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ate-Global warming has

led to an increasing occurrence of compound hazards and an accurate risk assessment of such hazards is of great importance
to urban emergency management. Due to the interrelations between multiple hazards, the risk assessment of sueh-compound

in-historieal-datasets—In-this paper, to-a compound hazard is facing several challenges: (1) the evaluation of hazard level needs
to take into account the correlations between compound hazards drivers, (2) usually only a small number of data samples are
available for estimating the joint probability distribution of the compound hazard drivers and the loss caused by the hazards, (3)
the temporal dynamics of the occurrences of compound hazards needs to be considered in the process of the risk assessment.
To deal with these challenges, we-prepese-a-this paper proposes an integrated risk assessment model ealled-VFS-IEM-IDM
based-on-the-to quantify the dynamic risk of compound hazards based on Variable Fuzzy Set (VES), Information Entropy
Method (IEM), and Information Diffusion Method —tn-particutar(IDM). For the first challenge, VFS-IEM-IDM provides—a
comprehensive-evaluation-measures the effect of the compound hazards-leveland-apredictive-cumulativelogistie-modelis
used-to-verify the results- Furthermorehazard drivers via the use of relative membership degree and analyses the correlation
between drivers with the entropy weight method, which are combined to evaluate compound hazards level. To address the
Nggqggl\/gbgllgggg VFS-IEM-IDM apphes a-normal-information-diffusion-estimator-the normal diffusion function to estimate
the eondi i sprobability distribution of the
compound hazard and the corresponding loss vulnerability curve. To deal with the third challenge, VFS-IEM-IDM assesses the

risk of a compound hazard in different months based on the h
losses—To-examine-the-effieacy-of-definition of probabilistic risk. To evaluate the proposed risk assessment model VFS-IEM-
IDM, &ea%ﬁwdyeﬁhe%ﬂmm%l%&mstefm—ha%afds—makwe use the typhoon-rainstorm hazards occurred in Shenzhen, Chinais

often-oeeur-in-September—The-, as a case study and show that VFS-IEM-IDM can effectively estimate the typhoon-rainstorm
compound hazard level and assess the dynamic risk of the

RMB-respeetivelycompound hazards.
Key-weordsKeywords: Compound hazardsrisk; Fuzzy dynamic risk; Variable fuzzy set; Information diffusion; Fyphoon-Rainstorm

typhoon-rainstorm
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1 Introduction

W%MM%
successively worldwide. In the literature, there has been an increasing interest in the research of assessing multi-hazard risks
Choietal. (2021). A compound hazard is a typical multi-hazard problem that involves the concurrence of multiple hazard
drivers, such as heavy rainfall, extreme wind intensity, and storm surge. For example, typhoons and rainstorms are two different
types of natural hazards that can cause significant damages. When these two types of hazards simultaneously occur, compound
hazards are produced, leading to more severe catastrophes than the individual hazards. Therefore, the risk assessment of such
compound hazards needs to take into account the interrelations between the individual hazards.

The risk of a hazard is defined as the potential consequences brought by the disasters and can be quantified by the probabilit
of losses (He et al. (2020)). Risk assessment is a technique that uses hazards-the relevant hazard data to estimate the probability

likelihood that natural hazards eeeur-and-may occur and further assess their economic losses (Huang et al. (2018)). Traditional

methods of risk assessment mainly utilize Geegraphie Infermation-System(GIS)-geographic information systems to get risk

maps (Gigovic et al. (2017)) s-or rely on information diffusion methed-IDM)-methods to deal with incomplete-data-sets-the
roblem of data sparsit (Gong et al. (2020)) These relevantrisk assessment methods (Julia et al. (2021); Zhou et al. (2020))

are mostly applied to individual hazards

while the risk assessment of compound hazards is not simply the mu}ﬂ-hazafekﬂskassessmeﬂﬁﬁe{—fh&aggregatlon of their

Wm

There are many research works discussing the m

Chotetal—(202Furthermore, Wang-etal—(2020)-elarified risk assessment of multi-hazards. They classify the relationship
between hazards-in-multi-hazard-seenarios-by-dividing-them-the individual hazards in the scenarios of multi-hazards into three
categories: mutually amplified hazards, mutually exclusive hazards, and non-influential hazards—han-et-al-«(2020)presented
an-analysis-of-thestakes (Wang et al. (2020)). The existing methods and technologies thatarerelevantto-multi-hazard-scenarios:

multi-hazards have been reviewed in (Khan et al. (2020)). For example, a Cloquet integral multiple linear regression model
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has been proposed to overcome the problem of nonlinear additivity of mutually amplified hazards for hazard level evaluation
He et al. (2020)). An information diffusion method has been used to assess the risk of multiple hazards quantitatively and

evataated—evaluate the risk of loss of human lives from meteorological hazards in China —Ming-etal—(2045)proposed—a
Xuetal. (2016)). A quantitative approach of multi-hazard risk assessment based on vulnerability distribution and joint return
period of hazards is proposed to assess the risk of crop losses in the Yangtze River Delta region of China (Ming et al. (2015

). However, all of these works

betweenhazards eceurreneedo not consider the correlations between the occurrences of the individual hazards, such as the co-

appearance of

styphoon-rainstorm hazards. Furthermore, there is

little research focusing on typhoon-induced risk assessment in the literature, and temporal dynamics are rarely considered in
risk assessments.

Compound hazards, a sub-group of the-term—multi-hazard’-ean-be-"multi-hazards’, are considered as the combination of

multiple hazard drivers that contribute to societal i

WW%IWWMR@WW&WMQ
events occurring simultaneously or successively, (2) combinations of extreme events with underlying conditions that amplify
the impact, and (3) combinations of events that are not themselves extreme but lead to an extreme event or impact when
combined (Jennifer et al. (2021)). Here, we explicitly consider compound hazards for the case when two or more individual
extreme events occurring at the same place and at the same time, such as the extreme precipitation, winds, and ocean waves.

In this paper, we define the compound-hazards—riskrisk of a compound hazard as a scene in the future associated with some
adverse inetdentincidents caused by cascading hazards systems, where there are strong connections among-different-hazard

indieatorsbetween different hazard drivers. Compared with the multi-hazard-risk-assessmentrisk assessment of multi-hazards
in the literature (Xu et al. (2016); Huang et al. (2018)), the-risk-assessment-assessing the risk of compound hazards ebtains-the

eomprehensive-hazardsneeds to obtain an integrated hazard level without losing any correlated information and-eften—reflects

Semeresearch-based-on-variable fuzzy-sets-While there have been many attempts to assess the risk of multi-hazards, most of

the existing methods have limitations in dealing with compound hazards (Ming et al. (2022); Huang et al. (2018)). Firstly, the

correlation between the hazard drivers is often ignored. Considering that the disaster control engineering system is a synthesis
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of multi-dimensional factors, the potential inter-dependencies of the drivers will affect the joint probability and the economic
losses of compound hazards. Secondly, the relationship between the hazards, i.e., vulnerability and exposure analysis, cannot
be modeled effectively when the data is sparse. Thirdly, most of the existing risk analysis frameworks for compound hazards
are based on either qualitative or semi-quantitative methods. Moreover, the temporal dynamics of the occurrences of compound
hazards are often not considered.

