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Abstract. Typhoons and rainstorms are types of natural hazards that can cause significant impacts. These individual hazards

may also occur simultaneously to produce compound hazards, leading to increased losses. The accurate risk assessment of such

compound hazards faces several challenges due to the uncertainties in multiple hazards level evaluation, and the incomplete

information in historical data sets. In this paper, to deal with these challenges, we propose a risk assessment model called

VFS-IEM-IDM based on the Variable Fuzzy Set and Information Diffusion Method. In particular, VFS-IEM-IDM provides5

a comprehensive evaluation of the compound hazards level, and a predictive cumulative logistic model is used to verify the

results. Furthermore, VFS-IEM-IDM applies a normal information diffusion estimator to estimate the conditional probability

distribution and the vulnerability distribution of the compound hazards based on the hazards level, the hazards occurrence time,

and the corresponding losses. To examine the efficacy of VFS-IEM-IDM, a case study of the Typhoon-Rainstorm hazards that

occurred in Shenzhen, China is presented. The risk assessment results indicate that hazards of level II mostly occur in August10

and October, while hazards of level III often occur in September. The risk of the Typhoon-Rainstorm hazards differs in each

month and in August and September the risk gets the highest value, and the estimated economic losses are around 114 million

RMB and 167 million RMB respectively.

Key words: Compound hazards risk; Fuzzy dynamic risk; Variable fuzzy set; Information diffusion; Typhoon-Rainstorm
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1 Introduction15

Assessing risk is an effective way to reduce the negative impacts on natural hazards and plays an increasingly important role

in helping the decision maker in emergency management. With the global climate change, many cities have suffered extreme

natural hazards more frequently and many people’s lives are under threat. Located in the southern part of China, Shenzhen is a

coastal city with a low latitude, where Typhoon and Rainstorm hazards have severely restricted the sustainable development of

the local economy and society. Furthermore, the development of the Guangdong-HongKong-Macao Greater Bay Area highly20

relies on timely and effective emergency plans which are often determined by the efficiency of the risk assessment.

Risk assessment is a technique that uses hazards data to estimate the probability that natural hazards occur and assess their

economic losses. Traditional methods of risk assessment mainly utilize Geographic Information System (GIS) to get risk maps

(Gigovic et al. (2017)), or rely on information diffusion method (IDM) to deal with incomplete data sets (Gong et al. (2020)).

These relevant risk assessment methods (Julia et al. (2021); Zhou et al. (2020)) have became more comprehensive and mature25

in single hazards evaluation. However, the multi-hazard risk assessment is not the aggregation of their individual assessment

results but considers the connections among different hazards (Kappes et al. (2012)), so the assessment results for multiple

hazards are often inaccurate and insufficient. Furthermore, there is little research focusing on Typhoon-induced risk assessment

in the literature and many aspects such as dynamic risk assessment are not considered.

There are many works discussing the multi-hazard risk assessment and Choi et al. (2021) had reviewed the relevant literature.30

Furthermore, Wang et al. (2020) clarified the relationship between hazards in multi-hazard scenarios by dividing them into

three categories: mutually amplified hazards, mutually exclusive hazards, and non-influential hazards. Khan et al. (2020)

presented an analysis of the existing methods and technologies that are relevant to multi-hazard scenarios. Huang et al.

(2018) developed information diffusion technique to construct a joint probability distribution and a vulnerability distribution

for assessing the flood and earthquake risks. Xu et al. (2016) also used the information diffusion method to assess the risk of35

multiple hazards quantitatively and evaluated the risk of loss of human lives from meteorological hazards in China. Ming et al.

(2015) proposed a quantitative approach of multi-hazard risk assessment based on vulnerability distribution and joint return

period of hazards to assess the risk of crop losses in the Yangtze River Delta region of China. However, all of these works

focus on integrating the risks caused by single hazards and ignoring these truly correlations between hazards occurrence, such

as the co-appearance of Typhoon-Rainstorm hazards. In this paper, we aim at the multi-hazards and investigate new methods40

for multiple hazards level evaluation and dynamic risk assessment of compound hazards.

Compound hazards, a sub-group of the term ’multi-hazard’, can be considered as the combination of multiple drivers that

contribute to societal risk (Jennifer et al. (2021)), within which two associated hazards impacting the same time and place.

In this paper, we define the compound hazards risk as a scene in the future associated with some adverse incident caused

by cascading hazards systems, where there are strong connections among different hazard indicators. Compared with the45

multi-hazard risk assessment (Xu et al. (2016); Huang et al. (2018)), the risk assessment of compound hazards obtains

the comprehensive hazards level without losing any correlated information and often reflects the property of hazard-induced.

Risk assessment of compound hazards has been studied by He et al. (2020), who presented the Cloquet integral multiple
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linear regression model to overcome the problems of nonlinear additivity of couple hazards. But this method only provides

the magnification coefficients to assess the risks of compound hazards and neglects the changing of time span. Here, there50

are some problems remaining to be solved. On the one hand, the collected data for assessing the compound hazards risk is

often incomplete such that the results may not be reliable. On the other hand, the change of month in which the compound

hazards occur also has impacts on the risk assessment and is often ignored. In this paper, we emphasize that risk assessment

of compound hazards should deal with the uncertainties caused by multi-indicators, the unknown probability distributions, the

incomplete information in historical data sets, and the dynamic property of hazards occurrence.55

Some research based on variable fuzzy sets (VFS) theory, introduced by Chen (2006), have shown that the relative mem-

bership function can be used to evaluate the multi-indicators assessment problems. Li et al. (2012) proposed the fuzzy com-

prehensive assessment method to solve the flood risk assessment problems with interval boundaries and this integrated model

improves the reliability of single hazard risk assessment. Beaula et al. (2013) used variable fuzzy sets to evaluate the synthetic

hazards level of Nagapattinam district with the north-east monsoon rainfall’s data sets. Similarly, the variable fuzzy set theory60

can be used to obtain the comprehensive evaluation of compound hazards. In this paper, we propose to combine the VFS with

information entropy method (IEM) to assess compound hazards indicators and obtain a comprehensive risk assessment.

