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Abstract 

The increasing rate of occurrence of extreme events (droughts and floods) and their rapid transition magnifies 

the associated socio-economic impacts with respect to those caused by the individual event. Understanding of 

spatio-temporal evolution of wet-dry events collectively, their characteristics and transition (wet to dry and dry to 

wet) is therefore significant to identify and locate most vulnerable hotspots, providing the basis for the adaptation 10 

and mitigation measures. The Upper Jhelum Basin (UJB)-South Asia was selected as a case study, where the 

relevance of wet-dry events and their transition have not been assessed yet, despite of clear evidence of climate 

change in the region. The Standardized Precipitation Evapotranspiration Index (SPEI) at the monthly time scale 

was applied to detect and characterize wet and dry events for the period 1981-2014. The results of temporal 

variations of SPEI showed a strong change in basin climatic features associated with El Niño Southern Oscillation 15 

(ENSO) at the end of 1997, with the prevalence of wet and dry events before and after 1997 respectively. The 

results of spatial analysis show a higher susceptibility of the monsoon-dominated region towards wet events, with 

more intense events occurring in the eastern part, whereas a higher severity and duration is featuring in the 

southwestern part of the basin. In contrast, westerlies dominated region was found to be the hotspot of dry events 

with higher duration, severity, and intensity. Moreover, the surrounding region of the Himalaya divide line and 20 

the monsoon-dominated part of the basin were found to be the hotspots of rapid wet-dry transition events.  

1. Introduction 

There is growing evidence that recent warming is leading to significant alteration in hydrological cycle, 

exacerbating extreme weather events in general (Peterson et al., 2012) in many regions of the world. Extreme 

weather events such as floods and droughts and their rapid successions (recurrent spells) during past few decades 25 

have taken a heavy toll on both life and property. Moreover, such events can have large impacts on water 

availability, agriculture and food security, power production, and natural ecosystems (He et al., 2019, Sheffield 

and Wood, 2012). These events are projected to regionally intensify and be more frequent within the context of 

global warming, underscoring the importance of research on wet–dry extreme weather events collectively. The 

climate change projections for Asia continent in the sixth Assessment Report (AR6) of Intergovernmental Panel 30 

on Climate Change (IPCC) reported that during the 21st century South Asia is likely to face more intense and 

frequent heatwaves and humid heat stress, whereas both annual and summer monsoon precipitation will increase, 

with enhanced inter-annual variability (medium confidence) (Zhongming et al. 2021). Various studies at local, 

basin, national and regional scale already documented and acknowledged the vulnerability to climate change of 

that region (He and Sheffield, 2020; Zhao et al. 2020; Visser-Quinn et al. 2019; He et al. 2017). 35 

Typically, wet and dry events are generally considered independently in water resources management 

and planning. However, these events are inherently interconnected and governed by the same underlying 

hydrological processes and atmospheric dynamics, which may augment hydro-climatic variability under the 

influence of climate change (He and Sheffield, 2020). A number of wet-dry rapid altered events in the last decade 



2 
 

acknowledged the relevance of sequences of wet and dry events. For example, the California’s large scale flood 40 

event in 2017 occurred at the offset of prolonged drought (2011-2016) (He et al., 2017, NOAA National Centers 

for Environmental Information, 2018). South Carolina observed an abrupt transition (within a week) from drought 

to flood in September 2015 (He and Sheffield, 2020). Other examples include the successive drought and flood 

events of 2010–2012 and 2015–2016 in the UK (Parry et al., 2013) and Tasmania, Australia respectively (CSIRO, 

2018). Such abrupt flood-drought transitions put a substantial risk for water management practices, especially for 45 

reservoir operation, as a trade-off should be set between short-term flood-control and long-term water-storage 

imperatives to satisfy water demand (He and Sheffield, 2020). This has aroused widespread concern in the 

scientific community to understand the wet-dry interplay under a changing environment.  

During the past few decades, significant effort was put forward towards the adoption of multi-hazard 

approach (consideration of both types of extreme hydrological conditions at the same time) in developing 50 

resilience to climate change. (Kourgialas, 2021) analyzed floods and droughts collectively in the Mediterranean 

agricultural region, and proposed water-saving and flood protection measures for adapting to the inevitable 

adverse effects of climate change. (Visser-Quinn et al., 2019) identified hotspots regions in UK where spatio-

temporally concurrent increase in the number of flood and drought events were projected. (Zhao et al., 2020) 

investigated the rapid transition of flood and drought events under present and future climate change in the 55 

Hanjiang Basin and found more frequent drought to flood rapid transition events of higher intensity in the 21st 

century. Other examples include the analysis of rapid drought to flood transitions in river basins in China (Yan et 

al., 2013) and in England and Wales (Parry et al., 2013). These studies employed peak over threshold (POT) 

method and various indices recommended by the World Meteorological Organization (WMO) for the detection 

and characterization of wet-dry extreme events (floods and droughts).  60 

Some commonly used indices are the Standardized Precipitation Index (SPI) (McKee et al., 1993), 

Standardized Precipitation Evapotranspiration Index (SPEI) (Vicente-Serrano et al., 2010), Palmer Drought 

Severity Index (PDSI) (Palmer, 1965), normalized difference vegetation index (NDVI) (Tucker, 1979), 

