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Abstract. Global warming has led to an inereasing-increased occurrence of compound hazards and an accurate risk assessment
of such hazards is of great importance to urban emergency management. Due to the interrelations between multiple hazards,
the risk assessment of a compound hazard is-faeing-faces several challenges: (1) the evaluation of hazard level needs to take
into-aceountconsider the correlations between compound hazards drivers, (2) usually only a small number of data samples are

available for estimating the joint probability distribution of the compound hazard drivers and the loss caused by the hazards, (3)

atthe

risk assessment process often ignores the temporal dynamics of compound hazard occurrences. To-deal-with-these-challenges;

this-paperprepoesesThis paper aims to address the mentioned challenges and develop an integrated risk assessment model VFS-
IEM-IDM to quantify the dynamic risk of compound hazards based on Variable Fuzzy Set (VFS), Information Entropy Method

(IEM), and Information Diffusion Method (IDM). For the first challenge, VFS-IEM-IDM measures the effect of the compound
hazard drivers via the use of relative membership degree and analyses the correlation between drivers with the entropy weight
method, which are-is combined to evaluate compound hazards level. To address the second challenge, VFS-IEM-IDM applies
the normal diffusion function to estimate the probability distribution of the compound hazard and the corresponding loss
vulnerability curve. To deal with the third challenge, VFS-IEM-IDM assesses the risk of a compound hazard in different

months based on the definition of probabilistic risk.

In the end, this paper takes the typhoon-rainstorm hazards that occurred in Shenzhen, China, as a case study to -show-that
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compound-hazards—evaluate the effectiveness of the proposed VFS-IEM-IDM model. The results show that VES-IEM-IDM
effectively estimates the typhoon-rainstorm compound hazard level and assesses the dynamic risk of the compound hazards.

Keywords: Compound hazards; Fuzzy dynamic risk; Variable fuzzy set; Information diffusion; typhoon-rainstorm
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1 Introduction

With global climate change, many cities have suffered extreme natural hazards more frequently Ming-et-al—2022)(Ming et al. , 2022

. People and their properties have been exposed to various hazards simultaneously or successively worldwide. In the literature,
there has been an increasing interest in the research of assessing multi-hazard risks (Chei-et-ak—202H)(Choi et al. , 2021). A
compound hazard is a typical multi-hazard problem that involves the concurrence of multiple hazard drivers, such as heavy
rainfall, extreme wind intensity, and storm surge. For example, typhoons and rainstorms are two different types of natural
hazards that can cause significant damages. When these two types of hazards simultaneously occur, compound hazards are
produced, leading to more severe catastrophes than the-individual hazards. Therefore, the risk assessment of such compound
hazards needs to take into account the interrelations between the individual hazards.

The risk of a hazard is defined as the potential consequences brought by the disasters-disaster and can be quantified by
the probability of losses (He-et-al—2020))(He et al. , 2020). Risk assessment is a technique that uses the relevant hazard
data to estimate the likelihood that natural hazards may occur and further assess their economic losses (Huang-et-al-—2048)
¥(Huang et al. , 2018). Traditional methods of risk assessment mainly utilize geographic information systems to get risk maps

{(Gigovieetalk—2047)(Gigovic et al. , 2017) or rely on information diffusion methods to deal with the problem of data
sparsity (Genget-al—(2020))(Gong et al. , 2020). These risk assessment methods Juliaet-al—(2021); Zhou-et-al{2020))-are
meosthy-(Julia et al. , 2021; Zhou et al. , 2020) are mainly applied to individual hazards, while the risk assessment of compound

hazards is not simply the aggregation of the assessment results of the individual hazards but needs to consider the interrelations
between them (Kappes-et-ak—2612))(Kappes et al. , 2012).

There are many research works discussing the risk assessment of multi-hazards. They classify the relationship between the
individual hazards in the scenarios of multi-hazards into three categories: mutually amplified hazards, mutually exclusive haz-
ards, and non-influential stakes (Wang-etak—2626))(Wang et al. , 2020). The existing methods and technologies relevant to
the risk assessment of multi-hazards have been reviewed in {Khan-et-al—2620))(Khan et al. , 2020). For example, a Cloquet
integral multiple linear regression model has been proposed to overcome the problem of nonlinear additivity of mutually am-
plified hazards for hazard level evaluation {He-et-ak—2020))(He et al. , 2020). An information diffusion method has been used
to assess the risk of multiple hazards quantitatively and evaluate the risk of loss of human lives from meteorological hazards
in China (Xu-etak—20+6))(Xu et al. , 2016). A quantitative approach of multi-hazard risk assessment based on vulnerability
distribution and joint return period of hazards is proposed to assess the risk of crop losses in the Yangtze River Delta region
of China (Mingetak—2045H)(Ming et al. , 2015). However, all of these works do not consider the correlations between the
occurrences of the individual hazards, such as the co-appearance of typhoon-rainstorm hazards. Furthermore, there is little
research focusing on typhoon-induced risk assessment in the literature, and temporal dynamics are rarely considered in risk
assessments.

Compound hazards, a sub-group of ‘multi-hazards’, are considered as the combination of multiple hazard drivers that con-
tribute to societal or environmental risks. The characteristics of compound hazards include: (1) two or more extreme events

occurring simultaneously or successively, (2) combinations of extreme events with underlying conditions that amplify the
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impact, and (3) combinations of events that are not themselves extreme but lead to an extreme event or impact when com-
bined (Jenniferet-ak—2024)(Jennifer et al. , 2021). Here, we explicitly consider compound hazards for the case when two
or more individual extreme events eceurring-occur at the same place and at the same time, such as the-extreme precipita-
tion, winds, and ocean waves. In this paper, we define the risk of a compound hazard as a scene in the future associated
with some adverse incidents caused by cascading hazards systems, where there are strong connections between different
hazard drivers. Compared with the risk assessment of multi-hazards in the literature Xu-et-al—2016); Huanget-al-—(2048)
¥Xu et al. , 2016; Huang et al. , 2018), assessing the risk of compound hazards needs-to-obtainrequires an integrated hazard
level without losing any correlated information between the individual hazards.