In many cases, it is difficult to collect compound hazards data sets, such that the information carried by historical data is often

incomplete. Therefore, the traditional models often give an unreliable estimation result, and many fuzzy probabilistic models

have been proposed to enhance the accuracy of risk assessment Mehran et al. (2017). Fuzzy probabilistic models are used65

to model uncertainties related to hazards and the randomness due to environmental, natural, or time span changing. The main

feature of the fuzzy probabilistic model is to change the traditional data points into fuzzy set for partly filling the gap caused

by data incompleteness and improve the estimation accuracy between inputs and outputs. The most powerful technique is the

information diffusion method (IDM), which helps extract useful underlying information from the hazard data sets. Research by

Huang (1997, 2002) has given many results about IDM and there are many papers have shown the capability of information70

diffusion method to deal with incomplete data sets (Huang (2009); Li (2013); Huang et al. (2018). In this paper, we introduce

the information diffusion method to deal with the incomplete data problem and combine the variable fuzzy sets theory to carry

out dynamic risk assessments of compound hazards.

The main contributions of this paper are summarized as follows.

– 1) We consider the uncertainties in compound hazards level evaluation and incomplete information in historical data75

sets, and propose a hybrid model, named as Variable Fuzzy Set and Information Diffusion Method (VFS-IEM-IDM), to

deal with compound hazards risk assessment dynamically.

– 2) To improve the efficiency and accuracy of compound hazards level evaluation, the calculation procedures of relative

membership degree have been categorized into three types.

– 3) To examine the efficacy of VFS-IEM-IDM, a case study of the Typhoon-Rainstorm hazards that occurred in Shenzhen,80

China is presented.
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The rest of this paper is organized as follows. Section 2 introduces the basic concepts and presents the dynamic compound

hazards risk assessment model (VFS-IEM-IDM). Section 3 illustrates how the proposed model can be used to assess the

dynamic risk of Typhoon-Rainstorm hazards in Shenzhen, China. Section 4 discusses the comprehensive evaluation of the

compound hazards level, conditional probability distribution, vulnerability distribution and the dynamic expectation risk of the85

Typhoon-Rainstorm hazards to show the effectiveness of VFS-IEM-IDM. Finally, we conclude the paper in Section 5.

2 Dynamic Risk Assessment of Compound Hazards Based on VFS-IEM-IDM

Risk assessment of compound hazards should consider the uncertainties caused by multi-indicator, incomplete information

contained in historical data sets, and the impact of internal attribute changes on the hazards. This section introduces VFS-

IEM-IDM which combines the variable fuzzy sets theory with information diffusion method to assess the dynamic risk of90

compound hazards when the given data sets are incomplete. The proposed VFS-IEM-IDM model consists of VFS-IEW dimen-

sion reduction model to obtain the comprehensive evaluation of compound hazards level (Section 2.2), and VFS-IDM dynamic

risk assessment model to estimate the expectation risk of direct economic losses (Section 2.3).

2.1 Dynamic compound hazards risk

Risk is assumed to be the possible scene of the occurrence of a harmful event. From the previous studies, the type of risk95

could be classified into four categories: pseudo risk, probability risk, fuzzy risk, and uncertainty risk (Huang et al. (2018)). In

the case of that we can estimate the probability distribution p(x) (hazard potential) of the occurrence of a hazard with respect

to its magnitude x, and we can estimate the relationship f(x) (hazard vulnerability) between the magnitude and hazard level,

a probability risk could be quantified as the expected value of economic losses, i.e.,

Risk = Hazard Potential× V ulnerability. (1)100

Though these four types of risks have been investigated by many researchers, there is little research on dynamic compound

hazards risk. In this paper, we give a definition of dynamic compound hazards risk and illustrate how to assess this kind of

risks.

The compound risk is a scene in the future associated with some adverse incident caused by cascading hazards systems,

where there are strong connections between different hazards and the hazard level is influenced by many indicators. Further-105

more, Huang (2015) mentioned that it could extent to dynamic compound risk if the impact of occurrence time on risk

assessment has been taken into consideration. To evaluate the compound hazards risk, the most important things are to esti-

mate probability distribution p(x) of the occurrences of compound hazards by using probability models, and the input-output

relationship f(x) between the hazards level and losses by using fuzzy models. The compound risk, quantified as the economic

losses of compound hazards, is given by Eq. 2.110

Risk =
∫
p(x) · f(x) dx=

J∑

j=1

p(x;attj) · f(x;attj), (2)
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where vector attj denotes the hazards indicator for different index j and reflects the internal attribute changes of compound

hazards. For example, the Typhoon-Rainstorm risk is influenced by different indicators att = (compound hazards level, eco-

nomic losses) and the dynamic compound risk can be assessed by integrating conditional probability distribution p(x;att) with

hazards vulnerability f(x;att) of Typhoon-Rainstorm hazards.115

2.2 VFS-IEW dimension reduction model

For the compound hazards risk assessment system, the randomness and fuzziness caused by multi-indicators evaluation

should be dealt with properly. Variable fuzzy sets theory (VFST), which deals with randomness and fuzziness, provide an

appropriate tool for solving the compound hazards level evaluation. The Variable Fuzzy Sets-Information Entropy Weight