Standardized Drought Indices (SDI) (Svoboda and Fuchs, 2016), and Standardized Anomaly Index (SAI) (Katz 

and Glantz, 1986). Among these indices, SPI and SPEI are more widely accepted for the following reasons: a) 65 

simple to calculate, b) require few inputs, (precipitation and temperature), that are easily accessible in most cases, 

c) standardized indices, which facilitate the comparison of different climatic zones, and d) can be calculated at 

multiple timescales, depending on the objective.  For instance, SPI and SPEI at short timescales (1, 2, 3 or 6-

month) better reflect the meteorological and agricultural drought, while longer time scales (12, 24 or 48 months) 

are usually considered in hydrology (Kourgialas, 2021). The calculation of SPI and SPEI is mathematically 70 

similar, but it differs in the input parameters. The SPI index only uses precipitation, whereas SPEI is based on the 

climatic water balance. Many studies advocate the use of SPEI, rather than SPI, due to its link to potential 

evapotranspiration (PET), which makes it more sensitive in the context of global warming (Himayoun and Roshni, 

2019, Yao et al., 2018, Huang et al., 2017, Vicente-Serrano et al., 2010).   

In this study, attempts were made to understand the regional evolution of wet-dry events collectively, 75 

their characteristics and transition (wet-to-dry and dry-to-wet) for different severity levels ranging from moderate 

to extreme. Here, the term “wet and dry events” does not necessarily imply observed flood and drought events, 

unless explicitly mentioned. There exists a basic difference between a flood and a wet event. The former has a 
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short duration effect (e.g., a few hours or days) while the latter is regarded as a long period without precipitation 

shortage (e.g., several months or years) (Wu and Chen, 2019).  80 

The proposed framework was implemented with reference to the Upper Jhelum Basin (UJB), where the 

relevance of wet-dry events and their transition have not been assessed yet, despite of clear evidence of climate 

change in the region. The UJB is located in Western Himalaya and shared by Pakistan and India. The region 

already witnessed an increase in extreme hydro-meteorological events in the last few decades, but these events 

are expected to become even more pronounced in the coming future (Pachauri et al., 2014). A study conducted 85 

over the Northern Highlands of Pakistan investigated the trends in time distribution patterns (TDPs) and return 

periods for event based extreme precipitation for a period of 1961 to 2014 and found maximum values of 20 and 

50-year return levels of TDP for the UJB (Zaman et al. 2020). Another study conducted on a portion of UJB 

located in Kashmir, India, uses SPEI index for spatio-temporal characterization of drought events only (Himayoun 

and Roshni, 2019). (Akhtar et al., 2020) investigated the correlation of meteorological and hydrological drought 90 

using SPEI and standardized streamflow index (SSI) over the Upper Indus Basin (UIB), including UJB. They 

validated the results with historically prolonged drought event observed in Pakistan (1999-02). Another study 

employed locally weighted SDI index and compared it with SPI and SPEI on ten meteorological stations within 

Pakistan (Ali et al., 2019). (Ullah et al., 2021a) evaluated four reanalysis products for drought assessment in 

Pakistan using SPI and SPEI at multiple time scales. All above mentioned studies put focus towards drought event 95 

characteristics only, whereas the wet events and transition of wet-dry events were overlooked. This study attempts 

to fill this gap by addressing the following specific points: 

1. How does climate change influence the evolution of the regional wet-dry events? 

2. How comparatively frequent were wet or dry events in the past? 

3. What is the average transition time from wet-to-dry and dry-to-wet events? 100 

4. Which parts of the basin are hosting hotspots for rapid wet-dry transition events? 

The most widely used index, SPEI, is here adopted to detect and characterize wet and dry events of different 

severity levels (moderate, severe, and extreme). The analysis was carried out both at each grid cell and averaged 

over the basin, using corrected ERA5 precipitation and observed temperature data for a period of 35 years (1981-

2014). 105 

2. Characterization of the study area 

The Upper Jhelum Basin (UJB) has a latitudinal extent stretching from 73° 07ʹ E to 75° 40ʹ E and 

latitudinal extent from 33° 00 ʹ N to 35° 12ʹ N (Figure 1). The basin is mainly located in sub-tropics and partially 

in a temperate region. The basin drains the foothills of Western Himalaya and Pir-Panjal mountains and feeds the 

second largest reservoir of Pakistan “Mangla Reservoir”. The total area of the basin is about 33,342 km2. The 110 

elevation ranges from nearly 223 m in the southwest to about 6201 m in the north with mean elevation of 2353 m 

MSL. Approximately 0.75% (252 km2) of the basin is covered by perennial glaciers in the north of the basin 

(Consortium and Inventory, 2017). Grass, forest, and agriculture are the three major LULC dominating over high, 

mid, and low elevation areas, respectively. Permanent snow and ice cover a negligible area in the northwest of the 

basin whereas the small patch of barren land exists over the densely grassy mountains of western Himalaya and 115 

Pir-Panjal. The urban settlement covers a small portion of the basin, concentrated in the Kashmir valley. 