To address the first limitation, researchers have applied variable fuzzy set (VFS) theory; introdueed by Chen—(2006); methods
&MMMMMMW shown that the relative membershlp function can be used to
evaluate the #
relations between multiple indicators in risk assessment (Chen (2006)). A fuzzy method (Li et al. (2012)) is proposed to solve
the flood risk assessment problems with interval boundaries and this integrated model improves the reliability of single hazard
risk assessment. Beatta-etal—(2643)-used-variable-fuzzy sets-VES has also been used to evaluate the synthetic hazards level
of Nagapattlnam district with the north-east monsoon rainfall*’s data sets —Similarlythe-variable fuzzy set-theorycan-beused
s—(Beaula et al. (2013)). In this paper, we propose to combine the
VES-with-VES with the information entropy method (IEM) to assess i
risk-assessmentthe hazard level of compound hazards such that the correlations between the hazard drivers can be captured.

To deal with the second limitation, the information diffusion method (IDM) is commonly used to model the physical
relationship between different attributes. In many cases, it is difficult to collect compound hazards datasets;—such—that-the

information-earried-by-, and the historical data is often in
estimation—result-and-sparse. To this end, many fuzzy probabilistic models have been proposed to enhance the accuracy of

risk-assessmentMehran-et-al«(2017the risk assessment results (Mehran et al. (2017)). Fuzzy probabilistic models are used
to model uncertainties related to hazards and the randomness due to environmental, natural, or time-span—changingperiod

changes. The main feature of the fuzzy probabilistic medel-is-to-change-the-traditional-models is to transform the raw data
points into fuzzy setfor—partly—filling—sets to partly fill the gap caused by data fﬁeemp}eteﬂes% Mand improve the

estimation accuracy between i

the inputs and the outputs. One of the most powerful techniques is IDM (Huang (1997, 2002)), which helps extract useful
underlying information from the hazard-hazards data sets.

sets{(Huang«(2009); 5-—2013); Huanget-al-(2018)Researchers have done a simulation study on IDM and demonstrated
of IDM in dealing with

the benefit of information distribution for probabilit

tisk-assessments-of-eompound-hazardsconstruct a normal information diffusion estimator (IDM) to analyze the probability.
function and vulnerability curve of compound hazards.

As for the third limitation, preliminary attempts have been made to develop quantitative multi-hazard risk assessment
frameworks (Huang etal. (2018)). The probabilistic risk model combined with the concept of dynamic risk assessment has
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been proposed to estimate the flooding risk (Huang (2015)). In this paper, we present the definition of dynamic compound
hazards risk and then propose a method to assess the compound hazards risk quantitatively which also takes into account of

the temporal dynamics of the occurrences of the hazards.
The main contributions of this paper are summarized as folowing-two-folds—follows.

1. +)Feor-technological-innovation;we-propose-a-hybrid-We propose a model, named as-Variable Fuzzy Set and Informa-
tion Diffusion Methed-(VFS-IEM-IDM), to assess eompeund-hazardsrisk-dynamiealy—Forthermore;-we-simplify-the
ealentation procedures-of-the dynamic risk of compound hazards, which takes into account the interrelations between
the hazard drivers, deals with the problem of data sparsity, and considers the temporal dynamics of the occurrences of
the compound hazards.

2. We simplify the procedures of calculating relative membership degree to improve the efficiency and-acenracy-of com-
pound hazards level evaluation, and we also use a predictive cumulative logistic model to verify the evaluation results.

3. 2)To examine the efficacy of the proposed model VFS-IEM-IDM, a case study of the Fyphoon-Rainstorm-hazards-that
typhoon-rainstorm hazards occurred in Shenzhen, China is presented.

The rest of this paper is organized as follows. Section 2 introduces the basic concepts and presents-definitions in this paper. In
Whe dynamic compound hazards risk assessment modelf, JLQNQLX VES-IEM-IDM)—Seetion3-illastrates

. Section 4 provides an
evaluation of the VFS-IEM-IDM with a case study of typhoon-rainstorm hazards occurred in Shenzhen, China. Section4

discuss the results of the case study obtained at different stages of VFS-IEM-IDM. Finally, swe-cenclude-the-paperin-Section

5-conclusions are drawn in Section 6.

2.1 Basic concepts

Variable fuzzy set is used to express the fuzzy effect of the fmpaeke#—m{emal—a&ﬁbufeehaﬁgemﬁhe%a%afd&%ﬁ—see&eﬁ

dynamie-risk-of-hazard drivers by relative membership degree (RMD) functions, and then the compound effects between
different drivers can be modeled. This method provides an enhanced implementation of the compound hazards level evaluation
rocess and can reflect the coupled characteristics of compound hazardswhen-the-given-datasets-are-incomplete—The-propesed
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hazardslevel(Seetion2:2)-andVESIDM-dynamierisk—assessment-medel-. Information entropy is based on the entro
coefficient calculation process, which is used to measure the importance of the individual hazard drivers and determine the

weight of different drivers. Information diffusion is a function learning method with high estimation accuracy from a small

data set, which makes full use of the diffusion information given by the data samples to estimate the expeetationrisk-of-direet

2.2 Dynamie-ecompound-hazardsrisk

Risk-is-assumed-to-be-the-poessibleseene-probability density of the data samples or the relationship between the data samples
without the knowledge of the distribution from which the data samples were drawn. This method is applied to estimate the
robability distribution p (hazard potential) of the occurrence of a-harmful-event-hazards, and the causal relationshi hazard

vulnerability).

