# Residential building stock modeling for mainland China targeted for seismic risk assessment

Danhua Xin<sup>1,2,\*</sup>, James Edward Daniell<sup>2,3,\*</sup>, Hing-Ho Tsang<sup>4</sup>, Friedemann Wenzel<sup>2</sup>

<sup>1</sup>Department of Earth and Space Sciences, Southern University of Science and Technology, 1088 Xueyuan Avenue,
 Shenzhen 518055, Guangdong Province, China

<sup>2</sup>Center for Disaster Management and Risk Reduction Technology (CEDIM) and Geophysical Institute, Karlsruhe Institute of Technology, Hertzstrasse 16, 76187, Karlsruhe, Germany

<sup>3</sup>General Sir John Monash Scholar, The General Sir John Monash Foundation, Level 5, 30 Collins Street, Melbourne, Victoria, 3000, Australia

<sup>10</sup> <sup>4</sup>Centre for Sustainable Infrastructure, Swinburne University of Technology, Melbourne, VIC 3122, Australia

\*Correspondence to James Edward Daniell (j.e.daniell@gmail.com), Danhua Xin (xindh@sustech.edu.cn)

## Abstract

Previous seismic damage reports have shown that the damage and collapse of buildings is the leading cause of fatality and property loss. To enhance the estimation accuracy of economic loss and fatality casualty in seismic

- 15 risk assessment, a high-resolution building exposure model is <u>important\_necessary</u>. Previous studies in developing global and regional building exposure models usually use coarse administrative level (e.g., country, or sub-country level) census data as model inputs, which cannot fully reflect the spatial heterogeneity of buildings in large countries like China. To develop a high-resolution residential building stock model for mainland China, this paper uses finer urbanity level population and building-related statistics extracted from the records in Tabulation of the
- 20 2010 Population Census of the People's Republic of China (hereafter abbreviated as the "2010-census"). In the 2010-census records, for each province, the building-related statistics are categorized into three urbanity levels (urban, township, and rural). Statistics of each urbanity level are from areas with a similar development background but belong to different administrative prefectures and counties. Due to privacy protection related issues, these urbanity level statistics are not geo coded. Therefore, before<u>To</u> disaggregating disaggregate these statistics into
- 25 high-resolution grid level, we need to determine the urbanity attributes of grids within each province. For this purpose, the geo-coded population density profile (with 1km×1km resolution) developed in the 2015 Global Human Settlement Layer (GSHL) project is selected to divide the 31 provinces of mainland China into 1km×1km grids. Then for each province, the grids are assigned with urban/township/rural attributes according to the population density in the 2015 GHSL profile. Next for each urbanity of each province, the urbanity level building-
- 30 related statistics-extracted from the 2010 census records can be disaggregated into-the 2015 GHSL geo coded grids, and the 2015 GHSL population in each grid is used as the disaggregation weight. Based on the four structure types (steel/reinforced-concrete, mixed, brick/wood, other) and five storey classes (1, 2-3, 4-6, 7-9, ≥10) of residential buildings classified in the 2010-census records, we reclassify the residential buildings into 17 building subtypes attached with both structure type and storey class and estimate their unit construction prices. Finally, we
- 35 develop a geo-coded 1km×1km resolution residential building exposure model for 31 provinces of mainland China.

In each 1km×1km grid, the floor areas of the 17 residential building subtypes and their replacement values are estimated. To evaluate the model performance is evaluated to be satisfactory, comparisons with the wealth capital stock values estimated in previous studies at the administrative prefecture level and with the residential floor area statistics in the 2010 census at the administrative county/prefecture level are conducted. The and its practicability

of the modeled results in seismic risk assessment is also checked<u>confirmed</u>. by estimating the seismic loss of residential buildings in Sichuan Province combined with the intensity map of the 2008 Wenchuan Ms8.0 earthquake and an empirical loss function developed from historical seismic damage information in China. Our estimated seismic loss range is close to that derived from field investigation reports. Limitations of this papere proposed model and directions for future improvement directions are discussed. More importantly, tThe whole
 modeling process of presented in this paper is fully reproducible, and all the modeled results are publicly accessible.

Given that the building stock in China is changing rapidly, the results can be conveniently updated when new datasets are available.