The climate of the UJB is influenced by dynamic local and regional weather systems and the topography 

of the high mountains causes a huge variability in the spatial and seasonal distribution of precipitation (Dolk et 
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al., 2020). The two distinct precipitation patterns (i.e., western disturbances and monsoon) exist in the basin.  The 

western disturbances bring precipitation in the form of snow during winter season. The monsoon pattern brings 120 

liquid rainfall during summer seasons. The monsoon precipitation pattern dominates in the two lower sub basins, 

i.e Poonch and Kanshi, and progressively loses strength northward towards the foothills of Western Himalaya, 

where the influence of western disturbances is predominant (Neelam and Kunhar sub basins). The basin average 

annual precipitation and temperature is about 1150 mm/year and 13.2°C, respectively. Owing to the steep rugged 

mountainous topography of the basin and consequent short lag time, the flow level in the river and its tributaries 125 

rises abruptly during a rainfall event (Dar et al., 2019). Major extreme events witnessed by the basin are primarily 

led by vigorous interactions of moisture-laden monsoon circulation and southward penetrating mid-latitude 

westerly troughs into the Himalayan region (Vellore et al., 2016). 

 

 130 

 

Figure 1: Location of the UJB and spatial distribution of climatic stations 

3. Data description 

The daily observed precipitation and temperature data of 15 climatic stations located within the political 

boundary of Pakistan were collected from Pakistan Meteorological Department (PMD) and Water and Power 135 

Development Authority (WAPDA). For the Indian side region, Indian Meteorological Department (IMD) daily 

gridded precipitation and temperature datasets, derived from a dense network of meteorological stations for the 

Indian mainland (Pai et al., 2015), were extracted at five stations and used for that region. The analysis was carried 

out for a period of 34 years (1981-2014), due to the availability of observed data. In fact there are only a few 

climatic stations where data are available starting from 1971, but the number of stations would not be enough for 140 

the spatial analysis. The observed temperature data was used to calculate potential evapotranspiration (PET) using 

the Thornthwaite equation (Thornthwaite, 1948) due to data limitation. A study conducted by Beguería et al. 

(2014) compared the SPEI values calculated with three different methods (Penman-Manteith, Hargreaves, and 

Thornthwaite) and found small differences in humid regions. Mavromatis (2007) also reported similar outcomes 

https://rmets.onlinelibrary.wiley.com/action/doSearch?ContribAuthorRaw=Beguer%C3%ADa%2C+Santiago
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of PET methods for drought indices calculation. Afterwards PET values were interpolated at 0.25o using Kriging 145 

with External Drift (KED), considering elevation as a predictor (Goovaerts, 2000). For the precipitation, 

contrasting reviews are reported in the literature about the performance of KED technique. For instance, (Masson 

et al., 2014) reported considerable improvement in interpolation accuracy with KED compared to other linear 

regressions not accounting for any predictor in high mountainous regions. On the other hand, (Berndt and 

Haberlandt, 2018, Ly et al., 2011) argue that topographical impact was indispensable for only temperature 150 

reconstruction at all temporal resolutions and station densities, but its influence was less clear for daily to monthly 

precipitation. Furthermore, all spatial interpolation techniques can perform poorly in regions with insufficient 

high-elevation data, due to inaccurate estimation of local lapse rates (Ruelland and Sciences, 2020). Therefore, 

the distribution mapping (DM)-corrected ERA5 precipitation estimates (0.25o horizontal resolution) were used in 

the present study. ERA5 is a relatively new reanalysis launched by European Centre for Medium-Range Weather 155 

Forecasts (ECMWF) (Saha et al., 2010). The data are developed by using advanced 4Dvar assimilation scheme 

and provide various atmospheric variables at 139 pressure levels for the period 1979-present time. The suitability 

of ERA5 to the UJB and surrounding region was also reported by Liaqat et al. (2021) and Baudouin et al. (2020). 

The DM method adjusts the cumulative distribution function (CDF) of modelled precipitation to match with the 

observed precipitation CDF using a transfer function (Sennikovs and Bethers, 2009) and it is commonly used to 160 

correct the systematic distributional biases (Cannon et al., 2015). The Gamma distribution (Thom, 1958) with a 

shape and a scale parameter was found to be suitable for the precipitation distribution in the study region (Azmat 

et al., 2018). The suitability of ERA5 precipitation and bias correction method with respect to extreme 

precipitation analysis was checked against observed station data and a few results of the reliability check of DM-

corrected ERA5 is provided in supplementary material (see figure S1). 165 

4. Methods 

4.1. Wet and Dry Events Identification 

SPEI, a most widely used index was adopted to detect and characterize wet and dry events of different severity 

levels (moderate, severe, and extreme). The SPEI index support comparisons over time and space, as proxies of 

wet and dry conditions from both the meteorological and agricultural perspectives. Although the SPEI was 170 

originally proposed for drought monitoring, it can also be used as a tool to detect flood risk. The calculation 

procedure of SPEI involves two steps: fitting a log-logistic distribution to the monthly climatic water balance (P-

PET) time series and then transforming the cumulative probability of the fitted distribution to a standard normal 

distribution (with mean zero and variance one). According to this distribution method, the probability distribution 

function of a variable x is expressed as: 175 

𝐹(𝑥) = [1 + (
𝛼

𝑥−𝛾
)𝛽]−1                                                                                                                                         (1) 

Where α, β and γ are the shape, scale, and origin parameters, respectively. In the second step, SPEI is calculated 

as the standardized values of F(x) as follows: 

𝑆𝑃𝐸𝐼 = 𝑊 −
𝐶𝑜+𝐶1𝑊+𝐶2𝑊2

1+𝑑1𝑊+𝑑2𝑊2+𝑑3𝑊3                                                                                                                            (2) 

Where 180 
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𝑊 = √−2 ln(𝐹(𝑥))                     for F(x) < 0.5                                                                                                (3) 