(VFS-IEW) dimension reduction model has been proposed in this section.120

In this paper, we define interval I0 = [a,b] as the attracting sets of variable fuzzy sets (VFS) U and extends I0 to interval

I = [c,d] on the real axis. For u ∈ U , the elements in interval I0 satisfy µA(u)> µcA(u). In VFST, µA(u) denotes the relative

membership degree (RMD) and the core idea is to determine the RMD of each sample point by transferring fuzzy setU into real

value. Wang et al. (2014) has defined the balance boundaries matrix and illustrates the calculation of RMD as a complicated

and time consuming problem. We apply the balance boundaries matrix M = {Mrl} (shown in Eq. 3) to locate the eigenvalue125

x and defines the relative membership degree functions (shown in Eq. 4) to evaluate the comprehensive value of compound

hazards level.

M =
L− l
L− 1

arl +
l− 1
L− 1

brl = (Mrl), (3)

where r stands for the assessment indicator set, r = 1,2, . . . ,R, l denotes the comprehensive level, l = 1,2, . . . ,L. Compared

with relative locations of sample points and parameter Mrl, RMD calculation can be solved by the ratio x−a
M−a , i.e.130




µA(u) = 0.5[1 +

(
x−a
M−a

)p
] x ∈ [a,M ]

µA(u) = 0.5[1−
(
x−a
c−a

)p
] x ∈ [c,a]

. (4)

It can be seen that the RMD is affected by hyper-parameter p and the position between sample point x with parameters a, b,

c, d, and M . In this paper, the characteristics for different locations of x with respect to the class interval u have been used

to classify RMD calculation: judge whether the location of x is in the lowest or highest grade of the class interval u or not.

Fig.1-Fig.3 have shown three types of RMD calculation and the detailed induction can be referred by Fang et al. (2019).135





µA(u)1 = [µA(u)11 µA(u)12 0 · · · 0]

µA(u)11 +µA(u)12 = 1

0.5≤ µA(u)11 ≤ 1

0≤ µA(u)12 ≤ 0.5

. (5)
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Figure 1. Lowest: the position between the random point u1
t = x with parameter M11 and zones [a11, b11], [c11,d11].

Figure 2. Highest: the position between the random point u1
t = x with parameter M1L and zones [a1L, b1L], [c1L,d1L] .





µA(u)1 = [0 · · · 0 µA(u)1(L−1) µA(u)1L]

µA(u)1(L−1) +µA(u)1L = 1

0.5≤ µA(u)1L ≤ 1

0≤ µA(u)1(L−1) ≤ 0.5

. (6)

Figure 3. Middle: the position between the random point u1
t = x with parameter M1l and zones [a1l, b1l], [c1l,d1l].
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



µA(u)1 = [0 · · · 0 µA(u)1(l−1) µA(u)1l µA(u)1(l+1) 0 · · · 0]

µA(u)1(l−1) +µA(u)1(l+1) = 0.5

0≤ µA(u)1(l−1) ≤ 0.5

0≤ µA(u)1(l+1) ≤ 0.5

. (7)

Following the previous works by Kwakernaak (1978) and Chen (2006), the proposed variable fuzzy set dimension reduction

model can be constructed by Eq. 8. It indicates that the proposed model is affected by hyper-parameter α,β and the multi-140

indicators are transferred into a single degree value so as to obtain the comprehensive assessment results.




νA(u)l = [1 + (
∑R
r=1[ωr(1−µA(u)rl)]

α∑R
r=1[ωrµA(u)rl]

α )
β
α ]−1

νoA(u)l =
νA(u)l∑L
l=1 νA(u)l

H = (1 2 . . .L) · (νoA(u)l)
T

. (8)

where νoA(u) is the normalized process of RMD and H is the comprehensive value (a real value, can be transferred to hazards

level). Further, the weight of indicators in this VFS-IEW model can be calculated by information entropy weight (Liu et al.

(2010)) (shown in Eq. 9).145





fr
t = ur

t/
∑T
t=1ur

t

hr =−1/lnn ·∑T
t=1(fr

tlnfr
t)

ωr = (1−hr)/(R−
∑R
r=1hr)

. (9)

We now present the main steps of VFS-IEW model and the corresponding algorithm (shown in Algorithm 1) as follows.

– Step-1: Initialize the variable fuzzy sets and the balance boundaries Mrl.

– Step-2: Repeat the relative membership degree calculation.

– Step-3: Calculate the information entropy weight ωr.150

– Step-4: Return the comprehensive degree value.

2.3 Dynamic risk assessment model

In order to assess the dynamic risk of compound hazards, especially when the recorded data sets are incomplete, information

diffusion method (IDM) which belongs to fuzzy sets theory can be used to extract useful underlying information from the sam-

ples to estimate the relationships behind the incomplete data. According to the research by Huang (1997), normal information155
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Algorithm 1 VFS-IEW Dimension Reduction Model for Compound Hazards

Input:

1: The assessment object set D = {Ut = (ur)
t, r = 1,2, · · · ,R|t= 1,2, · · · ,T}, where ur is the eigenvalue;

2: Assessment criteria matrix, V = {(vrl), r = 1,2, · · · ,R; l = 1,2, · · · ,L}.
Output:

Comprehensive value of compound hazards level.