2.2 Dynamic compound hazards risk

From the previous studies, the-type-ofriskrisks could be classified into four categories: pseudo risk, probability risk, fuzzy
risk, and uncertainty risk (Huang et al. (2018)). In-the-ecase-of-that-we-can-estimate-Existing hazard risk assessment models are

often qualitative or semi-quantitative, which cannot estimate directly economic losses from the joint impact of several hazards.
Probability risk is estimated by integrating the probability distribution p{a)-thazard-petentiabp of the occurrence of a-hazard

hazard-1evel—a-hazards, and the causal relationshi between the economic loss and the hazard attributes. As a result, the

probability risk could be quantified as the expected value of economic losses, i.e.,

Risk = Hazard Potential x Vulnerability.

the integration of hazard potential with hazard vulnerability.
Though these four types of risks have been investigated by many researchers, there isittle-are few research on dynamic com-

pound hazards riskHuang-et-al-—(2048)). In this paper, w

Fhe-compound—risk-is— compound risk is defined a scene in the future associated with some adverse incident caused by

cascading hazards systems, where there are strong connections between different hazards and the hazard level is influenced by
many indieatorsdrivers. Furthermore, Huang—(26015)-mentioned-thatitcould-extentas proposed by Huang (2015), the concept
of compound risk could be extended to dynamic compound risk if the impact of occurrence time on risk assessment has
been-is taken into consideration. To evaluate-the-compound-hazardsrisk—the-mostimportantthings-are-to-estimate-probabili

distribution-p(a)-assess the risk of a compound hazard, the probability distribution p of the occurrences of eompound -hazards
by-using-the compound hazard will be estimated with probability models, and the input-output-relationship—f{#)-causal
relationship f between the hazards level-andJosses-by-usingfuzzy-modelsattributes and the losses is captured by a fuzzy
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model. The compound risk-quantified-as-the-economietosses-hazards risk is defined as follows:

Risk =p(®:X)-1(#/:X), g

)

where X ={x;;|1 -, J } represents the data samples with the sample size /N and the number of com-

pound hazards -is-givenby-Eg——

J
Risk = [ pla)- f(z) do =3 plriatty) - f(wiatt;),

j=1

hazardsattributes .J, ® and ©’ denote a set of hazard attributes which reflects the characteristics of the compound hazard. For ex-
ample, the Typhoon-Rainstorm-riskis-influenced-by-differentindicators-att-=-risk of the compound hazard typhoon-rainstorm
can be assessed by 3 hazard attributes including hazard occurrence time ¢, compound hazards level -economielosses)and
%h&%/@%rmcbsses%dynamlc compound risk e&xﬂae—&s%esse@ayfmegra%mg wm/g;gggg}hgcon—

ditional probability distribution p{z: Fera
D= with the hazards vulnerability f(X:;®’) where &’ = )

3 Dynamic Risk Assessment of Compound Hazards: VFS-IEM-IDM

Risk assessment of compound hazards should consider the correlation between the compound hazard drivers, the problem
of data sparsity, and the dynamic property of hazard occurrences. This section introduces VES-TEM-IDM, a risk assessment
model for compound hazards which combines the variable fuzzy sets theory with the information diffusion method to assess
the dynamic risk of compound hazards when only a small set of data samples is available. Fig. 1 shows the workflow of
VES-IEM-IDM which mainly consists of two components. With individual hazard level and historical records of hazard drivers
as inputs, the first component VFS-TEM combines variable fuzzy set methods with information entropy methods to provide a
comprehensive evaluation of the compound hazards level (Section 3.1). Based on the compound hazards levels and historical
records of risk assessment attributes, the second component VES-IDM adapts normal information diffusion methods to quantify.
the dynamic risk of the compound hazards in terms of the direct economic losses (Section 3.2). The boxes colored blue represent
the results obtained by the VES-TEM-IDM model.

3.1 Compound hazards level evaluation: VFS-IEM
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Figure 1. Workflow of the VES-IEM-IDM dynamic compound hazards risk assessment model based on case study. Based on the historica

records of compound hazards, our proposal

1

rovides an enhanced implementation of the compound hazards level evaluation and then

estimates the probability distribution and the corresponding loss vulnerability curve of compound hazards attributes to calculate the dynamic

compound hazards risk. The blue boxes represent the results obtained by the VFS-IEM-IDM model

For the compound hazards risk assessment, the correlation between the compound hazards drivers should be considered.

Fortunately, the variable fuzzy set (VES) theory which considers the contributions of multiple related drivers and decreases the
fuzziness by using membership functions (Chen (2006)), provides an approprlate tool for seh%ﬁgmthe compound
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defined-the-balance-boundariesmatrix—and-iHustratesthe-function u(wu), which determines the probability of a hazard driver
u belonging to different hazard level intervals, is applied to evaluate the contributions of compound hazards related drivers.
Since the calculation of RMD as-a-is complicated and time consumingpreblem—We-apply-, we use different locations of the

balance boundaries matrix A4

funetionsM (Wang et al. (2014)) and the value of driver u to simplify the calculation process. Firstly, we use the interval
a,1,b,1) to define the balance boundaries matrix M = [m,,], which is shown in Eq. 3)-te-evaluate-the-comprehensive-value-of

brl = (Ajrl )7 (2)

where #stands—for-the-assessmentindieatorsetr = 1,2,..., R and R indicates the number of hazard drivers, {-denetes-the

comprehensivelevel -l =1,2,... L £empafed—w%l+and L denotes the number of compound hazards levels. Then, we compare
/ d-u with m,; in the interval (a,;. b,

the relative locations of samp

and (c . RMD can then be constructed by the ratio 57—%Fe— L as follows:

q
p(w)r = 0.5(1+ (ﬁ) ) U € (Gry, M)

q (3)
pu(w)p = 0.5(1 — (U%) ) we (e an)

It can be seen that the-RMD-is-affected-by-RMD is influenced by the hyper-parameter -¢ and the position between sample
WWWWW@@W-
In this paper, i
RMD-ealeutation:judge-guided by the procedure of calculating RMD in the literature (Fang et al. (2019)), we simplify the
procedure of calculating relative membership degree to improve the efficiency of compound hazards level evaluation, Firstly,

the intervals [, 1.4 of the individual hazard levels and the balance boundaries matrix M are obtained following the VES
theory (Chen (2006)). Secondly, we determine whether the location of «-u is in the lowest, middle or highest grade of the

elassintervalw-ornoet-interval 1, as shown respectively in Fig.2-Fig-4-have-shown-three-types-of RMD-ealeulation-and-the
detatled-inductionecan-bereferred-by Fanget-ak—+(2619)—, Fig. 3, and Fig.4. Finally, according to the location of u, we use one
of the three sets of formulas to calculate RMD, as shown in Eq. 4, 5, and Eq. 6 accordingly.

M(’U’)r = [M(U)Tl M(U)TQ 0 e 0]
H( )7‘1+l’(’( ) 2_1
0.5 <p(u),, <1

“)

0<p(u),, <0.5

10
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p(u), =0 - 0 plu),g_qy ww), .y 0 - 0
M(u)r(l—l) +:U’(u)r(l+1) =0.5
0 < p(u),_1) <05

(6)

0 < p(u),q1) <05

Following the previous works by Kwakernaak (1978) and Chen (2006), the-proposed-variable-fuzzy-setdimensionreduction
medel-we use the variable fuzzy recognition model to obtain the comprehensive RMD of each driver. Then, the proposed
compound hazards level evaluation model can be constructed by Eq 7. #ﬂﬁée&ey%haﬁhe—pfepesedﬂﬂedehs—&#eeteé%y

Bolw,(1— w). )<
valu) =1+ (gt

va(u),

UA(U)Z ST va(u),
H=(1 2...L)-(vq(uw),)"