𝑊 = √−2 ln(1 − 𝐹(𝑥))               for F(x) > 0.5                                                                                                  (4) 

The parameters C0, C1, C2, d1, d2, d3 are SPEI constants (Vicente-serrano et al., 2010). The log-logistic 

distribution for SPEI calculation was used and recommended by many researchers (Ullah et al., 2021a, Akhtar et 

al., 2020, Himayoun and Roshni, 2019, Vicente-Serrano et al., 2010). The detailed description of the SPEI 185 

calculation procedure can be found in (Vicente-Serrano et al., 2010). In this study, SPEI was calculated using 

“SPEI” package in R environment (Beguería et al., 2017). The severity levels of wet and dry events based on 

SPEI values were classified according to (Chen et al., 2020), results are listed in Table 1. Positive and negative 

value of SPEI represent the severity of wet and dry events, respectively. 

Table 1: SPEI Classification of Dry and Wet Events (from Chen et al., 2020) 190 

SPEI value Description 

> 1.99 Extreme Wet 

1.99 to 1.50 Severe Wet 

1.49 to 1.00 Moderate Wet 

0.99 to -0.99 Normal 

-1.00 to -1.49 Moderate Dry 

-1.50 to -2.00 Severe Dry 

-2.00 < Extreme Dry 

 

4.2. Wet and Dry Events Characteristics 

In this study, three characteristics (severity, duration, and intensity) of wet and dry events were calculated 

for each pixel. Following (Spinoni et al., 2014), the duration (D) of a wet/dry event is the length of time (months) 

that the index is consecutively above or below a truncation value; the Severity (S) refers to the cumulative value 195 

of the index from the first month to the last month of the wet/dry event and it represents the water surplus and 

deficit, respectively ; the intensity (I) of an event is the ratio of severity (S) to duration (D). These characteristics 

were computed for each event and then further the total wet/dry event duration (TWD and TDD), total wet/dry 

severity (TWS and TDS), total wet/dry intensity (TWI and TDI), average wet/dry event duration (AWD and 

ADD), average wet/dry severity (AWS and ADS), average wet/dry  intensity (AWI and ADI), maximum wet/dry 200 

event duration (MWD and MDD), maximum wet/dry severity (MWS and MDS), maximum wet/dry  intensity 

(MWI and MDI) were calculated for a period of 34 years (1981-2014). 

4.3. Wet–Dry (WD) ratio  

Wet-Dry (WD) ratio is defined as the natural logarithm of the ratio of the total number of wet months 

(Nw) to the total number of dry months (Nd) (Luca et al., 2020). The WD ratio was calculated for different levels 205 

of severity (moderate, severe, and extreme) at each pixel for the studied period (1981–2014) using Eq. (5): 

𝑊𝐷 𝑟𝑎𝑡𝑖𝑜 = ln (
𝑁𝑤

𝑁𝑑
)                                                                                                                                              (5) 
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The WD ratio provides information about the susceptibility of a given area to be more affected by wet or dry 

events. A WD ratio greater than 0 implies the prevalence of wet events whereas a WD ratio lower than 0 shows a 

dominance of dry events. The natural logarithm was used to narrow the range of WD ratio values and to separate 210 

the wet-dominated versus dry-dominated regions by sign.  

4.4. Wet-Dry Transition Time 

The total number of transitions and their average transition time (Tt) in months for wet-to-dry and dry-

to-wet events was computed for each grid cell is computed  for the period 1981–2014, as described by (Luca et 

al., 2020). The calculation procedure of wet-to-dry transitions time (Tt) involves four steps: (i) extraction of wet 215 

and dry events and arrange them in an ascending order of time (from the oldest to the most recent); (ii) in case of 

consecutive dry and wet months, keep only the first and the last month value, respectively; (iii) calculate the 

difference in months between wet to dry events within the time series; and (iv) take the average of the time interval. 

The same procedure was applied for calculating dry-to-wet transitions time (Tt), with the only difference being in 

step (ii) in which the first and last month of wet and dry event were kept, respectively and in step (iii) in which 220 

the time interval was calculated between dry to wet events. The wet-to-dry and dry-to-wet transition time were 

calculated separately for each level of severity (moderate, severe, extreme). 

4.5. Wet-Dry Rapid Transition Events  

The wet-dry rapid transition event is defined as the consecutive occurrence of wet and dry months/events. 

For instance, a dry (or wet) event occurring in the ith month abruptly altered to wet (or dry) event in the i + 1st 225 

month. In this study, the frequency of wet-to-dry (wet event followed by dry event) and dry-to-wet (dry event 

followed by wet event) rapid transition events were calculated for each pixel to identify the geographical hotspot 

for compound extreme events. Unlike the wet/dry average transition time which were calculated separately for 

each severity level, the wet/dry rapid transition events were calculated considering all levels of severity together. 