3: Identification of attracting sets Iab = ([a,b]rl) and the extended intervals Icd = ([c,d]rl) based on assessment criteria matrix V ;

4: Define the balance boundaries matrix M = {(Mrl), r = 1,2, · · · ,R; l = 1,2, · · · ,L} by Eq. 3;

5: Calculate the information entropy weight ωr by Eq.9;

6: for t= 1 to T , each Ut do

7: for each ur
t ∈ Ut do

8: if ur
t locates in the lowest grade of the class interval Iab, i.e., ar1 < ur

t < br1 then

9: RMD µA(u)r
t has the expression given by Eq.5;

10: else if ur
t locates in the highst grade, i.e., arL < ur

t < brL then

11: The value of RMD µA(u)r
t is given by Eq.6;

12: else

13: RMD µA(u)r
t have the expression given by Eq.7;

14: end if

15: end for

16: The relative membership matrix of each sample can be denoted as µA(u)t = (µA(u)rl
t);

17: Combine µA(u)t with weights ωr and integrate the ranking level, the comprehensive degree value for each sample is given by Eq.8.

18: end for

diffusion function µ(Xt
i;So) (shown in Eq. 10) is more powerful to improve the precision of estimators. So, this paper adapts

normal information diffusion estimator to approximate the dynamic compound hazards risk as follows.

µ(Xt
i;So) =

3∏

o=1

exp[− (xot− so)2
2h2

s

], i= 1, · · · ,n; t= 1,2, · · · ,T. (10)

h=





0.6841(b− a), for n= 5;

0.5404(b− a), for n= 6;

0.4482(b− a), for n= 7;

0.3839(b− a), for n= 8;

2.6581(b− a)/(n− 1), for n≥ 9.

where b= max
1≤i≤n

{xi}, a= min
1≤i≤n

{xi}.

(11)160
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where T is the different month value, So denotes monitor space, and hs is the diffusion coefficient. Based on this normal

estimator, the research by Huang (2002) has shown how to determine the coefficients (shown in Eq. 11) and the discrete

probability density function can be estimated by matrix P = {pjk}.

pjk =
∑n
i=1µ(Xt

i;uj ,vk)∑J
j=1

∑K
k=1

∑n
i=1µ(Xt

i;uj ,vk)
, j = 1,2, · · · ,J ;k = 1,2, · · · ,K. (12)

where uj and vk are the hazard indicator vectors. Further, the conditional probability distribution of the given compound165

hazards risk indicator u has the expression of Eq. 13:

pv|uj (vk|uj) =
pjk∑K
k=1 pjk

,k = 1,2, · · ·K. (13)

For the two dimensional input risk indicator set (time and hazard level value) A= {(x1t,x2t)|t= 1,2, · · · ,T} with diffusion

function µA(uj ,vk) , the fuzzy relationship (vulnerability distribution) between A and fuzzy output (economic losses indicator

fm) B =Rf can be estimated by membership function µB(fm) :170

µB(fm) = max
uj∈U
vk∈V

{min{µA(uj ,vk),Rf}},m= 1,2, · · · ,M. (14)

where the fuzzy relationship model Rf = {(rjkm)} (Eq. 15) is given by the three-dimension information diffusion matrix

µ(Xt;uj ,vk,fm).

rjkm =
∑n
i=1µ(Xt

i;uj ,vk,fm)
max

1≤m≤M

∑n
i=1µ(Xt

i;uj ,vk,fm)
. (15)

Then the weighted value f(uj ,vk), represented as vulnerability distribution, is defined as follows.175

f(uj ,vk) =
∑M
m=1µB(fm) · fm∑M
m=1µB(fm)

, j = 1,2, · · · ,J ;k = 1,2, · · · ,K. (16)

Based on the VFS-IDM risk assessment model, the dynamic compound hazards risk (Direct Economic Losses) is shown in

Eq. 17 where the risk is quantified as the expected value of conditional probability distribution and vulnerability distribution.

The proposed algorithm, which can be used to deal with incomplete information risk assessment, is given by Algorithm 2.

Riskuj =
K∑

k=1

pv|uj (vk|uj) · f(uj ,vk) (17)180

3 Case Study

This section uses the Typhoon-Rainstorm compound hazards that occurred in Shenzen, China, as an example to show how

the proposed VFS-IEM-IDM model can be used to dynamically assess the risk of compound hazards. Shenzhen is located in the

east bank of the Zhujiang River and is surrounded by Daya Bay and Dapeng Bay, where the climate is a subtropical maritime

10
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Algorithm 2 VFS-IDM Dynamic Risk Assessment Model of Compound Hazards

Input:

1: Sample set D = {Xt
i = (xt

1i,x
t
2i,x

t
3i)|i= 1,2, · · · ,n; t= 1,2, · · · ,T}, where xt

oi,o= 1,2,3 is the related factor of compound haz-

ards (results given by Algorithm 1);

2: Universes of monitor space S = {(sol), l = 1,2, · · · ,L|o= 1,2,3}, where the length L varies from different universes;

3: Coefficients of diffusion function H = (h1,h2,h3).