Zr 1 (wr(T=p(u),))" =y-1
o= (L (S5
v(u), . 7
Ez 1 v(u), ( )

v(u
o(u
H:(l 2...L) v(u)

\_/

where #S{w)-is-the-normalized-process-of RMBD-o and j are two hyper-parameters, w,. indicates the weight of each hazard
driver, v(u), is the weighted RMD of different hazard drivers and H is the eempfeheﬂ%we—v&hieea—real—v&hie%&ﬂ—b&&&ﬂ%feﬁed

compound hazards level. The weights of the individual hazard drivers w,. are obtained via the use of information entro (L1u
etal. (2010)) tas shown in Eq. 8)—;_

1 = Url/zlel Url
gr = —1/In(N)- 30y (gulngn) - ®
wr=(1-g:)/(R~— Zf:l gr)

is defined as the measured

value from the Ilth level for the rth driver and /N denotes the sample size. The detailed procedure of VFS-IEM is shown in
Algorithm 1)-as-folews—Step-1+ Initiak i Irr. Step-2+ Repeat-therelative
membership—degree—ealeulation—Step-3: Caleulatethe—information—entropy—weightw—Step-4: Retarn—the-comprehensive
degree-value-

12
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Algorithm 1 VES-IEW-DimensionReduction-Medel-for-VFS-IEM Compound Hazards Level Evaluation

Input:

compound hazards driver fuzz

set U = {u;r,

Individual _hazard _level _ assessment _matrix,

V=lvy|l,r=1,23,1=1,223,4.
Output:

Comprehensive value of compound hazards level.

3: Identification of attractingsetsLar=-{{abl=-interval Iy, = [(a,b),] and the extended intervalsFea—=-{fesdl=-interval Joqg = [(c,d)y

based on assessment ertterta-matrix V;

4: Define the balance boundaries matrix 34 =t 2R =12—-FFM = [m,y] by Eq. 2;

5: Calculate the information-entropy-weightwr—weight of each driver 2 = [wy, w2, w3] by Eq.8;

6: fori=1to N do

7: for each wr"uy, € EU do

8: if u;, locates in the lowest grade of the interval 1,4, i.e., ar1 < uir < by1 then

9 RMD-fir {17 has-the-expression-given-by-Calculate RMD yi(u), with Bq.4;
10: else if u;, locates in the highst grade, i.e., a,r. < u;r < b,1, then
11: The-vatue-of RMBD-tr () is-given-by-Calculate RMD y(u), with Eq.5;
12: else
13: RMB-pir{ar)have-the-expression-given by-Calculate RMD s1(u), with Eq.6;
14: end if
15:  end for
16:  The relative membership matrix of each sample ean-be-deneted-as-pr{t)—{tr{ty s denoted as pu(u) = [p(u)1, p(w)2, p(w)z);
17:  Combine WWWWMW and integrate the ranking level, the-comprehensive-degree-vatue-and calculate

the comprehensive compound hazards level for each sample is-given-by-with Eq.7.

18: end for

3.2 Dynamic risk assessment model: IDM

In-order-to-To assess the dynamic risk of compound hazards, especially when the recorded-data sets are incomplete;sparse,
the information diffusion method (IDM) which belongs to fuzzy-sets-the fuzzy theory can be used to extract useful underlying
information from the limited data samples to estimate the relationships-behind-the-incomplete-dataprobability function p and

vulnerability curve f. According to the-researeh-by-Huang—(+997);Huang (1997), J-dimension normal information diffusion
function X151 (2;;,5%) (shown in Eq. 9) is more powerful to improve the precision of estimators—Sethe estimators.

Therefore, this paper adapts the normal information diffusion estimator to approximate the dynamic compound hazards riskas
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follows—,

ko
(xot - 50)2 (l'” - Sj])2

3
DX 4553 8,5,") = [ [ eap(— )ik =1,2, ;0K ti=1,2,--+,TN.
~ o=1

- 2h2 203, ~< T
J
D(as8%) = [[Piisl), ST ={si]j=1,2,-,J} ©9)
j=1
0.6841(b— a), for N =25;
0.5404(b — a), for N =6;
Oz; = 4 0.4482(b — a), for N =T,
(10
0.3839(b — ), for N=8
2.6581(b—a)/(N —1), for N>9.

where b= IISng%V{Iz‘j}, a= 121;1]\,{%1‘}-

where N is the sample size of X

monitor set s;, and g, is the diffusion coefficient with respect to different attributes ;. Based on this-the normal estimator, the
research by Huang (2002) has shown how to determine the coefficients (shown in Eq. 10)and-. This approximate reasoning

of information diffusion is used to estimate probabilities and fuzzy relationships from a small dataset for risk assessment
Huang et al. (2018)). As an example, we use a 2-dimension normal estimator to calculate the discrete probability density
functionean-be-estimated-by-matrix P=-pjr—
2oy X i ug, v
J K n
Zj:l Zk:1 21:1 (Xt ug,vr)

Pjk = 7j:1127"'7j;k:1727”'7K’

where—w;—and-—v—are-the-hazard-indicator—veetors—Further—the—. For the given compound hazards attributes monitor set
SE = {(sM k)1 < ky < K11 < ks < K5}, we estimate the discrete probability matrix P = and the conditional

probability distribution ef-the-given—eomp P = sk g

S D@ S5)

Djk
pv|uj(1}k|“j)k1,k2 = Ki,k:12K N (11)
Y ) k1 Pk M
ko o DPky ko _
Psals: (83°[51) = ko =1,2,-- Ka. (12)

K>
Zk2:1 Pk ko
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Jm = Similarly, we can calculate the three dimensional diffusion function for the compound hazards attributes set S
sMogh R < Iy < K1 < ko < K ,1 < k3 < Ks}. Suppose s3 corresponds to the attribute of economic loss, the

vulnerability curve between the set of causes s1, so and the consequence s3 can be estimated by membership-fanetion {7
310 +the following fuzzy membership function:

1@ (frnsh?) = max ., cv (kl,kQ){min{MAF(ujxi;(s]f ,Uk32 2)), Rf S ymky =1,2,--- , M K3 R"s is the k3" slice of R.
- S Vv EV " - — A ~

where the fuzzy relationship model R=—{+57m) (B = [Tk, ko k) (Shown in Eq. 13) is givenby-thethree-dimensioninformation
diffusion-matrix—{Xr: 5505 f7)—defined by the 3-dimension information diffusion function I"(x;; S®

Tl oo Jon = Z?:l/’L(Xt“u]”vk7fm) Z? 1F(xi;(sli:17sl2€2’sl§3)> (13)
jkmky,ko ks = ‘ n i
SR 52 1§nr1nd§XMZi:1 (Xt ug, vk, fn) rlgiXKg Yo I (s’fl , 5’2“2 , 3’;3))

315 Then the W%WWMWMMMW\MMW, is defined as

follows.