5. Results  230 

5.1. Change trends of the Wet-Dry Events 

The basin average SPEI time series at 1-month (SPEI-1), 3-month (SPEI-3), 6-month (SPEI-6) and 12-month 

(SPEI-12) time scale is presented in figure 2. It can be seen that the study domain mostly experienced moderate-

to-severe wet/dry events, whereas the extreme wet/dry events (SPEI>2 or SPEI<-2) rarely occurred during the 

study period. For the SPEI-1, the wet (blue) and dry (red) events changed more frequently than accumulated SPEI 235 

(at 3-, 6- and 12-month) and there was no extended dry or wet period. The reason might be that the precipitation 

and temperature of each new month has a substantial impact on the accumulative values of that period. By contrast, 

with the increase in SPEI time scale (SPEI-1 to SPEI-12), a clear change/shift of basin climate from wet to dry 

conditions can be seen (Figure 2), showing the stability in the frequency of incidences of wet/dry events over the 

study domain. This could be explained as the slow and consistent response of SPEI towards changes in climatic 240 

variables, indicating strong and clear durations of annual and multiple-year dry and wet conditions. This means 

that at longer time scales of SPEI the number of occurrences of wet/dry events will decrease, but the duration will 

increase. 
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 245 

Figure 2: temporal variations of SPEI at 1-, 3-, 6- and 12-month time scale over UJB for the period 1981-2014 

 

This study focuses on the short time scale conditions to analyze frequent variations in climatic conditions 

and their interplay; therefore, more detailed analysis was carried out at the monthly time scale. Moreover, the 

floods and flash droughts are not clearly associated with long term SPEI, because the averaging effect of long-250 

term accumulated precipitation and temperature surpasses the signal of extreme precipitation and temperature 

over a short period. Flash drought is relatively a new type of drought. Currently, there is not a universally accepted 

definition or criteria for flash drought, though there is general consensus on the principle of rapid onset or 

intensification characterized by moisture deficits and abnormally high temperatures for a period lasting at least 3 

weeks (Lisonbee et al. 2021, Otkin et al. 2018, Hunt et al. 2009). This highlights the usefulness of SPEI at the 255 

monthly scale in representing flood and flash drought events. It is noted that the terms “wet-dry events” or “wet-

dry months” present similar meaning for our study, as the analysis was made at the monthly time step. A clearer 

picture of the monthly evolution of wet/dry events of different severity levels and their variability can be seen in 

Table 2. The SPEI-1 values fluctuate remarkably from one month to another. For example, an extreme wet October 

in 1987 was followed by a severe dry November, and a severe wet June occurred at the tail of the longest drought 260 

spell in May 2001. Such rapid transition from wet to dry and from dry to wet events was more prominent during 

the first half of the study period (before the year 1997). Another interesting observation concerns the strong change 

in the basin climatic features which can be noticed around the year 1997/1998. During the first half of the study 

period (1981-1997), the dominancy of wet events of different categories prevails whereas the basin conditions 

lean towards dryer conditions during the second half of the period (1998-2014).  265 

Table 2: Temporal variations of monthly SPEI over UJB from 1981-2014. The brown, blue and white 

colors present dry, wet and normal months, respectively. Different shades of the colors define the different severity 
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levels (EW-extreme wet, ED-extreme dry, SW-severe wet, SD-severe dry, MW-moderate wet, MD-moderate 

dry). The red line between 1997 and 1998 indicates the strong change in the basin climatic features 

Year/ 

Months 
1 2 3 4 5 6 7 8 9 10 11 12 

1981             MW           

1982           MD SD     MW SW MW 

1983     SW MW       MW         

1984                 MW MD     

1985   SD       MD MW   MD     SW 

1986 MD   SW MW             SW MW 

1987 MD     MW EW   SD MD   EW SD   

1988     MW MD MD   SW       MD   

1989         MW           MW   

1990         MD             EW 

1991       SW MW SD     MW       

1992 SW   SW     MD     SW       

1993     MW SD     SW ED     MW MD 

1994       EW     MW SW     MD SW 

1995       SW     EW MW MD       

1996     MW   SW EW   MW SD SW     

1997   MD     MW MW   SW   MW     

1998   MW                 SD SD 

1999 MW MD               SD MW SD 

2000   MD MD SD SD         MD     

2001 SD SD MD   SD SW MW           

2002         MD   SD       MD   

2003 MD SW       MD             

2004   MD SD   MD   MD     MW     

2005   EW           SD       MD 

2006 SW   MD   SD     SW     MW MW 

2007 SD     ED   SW   MD   SD MD   

2008 SW   SD     MW           MW 

2009             MD   SD       

2010 MD SW MD   MW   SW MW     MD MD 

2011   SW     MD       MW       

2012           SD SD   SW       

2013     MD MD       EW         

2014     MW           EW     MD 

 270 

 

Annual variations in the number of months affected by dry/wet events (SPEI ≤ -1 and SPEI ≥ 1) is 

displayed in figure 3. Usually, every year encountered at least one dry and wet month of any severity level. 

Approximately 35% of the total number of months experienced anomalous dry or wet conditions. The proportion 

of wet months (18.1%) was slightly higher than the dry ones (16.9%). 275 
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Figure 3: Annual variations in the number of months affected by wet/dry conditions during 1984-2014. The 

brown and blue colors present dry and wet months, respectively. Different shades of the colors define the 280 

different severity levels (EW-extreme wet, ED-extreme dry, SW-severe wet, SD-severe dry, MW-moderate wet, 

MD-moderate dry) 

5.2. Wet/Dry Event Analysis 

The wet/dry event characteristics (duration, severity, and intensity) were computed for each pixel to 

analyze their spatial distribution. Pixel based analysis shows the location of the most vulnerable parts of the basin, 285 

providing the basis for future decisions on adaptation and mitigation measures. In this study, the total, average 

and maximum value of duration, severity, and intensity were computed for the study period (1981-2014). The 

maps of wet and dry duration are displayed in figure 4. Overall, the study area encountered relatively more wet 

months than dry months during the whole study period. The total wet duration (TWD) and total dry duration 

(TDD) varies from 66-80 and 61-65 months for most part of the basin. The low elevation parts in the south of the 290 

basin show highest value of TWD whereas the TDD is higher across Himalaya divide line than in other parts of 

the basin. The Himalayas divide line is a line in the middle of the UJB at Pir Panjal mountainous range, separating 

the dominance of the two precipitation patterns, westerlies and monsoon in the north facing and south facing 

slopes of the line, respectively (Archer and Fowler, 2008). 