Output:

Dynamic compound hazards risk.

4: Identification of the comprehensive value of compound hazards level by VFS-IEW;

5: for Sample index i= 1 to n, each Xt
i do

6: Based on the universes of monitor space, employing the normal diffusion function in Eq. 10 to construct information diffusion matrix

of sample D;

7: end for

8: Estimate the joint and conditional probability distribution based on Eq. 12 and Eq. 13;

9: Determine the input-output sets and model the fuzzy relationship based on Eq.15, then estimate the vulnerability distribution by Eq.16;

10: The dynamic risk (Direct Economic Loss) of compound hazards can be quantified by Eq. 17.

and Typhoon-Rainstorms are undoubtedly the most frequently occurred hazards in Shenzhen. According to the collected data185

(see Table A1), from 1980 to 2016, on average, the directed economic losses of the Typhoon and Rainstorm hazards in Shenzhen

exceeded 360 million RMB per year, the number of death was 3.4 deaths annually and about 149,000 people were affected

(Zhou et al. (2017)). The assessment results of the Typhoon-Rainstorm dynamic risk are the basis to determine whether or not

the early warning systems are worked and implemented effectively.

Since the compound hazards are characteried by three indicators, the variable fuzzy set dimension reduction model can be190

used to get more precise comprehensive hazard level. According to the Classification Standards of Rainstorm and Typhoon,

this paper outlines the index classification criteria (shown in Table 1, Guided by TYPHOON ONLINE http://typhoon.nmc.cn/

web.html and the explanation is shown in the Table A1) and the four types of Typhoon-Rainstorm hazard level.

Table 1. Classification standards of Typhoon-Rainstorm hazards.

Indicators
Compound Hazards Level

I II III IV

Maximum Precipitation (0,50) (50,100) (100,150) (150,250)

Strong Wind Intensity (8,10.8) (10.8,17.2) (17.2,23.6) (23.6,30)

Transformed Location Number (0,2) (2,5) (5,8) (8,10)

Based on expert experiences and the relevant government documents, the classification results of Typhoon-Rainstorm hazard

level (H) in Shenzhen express type I as H ∈ [1.5,2), type II as H ∈ [2,2.7), type III as H ∈ [2.7,3.5), and type IV as H ∈195
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[3.5,4]. This paper uses the dimension reduction model VFS-IEM (Algorithm 1) to get the comprehensive valueH and transfers

them into different hazard levels based on Typhoon-Rainstorm classification standards. According to the classification results

shown in Table 1, the interval criterion matrix can be expressed as

Iab =




(0,50) (50,100) (100,150) (150,250)

(8,10.8) (10.8,17.2) (17.2,23.6) (23.6,30)

(0,2) (2,5) (5,8) (8,10)


= ((a,b)rl),

200

Icd =




(0,100) (0,150) (50,250) (100,250)

(8,17.2) (8,23.6) (10.8,30) (17.2,30)

(0,5) (0,8) (2,10) (5,10)


= ((c,d)rl),

and the balance boundaries matrix M is defined in Eq. 18

M =




0 66.7 133.3 250

8 12.9 21.5 30

0 3 7 10


= (Mrl). (18)

Then the relative membership degree matrix can be calculated by Eqs. 5, 6 and 7 respectively.

Taking sample point (MP = 33.4,SWI = 18,TL= 9) for example, the relative membership degree matrix is expressed by205

Eq. 19 where the matrix value represents the probability of each indicator belonging to the different compound hazards level.

µA(u) =




0.666 0.334 0.000 0.000

0.000 0.438 0.593 0.063

0.000 0.000 0.333 0.667


 . (19)

To get the comprehensive hazard level, the information entropy method can be used to get the weight of each indicator ω,

which implies that the Maximum Precipitation and Location play the main role in determining the Typhoon-Rainstorm hazards

level.210

ω =
(

0.43 0.19 0.39
)
. (20)

Then by Algorithm 1, the comprehensive value of the Typhoon-Rainstorm hazards level (MP = 33.4,SWI = 18,TL= 9)

is H = 2.75 when the hyper-parameter α= β = 1, and H = 2.18 when the hyper-parameter α= β = 2. To be more general,

this paper takes the average of H = 2.75 and H = 2.18 to obtain the final compound hazards level, i.e., H = 2.47, Type II.

The results of other Typhoon-Rainstorm comprehensive hazard levels can be found in Appendix (see Table B1).215
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Table 2: Transformed Typhoon-Rainstorm hazard data sets in Shenzhen.

Time Transformed Time (T ) Comprehensive Hazard Level (H) Direct Economic Loss (L)

20090627 176 2.72 0.3819

0719 198 3 1.352

0915 254 3.74 1.3750

20100724 203 2.32 0.2571

0912 251 2.49 0.4450

0922 261 2.74 0.9831

20110624 173 1.93 0.0765

0930 269 2.72 0.4013

20120630 179 2.31 0.2895

0724 203 3.95 2.48

0817 226 2.56 0.7648

20130615 164 1.94 0.1527

0702 181 1.99 0.1894

0802 211 1.53 0.0452

0814 223 2.13 0.1423

0922 261 3.06 1.2351

20140718 197 1.83 0.0841

0916 255 2.48 0.7682

0823 232 2.92 0.7410

1004 273 2.96 0.8352

20160802 211 3.68 2.1521

0818 227 1.88 0.0251

1018 287 2.28 0.2362

1021 290 3.11 0.9341

20170612 161 3.67 2.058

0723 202 2.11 0.2461

0823 232 2.46 1.31

0827 236 3.2 1.613

0903 242 3.03 1.8872

1016 285 2.48 0.5902

20180606 155 2.47 0.6952
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0718 197 1.58 0.0267