Key Words: residential building stock modeling, 2010-census records, dasymmetric disaggregation

## 1. Introduction

50 The frequent occurrence of earthquakes and other natural hazards (typhoon, flood, tsunami, etc.) can lead to tremendous and often crippling economic losses. According to the estimation in Daniell et al. (2017), from 1900-2016, 2.3 million earthquake fatalities from 2233 fatal events occurred worldwide. Economic losses (direct and indirect) associated with the occurrence of over 9,900 damaging earthquakes reached USD 3.41 trillion (in 2016 prices). For cases in China, the combination of high seismic activity, population density, and building vulnerability cause even higher seismic risk: Earthquakes that occurred in China during the 110 years from 1900 to 2010 accounted for about 2.5% of radiated energy globally, but the earthquake fatality ratio is around 1/3 of the world

(Wu et al., 2013). Among the losses caused by natural disasters, buildings are considered as the most important

- asset category, since the main sources of loss and fatality that occurs during earthquakes are related to building damage and collapse (e.g., Neumayer and Barthel, 2011; Yuan, 2008). Information on the exposed value of
  buildings is key to seismic loss estimation, whose accuracy will further affect the effectiveness in earthquake response and rescue (Xu et al., 2016a). Therefore, in any seismic risk mitigation effort, the estimation of the building stock and the values at risk should be given top priority. This is even more urgent for seismic active and disaster vulnerable countries like China (Allen et al., 2009), where rapid urbanization has led to a massive increase in both the asset value and population that are exposed to a potential seismic hazard (Hu et al., 2010; Yang and Kablar, 2008).
- 65 Kohler, 2008).

Modeling seismic loss to buildings requires quantifying their exposure in terms of floor area and monetary value (Paprotny et al., 2020). A series of micro-, meso- and macro-scale approaches have been developed for this purpose. The scale of the method depends not only on the size of the study area but also on the goal of the investigation, the availability of necessary data, time, money, and human resources (Messner and Meyer 2006). For example,

70 micro-scale analyses calculate the asset value based on individual buildings, which requires detailed information on building characteristics (e.g., occupancy, age, structure type, building height, or the number of floors). However, since great efforts and considerable expenses are required to collect such information for each building, microscale methods are rarely applicable on a regional or (inter)national level (e.g., Figueiredo and Martina, 2016; Erdik, 2017). When further limited by the privacy protection issue, information on asset values of individual buildings is

- 75 more difficult to obtain (Wünsch et al., 2009). In contrast, meso- and macro-scale methods that use aggregated exposure data on building characteristics procured from official statistics and organized in administrative units (e.g., country, province, prefecture, county/district, etc.) are more commonly used in modeling building values exposed to future earthquakes.
- Since building-related statistics are usually aggregated at a coarse administrative level, while seismic hazards are usually modeled with high spatial resolution, there is a spatial mismatch between exposure data and hazard mapping (e.g., Chen et al., 2004; Thieken et al., 2006). This mismatch may delay and mislead the recuse decisionmaking after large earthquakes. For example, after the occurrence of the Ms8.0 Wenchuan earthquake, one of the most severely affected areas, Qingchuan County, did not get an appropriate rescue response, while most of the recuse resources were sent to the less damaged Dujiangyan City. The major reason for this problem was: The
- 85 exposure data (population, buildings) used to assess seismic loss were based on administrative units (Xu et al., 2016). Therefore, to enhance seismic risk assessment accuracy, the aggregated building statistics data need to be spatialized into high-resolution grids levels. Several interpolation and decomposition methods (e.g., areal weighting, pycnophylactic interpolation, dasymetric mapping) have been developed for this purpose. Compared with the areal weighting method, in which the aggregated building data are evenly distributed (e.g., Goodchild et
- 90 al. 1993), pycnophylactic interpolation method uses a smoothing function of distance to determine the disaggregation weight (e.g., Tobler, 1979) and tends to be more reasonable, since the distribution of buildings within an administrative unit is heterogeneous. Based on the pycnophylactic interpolation method, the dasymetric mapping method (Bhaduri et al., 2007) further utilizes finer resolution ancillary spatial data to augment the interpolation process and is now widely used.
- 95 When using the dasymetric mapping method to spatialize the administrative level building exposure data, the selection of appropriate ancillary information is thought to be the most difficult part (Wu et al., 2018), since such information should not only be geo-coded and readily available but also have a high correlation with the building exposure data to be disaggregated. A range of remote sensing data (e.g., nightlight data, road density, land use/land type, population spatial distribution datasets, etc.) has been employed as ancillary information in the literature. A detailed summary of these ancillary data will be given in the Data Sources and Methodology section.