The average wet and dry event durations (AWD & ADD) were found to be similar throughout the basin 295 

with a slight difference in the range of 1-2 weeks. However, their spatial patterns were found to be mostly 

complementary. Maximum wet and dry event duration (MWD & MDD) exhibits high values in two distinct parts 

of the basin. The MWD is about 6-7 months in the east of the basin, which is located in Kashmir, India whereas 

it varies between about 4-5 months and 2-3 months in the northwest and southwest parts of the basin. For the 

MDD, the northwest and central parts of the basin show higher values (4-5 months) than the remaining parts (2-3 300 

months). 
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Figure 4: Spatial distribution of total wet duration (TWD), total dry duration (TDD), average wet duration 

(AWD), average dry duration (ADD), maximum wet duration (MWD) and maximum dry duration (MDD) for 

the period 1981-2014 305 

The spatial distribution of total, average and maximum severity of wet/ dry events is presented in figure 

5. All wet/ dry severity maps show similar spatial patterns as wet/dry duration maps. In terms of total wet severity 

(TWS) and total dry severity (TDS), the wet and dry hotspots are located in the south and middle (across Himalaya 

divide line) of the basin, respectively. Unlike the spatial patterns of TDD, the TDS is relatively higher in the north 

of the basin above Himalaya divide line. This shows more intense dry events in this part of the basin. The 310 

underlying reason for higher TDS could be the higher warming rates in western Himalaya, hosted in the north of 

the basin. The average severity of wet and dry events is categorized from moderate to severe level.  The average 

wet severity (AWS) exhibits random spatial patterns, whereas the average dry severity (ADS) is relatively higher 

in the north of the basin. The similar spatial patterns of maximum wet severity (MWS) and maximum dry severity 

(MDS) are observed as MWD and MDD. The eastern part of the basin experienced wet events of higher severity 315 

than the western one, whereas the most severe dry events affected the northwest and central parts of the basin. 
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Figure 5: Spatial distribution of total wet severity (TWS), total dry severity (TDS), average wet severity 

(AWS), average dry severity (ADS), maximum wet severity (MWS) and maximum dry severity (MDS) for the 320 

period 1981-2014 

Figures 6 illustrates the spatial distribution of intensities of wet/dry events, calculated as the ratio of 

severity to duration. The total wet intensity (TWI) and total dry intensity (TDI) varies from moderate to severe 

with noted range of 1.44 to 1.55 and -1.36 to -1.52 for wet and dry events, respectively. Irrespective to TWD and 

TWS, which is highest in the south of the basin, TWI is more intense in the middle and northeast of the basin. The 325 

TDI is found to be more intense over western Himalaya Mountains, north of the basin. The average wet intensity 

(AWI) and average dry intensity (ADI) vary within the moderate class of hazard. However, their spatial patterns 

are much different from average duration (AWD & ADD) and average severity (AWS & ADS) patterns. 

Regarding maximum intensities, the spatial patterns of maximum wet intensity (MWI) well resemble the patterns 

of MWD and MWS, whereas the maximum dry intensity (MDI) exhibits much different spatial patterns from 330 

MDD and MDS. The dry events are found to be more intense than wet events, but only for a few pixels in the 

southwest of the basin. On the other hand, wet events with higher intensities are found to be more widespread 

than dry events. 
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Figure 6: Spatial distribution of total wet intensity (TWI), total dry intensity (TDI), average wet intensity 335 

(AWI), average dry intensity (ADI), maximum wet intensity (MWI) and maximum dry intensity (MDI) for the 

period 1981-2014 

5.3. Wet-Dry Ratio 

The WD ratio features the dominance of wet or dry events for the period of 34 years (1981-2014). The 

WD ratio for the three severity levels (moderate, severe, and extreme) at pixel basis is presented in figure 7. The 340 

positive and negative value of WD ratio depicts the prevalence of wet and dry events, respectively. As the figure 

shows higher frequencies of moderate dry events, with respect to moderate wet events were found throughout the 

basin except a few pixels in the south. By contrast, severe to extreme wet events are more frequent for most parts 

of the basin. The highest positive values of WD ratio for extreme level of hazard was found in southwest of the 

basin, which shows the higher susceptibility of the area towards extreme wet events. Moreover, the analysis of 345 

wet/dry event characteristics also revealed the prevalence of wet events with higher duration and severity over 

monsoon dominated region.  
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 350 

Figure 7: Spatial distribution of wet–dry (WD) ratio derived for three levels of severity (moderate, severe and 

extreme) during 1981-2014. Blue (WD ratio>0) means that the area experienced more wet than dry events. 

Brown (WD ratio<0) indicates the opposite. 

 

5.4. Wet-Dry Transition Time 355 

The number of transitions and their average transition time for wet-to-dry and dry-to-wet events for the 

period 1981–2014 is presented in figure 8 and figure 9. As expected, the number of transitions for wet-to-dry and 

dry-to-wet event was the highest for the moderate level of events, followed by severe and extreme levels of events. 