M ks
wi(s
F(ug,00) 1o skzzzm]&uB(fm) Im Ekg @ (s5°) - s} k= 1,2, TR ks = 1,2, Ko (14)

Saliestl) k)

Based on the VFS-IDM risk assessment model, the dynamic compound hazards risk (Direct Economic Losses) is-shewn-in

can be obtained via Eq. 15 where the risk is quantified as the expected value of the conditional probability distribution ane

320

given-by-p and the vulnerability distribution f. The detailed procedure of IDM is shown in Algorithm 2.

, K.
Risk,, = Zi-{ilk;ﬂpv\w (Uk;|uj')k’;\1,7\]f3 'f(“ﬁvk)sf'l,s’;"‘ (15)
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Algorithm 2 VES-IBM-IDM Dynamic Risk Assessment Model of-Compound-Hazards-

diffusion function H-=-hrhoshsre M

Output:

Dynamic compound hazards risk.

M-Compound hazards level evaluation by Algorithm 1;

5: for sample index ¢ = 1 to IV, each x; do
6:  Construct normal information diffusion functions based on the universes of monitor space semploying-the-normal-diffusion-function
in-and Eq. Yto-constructinformation-diffusion-matrix-of sample-b;
7: end for
8: Estimate the joint and conditional probability distribution based on Eq. 11 and Eq. 12;
9: Determine the input-ontputsets—and-model-thefuzzyfuzzy cause relationship based on Eq.13, ther—and estimate the vulnerability
distribution-curve by Eq.14;
10: Fhe-Derive the dynamic risk (BireetEconomieossdirect economic loss) of compound hazards ean-be-guantified-by Eq. 15.

4 Case Study

This sectionuses the-Typhoon-RainstormIn this section, we evaluate VES-TEM-IDM with a case study of typhoon-rainstorm
compound hazards that occurred in Shenzen, China
be-used-to-dynamieally-assess—the-risk-ofcompound-hazards. Shenzhen is located in the east bank of the Zhujiang River
and is surrounded by Daya Bay and Dapeng Bay, where the climate is a—subtropical-maritime-and-Typhoon-Rainsterms—are
undoubtedhy-subtropical and maritime. typhoon-rainstorms are the most frequently occurred hazards in Shenzhen. According

to the collected data {see—Fable-A+as shown in Table Al, from 1980 to 2016 ;-on-average;the-direeted-the direct economic
losses of the Typhoon and Rainstorm hazards in Shenzhen on average exceeded 360 million RMB per year;-the-, Also, Zhou has

investigated the Typhoon and Rainstorm hazards cause the number of death was 3.4 deaths-annually and about 149, 000 people

were affected (Zhou et al. (2017)). The-assessment-results-of-the-Typhoon-Rainstorm-dynamierisk-are-the-basis-Accurate
assessments of the typhoon-rainstorm risk are crucial to determine whether or not the early warning systems are worked

working and implemented effectively.
i he Tvol Rains
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4.1 Classifications of individual hazard level

The typhoon-rainstorm compound hazards are i e usually characterized by three drivers, i.e.
Maximum Daily Precipitation (MDP), Extreme Wind Intensity --(EWI), and landing location. To better measure the impact
of typhoon landing on the typhoon-rainstorm compound hazards level, the landing location is converted into Transformed

Location Number );-the-variable-fuzzy-set-dimension-reduction-model-can-be-used-to-get-more-precise-comprehensive-haza

(TLN) via circle distance calculation where the big value represents the typhoon landed to Shenzhen is more closer. Based on
the data provided by the Meteorological Bureau of Shenzhen Municipality (http://weather.sz.gov.cn/gixiangfuwu/qihoufuwu/)-
values of the three drivers are segmented into four intervals in terms of four individual hazard levels, i.e., I, I 1l and IV. A
higher hazard level indicates a more severe consequence.

Table 1. Classification standards of individual hazard level.

Classifications of Individual Hazards Level

I II I v

Drivers

Maximum Daily Precipitation (MDP) (0,50) (50,100) (100,150)  (150,250)
Extreme Wind Intensity (EWI) (8,10.8) (10.8,17.2) (17.2,23.6) (23.6,30)
Transformed Location Number (TLN) 0,2) 2.,5) (5,8) (8,10)

Based on e

D

This-paper-uses-the-dimensionreduetion-model-the segmentation of the four individual hazard levels, we also classify the
typhoon-rainstorm compound hazards into four levels, i.e., I, II, III, IV, where a higher compound hazard level indicates that

the corresponding compound hazard is of greater severity. As described in Section 3.1, the VFS-IEM compound hazards level
evaluation model (Algorithm 1) te-get-can be applied to obtain the comprehensive value H and-transfers-them-into-different

azard-lev based-on-Typhoo 3 orm-classification—standards—which is then used to derive the compound hazards level
based on the classification criteria of the typhoon-rainstorm compound hazards.

4.2 Calculation of relative membership degree

The relative membership degree is determined by the individual hazard level classifications. According to the elassifieation
restlts-value segmentation shown in Table 1, the-we have the different fuzzy intervals for four different hazard levels. Then

17
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for three hazard drivers, the interval criterion matrix [, can be expressed as

(0,50)  (50,100)  (100,150)  (150,250)
Lp=| (8,10.8) (10.8,17.2) (17.2,23.6) (23.6,30) | = [((a,b),)],
(0,2) (2,5) (5,8) (8,10)

Further, the corresponding interval I.4 for different hazard level is defined as

(0,100)  (0,150)  (50,250) (100,250)
La=| (8,17.2) (8,23.6) (10.8,30) (17.2,30) | =[((c,d)n)],
(0,5) (0,8) (2,10) (5,10)

and we define the balance boundaries matrix Mis-defined-inBEg—27-

0 66.7 133.3 250
M=|8 129 215 30 |=(Mm.).
0 3 710

Fhen-the-In the end, the relative membership degree matrix can be calculated by Egs. 4, 5 and 6 respectively.

u = (MDP=33.4, EWI=18, TL=9) for example, we obtain the

relative membership degree matrix r&expfesseekbyEqﬂwhef&fh&ma&Heva}u&u @) shown as below, in which the matrix
element represents the probability of each indicator-drivers belonging to the differentcompeund-four individual hazards level.

Taking sample point

0.666 0.334 0.000 0.000
pa(uu) = | 0.000 0.438 0.593 0.063
0.000 0.000 0.333 0.667

To-getthe-comprehensive-hazard-
4.3 Typhoon-rainstorm hazards level

To derive the compound hazards level, the information entropy method ean-be-used-to-getis used to obtain the weight of each

indieatorw-whieh-hazard driver. We have the weight ) shown as follows where the element in {? implies that the Maximum
Daily Precipitation and Location play the main role in determining the Fyphoon-Rainstorm-typhoon-rainstorm hazards level.

wQ=1[043 0.19 0.39 .