While there have been many attempts to assess the risk of multi-hazards, most of the existing methods have limitations in
dealing with compound hazards (Ming-et-ak—2022); Huang-et-ak—2048))(Ming et al. , 2022; Huang et al. , 2018). Firstly, the
correlation between the hazard drivers is often ignored. Considering that the disaster control engineering system is a synthesis
of multi-dimensional factors, the potential inter-dependencies of the drivers will affect the joint probability and the economic
losses of compound hazards. Secondly, the relationship between the hazards, i.e., vulnerability and exposure analysis, cannot
be modeled effectively when the data is sparse. Thirdly, most of the existing risk analysis frameworks for compound hazards
are based on either qualitative or semi-quantitative methods. Moreover, the temporal dynamics of the occurrences of compound
hazards are often not considered.

To address the first limitation, researchers have applied variable fuzzy set (VFS) methods to deal with the multi-factor prob-
lem. Some researchers have shown that the relative membership function can be used to evaluate the relations between multiple
indicators in risk assessment (Chen—2666))(Chen , 2006). A fuzzy method Ei-etak—2642)-(Li et al. , 2012) is proposed to
solve the flood risk assessment problems with interval boundaries and this integrated model improves the reliability of a single
hazard risk assessment. VFS has also been used to evaluate the synthetic hazards level of Nagapattinam district with the north-
east monsoon rainfall’s data sets (Beaula-et-al—2613))(Beaula et al. , 2013). In this paper, we propose to combine VFS with
the information entropy method (IEM) to assess the hazard level of compound hazards such that the correlations between the
hazard drivers can be captured.

To deal with the second limitation, the information diffusion method (IDM) is commonly used to model the physical re-
lationship between different attributes. In many cases, it is diffieatt—challenging to collect compound hazards data, and the
historical data is often sparse. To this end, many fuzzy probabilistic models have been proposed to enhance the accuracy of
the risk assessment results (Mehran-et-ak—20+7))(Mehran et al. , 2017). Fuzzy probabilistic models are used to model uncer-
tainties related to hazards and the randomness due to environmental, natural, or period changes. The main feature of the fuzzy
probabilistic models is to transform the raw data points into fuzzy sets to partly fill the gap caused by data sparsity and improve
the estimation accuracy between the inputs and the outputs. One of the most powerful techniques is IDM (Huang—<1997,-2002)
Y Huang , 1997, 2002), which helps extract useful underlying information from the hazards data sets. Researchers have done
a simulation study on IDM and demonstrated the benefit of information distribution for probability estimation (Haang—+2000)
¥Huang , 2000). The capability of IDM in dealing with the problem of data sparsity has been well studied in the literature
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Ei—+2643))(Li , 2013). In this paper, we construct a normal information diffusion estimator (IDM) to analyze the probability
function and vulnerability curve of compound hazards.

As for the third limitation, preliminary attempts have been made to develop quantitative multi-hazard risk assessment frame-
works (Huang-etak—2048))(Huang et al. , 2018). The probabilistic risk model combined with the concept of dynamic risk
assessment has been proposed to estimate the flooding risk (Huang—20+5))(Huang , 2015). In this paper, we present the defi-
nition of dynamic compound hazards risk and then propose a method to assess the compound hazards risk quantitativelywhieh
alse-takes-into-aceount-of-, which also considers the temporal dynamics of the occurrences of the hazards.

The main contributions of this paper are summarized as follows.

1. We propose a model ;-named Variable Fuzzy Set and Information Diffusion (VFS-IEM-IDM) +-to assess the dynamic
risk of compound hazards, which takes into account the interrelations between the hazard drivers, deals with the problem

of data sparsity, and considers the temporal dynamics of the occurrences of the compound hazards.

2. We simplify the procedures of calculating relative membership degree to improve the efficiency of compound hazards

level evaluation, and we also use a predictive cumulative logistic model to verify the evaluation results.

3. To examine the efficacy of the proposed model VFS-IEM-IDM, a case study of the typhoon-rainstorm hazards eeeurred

in Shenzhen, China, is presented.

The rest of this paper is organized as follows. Section 2 introduces the basic concepts and definitions in this paper. In section 3,
we present the dynamic compound hazards risk assessment model, namely VFS-IEM-IDM. Section 4 provides an evaluation
of the VFS-IEM-IDM with a case study of typhoon-rainstorm hazards eeeurred-in Shenzhen, China. In section 5, we discuss
the results of the case study obtained at different stages of VFS-IEM-IDM. Finally, conclusions are drawn in Section 6.

2 Preliminaries
2.1 Basic concepts

Variable fuzzy set is used to express the fuzzy effect of the hazard drivers by relative membership degree (RMD) func-
tions, and then the compound effects between different drivers can be modeled. This method provides an enhanced imple-
mentation of the compound hazards level evaluation process and can reflect the coupled characteristics of compound hazards.
Information entropy is based on the entropy coefficient calculation process, which is used to measure the importance of the
individual hazard drivers and determine the weight of different drivers. Information diffusion is a function learning method
with high estimation accuracy from a small data set, which makes full use of the diffusion information given by the data sam-
ples to estimate the probability density of the data samples or the relationship between the data samples without the knowledge
of the distribution from which the data samples were drawn. This method is applied to estimate the probability distribution p

(hazard potential) of the occurrence of hazards, and the causal relationship f (hazard vulnerability).
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2.2 Dynamic compound hazards risk

From the previous studies, risks could be classified into four categories: pseudo risk, probability risk, fuzzy risk, and un-
certainty risk (Huang-et-alk—2048))(Huang et al. , 2018). Existing hazard risk assessment models are often qualitative or semi-
quantitative, which cannot estimate-direethy-directly estimate economic losses from the joint impact of several hazards. Proba-
bility risk is estimated by integrating the probability distribution p of the occurrence of hazards, and the causal relationship f
between the economic loss and the hazard attributes. As a result, the probability risk could be quantified as the expected value
of economic losses, i.e., the integration of hazard potential with hazard vulnerability.