0811 220 2.45 0.5241

0916 255 3.93 2.226

20190703 182 1.49 0.0528

0811 210 3.02 0.8182

0824 233 2.9 0.8391

0902 241 1.8 0.0725

From Table 2, the sample observations on direct economic loss L (Billions) over each comprehensive compound hazards

level H are written as

Sample= {(t1,d1, l1), . . . ,(ti,di, li), . . . ,(t38,d38, l38)}= {(172,2.72,0.3819), . . . ,(241,1.8,0.0725)}.

where ti, di represents the time dimension of the Typhoon-Rainstorm hazard and the comprehensive value of the hazards level220

respectively, and li is the direct economic losses caused by the Typhoon-Rainstorm hazards. Then the diffusion coefficients can

be calculated by Eq. 11, written as




ht = 2.6581 · (290− 155)/(38− 1) = 10

hd = 2.6581 · (3.95− 1.37)/(38− 1) = 0.19

hl = 2.6581 · (2.48− 0.0251)/(38− 1) = 0.1764

.

Algorithm. 2 outlines how to use the information diffusion method to estimate the conditional probability and vulnerability

distribution of the Typhoon-Rainstorm hazards. Then by the 2-dimensional normal diffusion estimator, the joint probability225

density function P (Eq. 21) and conditional probability function Pcon (Eq. 22) can be evaluated. In this paper, we denote the

monitor space T = (t= 164, t= 194, t= 224, t= 254, t= 284) as months (June,July,August,September,October) and

H = (d= 1.8,d= 2.4,d= 3.0,d= 3.6) as comprehensive hazards levels (I,II,III,IV ).

P =

I II III IV

June

July

August

September

October




0.059 0.046 0.007 0.036

0.076 0.052 0.051 0.014

0.063 0.116 0.090 0.019

0.019 0.086 0.087 0.041

0.002 0.073 0.060 0.002




, (21)
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230

Pcon =

I II III IV

June

July

August

September

October




0.398 0.311 0.049 0.243

0.393 0.268 0.266 0.073

0.218 0.402 0.312 0.068

0.080 0.370 0.373 0.177

0.012 0.539 0.437 0.012




. (22)

From the results above, it can be seen that the Typhoon-Rainstorm hazard level of III occur more frequently and they are

most likely to occur in August and September.

The vulnerability distribution f(x) between the comprehensive value H and the direct economic losses L over the time

dimension T can be calculated by the 3-dimension diffusion estimator. The fuzzy relationship which takes time dimension T ,235

hazards level H as input and the loss L as the output can be denoted as matrix Rf .

Rf =




l = 0.1 l = 0.4 l = 0.7 l = 1.0 l = 1.3 l = 1.6 l = 1.9 l = 2.2

t= 164

d= 1.8

d= 2.4

d= 3.0

d= 3.6




0.80 0.43 0.01 0.00 0.00 0.00 0.00 0.00

0.15 0.42 0.57 0.15 0.00 0.00 0.00 0.00

0.00 0.05 0.13 0.04 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.08 1.00 1.00




t= 194

d= 1.8

d= 2.4

d= 3.0

d= 3.6




1.00 0.49 0.01 0.00 0.00 0.00 0.00 0.00

0.45 0.82 0.10 0.01 0.01 0.00 0.00 0.00

0.00 0.04 0.22 0.28 1.00 0.94 0.02 0.00

0.00 0.00 0.00 0.00 0.01 0.00 0.13 0.43




...

t= 284

d= 1.8

d= 2.4

d= 3.0

d= 3.6




0.02 0.03 0.00 0.00 0.00 0.00 0.00 0.00

0.35 1.00 0.61 0.08 0.00 0.00 0.00 0.00

0.02 0.15 0.56 1.00 0.19 0.03 0.00 0.00

0.00 0.00 0.01 0.03 0.01 0.00 0.00 0.00







.
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The discrete vulnerability distribution in terms of the direct economic loss is evaluated by Eq. 16 and the results are shown

in Eq. 23. It can be seen that Shenzhen, most of the economic losses caused by the Typhoon-Rainstorm hazards is concentrated

in August and September.240

f(x; t,h) =

I II III IV

June

July

August

September

October




0.20 0.02 0.00 0.00

0.24 0.04 0.00 0.00

0.15 1.13 1.67 1.90

0.05 0.55 2.67 2.62

0.01 0.02 0.00 0.00




. (23)

Dynamic compound hazards risks can be quantified as the expected value of hazards influence and the result is shown as Eq.

24 where the elements of vector denotes the estimated economic losses caused by the Typhoon-Rainstorm hazards in different

months.

Risk =
(

0.08582 0.10504 1.1372 1.66715 0.0109
)
. (24)245

4 Discussion

Dimension reduction model VFS-IEW presents the comprehensive value of compound hazards level, but the relationship

between hazards level and the indicators are not clear. To find more information from the results of VFS-IEM, this paper has

built a predictive model to shield the light on compound hazards relationship and predict the Typhoon-Rainstorm hazards level.

