here by respectively focusing on minor 

and very large flooding events defined for YC=50 and 15,000m3 (as illustrated in Fig. 2); 

- the choice in the RCP scenario to constrain the SLR projections described in Sect. 2.3: the analysis was conducted given 430 

the RCP4.5 scenario i.e. given a scenario related to relatively moderate SLR magnitude (Fig. 4b), compared to RCP8.5 

in particular (Fig. 4c). The analysis is here re-conducted for the RCP2.6 and 8.5 scenarios; 

- the choice of the DEM: this modelling choice is known to highly influence the results (see e.g., Abily et al., 2016), and 

we investigate to which extent an alternative DEM might change the sensitivity analysis results by considering the DEM 

2008 (with the same resolution of 3m as DEM 2015), which corresponds to the conditions before the major flooding 435 

event of Johanna 2008 i.e. prior to the protectives measures relying on the raise of the dykes in the aftermath of this 

event; 

- the choice of the summary statistics to account for wave stochasticity: the analysis was conducted by using the median 

value mY of Y as described in Sect. 2.1. The analysis is here re-conducted using the 1st quartile (denoted Q25), or the 3rd 

quartile (denoted Q75). 440 
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For each analysis, the corresponding assumption was changed and the whole analysis (described in Sect. 3.1) was re-

conducted, i.e. (1) new hydrodynamic simulations; (2) training of new GP models (the predictive capability is confirmed as 

shown in Supplementary Materials E); (3) GP-based estimate of the flooding probability and of the Shapley effects within a 

Monte-Carlo-based simulation procedure (Sect. 3.5).  

 445 

 

Figure 9: Relative differences of the Shapley effect for SLR (using the median value computed for B=50 replicates of the estimation 
procedure) with respect to the base case at different time horizons (2050 (a), 2100 (b) and 2200 (c)) considering alternatives 
modelling choices for the volume threshold YC, the RCP scenario, DEM and the summary statistics of wave stochasticity. 

Figure 9 summarizes these results and shows that the SLR effect both depends on our modelling choices and on the 450 

considered time horizon. Before 2100, it is strongly influenced by the DEM (Fig. 9a,b), with a reduction of SLR influence by 

-40 to -20%. The differences in the short/long term were expected because DEM 2008 presents some sectors of lower 

topographic elevation of coastal defences (Supplementary Materials D) compared to DEM 2015 (in particular on the south-

eastern sector, which is highly exposed to storm impacts). A more detailed analysis of the uncertainty contribution 

(Supplementary Materials E) shows that the decrease of SLR influence for DEM 2008 goes in parallel with higher 455 

contributions of wave characteristics, hence confirming that drivers of flooding change depending on the DEM; the sectors 

with lower topographic elevation having a higher sensitivity to wave-induced flooding, i.e. overtopping at least until 2100.  

In the long term (beyond 2100), the threshold importance becomes significant (Fig. 9b).  

The second major driver of SLR influence is the choice in the threshold. Reducing its value (case YC=50m3) reduces SLR 

contribution, which is directly translated into an increase of SWL contribution (Supplementary Materials E). This SLR-460 

threshold relation directly reflects how SLR acts on the flooding likelihood: it acts as an “offset”, which means that it induces 

a higher sea water level at the coast; hence a higher likelihood of flooding. Thus, the lower the threshold value, the lower the 

necessary SLR magnitude to induce flooding, hence the lower influence. This threshold also means that results presented in 

Fig. 8 are specific to our case study in Gâvres. In other settings where flooding is dominated by overflow, breaching or 

overtopping with another threshold, the partition of uncertainties is expected to be different. 465 

The third driver of SLR influence is the choice in the RCP scenario. Before 2100, assuming RCP2.6 scenario leads to an 

increase of SLR influence by ~10%. It is only in the very long term (beyond 2100) that assuming RCP8.5 scenario leads to a 

reduction in the SLR influence. This effect is related to the similarity in sea level projections across climate scenarios until 

the mid-21st century (Fox-Kemper et al., 2021). Like for YC, this is the “offset” effect of SLR that influences the most: for 