Though these four types of risks have been investigated by many researchers, there are few research on dynamic com-
pound hazards risk. In this paper, compound risk is defined as-a scene in the future associated with some adverse incident
caused by cascading hazards systems, where there are strong connections between different hazards and the hazard level is
influenced by many drivers. Furthermore, as proposed by Huang (2015), the concept of compound risk could be extended
to dynamic compound risk if the impact of occurrence time on risk assessment is taken into consideration. To assess the
risk of a compound hazard, the probability distribution p of the occurrences of the compound hazard will be estimated with
probability models, and the causal relationship f between the hazards attributes and the losses is captured by a fuzzy model.

The compound hazards risk is defined as follows:
Risk =p(®; X) - f(?'; X), (1)

where X = {z;;|i=1,2,--- ,N;j=1,2,---,J} represents the data samples with the sample size N and the number of com-
pound hazards attributes J, ® and ®’ denote a set of hazard attributes which reflects the characteristics of the compound
hazard. For example, the risk of the compound hazard typhoon-rainstorm can be assessed by 3 hazard attributes including
hazard occurrence time ¢, compound hazards level ¢5, and economic losses ¢3. The dynamic compound risk is derived by

integrating the conditional probability distribution p(X; ®) where ® = (¢1, ¢2) with the hazards vulnerability f(X; ®’') where
' = (41, b2, 93).

3 Dynamic Risk Assessment of Compound Hazards: VFS-IEM-IDM

Risk assessment of compound hazards should consider the correlation between the compound hazard drivers, the prob-
lem of data sparsity, and the dynamic property of hazard occurrences. This section introduees-proposes VFS-IEM-IDM, a
risk assessment model for compound hazards, which combines the variable fuzzy sets theory with the information diffusion
method to assess the dynamic risk of compound hazards when only a small set of data samples is available. Fig-—-shews
the-workflow-of-VESIEM-IDM-whieh-Our proposal mainly consists of two components—With-: with individual hazard level
and historical records of hazard drivers as inputs, the first component VFS-IEM combines variable fuzzy set methods with
information entropy methods to provide a comprehensive evaluation of the compound hazards level (Section 3.1). Based on
the compound hazards levels and historical records of risk assessment attributes, the second component VES-IDM-IDM adapts

normal information diffusion methods to quantify the dynamic risk of the compound hazards in terms of the direct economic
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losses (Section 3.2). The-boxescolored-bluerepresentFig. 1 shows the workflow of VES-IEM-IDM, where the black rectangle

denotes different calculation modules and the blue one represents the results obtained by the VFS-IEM-IDM model.

Historical records of compound hazards drivers —
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Figure 1. Workflow and-ittustration—of the VFS-IEM-IDM dynamic compound hazards risk assessment model based-on—case-stueyfor

Typhoon-rainstorm hazards. Based on the historical records of eempound-Typhoon-rainstorm hazards, our proposal provides two parts
rocedures: firstly, an enhanced implementation of the compound hazards level evaluation is proposed to assess the Typhoon-rainstorm
hazards level; and then estimates-the probability distribution and the corresponding loss vulnerability curve of eompound-hazards-attributes

Typhoon-rainstorm are estimated to calculate the dynamic eompeund-hazards risk. Fhe-We use the black rectangle to denote different
calculation modules and use the blue boxes-one to represent the results obtained by the VFS-IEM-IDM model

3.1 Compound hazards level evaluation: VFS-IEM

For the compound hazards risk assessment, the correlation between the compound hazards drivers should be considered.
Fortunately, the variable fuzzy set (VFS) theory which considers the contributions of multiple related drivers and decreases
the fuzziness by using membership functions {€hen—2006))(Chen , 2006), provides an appropriate tool for evaluating the
compound hazards level.

Based on VFS, the fuzzy set intervals given by the individual hazard level classification can be used to assess the compound
hazards level. For example, suppose we have two fuzzy set intervals I, = (a,b) and I.q = (¢,d) where a,b, ¢,d € R, in which
1.4 is an extended fuzzy set interval based on I, as shown in Fig. 2. Specifically, the relative membership degree (RMD)

function p(u), which determines the probability of a hazard driver u belonging to different hazard level intervals, is applied
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to evaluate the contributions of compound hazards related drivers. Since the calculation of RMD is complicated and time
consuming, we use different locations of the balance boundaries matrix M (Wang-et-ak—20+4))-(Wang et al. , 2014) and the
value of driver u to simplify the calculation process. Firstly, we use the interval (a,;,b,;) to define the balance boundaries
matrix M = [m,], which is shown in Eq. 2.

L—-1 -1

m mbrl; (2)

meyp =

where r =1,2,..., R and R indicates the number of hazard drivers, [ =1,2,..., L and L denotes the number of compound

hazards levels. Then, we compare the relative locations of « with m,.; in the interval (a,;,b,;) and (¢, d,;). RMD can then be

U—Qyrl
My —0r|

constructed by the ratio as follows:

q
(W) =050+ (F525))  we (apmn)

q 3
pu(w)yy = 0.5(1 — (u%) ) we (e, an)

It can be seen that RMD is influenced by the hyper-parameter ¢ and the position between the hazard driver value w and
the level interval I,;,1.q4, and the value of m,,;. In this paper, guided by the procedure of calculating RMD in the literature
tHang-etak—20+9))(Fang et al. , 2019), we simplify the procedure of calculating relative membership degree to improve the
efficiency of compound hazards level evaluation. Firstly, the intervals I, .4 of the individual hazard levels and the balance
boundaries matrix M are obtained following the VFS theory (Cher—2006))(Chen , 2006). Secondly, we determine whether
the location of u is in the lowest, middle or highest grade of the interval I,;, as shown respectively in Fig.2, Fig. 3, and Fig.4.
Finally, according to the location of u, we use one of the three sets of formulas to calculate RMD, as shown in Eq. 4, Eg-5,

and Eq. 6 accordingly.

u
mll l ml2

aj by dy; b, dp

Ch ap

Ci2

Figure 2. Lowest case: the position between u with parameter m11 and fuzzy intervals (a11,b11), (c11,d11). Symbols with different colors

indicate different fuzzy intervals.