Fhenby-Adgorithm—t-Based on the VES-IEM compound hazards level evaluation model (Algorithm 1), we obtain the

comprehensive value

hyper-parameter-[{ of typhoon-rainstorm hazards. Then, guided by the domain experts, we have the classification criteria of the
typhoon-rainstorm compound hazard level in Shenzhen: H € [1,2) for level I, H € [2,2.7) for level II, H € [2.7,3.5) for level

III, and H € [3.5,4] for level IV. For the case (MDP=33.4, EWI=18, TL=9), the value of the typhoon-rainstorm hazards level H

3
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380

is obtained. When the hyper-parameters o = 8 = 1, and-H-=-2-18-when-the-hyper-parameter-H = 2.75. When a = § = 2-Te
be-more-general;-this-paper-takes-, I = 2.18. Furthermore, we take the average of H = 2.75 and H = 2.18 to obtain the final
compound hazards level value, i.e., H—=247"Fype-H = 2.47 which corresponds to the compound hazard level II. The results

of other Fyphoon-Rainstorm-comprehensive-hazard-Hevels-typhoon-rainstorm cases can be found in Appendix see-Fable-22)-

Table 2: Transformed Typhoon-Rainstorm typhoon-rainstorm hazard data sets in Shenzhen.

Time-Year Date  Transformed Time (Fday) Cemprehensive-Hazard-Compound Hazards Level () Direct Economic Los

200906272009 0627 176 2.72
0719 198 3
0915 254 3.74
201007242010 0724 203 232
0912 251 2.49
0922 261 2.74
201106242011 0624 173 1.93
0930 269 2.72
201206302012 0630 179 231
0724 203 3.95
0817 226 2.56
201306152013 0615 164 1.94
0702 181 1.99
0802 211 1.53
0814 223 2.13
0922 261 3.06
201407182014 0718 197 1.83
0916 255 2.48
0823 232 2.92
1004 273 2.96
201608022016 0802 211 3.68
0818 227 1.88
1018 287 2.28
1021 290 3.11
201706122017 0612 161 3.67
0723 202 2.11

19

0.3819
1.352
1.3750
0.2571
0.4450
0.9831
0.0765
0.4013
0.2895
2.48
0.7648
0.1527
0.1894
0.0452
0.1423
1.2351
0.0841
0.7682
0.7410
0.8352
2.1521
0.0251
0.2362
0.9341
2.058
0.2461
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0823 232 2.46 1.31
0827 236 3.2 1.613
0903 242 3.03 1.8872
1016 285 2.48 0.5902
201806062018 0606 155 2.47 0.6952
0718 197 1.58 0.0267
0811 220 245 0.5241
0916 255 3.93 2226
201907032019 0703 182 1.49 0.0528
0811 210 3.02 0.8182
0824 233 2.9 0.8391
0902 241 1.8 0.0725

From-

4.4 Dynamic typhoon-rainstorm hazards risk

Based on the data in Table B1, the-sample-observations-on-we obtain three typhoon-rainstorm hazard attributes includin
direct economic loss L (Billions)ever-each-comprehensive-eompotnd-, hazards level H are-written-as-and hazards occurrence

day. Then the dynamic risk of compound hazards can be calculated by 38 data points:

where #5721, 2, represents the time

hazards-attribute of the typhoon-rainstorm hazards and the compound hazard level respectively, and £;-z;3 is the direct economic
losses caused by the Fyphoon-Rainstorm-typhoon-rainstorm hazards. Then the diffusion coefficients can be calculated by Eq.

10, written-as-shown as follows..

0z, =2.6581- (290 —155)/(38 —1) = 10
00, =2.6581-(3.95—1.37)/(38— 1) = 0.19

Oy = 2.6581 - (2.48 —0.0251) /(38 — 1) = 0.1764

Following Algorithm. 2eutlineshow-to-, we use the information diffusion method to estimate the conditional probability and

vulnerability distribution of the Fyphoen-Rainstormhazards—Then-by-the 2-dimensional-normal-diffusion-estimatorthejoin
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hazards. In this paper, we HOT-Spe ={(t=164t=194t=224t=254t= s-define the following

monitor space: T = (164,194,224, 254, 284) corresponds to months (June, July, August, September, October) ={d="18;d=
aseomprehensive, i = (1.8,2.4,3.0,3.6) corresponds to the compound hazards levels (1, I'1, I11,1V )~ and I = (0.1,0.4,0.7, 1.0, 1.3, L.
corresponds to the direct economic losses. Then we can calculate the joint probability density function 2 and the conditional
probability function P as follows:

I 17 117 v

June 0.059 0.046 0.007 0.036
July 0.076 0.052 0.051 0.014
P = August 0.063 0.116 0.090 0.019
September | 0.019 0.086 0.087 0.041
October 0.002 0.073 0.060 0.002

1 11 117 v

June 0.398 0.311 0.049 0.243
July 0.393 0.268 0.266 0.073
PoonP = August 0.218 0.402 0312 0.0689
September | 0.080 0.370 0.373 0.177
October 0.012 0.539 0.437 0.012

From the results above, it can be seen that the Typhoon-Rainsterm-hazarddevel-ef-typhoon-rainstorm with hazard level III

occur more frequently and they are most likely to occur in August and September.

the hazard level H and the direct economic losses L over the time dimension-attribute T can be calculated by the 3-dimension

diffusion estimator —Fhe-fuzzy-(shown in Eq. 13). The fuzzy causal relationship which takes time-dimenston-the time attribute

T, hazards level H as inputthe inputs and the loss L as the output ean-be-is denoted as matrix 27—
The-diserete—~vulnerability-distribution-R. Then the discrete vulnerability curve f in terms of the direct economic loss is

evaluated by Eq. 14and-the-results-are-showninBEg—27—,_

1 Ir 117 1v

June 0.20 0.02 0.00 0.00
July 0.24 0.04 0.00 0.00
f = August 0.15 1.13 1.67 1.90

September | 0.05 0.55 2.67 2.62
October 0.01 0.02 0.00 0.00
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It can be seen that Shenzhen;most of the economic losses caused by the Typhoon-Rainstorm-hazards-is-typhoon-rainstorm
hazards are concentrated in August and September.

I 17 I11 IV

June 0.20 0.02 0.00 0.00
July 0.24 0.04 0.00 0.00
flx;t,h) = August 0.15 1.13 1.67 1.90

September | 0.05 0.55 2.67 2.62
October 0.01 0.02 0.00 0.00

Dynamic compound hazards risks can be quantified as the expected value of hazards-influenee-the damages caused by the
compound hazards and the result isshewn-as-Eq—22-;_

Risk = (0.08582,0.10504,1.1372,1.66715,0.0109) (16)

where the elements of vector-denotes—the vector denote the estimated economic losses caused by the Fyphoon-Rainstorm
| s in i hs.

Rzak:( 0.08582 0.10504 1.1372 1.66715 0.0109 )

typhoon-rainstorm hazards from June to October.