Based on the aggregated building-related statistics and using the dasymetric mapping method, this paper develops a high-resolution residential building model (in terms of building floor area and replacement value) for seismic risk assessment in mainland China. This issue has been explored in many previous studies and a series of global and regional building exposure models have been developed. One famous such global model is the PAGER

- 105 (Prompt Assessment of Global Earthquakes for Response) building inventory database, which is the first open, publicly available, transparently developed global model (Jaiswal et al., 2010). However, the PAGER inventory was developed to rapidly estimate human occupancies in different structure types for earthquake fatality assessment. It lacks information in actual building counts and does not use available information from a commercial database or remote sensing data, thus cannot be used for building asset evaluation immediately
- 110 (Dell'Acqua et al., 2013). To overcome this difficulty, at least partially, the GED4GEM (the Global Exposure Database for the Global Earthquake Model) project develops a complementary approach that can provide a spatial inventory of exposed assets for catastrophe modeling and loss estimation worldwide (Gamba, 2014). The input

datasets ingested into the GED4GEM are at multiple spatial scales, from coarse country-level statistics to finer compilations of each building in some sample regions. There are also other global models, such as the series of

- building stock models released by the Global Assessment Report (De Bono and Chatenous, 2015; De Bono and Mora, 2014; De Bono et al., 2013) of the United Nations International Strategy for Disaster Reduction (UNISDR), and the global exposure dataset created by Gunasekera et al. (2015). When focusing on the modelling of building stock in China, a common limitation shared by these global models is that the building-related statistics they disaggregate are only of country/sub-country level, although finer level statistics are already available. Thus, a
- 120 general assumption in the disaggregation process of these global models is that building stock value per capita within the country/sub-country is uniform. A similar assumption is also made in studies that develop building exposure models specifically for China (e.g., Yang and Kohler, 2008; Hu et al., 2010). For computational convenience, such an assumption is acceptable. However, for improving the seismic risk assessment accuracy in each specific country, more detailed aggregated data at a finer level, if available, should be fully employed in the 125 development of their building exposure model.
  - By considering the depreciation of all physical fixed assets (including residential and non-residential buildings, infrastructures, tools, machinery, and equipment), Wu et al. (2014) estimated the wealth capital stock (WKS) value for 344 prefectures in mainland China using the perpetual inventory method (PIM). Later, Wu et al. (2018) decomposed the prefecture-level WKS value into building assets, infrastructure assets, and other assets with fixed percentage shares of 44%, 19%, and 37% for all 344 prefectures. And these three asset components were further disaggregated into 800m×800m high-resolution grids by using LandScan population, road density, and nighttime light as ancillary information, respectively. The basic idea of combining the use of different ancillary information
- to disaggregate the WKS value in Wu et al. (2018) is good. However, the over-simplification in fixing the percentage shares of the building, infrastructure, and other assets in all prefectures limits the applicability of their results in actual seismic risk assessment.

Based on the county-level building-related statistics extracted from the 2010-census records, Xu et al. (2016b) developed the nation-wide dasymetric foundation data (including population and buildings) for quick earthquake disaster loss assessment and emergency response in China by using the multi-variate regression method (Xu et al., 2016a). The multivariate regression method used in Xu et al. (2016a) was explained in more detail by Chen et al.

- 140 (2012) and Han et al. (2013), in which they developed the population and building exposure models for areas in Yunnan Province. Fu et al. (2014a) also used the multi-variate regression method to produce the 1km×1km resolution population grids in the years 2005 and 2010 for mainland China. Important assumptions in this multivariate regression method are: (1) The spatial distribution of population is limited within the six land use types (namely cultivated land, forest land, grass land, rural residential land, urban residential land, industrial and
- 145 transportation land) recognized from the Landsat TM images; (2) For counties with similar geographical and demographic characteristics (e.g., population number, structure and economy development level), the population density within each land use type is the same. Recently, Lin et al. (2020) conducted a township/street level comparison of population models generated by Fu et al. (2014a) and other institutes for Guangdong Province, China with the surveyed population in 2010-census records. Their comparison shows that the township/street level
- 150 population generated by using the multi-variate <u>regression</u> method in Fu et al. (2014a) tends to overpredict the population density in a sparsely populated area and underpredict the population density in <u>a</u> densely populated area, especially the downtown area of metropolitan cities like Shenzhen and Guangzhou. <u>The reasons for such</u>

discrepancies are that: (1) The population density developed for each land use type by using the multi-variate regression method is the average population density, thus the over/under prediction of the actual population density