M(U’)r = [lu’(u)rl M(U)T’Z 0 T 0]
)y + (), =1
0.5 <p(u),, <1

“)

0 < p(u),, <0.5
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Figure 3. Highest case: the position between w with parameter mir and fuzzy intervals (a1z,b1r), (ciz,d1ir) . Symbols with different

colors indicate different fuzzy intervals.

p(u), =0 - 0 N(“>T(L71) (), ]
(), 1y +p(u),, =1

180 &)

0< M(U)T(Lq) <0.5

u
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Cr(+1) ay(+1)
bl(l-l) dlll-l)

Figure 4. Middle case: the position between u with parameter my; and fuzzy intervals (a17,b1;), (c11,d1;). Symbols with different colors

indicate different fuzzy intervals.

plu), =0 - 0 pu),q gy ww), p).gy 0 - 0
p(u), 1y + 1) gy = 0.5
0<pu(u),. 1y <0.5

(6)

0< u(u)r(lﬂ) <0.5

Following the previous works by Kwakernaak (1978) and Chen (2006), we use the variable fuzzy recognition model to ob-

tain the comprehensive RMD of each driver. Then, the proposed compound hazards level evaluation model can be constructed
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by Eq. 7.
Rflwrlf w),, )\ BN —
()= (L+ (S i) )

H=(1 2...L) i(u)

where « and 3 are two hyper-parameters, w, indicates the weight of each hazard driver, v(u); is the weighted RMD of different
hazard drivers and H is the compound hazards level. The weights of the individual hazard drivers w, are obtained via the use

of information entropy {Eiaetak—264+00)-(Liu et al. , 2010) as shown in Eq. 8:

gri =00/ Y11 vn
g = —1/In(N)-SF (Grilngn) - ®)
wr=(1=g:)/(R=YL1 9v)

where v,; is defined as the measured value from the [th level for the rth driver and IV denotes the sample size. The detailed

procedure of VFS-IEM is shown in Algorithm 1.
3.2 Dynamic risk assessment model: IDM

To assess the dynamic risk of compound hazards, especially when the data sets are sparse, the information diffusion method
(IDM) which belongs to the fuzzy theory can be used to extract useful underlying information from the limited data samples
to estimate the probability function p and vulnerability curve f. According to Huang (1997), J-dimension normal information
diffusion function I'(x;;S*) (shown in Eq. 9) is more powerful to improve the precision of the estimators. Therefore, this
paper adapts the normal information diffusion estimator to approximate the dynamic compound hazards risk.

(i — 5 )°

: )7 kj:1a27aK]71:1727aN

. k),' J—
[(4558;7) = exp(— 207

J
D(as8%) = [[Pliisl), 85 ={sli=1,2,---,7} 9)

j=1

0.6841(b—a), for N =25;

0.5404(b — a), for N =6;

Oz; = 4 0.4482(b — a), for N =T,
(10

0.3839(b — a), for N=8:

2.6581(b—a)/(N —1), for N >9.

where b= 12%}5\{{%;'}, a= 121;1]\]{%'3‘}-

10
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Algorithm 1 VFS-IEM Compound Hazards Level Evaluation

Input:

1: The compound hazards driver fuzzy set U= {u;,r =1,2,---,3[¢ =1,2,--- ,N};
2: Individual hazard level assessment matrix, V = [vn] ,7 =1,2,3; [ =1,2,3,4.
QOutput:

Comprehensive value of compound hazards level.

3: Identification of interval I, = [(a,b),:] and the extended interval I.q = [(c,d);] based on assessment matrix V;
4: Define the balance boundaries matrix M = [m,] by Eq. 2;
5: Calculate the weight of each driver Q = [w1,w2,ws] by Eq.8;
6: fori=1to N do
7. for each u;r € U do
8: if u;, locates in the lowest grade of the interval I, i.e., ar1 < uir < by1 then
9: Calculate RMD pi(u)- with Eq.4;
10: else if u;, locates in the highst grade, i.e., a,r < uir < brr then
11: Calculate RMD pi(u), with Eq.5;
12: else
13: Calculate RMD pi(u), with Eq.6;
14: end if
15:  end for

16:  The relative membership matrix of each sample is denoted as p(u) = [p(u)1, p(u)2, u(u)s);

17:  Combine p(u) with weights 2 and integrate the ranking level, and calculate the comprehensive compound hazards level for each
sample with Eq.7.

18: end for

where N is the sample size of X = {z;;|i =1,2,--- ,N;j=1,2,---,J}, K, is the number of diffusion points of a given
monitor set s;, and o, is the diffusion coefficient with respect to different attributes j. Based on the normal estimator, the
research by Huang (2002) has shown how to determine the coefficients (shown in Eq. 10). This approximate reasoning
of information diffusion is used to estimate probabilities and fuzzy relationships from a small dataset for risk assessment
(Huang-etak—2048))(Huang et al. , 2018). As an example, we use a 2-dimension normal estimator to calculate the discrete
probability density function. For the given compound hazards attributes monitor set S% = {(s]iCl , 5152)|1 <k <Ki,1<ky<

K3}, we estimate the discrete probability matrix P = py, x, and the conditional probability distribution P = Do st (sh2|s1):

Zi\; F(%‘; SK)
Sk iy I(4:8%)

Y

Py ky =

DPk1 .k
p52\31(512€2‘81):}('21727k2:1’2""K2' (12)
Zk2:1pk1,k2

11
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Similarly, we can calculate the three dimensional diffusion function for the compound hazards attributes set SX = {(51 ,
8152,83 )1 <k < K1,1 <ke < Ka,1< ks < Kj3}.Suppose s3 corresponds to the attribute of economic loss, the vulnerability
curve between the set of causes s;, sy and the consequence s3 can be estimated by the following fuzzy membership function:

w(sh?) = (Hllaf){mm{l“(xz, (s s62)), R* Y} ks = 1,2,--- K3 R¥ is the k3™ slice of R.

where the fuzzy relationship model R = [rk, i, k,] (shown in Eq. 13) is defined by the 3-dimension information diffusion

function I"(z;; S%).