RCP8.5, the mode of the SLR distribution (in red in Fig. 4c) exceeds the one of the other scenarios after 2100, and can 470 

induce a high sea water level at the coast, hence potentially a water volume value close to YC=2,000 m3, and a higher 

flooding likelihood. This means that SLR values sampled around the mode will less impact the occurrence of the flooding 

event (and the flooding probability), because a small SLR offset is here necessary to trigger the flooding event. This is not 

the case for the two alternative RCP scenarios, because the mode is of lower magnitude and any SLR values sampled above it 

will have a key impact on the flooding occurrence. 475 
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Finally, the uncertainty partitioning is shown to be very little influenced by the choice of the summary statistics for the wave 

stochasticity (Fig. 9) especially in the long term after 2100. This result differs from the one of Idier et al. (2020b), who 

showed the importance of this effect that was there comparable to the one of SLR as long as the still water level remains 

smaller than the critical level above which overflow occurs. The differences between both studies may be explained by the 

differences in the procedure. Idier et al. (2020b) analysed this effect for two specific past storm events, whereas our study 480 

covers a large number of events by randomly sampling different offshore forcing conditions. To conclude on this effect 

(relative to the others), further investigations are thus necessary and could benefit for instance from recent GSA for 

stochastic simulators (Zhu and Sudret, 2021). 

5.2 Limitations 

While the analysis in Sect. 5.1 covers the main modelling choices of our procedure, we acknowledge that several aspects 485 

deserve further improvements. 

Regarding the modelling of the flood processes, one of our main assumptions is to perform simulations with steady state 

offshore forcing conditions, i.e. without accounting for the time evolution of the forcing conditions around the high tide 

(Sect. 2.1). First, this choice was guided by the computational budget that could be afforded to account for wave 

stochasticity via repeated numerical simulations. A total of 14420=2,880 numerical simulations were performed here for 490 

our analysis: such a large number of simulations would be difficult to achieve using non-stationary numerical simulations, 

because a single run takes about 3 days of computation on 48 cores. Second, Idier et al. (2020b) showed, on two historical 

storm events, that the value of Y remains of the same order of magnitude between a steady-state and a non-stationary 

simulation. Therefore, the temporal effect is expected to influence only moderately our conclusions regarding uncertainty 

partitioning. If, however, other flooding indicators are chosen (e.g. total flooded area, or water height at a given inland 495 

location), i.e. indicators that are more sensitive to the time evolution of offshore conditions, non-stationary simulations are 

mandatory. In this case, time dimension should be accounted for at different levels of the procedure: (1) metamodelling with 

functional inputs (e.g. using the procedure developed by Betancourt et al., 2020); (2) integrating additional variables in the 

multivariate extreme value analysis like event duration and event spacing (e.g. Callaghan et al., 2008); (3) random 

generation of time-varying forcing conditions (e.g. using the stochastic emulator used by Cagigal et al. (2020) to force 500 

ensemble long-term shoreline predictions). 

Regarding the physical drivers of flooding, the analysis was focused on marine flooding by considering the joint effects of 

wave-wind-sea level, but additional processes are also expected to play a role in driving the compound flooding, like river 

discharge (in particular with the proximity of the Blavet river4 on the study area) or rainfall. Including additional drivers is 

made here feasible by the flexibility of Heffernan and Tawn (2004)’s approach for analysing high dimensional extremes. 505 

This was shown in particular by Jane et al. (2020), who also highlighted the value of copula-based approaches, such as Vine 

copula. An avenue for future research could include the comparison of different approaches for multivariate extreme value 

analysis, i.e. a type of modelling uncertainty on top of the uncertainties in the parametrization and in the threshold selection 

of these techniques (e.g. Northrop et al., 2017).  