- 155 in certain areas is inevitable; (2) When applying the multi-variate regression method, no additional supplementary data (e.g., road density, nighttime light) is employed to adjust the level of development in different regions, which is necessary because the level of development is much higher than the average in places such as the downtown area of metropolitan cities like Shenzhen and Guangzhou. The reason for these discrepancies is obvious: Since the population density developed for each land use type by using the multi-variate method is the average population
- 160 density. Although the building exposure model developed by Xu et al. (2016b) has not yet been tested, we conclude that the model of Xu et al. (2016b) also suffers from the over/under prediction problem in Fu et al. (2014a).

To overcome the limitations in building exposure models developed for mainland China in previous studies, this paper aims to present an improved method for generating a high-resolution residential building stock model (in terms of building floor area and replacement value) for mainland China. The main improvements in this paper are:

- (1) Compared with global building exposure models, we will use finer urbanity level (urban, township and rural) building related statistics extracted from the 2010-census records as model inputs; (2) Compared with Wu et al. (2018), in which the building assets are decomposed from the composite WKS value with fixed percentage share for all prefectures, we will use statistics that are directly related to residential buildings for each urbanity level of each province; (3) Compared with Xu et al. (2016b), in which only land use data are employed in the multi-variate method to derive the average building floor area density within each grid, we will use the ancillary population density profile generated from the 2015 Global Human Settlement Layer (GHSL), which is considered to be the best available assessment of spatial extents of human settlements with unprecedented spatial-temporal coverage
- The organization of the paper is as follows. Sect. 2 (Data Sources and Methodology) will firstly describe the building-related statistics to be used as model inputs that extracted from the 2010-census records (Sect. 2.1), the review and selection of ancillary data to disaggregate these statistics into grid level (Sect. 2.2), and the derivation of residential building floor area and replacement value in each grid based on these statistics and the ancillary data (Sect. 2.3 and 2.4). Then the major results will be presented (Sect. 3.1) and comparisons with other independent data sources will be conducted (Sect. 3.2). Limitations in this paper and further improvement directions will also be discussed in Sect. 4. Conclusions will be drawn in Sect. 5.
  - 2. Data Sources and Methodology

and detail (e.g., Freire et al., 2016).

In dasymetric mapping, the use of finer scale census data as input and the choice of appropriate ancillary remote sensing data to disaggregate the census data into a higher grid level are the two controlling factors for the quality of the building stock model. For China, after the 2010 Sixth Population Census (namely the 2010-census), detailed statistical data related to residential building characteristics (e.g., building occupancy, structure type, height classes, etc.) are available for each province at the urbanity level (urban/township/rural). These urbanity level buildingrelated statistics are good data sources to develop the building exposure model for China. To disaggregate these statistics into grid level, the correlation between the ancillary remote sensing data and the building-related statistics needs to be established. Then, the building floor area and replacement value at the grid level can be estimated.

190 Therefore, in this section we will introduce the residential building-related statistics as extracted from the 2010-

census records, the review/selection of ancillary remote sensing data to disaggregate these statistics into grid level, and the method to derive the grid level residential building floor area and replacement value based on these statistics and the ancillary remote sensing data.

## 2.1 The building-related statistics in the 2010-census records

195 The statistics to be used in this paper for building stock modeling are extracted from the Tabulation of the 2010 Population Census of the People's Republic of China (namely the 2010-census) particularly for residential buildings. Like in most countries of the world, the nation-wide population and housing census in China are carried out at the 10-year interval. Detailed statistics for the year 2020 are not publicly accessible yet. Therefore, census data for the year 2010 will be used to elaborate the modeling process The census for the year 2020 is just initiated 200 and normally it takes around two years to publish the final surveyed data. Therefore, the current latest census data are for the year 2010. In the 2010-census, there are two types of tables: Long Table and Short Table. Long Table includes summaries based on the surveys of 10% of the total population in mainland China, while the Short Table summaries are based on the surveys of the whole population. Statistics on building characteristics (e.g., building occupancy type, height classes, structure type, etc.) are extracted from the Long Table of the 2010-census. 205 Supplementary demographic statistics (e.g., the total population in each urbanity, the average number of people per family, and average floor area per person) are extracted from the Short Table of the 2010-census. A detailed introduction of corresponding sources of these data is given in Table 1.