Zz 11—’(%,(31 a3§273§3))

T'ky,k2,ks = ks k3 (13)
1<II£23<XKSE 71F(55u(51 1827, 53 ))
Then the vulnerability curve f = f x; k., is defined as follows.
1 022
k3
w(s
fsk’l sk2 _Zk3 ; ( 2 ) % 7k1:1727"'7K1;k2:1727"'7K2' (14)
v E L, w(s5°)

Based on the VFS-IEM-IDM risk assessment model, the dynamic compound hazards risk (Direct Economic Losses) can
be obtained via Eq. 15 where the risk is quantified as the expected value of the conditional probability distribution p and the

vulnerability distribution f. The detailed procedure of IDM is shown in Algorithm 2.

Risk = Z Dky ks * fsll"'l e (15)

Algorithm 2 IDM Dynamic Risk Assessment Model

Input:

1: Compound hazards data samples X = {(zi1,®i2,2:3)|t = 1,2,---, N}, where z;; is the risk attributes of compound hazards;
2: Coefficients of diffusion function ¥ = (04, ,0,,025)-
Output:

Dynamic compound hazards risk.

Compound hazards level evaluation by Algorithm 1;

Monitor space of different attributes S = {(sfj ), 1<k < Kj|j=1,2,3}
for sample index ¢ = 1 to N, each z; do

Construct normal information diffusion functions based on the universes of monitor space and Eq. 9;

end for

Estimate the joint and conditional probability distribution based on Eq. 11 and Eq. 12;

D A A

Determine the fuzzy cause relationship based on Eq.13, and estimate the vulnerability curve by Eq.14;

10: Derive the dynamic risk (direct economic loss) of compound hazards by Eq. 15.

12
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4 Case Study

In this section, we evaluate VFS-IEM-IDM with a case study of typhoon-rainstorm compound hazards that occurred in
Shenzen, China. Shenzhen is located in-on the east bank of the Zhujiang River and is surrounded by Daya Bay and Dapeng
Bay, where the climate is subtropical and maritime. Typhoon-rainstorms are the most frequently eeeurred-occurring hazards in
Shenzhen. According to the collected data, as shown in Table A1, from1+986-to-2646-the direct economic losses of the Typhoon

and Rainstorm hazards in-Shenzhen-on-averageexceeded-360-from 1980 to 2016 in Shenzhen, on average, exceeded 360 million
RMB per year. Also, Zhou has-investigated-the-number-of-death-caused-by-investigated the Typhoon and Rainstorm hazards

was—3-4-annuallyand-abeut149;-000-that caused the number of death 3.4 annually, and about 149,000 people were affected
Zhowetal—206171)(Zhou et al. , 2017). Accurate assessments of the typhoon-rainstorm risk are crucial to determine whether

or not the early warning systems are working and implemented effectively.
4.1 Classifications of individual hazard level

The typhoon-rainstorm compound hazards are usually characterized by three drivers, i.e., Maximum Daily Precipitation
(MDP), Extreme Wind Intensity (EWI), and landing location. To better measure the impact of typhoon landing on the typhoon-
rainstorm compound hazards level, the landing location is converted into Transformed Location Number (TLN) via circle
distance calculation where the big value represents the typhoon landed to Shenzhen is mere-closer. Based on the data provided
by the Meteorological Bureau of Shenzhen Municipality (http://weather.sz.gov.cn/qixiangfuwu/qihoufuwu/), the values of the
three drivers are segmented into four intervals in terms of four individual hazard levels, i.e., I, I, III and IV. A higher hazard

level indicates a more severe consequence.

Table 1. Classification standards of individual hazard level.

Classifications of Individual Hazards Level

I II I v

Drivers

Maximum Daily Precipitation (MDP) (0,50) (50,100) (100,150)  (150,250)
Extreme Wind Intensity (EWI) (8,10.8) (10.8,17.2) (17.2,23.6)  (23.6,30)
Transformed Location Number (TLN) 0,2) 2,5) (5,8) (8,10)

Based on the segmentation of the four individual hazard levels, we also classify the typhoon-rainstorm compound hazards
into four levels, i.e., I, II, III, TV, where a higher compound hazard level indicates that-the corresponding compound hazard
is of greater severity. As described in Section 3.1, the VFS-IEM compound hazards level evaluation model (Algorithm 1)
can be applied to obtain the comprehensive value H, which is then used to derive the compound hazards level based on the

classification criteria of the typhoon-rainstorm compound hazards.
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4.2 Calculation of relative membership degree

The relative membership degree is determined by the individual hazard level classifications. According to the value segmen-
tation shown in Table 1, we have the different fuzzy intervals for four different hazard levels. Then, for three hazard drivers,

the interval criterion matrix /,; can be expressed as

(0,50)  (50,100)  (100,150)  (150,250)
Iy=| (8,10.8) (10.8,17.2) (17.2,23.6) (23.6,30) | = [(a,b).,
(0,2) (2,5) (5,8) (8,10)

Further, the corresponding interval 1.4 for different hazard level is defined as

(0,100)  (0,150)  (50,250)  (100,250)
ILa=| (8,17.2) (8,23.6) (10.8,30) (17.2,30) | = I[(c,d).],
0,50  (0,8)  (2,10) (5,10)

and we define the balance boundaries matrix M :

0 66.7 133.3 250
M=1]28 129 215 30 | =[mu]
0 3 7 10

In the end, the relative membership degree matrix can be calculated by Egs. 4, 5 and 6 respectively. Taking sample point 4 =
(MDP=33.4, EWI=18, TL=9) for example, we obtain the relative membership degree matrix ;(%) shown as below, in which

the matrix element represents the probability of each drivers belonging to the four individual hazards level.