Consequently the average transition time from wet-to-dry and dry-to-wet event was found to be the highest for 

the extreme level of event followed by severe and moderate levels of events. The number of transitions for 360 

moderate, severe, and extreme levels of events varies from 15 to 26, from 6 to 16, and from 1 to 5 respectively. 

Overall, the number of transitions for dry-to-wet event is larger than the wet-to-dry event for severe and extreme 

levels of events, whereas the opposite was found for the moderate level of events. The transition time for moderate, 

severe, and extreme levels of events varies from 1.8 to 6.5, from 1.8 to 16.75 and from 3.5 to 187.0 months, 

respectively. Overall, 53.57% and 17.86% of pixels in the UJB showed longer transition time from wet-to-dry 365 

than from dry-to-wet for moderate and extreme levels, whereas the opposite was seen for severe events. 
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Figure 8: Number of transitions from wet-to-dry (left) and dry-to-wet (right) events for three levels of severity 

(moderate, severe, extreme) for the period 1981-2014 

 370 
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Figure 9: Average transition time (Tt) intervals in months for wet-to-dry (left) and dry-to-wet (right) events for 

three levels of severity (moderate, severe, extreme) for the period 1981-2014 375 

5.5. Wet/Dry Rapid Transition Events  

The wet/dry rapid transition is the consecutive occurrence of wet and dry months of any severity level. 

The frequency of wet-to-dry (wet month followed by dry month) and dry-to-wet (dry month followed by wet 

month) rapid transition events were computed for each grid cell and are shown in figure 10. The frequency of 

wet/dry transition events varies/ranges from 5 to 20 events during 34 years of study period. About 50% pixels in 380 

the UJB encountered more number of wet events terminated at dry months. The spatial distribution of frequency 

of wet/dry rapid transition events revealed that the wet-to-dry events are less frequent over the westerlies 

dominated region of the basin, whereas the southwestern part of the basin was more affected by the wet-to-dry 

abrupt altered events. By contrast, dry-to-wet abrupt altered events are found to be more frequent over pixels 

surrounding  the Himalaya divide line, whereas the remaining part of the basin depicts less incidence of dry-to-385 

wet altered events. 
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Figure 10: Frequency of occurrence of abrupt altered events, wet-to-dry (left) and dry-to-wet (right) during 

1981-2014 

6. Discussion and Conclusion 390 

This study attempts to investigate the spatiotemporal variations of wet-dry events collectively, their 

characteristics (duration, severity, intensity) and transition from wet-to-dry and dry-to-wet events during 1981-

2014 in the Upper Jhelum Basin (UJB)-South Asia. The SPEI index, which incorporates precipitation and 

potential evapotranspiration, was used to extract and analyze the wet-dry events. The whole analysis was carried 

out at the monthly time scale, but the temporal evolution of the basin averaged index was also simulated at multiple 395 

time scales (1-, 3-, 6- and 12-months). The reason for selecting the monthly time scale for this study is that it is 

expected to provide the best performance in detecting floods and flash droughts, as longer time steps are more 

appropriate for long term droughts only and not for floods. 

The results of temporal variations of SPEI showed that the study domain mostly encountered moderate 

to severe wet-dry events, whereas the extreme wet-dry events rarely occurred during the study period. The results 400 

of basin average SPEI at multiple time scales revealed that the response of SPEI to the deviations in climatic 

features varies with the accumulation time. Therefore, shorter time scales are more appropriate for detecting 

frequent seasonal and inter-annual variations, whereas longer time scales provide useful information regarding 

the signature of the events over the region (Ayugi et al., 2020, Du et al., 2013). Furthermore, the SPEI time-series 

plots well capture the observed extreme floods and drought events occurred in the basin during the study period: 405 

for instance, the longest drought event occurred from late 1990s to early 2000s, as evident in Figure 2 and Table 

2. The drought started in 1998 and was considered to be the worst in the history of Pakistan. The drought spell 

2001-2002 resulted in water shortage of up to 51% of normal supplies (Ahmad et al., 2004).  Likewise, the notable 

flooding events, usually flash floods ranging from moderate to severe, occurred in the years 1988, 1992, 1994, 

1997, 2007 and 2014 (Bhat et al., 2019) and were well captured by SPEI index, confirming its valuable 410 

contribution to this type of analysis.    

An interesting clue to the changing climate is the strong change occurred in the basin at the end of 1997 

(Table 2). Before this change (1981-1997), wet events of different severity levels predominated in the basin, 

whereas dryer conditions prevailed after 1997. However, it still needs to be investigated whether dryer conditions 
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are expected to continue in the future, or a large multi-decadal variation is taking place. This strong change in the 415 

basin climate coincides with the strongest El Niño Southern Oscillation (ENSO) event in the winter season of 

1997-1998, where the Oceanic Niño Index (ONI) peaked at 2.3, and influenced the climate conditions all over the 

world (MRCC, 2021). The 1998-2002 drought in southwestern Asia, accompanied by the most severe drought 

conditions in the last 50 years, was also a result of this strong ENSO event (Ain et al., 2020, Ahmed et al., 2018). 