5 Discussion

5.1 Compound hazards level evaluation

The proposed VFES-IEM-IDM model provides a comprehensive evaluation of the compound hazards level, but the relation-
ship between the hazards level and the indicators-are-not-clearhazard drivers is unclear. To find more information from the
results of VES-HEM;-this-paper-has-built-the compound hazards level evaluation model, we build a predictive model to-shield

ight-on-compound-hazardsrelationship-and-prediet the-Typhoon-Rainstorm-hazardsJevel—(shown in Eq. 17) to shed light
on the relationship between the compound hazards levels.

Since the compound hazards level is-an-H € (I,11,111,1V) is ordinal data (monotone trend and proportional odds), the

cumulative logistic model (shown in Eq. +718) can be used to predict the compound hazards level. The-probabitities-of different
order-categoriesgiven-by-cumulative logistie-model-are-Let the response be the compound hazards level H = 1,11, 1111V

--- .4 under the covariate compound hazard drivers U. So the cumulative probability of H is
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less than or equal to level h, i.e., the probabilities of compound hazards belonging to different level categories, is given b

According to the research by Alan (1980), the cumulative logistic model is-defined-as—can be replaced b

P(Y <jlz) PH<K|U)

logit (P(H < h | U)) =18 1 — 5y = Ty T= P < h | D)

==a;,+B8"U, jh=1,...,J—13. A7)

Fhe-Fyphoon-Rainstorm-hazard-where the log-odds measures how likely the response H is to be in category & or below versus

in a category higher than h. In this paper, the typhoon-rainstorm hazards level prediction problem can be solved by using the
VAGM package (Thomas (2010)) and the result is given by

logit (P(H | (MDP,EWI,TLN))) = 5.07(7.32,11.15) — 0.12M DP — 0.66EWI — 0.91TLN, (18)

where the different intereepts-denote-the-different-main-effects-of-hazard-levels-intercept coefficients denote the main effects
of different hazard drivers compared to the reference eategery,+e--compound hazard level IV. The rationality of this model is

judged by LR-test (p-value<0.001) and the predictive performance R? = 0.898 which shows that the model is well fitted and
can be used as-to predict the compound hazards predictionlevel.

One-advantage-

5.2 The superiority of the normal diffusion estimator

One advantage of using the information diffusion technigue-method to assess the risk of an-compound hazards is that it
does not need to know (H-the-distribution—type-of-the-population{from—which-the type of distribution from which the given

samples are drawn ;—<2)-and the function form of the causal relationship ;-which are constructed by the joint probability

distribution and the vulnerability distribution. M

RWWH(MCMMWWWMWW The performance of this-non-parametric
ney-the IDM estimation procedure has been
W&M@MM& about 35% higher than histogran

the histogram estimator, and the estimation error is reduced
by 23.2% when the data sets are inecompletesmall. Therefore, the assessed compound hazards risk is more reliable and accurate

using a normal diffusion estimator. However, if the size of the data samples is large it is unnecessary to replace the statistics
with the information diffusion method (Li et al. (2012)).
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53 Results

For the dynamic risk assessment of Fyphoon-Rainstorm-typhoon-rainstorm hazards, this paper proposes a hybrid model
VES-IEM-IDM and provides extensive assessment results based on a case study. From the dimension—reduetion-compound

hazards level evaluation model VFS-IEM, this-paper-shows-we show that the probability of the occurrences of type II and
III hazard levels is the highest in Shenzhen—Fhe-, which shows that the emergency management department should prepare
more effective emergency plans in advance to reduce the occurrences of the secondary hazards. From the dynamic risk as-
sessment model VES-IEM-IDM-IDM, it can be found that the hazards occurrence probability of different hazard levels is
different and the type-hazards-of-hazards with levels II and III hazards-tevel-are most likely to occur in August and Septem-
ber. AlsoFurthermore, considering the occurrence of different-hazard-tevel-for-each-monthsthe hazards with different hazard
levels for each month, the probability of hazard-hazards with level I occurring in June and July is the highest, and the hazard
hazards with level II mostly eeeurs-occur in August and October, and the type-hazards with level III hazard-Jevel-is most
likely to occur in September. From the perspective of hazard losses, the differentdifference between the direct economic losses
caused by the Fyphoen-Rainstorms-typhoon-rainstorms of the same hazard level in—each month indicates that the impacts
of the Typhoon-Rainstorm-typhoon-rainstorm hazards on the economy are not the same. Besides, for the same month, the
influence of economic less-losses decreases gradually when the compound hazards level rises. This indicates that the capac-
ity of Fyphoon-Rainstorm-typhoon-rainstorm hazard resistance in Shenzhen is reliable, and the ability to eopy-with-the-cope
with sudden compound hazards are-is relatively strong under the existing emergence management system. The dynamic com-
pound hazards risk of Fypheon-Rainstorm-the typhoon-rainstorm hazards in Shenzhen shows that the risk value of this-these
compound hazards in each month is different and the highest risk value appears in August and September. On average, the
occurrence of Fypheen-Rainstorm-the typhoon-rainstorm hazards brought Shenzhen 114 million RMB and 167 million RMB

losses in these two months respectively, which is in line with the actual situation.

6 Conclusions

Risk-assessmentis-an-important-step-Compound hazards risk assessment is a complex multi-criteria problem and is crucial
to the success of strategic decision-making in emergency management;—-but—few—. Traditional statistical methods are often

inaccurate when only a small set of data samples is available, and little research discusses the uneertainties-correlations of

edrivers and considers

compound hazards ev
the dynamics of the occurrences of the compound hazards. In this paper, we first present the definition of dynamic compound

hazards risk ;-and-then-and then propose the Variable Fuzzy Set (VFS) fheefyﬂs—emp}eyed—%eeva}tme—me—re}a%w&membefship
degree;-and Information Entropy Method (IEM) is-apphi

compound hazards level evaluationby considering the correlations of different hazards drivers. Based on the results obtained

by VFS-IEM, we apply the information diffusion method (IDM) to estimate the eonditional-probability-distribution-compound
hazards probability and vulnerability distribution with the hazard occurrence time and the corresponding losses—Fhen-, and

model to evaluate the
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then the dynamic risk is as

this-paper-are-(O-Based-calculated by the probabilistic model.