For each of the 31 provincial administrative units in mainland China (including five autonomous regions: Xinjiang, Tibet, Ningxia, Inner Mongolia, Guangxi; and four municipalities: Beijing, Shanghai, Tianjin, Chongqing;
hereafter all referred to as provinces), statistics on building characteristics in the Long Table of the 2010-census are aggregated into three urbanity levels (urban/township/rural). The urbanity attribute is determined according to the administrative unit of the surveyed population. As listed in Table 2, these statistics will be used as model inputs to develop the grid level residential building model in terms of floor area and replacement value. Compared with country/sub-country level census data used in previous global or regional models, the further categorization of buildings within each province, since the building-related statistics of the same urbanity level are from areas with similar development background but different administrative units. The spatial administrative boundaries used in this paper are from the National Geomatics Centre of China (see Data/Code Availability section for access).

### 2.2 Review/Selection of ancillary remote sensing data for dasymetric building stock modeling

Before disaggregating the urbanity level building-related statistics into 1km×1km grid level, appropriate ancillary information needs to be carefully selected and evaluated. The use of remote sensing data as ancillary information to determine the disaggregation weight is common in dasymetric modeling and has been frequently adopted in previous studies (e.g., Aubrecht et al. 2013; Gunasekera et al., 2015; Silva et al., 2015). The most commonly used remote sensing data include land use/land cover data (LULC, e.g., Eicher and Brewer, 2001; Wünsch et al., 2009; Seifert et al., 2010; Thieken et al., 2006), nighttime light data (e.g., Doll et al 2006; Ghosh et al, 2010; Chen and Nordhaus 2011; Ma et al., 2012) and road density data (e.g., Gunasekera et al., 2015; Wu et al., 2018). According to Wu et al. (2018), the LULC, nighttime light, road density data can be categorized as primary remote sensing

data.

Each primary remote sensing data has its pros and cons when used for dasymetric disaggregation. For example,

- studies using LULC data (e.g., Globcover, GLC2000, MODIS, GlobeLand30) assume the population within each land-use type is uniformly distributed, which is a better assumption compared with believing in an evenly distributed population within an administrative unit. But this assumption is not consistent with the real situation. (Thieken et al., 2006), specifically in suburban and rural areas, where the dispersion of population is greater than in urban areas (Bhaduri et al., 2007). Therefore, LULC data is inadequate to fully reflect the spatial heterogeneity
- 235 within each land use or land cover class. In contrast, nighttime light data, acquired by the U.S. Air Force Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) (Elvidge et al., 2007) and provided by the National Oceanic and Atmospheric Administration (NOAA) every year, are considered the most suitable ancillary information for indicating both the distribution and the density of human settlements and economic activities (Wu et al., 2018). Nighttime light data have been widely used to produce grid-based global population
- and GDP data sets (e.g., Ghosh et al, 2010; Chen and Nordhaus 2011; Ma et al., 2012). However, the drawbacks of nighttime light intensity data are also obvious. Limited by the operating conditions of DMSP satellites, the range of nighttime light density is within a narrow interval of 0-63, thus leading to the pixel oversaturation in urban centers (Elvidge et al., 2007). For areas other than city centers (e.g., mountainous rural area), the coverage of nighttime light data is incomplete as it cannot correctly reflect the distribution of nonluminous objects (e.g., road
- transportation facilities, electricity infrastructure). Compared with the LULC and nighttime light data, road distribution data are more frequently used for assessing infrastructure assets, since power lines, energy pipelines, water supply, and sewage pipelines are generally buried along the roads (Wu et al., 2018). Currently, road density data can be converted from road networks like OpenStreetMap, which is an openly available but crowdsourced online database (Zhang et al., 2015). As these data are not systematically compiled, there is still room for improvements (Wu et al., 2018).