0.666 0.334 0.000 0.000
(@)= | 0.000 0.438 0.593 0.063
0.000 0.000 0.333 0.667

4.3 Typhoon-rainstorm hazards level

To derive the compound hazards level, the information entropy method is used to obtain the weight of each hazard driver.
We have the weight €2 is shown as follows, where the element in €2 implies that the Maximum Daily Precipitation and Location

play the main role in determining the typhoon-rainstorm hazards level.

Q

[ 043 0.19 0.39 ]

Based on the VFS-IEM compound hazards level evaluation model (Algorithm 1), we obtain the comprehensive value H of
typhoon-rainstorm hazards. Then, guided by the domain experts, we have the classification criteria of the typhoon-rainstorm
compound hazard level in Shenzhen: H € [1,2) for level I, H € [2,2.7) for level II, H € [2.7,3.5) for level III, and H € [3.5,4]
for level IV. For the case (MDP=33.4, EWI=18, TL=9), the value of the typhoon-rainstorm hazards level H is obtained. When

14



the hyper-parameters o = 5 =1, H = 2.75. When o = 5 = 2, H = 2.18. Furthermore, we take the average of H = 2.75 and
H = 2.18 to obtain the final compound hazards level value, i.e., H = 2.47 which corresponds to the compound hazard level II.

The results of other typhoon-rainstorm cases can be found in Appendix Table B1.

Table 2: Transformed typhoon-rainstorm hazard data sets in Shenzhen.

Year Date Transformed Time (day) Compound Hazards Level (H) Direct Economic Loss (L)

2009 0627 176 272 0.3819
0719 198 3 1.352
0915 254 3.74 1.3750
2010 0724 203 2.32 0.2571
0912 251 249 0.4450
0922 261 2.74 0.9831
2011 0624 173 1.93 0.0765
0930 269 2.72 0.4013
2012 0630 179 2.31 0.2895
0724 203 3.95 2.48
0817 226 2.56 0.7648
2013 0615 164 1.94 0.1527
0702 181 1.99 0.1894
0802 211 1.53 0.0452
0814 223 2.13 0.1423
0922 261 3.06 1.2351
2014 0718 197 1.83 0.0841
0916 255 2.48 0.7682
0823 232 2.92 0.7410
1004 273 2.96 0.8352
2016 0802 211 3.68 2.1521
0818 227 1.88 0.0251
1018 287 2.28 0.2362
1021 290 3.11 0.9341
2017 0612 161 3.67 2.058
0723 202 2.11 0.2461
0823 232 2.46 1.31
0827 236 32 1.613
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0903 242 3.03 1.8872

1016 285 2.48 0.5902
2018 0606 155 2.47 0.6952
0718 197 1.58 0.0267
0811 220 2.45 0.5241
0916 255 3.93 2.226
2019 0703 182 1.49 0.0528
0811 210 3.02 0.8182
0824 233 29 0.8391
0902 241 1.8 0.0725

4.4 Dynamic typhoon-rainstorm hazards risk

Based on the data in Table 2, we obtain three typhoon-rainstorm hazard attributes, including direct economic loss L (Bil-
lions), hazards level H and hazards-hazard occurrence day. Then the dynamic risk of compound hazards can be calculated by

38 data points:
T = {($i17$i2axi3);i = 1, 2, ce ,38} = {(1727 2.7270.3819), ceey (241, 1.8,0.0725)}.

where x;1, x;2 represents the time attribute of the typhoon-rainstorm hazards and the compound hazard level respectively, and
x;3 is the direct economic losses caused by the typhoon-rainstorm hazards. Then the diffusion coefficients can be calculated

by Eq. 10, shown as follows.

0z, =2.6581- (290 — 155)/(38 —1) =10

0z, =2.6581-(3.95-1.37)/(38—1) =0.19

Oy, =2.6581-(2.48 —0.0251)/(38 — 1) = 0.1764

Following Algorithm. 2, we use the information diffusion method to estimate the conditional probability and vulnera-
bility distribution of the typhoon-rainstorm hazards. In this ease-studypaper, we define the following monitor space: T' =

(164,194,224,254,284) corresponds to months (June, July, August, September, October), H = (1.8,2.4,3.0,3.6) corre-
sponds to the compound hazards levels (I,11,I11,IV), and L = (0.1,0.4,0.7,1.0,1.3,1.6,1.9,2.2) corresponds to the direct
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300

economic losses. Then we can calculate the joint probability density function P and the conditional probability function P as

follows:
I II II7 1A%
June 0.059 0.046 0.007 0.036
July 0.076 0.052 0.051 0.014

P = August 0.063 0.116 0.090 0.019
September | 0.019 0.086 0.087 0.041
October 0.002 0.073 0.060 0.002

I 11 117 v

June 0.398 0.311 0.049 0.243
July 0.393 0.268 0.266 0.073
P= August 0.218 0.402 0.312 0.0689
September | 0.080 0.370 0.373 0.177
October 0.012 0.539 0.437 0.012

From the results above, it can be seen that the typhoon-rainstorm with hazard level III occur more frequently and they are
most likely to occur in August and September. Furthermore, the vulnerability distribution f between the hazard level H and
the direct economic losses L over the time attribute 7" can be calculated by the 3-dimension diffusion estimator (shown in Eq.
13). The fuzzy causal relationship which takes the time attribute 7", hazards level H as the inputs and the loss L as the output

is denoted as matrix R. Then the discrete vulnerability curve f in terms of the direct economic loss is evaluated by Eq. 14.

1 I Iir Iv

June 0.20 0.02 0.00 0.00
July 0.24 0.04 0.00 0.00
[ = August 0.15 1.13 1.67 1.90

September | 0.05 0.55 2.67 2.62
October 0.01 0.02 0.00 0.00

It can be seen that most of the economic losses caused by the typhoon-rainstorm hazards are concentrated in August and
September. Dynamic compound hazards risks can be quantified as the expected value of the damages caused by the compound

hazards and the result is:
Risk = (0.08582,0.10504,1.1372,1.66715,0.0109) (16)

where the elements of the vector denote the estimated economic losses caused by the typhoon-rainstorm hazards from June to

October.
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5 Discussion
5.1 Compound hazards level prediction

The proposed VFS-IEM-IDM model provides a comprehensive evaluation of the compound hazards level, but the relation-
ship between the hazards level and the hazard drivers is unclear. To find more information from the results of the compound
hazards level evaluation model, we build a predictive model (shown in Eq. 17) to shed light on the relationship between the
compound hazards levels.