There are mainly three aspects of innovations in this paper. Firstly, based on the definition of compound hazards risk,
we take-time-dimension-into-consideration—te—consider the temporal dynamics and introduce the concept of dynamic com-

pound hazards risk. O-Censidering-Secondly, considering that compound hazards have different-measurementindicatorsfor
the-comprehensive-many drivers for the hazard level evaluation, a hybrid model of Variable Fuzzy Sets and the Information
Entropy Method has been proposed to improve the accuracy of compound hazards level evaluation. -Aeeerding—Thirdly,
according to the concept of dynamic compound hazards risk, we apply the Information Diffusion Method to estimate the
conditional-probability-distribution-hazards probability and the vulnerability distributionusing-the-comprehensive-hazarddevels;
hazards-ececurrence-time-and-the-losses-of compound-hazards. The proposed model VFS-IEM-IDM can be used to deal with
the problem of incomplete-andtimited-information—in-dynamie-data sparsity in dynamic compound hazard risk assessment.
OBy evaluating the expected value of the conditional probability distribution and the vulnerability distribution, we quantify
extended to other compound hazards that occur in urban cities such as flooding. As a case study, we show that the occurrences

of the eceurrence-of Typhoon-Rainstorm-hazards-brings-typhoon-rainstorm hazards bring Shenzhen 114 million RMB and 167
million RMB losses in August and Septemberte i

there are many issues that need further
improvement. In this paper, the weights of different types of hazards-indicators-is—subjeetivehazard drivers is subjective, and

the results of the vulnerability curve have not taken-the-changes-in-the-internal-attributes-considered the development of the
affected area-into-consideration—On-the-other-hand;-there-areas, There are also some subjective issues regarding how-te-process

eonchustonsthe processing of the data sets. In future work, we will explore techniques to deal with these two issues and further
improve the assessment accuracy.

Code and data availability. The data and code used in the study are available at https://github.com/GongWenwuu/VFS-IEM-IDM.git.
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Appendix A: Data Source

For-the-Typhoon-Rainstorm-For the typhoon-rainstorm dynamic compound hazards risk assessment, the useful data sets
—eollectedfrom-were collected from the Meteorological Bureau of SheaZhen-Munieipality(Shenzhen Municipality (http://

weather.sz.gov.cn/gixiangfuwu/gihoufuwu/niandugihougongbao/) and TYPHOON ONLINE (http://typhoon.nmc.cn/web.html),
have been sorted out in Table A1l. In this table, MDP denotes as-Maximum Daily Precipitation, EWI denotes as-Extreme Wind
Intensity, DEL denotes as-Direct Economic Loss, and the Transformed Location Number (TLN) denotes as-the Typhoon Land-

ing Location which is determined by radio distance transform using expertise-expert knowledge.

Table Al: Data sets of Fyphoon-Rainstorm-typhoon-rainstorm hazards in Shenzhen.

Hazards NumberID  Impact Fime-Date MDP (mm) EWI (m/s) Landing Location TLN DEL (Billion)

0904 0627 67.3 16.8 Huizhou 8.5 0.3819
0906 0719 80 27.3 Shenzhen 10 1.152
0915 0912 127.9 28 Taibei 6 1.075
1003 0724 31.3 16.2 Zhanjiang 6.5 0.2571
1010 0912 62.4 13.7 Quanzhou 3 0.345
1011 0922 51.9 15.8 Heyuan 7 0.2983
1105 0624 41.7 14 Yangjiang 4.5 0.0765
1006 0930 53.0 15.2 Wenchang 2.5 0.8243
1206 0630 33.6 16.8 Zhuhai 6.5 0.6873
1208 0724 152.3 23.9 Taishan 7 2.241
1213 0817 46.1 13.5 Zhanjiang 3 0.9153
0615 36.5 8.4 Wenchang 4 0.3621
1306 0702 38.6 10.9 Zhanjiang 3 0.2561
1309 0802 40.7 10.7 Wenchang 3 0.0851
1311 0814 47.8 14.2 Yangxi 3 0.6413
1319 0922 72.4 21.6 Shanwei 8.5 1.152
201409 0718 31.6 14.7 Wenchang 2.5 0.0841
201415 0916 73.5 18.9 Xuwen 2.5 0.9641
201517 0823 69.4 13.6 Shanwei 10 1.041
201522 1004 108.5 13.5 Zhanjiang 5.5 0.9631
201604 0802 166 19.2 Shenzhen 10 2.31
201608 0818 45.5 9.1 Zhanjiang 5.5 0.0314
201621 1018 117.6 12.3 Wanning 1.5 0.421
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201622
1702
1707
1713
1714
1716
1720
1804
1809
1816
1822
1904
1907
1911
1914

1021
0612
0723
0823
0827
0903
1016
0606
0718
0811
0916
0703
0811
0824
0902

83.7
161.8
334
56.3
114.5
82.4
40
97.2
50.7
45.3
173.5
48.8
99.1
49.4
52.2

18.8
16.9
10.6
23.4
17.5
14.4
20.3
8.8
11.1
10.8
30
11
14.1
12.7
11.3

Shanwei
Shenzhen
Xianggang
Zhuhai
Jiangmen
Shanwei
Zhanjiang
Xuwen
Wanning
Yangjiang
Taishan
Wanning
Wenchang
Zhangzhou

Wanning

1.5
10

8.5
8.5
7.5
7.5
8.5
1.5

7.5
1.5
5.5

0.8721
2.109
0.5315
1.328
1.741
0.9631
0.7341
0.9267
0.0267
0.5241
2.361
0.0672
0.9561
0.5931
0.0751
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Appendix B: Comprehensive Compound Hazards Level

Based on the DimensionReduction-Model-VFS-IEM model, this paper takes the average of a =3 =1and a =3=2to
610 denote the final Typhoon-Rainsterm-typhoon-rainstorm hazards level. The following Table ?? has shown that the whole results

of eomprehensive-compound hazards degree value.

Table B1: Transformed typhoon-rainstorm hazard data sets in Shenzhen.

Year Date Transformed Time (day) Compound Hazards Level (H) Direct Economic Loss (L)

2009 0627 176 2.72 0.3819
0719 198 3 1.352
0915 254 3.74 1.3750
2010 0724 203 2.32 0.2571
0912 251 2.49 0.4450
0922 261 2.74 0.9831
2011 0624 173 1.93 0.0765
0930 269 272 0.4013
2012 0630 179 2.31 0.2895
0724 203 3.95 2.48
0817 226 2.56 0.7648
2013 0615 164 1.94 0.1527
0702 181 1.99 0.1894
0802 211 1.53 0.0452
0814 223 2.13 0.1423
0922 261 3.06 1.2351
2014 0718 197 1.83 0.0841
0916 255 2.48 0.7682
0823 232 292 0.7410
1004 273 2.96 0.8352
2016 0802 211 3.68 2.1521
0818 227 1.88 0.0251
1018 287 2.28 0.2362
1021 290 3.11 0.9341
2017 0612 161 3.67 2.058
0723 202 2.11 0.2461
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2018

2019

0823
0827
0903
1016
0606
0718
0811
0916
0703
0811
0824
0902

232
236
242
285
155
197
220
255
182
210
233
241

2.46
32
3.03
248
247
1.58
2.45
3.93
1.49
3.02
2.9
1.8

1.31
1.613
1.8872
0.5902
0.6952
0.0267
0.5241
2.226
0.0528
0.8182
0.8391
0.0725
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