Given the limitation of each primary remote sensing data, a series of secondary ancillary datasets are developed based on the combined use of these primary datasets. For example, the famous LandScan population density profile was produced by apportioning the best available census counts into cells based on probability coefficients, which were derived from road proximity, slope, land cover, and night-time lights (Dobson et al., 2000). Based on these primary and secondary ancillary datasets, a series of studies have been conducted to disaggregate administrative

level building census data into geo-coded grids. For example, Silva et al. (2015) disaggregated the building stock at parish level for mainland Portugal based on the population density profile at 30×30 arc-sec resolution cells from LandScan. Gunasekara et al. (2015) developed an adaptive global exposure model (including three independent geo-referenced databases, namely building inventory stock, non-building infrastructure, and sector-based GDP),

255

260 in which build-up area and LandScan population density are used to disaggregate country-level exposed asset value. Wu et al. (2018) established a high-resolution asset value map for mainland China by spatializing the prefecture-level depreciated capital stock value into girds using the combination of three ancillary datasets nighttime light, LandScan population, and road density, to name just a few.

In this paper, we follow the assumption of Thieken et al. (2006) that the distribution of residential asset values can be directly reflected by population distribution. Now the remaining question is to select appropriate ancillary population spatial distribution data to disaggregate building-related statistics in the 2010-census records. The candidate population datasets include Gridded Population of the World (GPW, Balk and Yetman, 2004), Global Rural-Urban Mapping Project (GRUMP) population (see section Data/Code Availability), LandScan (Bhaduri et al., 2007), WorldPop (Linard et al., 2012) or AsiaPop (Gaughan et al., 2013), PopGrid China (Fu et al., 2014b),
Global Human Settlement Layer (GHSL) population grids (Freire et al., 2016; Pesaresi et al., 2013) etc. GPW is a product of simple areal weighting interpolation and GRUMP is derived through simple dasymetric modeling, while LandScan is structurally a multidimensional dasymetric model (Bhaduri et al., 2007). According to Gunasekera et al. (2015), the LandScan gridded population dataset was identified as the best-suited dataset for exposure disaggregation, while other gridded population datasets such as GPW and GRUMP were too coarse in resolution

- and accuracy. According to Wu et al. (2018), LandScan, AsiaPop, and PopGrid China are the most promising population density datasets for asset value disaggregation in China since they all contain high-resolution attributes. However, some population data of China are missing from the current AsiaPop. And compared with LandScan, the spatial coverage of PopGrid China is limited<sub>1</sub>, which is due to an assumption in its development method, namely the multi-variate regression method (Fu et al., 2014a). It was assumed that the spatial distribution of
- 280 population is limited to the six land use types recognized from the Landsat TM images, namely cultivated land, forest land, grass land, rural residential land, urban residential land, industrial and transportation land. However, in reality, the population is distributed more widely beyond these land use types. Thus, the LandScan dataset was used for the final disaggregation of building assets in Gunasekera et al. (2015) and Wu et al. (2018). However, due to its commercial nature, the details to create the LandScan population datasets are less transparent, although being
- 285 considered as one of the best global population density data sets (Sabesan et al., 2007). In contrast, the population datasets developed by the GHSL project of Joint Research Center of the European Commission based on the global human settlement areas extracted from multi-scale textures and morphological features are transparent and freely available. The built-up area in GHSL was built by combining the MODIS 500 Urban Land Cover (MODIS500) and the LandScan 2010 population layer and are among the best-known binary products based on remote sensing
- 290 (Ji et al., 2020). Preliminary tests confirm that the quality of the information on built-up areas delivered by GHSL is better than other available global information layers extracted by automatic processing of Earth observation data (Lu et al., 2013; Pesaresi et al., 2016). Furthermore, Different from LandScan, which aims at representing the ambient population, namely the average population over a typical diurnal cycle (Elvidge et al., 2007), GHSL population grids represent the residential population in buildings (Corbane et al., 2017). The building-related
- 295 statistics in the 2010-census are also for residential buildings. Therefore, the GHSL population grids are the best candidate ancillary information for this paper to disaggregate the urbanity level building-related statistics extracted from the 2010-census records into grid level. The high correlation ( $R^2 = 0.9662$ , as shown in Fig. 1) between the GHSL population and the 2010-census recorded population at the county-level further indicates its appropriateness. Detailed county-level population correlation analyses for each of the 31 provinces in mainland China are also
- 300 provided and can be found from the online supplement. The accesses to the remote sensing data mentioned above are provided in the Data/Code Availability section.