Finally, regarding the drivers’ evolution under climate change, we used the projections from Kopp et al. (2014). These are 510 

generally consistent with the latest IPCC sea-level projections presented in the Special Report on Ocean and Cryosphere in a 

Changing Climate (Oppenheimer et al., 2019). The range of these projections is also similar with medium confidence 

projections provided by the 6th Assessment report of IPCC, at least until 2100 (Fox-Kemper et al., 2021). Yet, the highest 

quantiles may not represent well the possibility of marine ice-sheet collapse in Antarctica (De Conto et al., 2021). The lowest 

                                                           
4  See Blavet gauge measurements (in French), https://www.vigicrues.gouv.fr/niv3-

station.php?CdEntVigiCru=8&CdStationHydro=J571211004&GrdSerie=H&ZoomInitial=3  
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quantiles of the Kopp et al. (2014)’s projections need to be considered even more cautiously, the 17% quantile being a 515 

reasonable minimal estimate (named low-end scenario, see e.g. Le Cozannet et al., 2019b) given the scientific evidence 

available today. Integrating these updated data is a line for future work whose implementation will benefit from the low 

computational budget of the metamodels. In addition, one of our main assumptions regarding SLR is that only SWL is 

impacted, while the current wave and wind climate remain unchanged in the future. This assumption should be reconsidered 

in future work in particular in the light of recent projections (see e.g. Morim et al. (2020) for wave and Outten and 520 

Sobolowski (2021) for wind) and by taking advantages of recent advances in stochastic modelling like the one used by 

Cagigal et al. (2020). 

6 Concluding remarks 

At the macrotidal site of Gâvres (French Britany), we have estimated the time evolution of the flooding probability defined 

so that the median value 𝑚௒ (related to wave stochasticity) of the inland water volume Y induced by the flooding exceeds a 525 

given threshold YC. For moderate flooding events (with YC=2,000m3), the flooding probability rapidly reaches ~10% (return 

period of 10 years) by 2100 and (quasi-)linearly increases until ~44% (~2.3years) in the very long term (by 2200). By 

relying on Shapley effects, our study underlines the key influence of SLR on the occurrence of the event {𝑚௒ > 𝑌஼} 

regardless of YC value together with a small-to-moderate contribution of wave and of wind characteristics and even of 

negligible importance in the very long term for the covariates, Dp, Du and Tp. This growing influence of SLR (and then of 530 

the climate scenarios over the 21st and 22nd centuries) was expected, and is a feature that would be observed across many 

coastal sites in the world. Yet, the time evolution of the flood probability (and associated uncertainty) remains site-specific, 

i.e. mostly related to the particular conditions that generate flooding in each coastal area, and could not have been quantified 

without the implementation of the proposed procedure.  

The analysis of the main uncertainties in the estimation procedure (Monte-Carlo sampling and GP error) shows here minor 535 

impact, which is a strong indication that the combined GP-Shapley effect approach is a robust tool worth integrating in the 

toolbox of coastal engineers and managers to explore and characterize uncertainties related to compound coastal flooding 

under SLR. However, to reach an operative level, two key aspects deserve further investigation: (1) the optimized 

computational effort with appropriate metamodelling techniques (e.g. Betancourt et al. (2020) for functional inputs, Zhu and 

Sudret (2021) for stochastic simulators) combined with advanced Monte-Carlo sampling scheme (like importance sampling, 540 

Demange-Chryst et al. (2022)); (2) the capability to assess the impact of alternative modelling choices (extreme value 

modelling, numerical modelling, in addition to those described in Sect. 5.1) on the sensitivity analysis, i.e. a problem named 

‘sensitivity analysis of sensitivity analysis’ by Razavi et al. (2021). This latter aspect requires a more general framework to 

incorporate multiple levels of uncertainty, i.e. a first level that corresponds to the forcing conditions, a second level that is 

related to the modelling choices and a third level that is related to the stochastic nature of our numerical model (related to 545 

wave stochasticity).  
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