Since the compound hazards level H € (I,11,I11,1V) is ordinal data (monotone trend and proportional odds), the cumu-
lative logistic model (shown in Eq. 18) can be used to predict the compound hazards level. Let the response be the compound
hazards level H = I,11,111,1V with probability 75, (U),h = 1,--- ,4 under the covariate compound hazard drivers U. So the
cumulative probability of H is less than or equal to level h, i.e., the probabilities of compound hazards belonging to different

level categories, is given by
PH<SRU)=mU)+---+m(U), h=1,...,4.

According to the research by Alan (1980), the cumulative logistic model can be replaced by

P(H<h|U)
I—P(H<h|U)

logit(P(H < h|U)) =log =an+8'U, h=1,...,3. (17)

where the log-odds measures how likely the response H is to be in category h or below versus in a category higher than h. In
this paper, the typhoon-rainstorm hazards level prediction problem can be solved by using the VAGM package (Themas—2010)
*(Thomas , 2010) and the result is given by

logit(P(H | (MDP,EWI,TLN))) = 5.07(7.32,11.15) — 0.12M DP — 0.66EWI — 0.91TLN (18)

where the different intercept coefficients denote the main effects of different hazard drivers compared to the reference com-
pound hazard level IV. The rationality of this model is judged by LR-test (p-value<0.001) and the predictive performance

R? = 0.898 which shows that the model is well fitted and can be used to predict the compound hazards level.
5.2 The superiority of the normal diffusion estimator

One advantage of using the information diffusion method to assess the risk of compound hazards is that it does not need
to know the type of distribution from which the given samples are drawn and the function form of the causal relationship
which are constructed by the joint probability distribution and the vulnerability distribution. More importantly, it can provide
a more accurate evaluation when the compound hazards data set is sparse. The performance of the IDM estimation procedure
has been well studied in the literature. For example, Huang (2000) shows the efficiency of IDM is about 35% higher than
the histogram estimator, and the estimation error is reduced by 23.2% when the data sets are small. Therefore, the assessed
compound hazards risk is more reliable and accurate using a normal diffusion estimator. However, if the size of the data samples

is large it is unnecessary to replace the statistics with the information diffusion method (=i-et-al—2042))(Li et al. , 2012).
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5.3 Results

For the dynamic risk assessment of typhoon-rainstorm hazards, this paper proposes a hybrid model VFS-IEM-IDM and

provides extensive assessment results based on a case study. F

we-The results of the VFS-IEM evaluation model show that the probability of type II and III hazard levels is the highest
in Shenzhen, whi i
mmﬁmmmmw&ﬁmmmmm&mswmww@m
effective emergency plans to reduce secondary hazards. Fror

situation—The dynamic risk assessment model IDM shows that the hazard occurrence probability of different hazard levels
is different, and the hazard level Il and 1T is most likely to occur in August and September. Furthermore, considering the
occurrence of the hazards with different hazard levels for each month, the probability of hazard level I occurring in June and
July is the highest, The hazard level II mainly happens in August and October, and the hazard level three is most likely to
occeur in September. From the perspective of hazard losses, the difference between the direct economic losses caused by the
Typhoon-rainstorms of the same hazard level each month indicates that the impacts of the typhoon-rainstorm hazards on the
economy are not the same. Besides, the influence of economic losses decreases when the compound hazards level rises, which
indicates that the capacity of typhoon-rainstorm hazard resistance in Shenzhen is reliable, and the ability to cope with sudden
compound hazards is relatively strong under the existing emergency management system. The dynamic compound hazards risk
of the typhoon-rainstorm hazards in Shenzhen shows that the compound hazards risk in each month is different, and the highest
risk appears in August and September. On average, the typhoon-rainstorm hazards brought Shenzhen 114 million RMB and
167 million RMB losses in these two months, respectively, and is in line with the actual.
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6 Conclusions

Compound hazards risk assessment is a complex multi-criteria problem and is crucial to the success of strategic decision-
making in emergency management. Traditional statistical methods are often inaccurate when only a small set of data samples is
available. Little research discusses the correlations of compound hazard drivers and considers the dynamics of the occurrences
of the compound hazards. In this paper, we first present the definition of dynamic compound hazards risk and then propose
the Variable Fuzzy Set (VFS) and Information Entropy Method (IEM) model to evaluate the compound hazards level by
considering the correlations of different hazards drivers. Based on the results obtained by VFS-IEM, we apply the information
diffusion method (IDM) to estimate the compound hazards probability and vulnerability distribution with the hazard occurrence
time and the corresponding losses. Then the dynamic risk is calculated by the probabilistic model.

There are mainly three aspects of innovations in this paper. Firstly, based on the definition of compound hazards risk,
we consider the temporal dynamics and introduce the dynamic compound hazards risk concept. Secondly, considering that
compound hazards have many drivers for the hazard level evaluation, a hybrid model of Variable Fuzzy Sets and the Information
Entropy Method has been proposed to improve the accuracy of compound hazards level evaluation. Thirdly, according to the
dynamic compound hazards risk concept, we apply the Information Diffusion Method to estimate the hazards probability and
vulnerability distribution. The proposed model VFS-IEM-IDM can be used to deal with the problem of data sparsity in dynamic
compound hazard risk assessment. We quantify the dynamic typhoon-rainstorm risk by evaluating the expected value of the
conditional probability distribution and the vulnerability distribution. Furthermore, VFS-IEM-IDM can be extended to other
compound hazards in urban cities, such as flooding. As a case study, we show that the occurrences of the typhoon-rainstorm

risks bring Shenzhen 114 million RMB and 167 million RMB losses in August and September, respectively.

assessment is a relatively new topic, and many issues need further improvement. In this paper, the weights of different hazard
drivers are subjective, and the results of the vulnerability curve have not considered the development of the affected areas.
There are also some subjective issues regarding the processing of the data sets. We will explore technigues to deal with these
issues and improve assessment accuracy in future work.