# 2.3 Assign urbanity attribute (urban/township/rural) to the geo-coded grids in the 2015 GHSL population density profile

305

In the 2015 GHSL population density profile, the number of populations in each geo-coded grid is given (it is worth noting that this dataset has been updated in 2019 during the preparation of this work). The original resolution of the 2015 GHSL population density profile is 250m×250m. For computational convenience, it is resampled to 1km×1km resolution before further analysis. Based on the urbanity level residential building-related statistics extracted from the 2010-census records, a top-down dasymetric mapping method will be performed to disaggregate

the urbanity level statistics into 1km×1km resolution grids for mainland China. The urbanity attribute of statistics

- 310 in the 2010-census records is determined according to the administrative unit of the surveyed population. For example, if a residence is from a village, then the related statistics are aggregated into rural urbanity level; and if from a town, then it is township level; if from a city, it is urban level. However, for the geo-coded population grids in the 2015 GHSL profile, the corresponding urbanity attributes remain to be defined. Therefore, before performing the disaggregation, we will first define the urbanity attribute of each geo-coded grid in the 2015 GHSL profile by
- 315 applying the reallocation approach developed by Aubrecht and Leon Torres (2015) and illustrated in Gunasekera et al. (2015).

Aubrecht and Leon Torres (2015) identify the geospatial areas of mixed and residential grids within the urban extent of Cuenca City, Ecuador by using the Impervious Surface Area (ISA) data as they show strong spatial correlations with the built-up areas. The assumption behind their method was that intense lighting is associated
with a high likelihood of commercial and/or industrial presence (which is commonly clustered in certain parts of a city, such as central business districts and/or peripheral commercial zones, and such areas are defined as "mixed-use area"), and areas of low light intensity are more likely to be pure residence zone (defined as "residential use area"). In Gunasekera et al. (2015), a similar procedure was used in developing the building stock model for the entire globe. The difference is that Gunasekera et al. (2015) sorted the grids according to the population density in
the LandScan population dataset and assigned the gird with urban/rural attributes. For each country, the largest and most populated contiguous grids are classified as urban. This step was repeated iteratively until the urban

population proportion for each country was reached.

In this paper, to assign the urbanity attributes (namely urban/township/rural) to geo-coded population grids in the 2015 GHSL profile, for each province we follow the urban/township/rural population proportions (as listed in

- Table 3) derived from the population statistics in the Short Table of the 2010-census. The assumption behind this urbanity attribute assignment practice is that the larger the population density in a grid, the higher its potential to be assigned as "urban". An example demonstrating the distribution of the 2015 GHSL population grids assigned with urban/township/rural attributes for Baoshan District of Shanghai is shown in Fig. 2. For instance, in Shanghai, the urban/township/rural population proportion derived from the 2010-census records is 76.64%, 12.66%, and
- 335 10.7%, respectively. Then, following Gunasekera et al. (2015), the grids (1km×1km) in the 2015 GHSL profile of Shanghai are sorted from the largest to the smallest in population density. The population in those most populated grids are selected and summed up until the urban population proportion (i.e., 76.64% for Shanghai) is reached. Then those selected grids are assigned with the "urban" attribute and the smallest population among these grids determines the threshold to divide urban and non-urban grids (for Shanghai this urban/non-urban grid population
- threshold is **4936** per km<sup>2</sup>). For the remaining non-urban grids, the same process is repeated iteratively until the township population proportion (i.e., 12.66% for Shanghai) is reached. These grids are assigned with the "township" attribute and the smallest population among these grids determines the threshold to divide township and rural grids (for Shanghai this township/rural grid population threshold is **2750** per km<sup>2</sup>). The remaining grids are thus assigned with the "rural" attribute. The urban/township and township/rural population thresholds for 31 provinces in mainland China are listed in Table 3. This process is repeated for all provinces.

## 2.4 Residential building stock modeling process

The following section will introduce the key steps in residential building stock modeling, including the disaggregation of urbanity level statistics extracted from the 2010-census records into grid level, the reclassification of building subtypes with both structure type and storey class, the derivation of residential building

floor area and replacement value in each grid. The flowchart in Fig. 3 gives an overview of the whole modeling

350

process.