The ENSO is the primary mode of inter-annual variability having great influence on global weather and climate 420 

via atmospheric circulations (Ullah et al., 2021a). Many researchers reported the close association between 

variations in atmospheric circulation patterns and climatic variables, extreme weather phenomena like drought 

and flood (Luca et al., 2020, Omidvar et al., 2016, Sun et al., 2015). (Kenyon and Hegerl, 2010) examined the 

response patterns of hydroclimate extremes to ENSO over global land areas, and stated a significant decrease in 

precipitation extremes over Southeast Asia, Indonesia, Australia, and the northernmost region of South America 425 

during El Niño phases, whereas in the southern tier of the United States and the region from Argentina to southern 

Brazil heavy precipitation increased during El Niño phases, and vice versa during La Niña phases. The strength 

of such connections for Pakistan was also demonstrated in several studies. El Nino suppresses monsoon rainfall 

activity over Pakistan, while La Nina has a negative impact on winter precipitation over Pakistan (Farooqi et al., 

2005, Azmat, 2003).(Ullah et al., 2021a) found significant impacts of three large scale climate indices, i.e Niño4-430 

SST Index, Sea Surface Temperature (SST), and multivariate El Niño-Southern Oscillation (ENSO4.0) on 

seasonal droughts across Pakistan. 

The results of wet-dry event characteristics (duration, severity, intensity) at pixel basis outline the greater 

susceptibility of westerlies dominated region towards dry events with higher duration, severity, and intensity. The 

dryer conditions in this region could be explained with the increasing rates of global warming over mountainous 435 

region of the basin, also reported by many researchers (Rashid et al., 2020, Shafiq et al., 2020, Zaz et al., 2019). 

Studies by (Negi et al., 2018) and (Dimri and Dash, 2012) also confirm that most of the western Himalayan region 

recorded a significant warming trend especially from 1975 onwards. This is also supported by the tree-ring 

chronologies of the region which indicate rapid growth of the tree rings in the recent decades especially at higher 

altitudes (Borgaonkar et al., 2009). The impact of global warming on short term dry event (soil moisture drought) 440 

is not straightforward as rising temperature did not necessarily cause increase in actual ET, especially in arid and 

semiarid regions (Trenberth et al., 2014, Sheffield et al., 2012). In fact the rate and amount of ET results from a 

complex interaction of temperature, radiation balance, precipitation rates and vegetation physiological control, 

rather than being exclusively limited by one of these factors. For flash drought, the rapid soil moisture decline 

should be a result of the intensification of ET driven by higher temperature, which is very common in humid and 445 

semi-humid regions, where soil moisture can sustain higher ET amounts up to a few weeks (Yuan et al., 2019). 

Further decrease in winter and spring precipitation leads water deficit conditions in this part of the basin. The 

worst drought event period (2000-2001), partially induced by a stronger ENSO in winter, was also due to the low 

winter and spring precipitation, as seen in Table 2. During 2000-2001, winter and spring seasons were moderate-

to-severe dry, whereas the monsoon and autumn seasons observed normal months. By contrast, the higher duration 450 

and severity of wet events were detected in the monsoon dominated region, implying that floods mainly occurred 

during monsoon season with heavy rainfall along with snowmelt. However, the eastern part of the basin was the 

hotspot of more intense wet events. The above discussion is also supported by the historic database of observed 

flood events, as most of these events occurred during monsoon season. 

https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php
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The results of WD ratio showed the prevalence of severe to extreme wet events for most part of the basin, 455 

while the dry events of moderate severity level were more frequent in the study domain. The southwestern part of 

the basin, located in the monsoon-dominated region was found to be the hotspot for the extreme wet events.  

Moreover, the analysis of wet/dry event characteristics also revealed the prevalence of wet events with higher 

duration and severity over the same monsoon dominated region. The spatial patterns of average transition time 

from one extreme type to the other type was found to be heterogeneous and different for the three severity levels. 460 

Overall, a greater number of pixels took shorter time to switch from dry to wet event than wet to dry events. Apart 

from the average transition period, the study domain also experienced rapid transition of wet-dry events. In 

general, the surrounding region of the Himalaya divide line and the monsoon-dominated part of the basin were 

found to be the hotspots of rapid wet-dry transition.  The rapid wet-dry swings could be explained in the context 

of global warming. In a warmer climate, increased evapotranspiration rates in response to increased temperature 465 

could elevate the drought risk and frequency. At the same time, prospect of localized heavy precipitation causing 

floods is expected to increase in response to increased atmospheric moisture content due to increased 

evapotranspiration rates (He and Sheffield, 2020, Krishnan et al., 2020). Further warming-induced changes in 

global climate variability, such as El Niño and La Niña can cause more inter-annual variability or persistence in 

global weather and climate, significantly affecting regional precipitation and temperature distribution in space and 470 

time (Ullah et al., 2021b). Further compelling scientific evidence of human interventions, such as boosted human 

water intake and land use changes, exacerbate the extreme flood and drought risk hazard. 

To conclude, knowledge of wet-dry events characteristics and their rapid transition provides meaningful 

insight into the geographical hotspots of compound extreme events, which could be of practical value to inform a 

group of stakeholders (researchers, local authorities, policy makers, relief agencies, non-governmental 475 

organizations (NGOs) and (re)insurance companies) on the potential risk. In general, results contribute to 

hydrological predictability and risk assessment and therefore effectively support disaster preparedness and risk 

management, ensuring the regional water, food and socio-economic security and stability against the background 

of a changing environment.. Future work should explore to what extent future wet-dry event frequency will 

respond to anthropogenic forcing, internal atmospheric processes, and human interventions. 480 
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