Since the compound hazards level is an ordinal data (monotone trend and proportional odds), the cumulative logistic model250

(shown in Eq. 25) can be used to predict the compound hazards level. The probabilities of different order categories given by

cumulative logistic model are

P (Y ≤ j | x) = π1(x) + · · ·+πj(x), j = 1, . . . ,J.

According to the research by Alan (1980), the cumulative logistic model is defined as

logit[P (Y ≤ j | x)] = log
P (Y ≤ j | x)

1−P (Y ≤ j | x) = logit[P (Y ≤ j | x)] = αj +βTx, j = 1, . . . ,J − 1. (25)255

The Typhoon-Rainstorm hazard level prediction problem can be solved by using the VAGM package (Thomas (2010)) and the

result is given by

logit[P (Y ≤ j | x)] = 5.07(7.32,11.15)− 0.12MP − 0.66SWI − 0.91TLN, (26)

where the different intercepts denote the different main-effects of hazard levels compared to the reference category, i.e., hazard

level IV. The rationality of this model is judged by LR-test (p-value<0.001) and the predictive performance R2 = 0.898 which260

shows that the model is well fitted and can be used as the compound hazards prediction.
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One advantage using the information diffusion technique to assess the risk of an compound hazards is that it does not need

to know (1) the distribution type of the population from which given samples are drawn, (2) the function form of the causal

relationship, which are constructed by the joint probability distribution and the vulnerability distribution. Moreover, researchers

have done simulation study on IDM and demonstrate the benefit of information distribution for probability estimation (Huang265

(2000); Li et al. (2012)) by minimizing the mean integrated square error (Kullback-Leibler divergence error) between the

estimator and the true density. The performance of this non-parametric estimation procedure is studied well by Huang (2000)

which shows the work efficiency is about 35% higher than histogram estimator (HE) and the performance is improved to

reduce the error by 23.2% when data sets are incomplete. Therefore, the assessed compound hazards risk is more reliable and

accurate.270

For the dynamic risk assessment of Typhoon-Rainstorm hazards, this paper provides extensive assessment results. From the

dimension reduction model VFS-IEM, this paper shows that the probability of the occurrences of type II and III hazard levels

is highest in Shenzhen. The emergency management department should prepare more effective emergency plans in advance to

reduce the occurrences of the secondary hazards. From the dynamic risk assessment model VFS-IEM-IDM , it can be found

that the hazards occurrence probability of different hazard levels is different and the type hazards of II and III hazards level275

are most likely to occur in August and September. Also, considering the occurrence of different hazard level for each months,

the probability of hazard level I occurring in June and July is the highest, and the hazard level II mostly occurs in August and

October, and the type III hazard level is most likely to occur in September. From the perspective of hazard losses, the different

direct economic losses caused by the Typhoon-Rainstorms of the same hazard level in each month indicates that the impacts

of the Typhoon-Rainstorm hazards on the economy are not the same. Besides, for the same month, the influence of economic280

loss decreases gradually when the compound hazards level rises. This indicates that the capacity of Typhoon-Rainstorm hazard

resistance in Shenzhen is reliable, and the ability to copy with the sudden compound hazards are relatively strong under the

existing emergence system. The dynamic compound hazards risk of Typhoon-Rainstorm hazards in Shenzhen shows that the

risk value of this compound hazards in each month is different and the highest risk value appears in August and September. On

average, the occurrence of Typhoon-Rainstorm hazards brought Shenzhen 114 million RMB and 167 million RMB losses in285

these two months respectively, which is in line with the actual situation.

5 Conclusions

Risk assessment is an important step in emergency management, but little research discusses the uncertainties of compound

hazards evaluation and considers dynamic risk assessments when the data sets are incomplete. In this paper, we first present

the definition of dynamic compound hazards risk, and then Variable Fuzzy Set (VFS) theory is employed to evaluate the290

relative membership degree, and Information Entropy Method (IEM) is applied to obtain the weights of criteria indicators for

compound hazards level evaluation. Based on the results obtained by VFS-IEM, we apply the information diffusion method

(IDM) to estimate the conditional probability distribution and vulnerability distribution with the hazard occurrence time and

the corresponding losses. Then the dynamic risk is assessed using fuzzy probabilistic risk to improve the accuracy of risk
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assessment. The innovations of this paper are: (i) Based on the definition of compound hazards risk, we take time dimension295

into consideration to introduce the concept of dynamic compound hazards risk. (ii) Considering that compound hazards have

different measurement indicators for the comprehensive evaluation, a hybrid model of Variable Fuzzy Sets and the Information

Entropy Method has been proposed to improve the accuracy of compound hazards level evaluation. (iii) According to the

concept of dynamic compound hazards risk, we apply Information Diffusion Method to estimate the conditional probability

distribution and the vulnerability distribution using the comprehensive hazard levels, hazards occurrence time and the losses300

of compound hazards. The proposed model VFS-IEM-IDM can be used to deal with the problem of incomplete and limited

information in dynamic risk assessment. (iv) By evaluating the expected value of the conditional probability distribution and

the vulnerability distribution, we quantify the Typhoon-Rainstorm dynamic risk which shows that the occurrence of Typhoon-

Rainstorm hazards brings Shenzhen 114 million RMB and 167 million RMB losses in August and September respectively.

These risk assessment results are in line with the actual situation and may be used to guide the emergency management in305

Shenzhen, which also shows the potential of VFS-IEM-IDM being applied to the compound hazards in general.