Code and data availability. The data and code used in the study are available at https://github.com/GongWenwuu/VFS-IEM-IDM.git.
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Appendix A: Data Source

For the typhoon-rainstorm dynamic compound hazards risk assessment, the useful data sets were collected from the Me-
teorological Bureau of Shenzhen Municipality (http://weather.sz.gov.cn/gixiangfuwu/qihoufuwu/niandugihougongbao/) and
TYPHOON ONLINE (http://typhoon.nmc.cn/web.html), have been sorted out in Table Al. In this table, MDP denotes Max-

475 imum Daily Precipitation, EWI denotes Extreme Wind Intensity, DEL denotes Direct Economic Loss, and the Transformed
Location Number (TLN) denotes the Typhoon Landing Location which is determined by radio distance transform using expert

knowledge.

Table Al: Data sets of typhoon-rainstorm hazards in Shenzhen.

Hazards ID Impact Date  MDP (mm) EWI(m/s) Landing Location TLN DEL (Billion)

0904 0627 67.3 16.8 Huizhou 8.5 0.3819
0906 0719 80 27.3 Shenzhen 10 1.152
0915 0912 127.9 28 Taibei 6 1.075
1003 0724 31.3 16.2 Zhanjiang 6.5 0.2571
1010 0912 62.4 13.7 Quanzhou 3 0.345
1011 0922 51.9 15.8 Heyuan 7 0.2983
1105 0624 41.7 14 Yangjiang 4.5 0.0765
1006 0930 53.0 15.2 Wenchang 2.5 0.8243
1206 0630 33.6 16.8 Zhuhai 6.5 0.6873
1208 0724 152.3 23.9 Taishan 7 2.241
1213 0817 46.1 13.5 Zhanjiang 3 0.9153
0615 36.5 8.4 Wenchang 4 0.3621
1306 0702 38.6 10.9 Zhanjiang 3 0.2561
1309 0802 40.7 10.7 Wenchang 3 0.0851
1311 0814 47.8 14.2 Yangxi 3 0.6413
1319 0922 72.4 21.6 Shanwei 8.5 1.152
201409 0718 31.6 14.7 Wenchang 2.5 0.0841
201415 0916 73.5 18.9 Xuwen 2.5 0.9641
201517 0823 69.4 13.6 Shanwei 10 1.041
201522 1004 108.5 13.5 Zhanjiang 55 0.9631
201604 0802 166 19.2 Shenzhen 10 2.31
201608 0818 45.5 9.1 Zhanjiang 5.5 0.0314
201621 1018 117.6 12.3 Wanning 1.5 0.421
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201622
1702
1707
1713
1714
1716
1720
1804
1809
1816
1822
1904
1907
1911
1914

1021
0612
0723
0823
0827
0903
1016
0606
0718
0811
0916
0703
0811
0824
0902

83.7
161.8
334
56.3
114.5
824
40
97.2
50.7
45.3
173.5
48.8
99.1
49.4
52.2

18.8
16.9
10.6
234
17.5
14.4
20.3
8.8
11.1
10.8
30
11
14.1
12.7
113

Shanwei
Shenzhen
Xianggang
Zhuhai
Jiangmen
Shanwei
Zhanjiang
Xuwen
Wanning
Yangjiang
Taishan
Wanning
Wenchang
Zhangzhou

Wanning

7.5
10

8.5
8.5
7.5
7.5
8.5
1.5

7.5
1.5
55

0.8721
2.109
0.5315
1.328
1.741
0.9631
0.7341
0.9267
0.0267
0.5241
2.361
0.0672
0.9561
0.5931
0.0751
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Appendix B: Comprehensive Compound Hazards Level

480 Based on the VFS-IEM model, this paper takes the average of « =/ =1 and o = 8 =2 to denote the final typhoon-

rainstorm hazards level. The following Table B1 has shown that the whole results of compound hazards degree value.

Table B1: Comprehensive compound hazards level in ShenZhen

Time a=pf=1 a=pF=2 Average Level (H) typhoon-rainstorm hazards Level (H)

20090627 3.07 2.36 272 I
0719 3.34 2.65 3.00 I
0915 3.93 3.55 3.74 v

20100724 2.67 1.96 2.32 I
0912 2.68 2.29 2.49 I
0922 3.02 2.45 2.74 I

20110624 2.12 1.73 1.93 I
0930 2.87 2.57 272 I

20120630 2.66 1.95 2.31 II
0724 3.97 3.93 3.95 v
0817 2.8 2.32 2.56 I

20130615 2.08 1.79 1.94 I
0702 2.28 1.7 1.99 I
0802 1.65 1.4 1.53 I
0814 222 2.03 2.13 I
0922 3.44 2.67 3.06 11

20140718 1.93 1.73 1.83 I
0916 2.65 23 248 I
0823 3.19 2.64 2.92 III
1004 3 291 2.96 I

20160802 3.66 3.69 3.68 v
0818 1.96 1.8 1.88 I
1018 2.52 2.03 2.28 I
1021 33.1 291 3.11 I

20170612 3.69 3.83 3.76 v
0723 2.52 1.7 2.11 I
0823 2.89 2.03 2.46 I
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0827
0903
1016
20180606
0718
0811
0916
20190703
0811
0824
0902

3.35
3.22
2.95
2.75
1.57
2.72
3.87
1.52
3.25
2.96
1.93

3.04
2.83

2.18
1.45
2.17
3.98
1.48
2.79
2.83
1.67

32
3.03
2.48
2.17
1.51
2.45
3.93

1.5
3.02

29

1.8

I
I
II
II

II
v

III
I

27