Code and data availability. The data and code used in the study are available at https://github.com/GongWenwuu/VFS-IEM-IDM.git.
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Appendix A: Data Source

For the Typhoon-Rainstorm dynamic compound hazards risk assessment, the useful data sets, collected from Meteorological

Bureau of ShenZhen Municipality (http://weather.sz.gov.cn/qixiangfuwu/qihoufuwu/qihouguanceyupinggu/nianduqihougongbao/)

and TYPHOON ONLINE (http://typhoon.nmc.cn/web.html), have been sorted out in Table A1. In this table, MP denotes as

Maximum Precipitation, SWI denotes as Strong Wind Intensity, DEL denotes as Direct Economic. The Transformed Location385

Number (TLN) is also denoted as the landing location by using expertise knowledge.

Table A1: Data sets of Typhoon-Rainstorm hazards in Shenzhen.

Time MP (mm) SWI (m/s) Landing Location Transformed Location DEL (Billion)

20090627 67.3 16.8 Huizhou 8.5 0.3819

0719 80 27.3 Shenzhen 10 1.152

0915 127.9 28 Taibei 6 1.075

20100724 54.3 16.2 Zhanjiang 6.5 0.2571

0912 62.4 13.7 Quanzhou 3 0.345

0922 51.9 15.8 Heyuan 7 0.2983

20110624 41.7 14 Yangjiang 4.5 0.0765

0930 117.3 15.2 Wenchang 2.5 0.8243

20120630 33.6 16.8 Zhuhai 6.5 0.6873

0724 152.3 24.9 Taishan 7 2.241

0817 66.1 13.5 Zhanjiang 3 0.9153

20130615 36.5 12.4 Wenchang 4 0.3621

0702 38.6 13.9 Zhanjiang 3 0.2561

0802 40.7 14.7 Wenchang 3 0.0851

0814 47.8 14.2 Yangxi 3 0.6413

0922 72.4 21.6 Shanwei 8.5 1.152

20140718 34.6 14.7 Wenchang 2.5 0.0841

0916 73.5 18.9 Xuwen 2.5 0.9641

0823 69.4 13.6 Shanwei 10 1.041

1004 108.5 13.5 Zhanjiang 5.5 0.9631

20160802 166 19.2 Shenzhen 10 2.31

0818 45.5 11.1 Zhanjiang 5.5 0.0314

1018 117.6 12.3 Wanning 1.5 0.421

1021 83.7 18.8 Shanwei 7.5 0.8721
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20170612 161.8 23 Shenzhen 10 2.109

0723 33.4 18 Xianggang 9 0.5315

0823 56.3 23.9 Zhuhai 8.5 1.328

0827 114.5 17.5 Jiangmen 8.5 1.741

0903 82.4 14.4 Shanwei 7.5 0.9631

1016 40 20.3 Zhanjiang 7.5 0.7341

20180606 97.2 10.8 Xuwen 8.5 0.9267

0718 50.7 11.1 Wanning 1.5 0.0267

0811 45.3 10.8 Yangjiang 7 0.5241

0916 173.5 30 Taishan 7.5 2.361

20190703 48.8 11 Wanning 1.5 0.0672

0811 178.5 14.1 Wenchang 5.5 0.9561

0824 97.6 12.7 Zhangzhou 6 0.5931

0902 86.9 11.3 Wanning 1 0.0751
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Appendix B: Comprehensive Compound Hazards Level

Based on the Dimension Reduction Model VFS-IEM, this paper takes the average of α= β = 1 and α= β = 2 to denote

the final Typhoon-Rainstorm hazards level. The following Table B1 has shown that the whole results of comprehensive degree390

value.

Table B1: Comprehensive compound hazards level in ShenZhen

Time α= β = 1 α= β = 2 Average Level (D) Comprehensive Level

20090627 3.07 2.36 2.72 III

0719 3.34 2.65 3.00 III

0915 3.93 3.55 3.74 IV

20100724 2.67 1.96 2.32 II

0912 2.68 2.29 2.49 III

0922 3.02 2.45 2.74 III

20110624 2.12 1.73 1.93 I

0930 2.87 2.57 2.72 III

20120630 2.66 1.95 2.31 II

0724 3.97 3.93 3.95 IV

0817 2.8 2.32 2.56 II

20130615 2.08 1.79 1.94 I

0702 2.28 1.7 1.99 I

0802 1.65 1.4 1.53 I

0814 2.22 2.03 2.13 II

0922 3.44 2.67 3.06 III

20140718 1.93 1.73 1.83 I

0916 2.65 2.3 2.48 II

0823 3.19 2.64 2.92 III

1004 3 2.91 2.96 III

20160802 3.66 3.69 3.68 IV

0818 1.96 1.8 1.88 I

1018 2.52 2.03 2.28 II

1021 33.1 2.91 3.11 III

20170612 3.69 3.83 3.76 IV

0723 2.52 1.7 2.11 II
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0823 2.89 2.03 2.46 II

0827 3.35 3.04 3.2 III

0903 3.22 2.83 3.03 III

1016 2.95 2 2.48 II

20180606 2.75 2.18 2.17 II

0718 1.57 1.45 1.51 I

0811 2.72 2.17 2.45 II

0916 3.87 3.98 3.93 IV

20190703 1.52 1.48 1.5 I

0811 3.25 2.79 3.02 III

0824 2.96 2.83 2.9 III

0902 1.93 1.67 1.8 I
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