### 2.4.1 Step 1 - Disaggregate urbanity level building-related statistics from the 2010-census into grid level

Like in many other countries, the population and housing census data in mainland China are particularly surveyed for residential buildings. Therefore, the building stock model developed in this paper is for residential building 355 stock. As listed in Table 2, building-related statistics extracted from the 2010-census records include the number of families living in buildings grouped either by the number of the storey (i.e., 1, 2-3, 4-6, 7-9,  $\geq 10$ ) or by structure type (i.e., steel/reinforced-concrete, mixed, brick/wood, other; hereafter steel/reinforced-concrete is abbreviated as steel/RC; and "mixed" refer to different combinations of masonry buildings), the average population per family and the average floor area per capita. For each urbanity level of each province, the number of families living in 360 buildings grouped by storey number or structure type is extracted from the Long Table of the 2010-census, which is based on the survey of only 10% of the total population in mainland China (as noted in Table 1). Therefore, the number of families living in different building types needs to be extended from 10% to 100% population first. This is achieved directly by multiplying the number of families with the factor of 10 (namely factor F0 in Step 1-1 of Fig. 3). Multiplying the number of families with the average number of population per family (namely factor F1 365 in Step 1-2 of Fig. 3, with values listed in Table 2) provides the number of populations living in buildings grouped by storey number (1, 2-3, 4-6, 7-9,  $\geq$ 10) or structure type (steel/RC, mixed, other, brick/wood) for each urbanity of each province.

The geo-coded population grids in the 2015 GHSL profile with assigned urbanity attributes (Sect. 2.3) and the number of populations living in buildings grouped by storey number or structure type derived for each urbanity of each province seem to allow the direct disaggregation of the 2010-census statistics into the 2015 GHSL grids. However, the GHSL population is for the year 2015, while the derived population living in different structure type or storey class from the building-related statistics is for the year 2010. The increase in population/building from 2010 to 2015 must be considered. Here we assume that the increase in population living in buildings grouped by storey class or structure type from 2010 to 2015 is equal to the increase in population from the 2010-census records

- to the 2015 GHSL profile. Therefore, for each urbanity of each province, the derived number of populations living in building types grouped by storey class or structure type (after performing Step 1-1 and 1-2 in Fig. 3) will be further amplified to the year 2015 by multiplying the population amplification factor (namely factor *F2* in Step 1-3 of Fig. 3). For each urbanity of each province, the value of *F2* is equal to the ratio of the 2015 GHSL population to the sum of the population living in buildings of different occupancy types. For example, in urbanity "1001" of
- Anhui province in Table 2, the value of F2 (1.32) results from the ratio of the 2015 GHSL population (12165295) to the product of the number of families living in three occupancy types (331730+9035+287 = 341052; based on surveys of 10% of the whole population), the average number of population per family (F1 = 2.71), and the factor

to extend the 10% population survey to 100% population (F0 = 10), namely 12165295 / (341052×2.71×10) = 1.32.

- 385 Thus, for each urbanity of each province, the number of populations living in buildings grouped by storey class or structure type in 2015 is derived by multiplying the original number of families living in different building types (based on surveys of 10% of the whole population) in Table 2 with factor *F0*, *F1*, *F2*. These urbanity level statistics can be disaggregated into the geo-coded grids of the 2015 GHSL profile. The population share in each grid (relative to the sum of population of grids with the same urbanity) is used as the disaggregation weight (namely factor *F3*
- in Step 1-4 of Fig. 3). By multiplying the urbanity level population living in buildings grouped by storey class or structure type with the disaggregation factor F3 of each grid, the grid level number of populations living in buildings grouped by storey class or structure type can be directly derived.

## 2.4.2 Step 2 - Derive the population living in the 17 building subtypes within each grid

- As explained in Section 2.4.1, after multiplying the original number of families living in different building types
  extracted from the 2010-census records (Table 2, based on surveys of 10% of the whole population) with factor *F0*, *F1*, *F2*, and *F3* in Step 1 of Fig. 3, the grid level populations living in buildings grouped either by the number of storey (1, 2-3, 4-6, 7-9, ≥10) or by structure type (steel/RC, mixed, other, brick/wood) are derived for all geocoded grids in the 2015 year level. To further estimate the residential building floor area and replacement value in each grid, we need to evaluate the unit construction prices of the building types in each grid. Currently, the building subtypes with both storey class and structure type attributes. Then it will be easier and more reasonable to estimate the unit construction prices of these building subtypes, compared to the estimation made in studies based on building occupancy type (e.g., Wu et al., 2019).
- In the following description, we will first introduce the reclassification of building subtypes with both storey class and structure type attributes. Then we will estimate the population living in each of the 17 building subtypes. Based on the statistics of average floor area per capita in each urbanity level extracted from the 2010-census records (as listed in Table 2), the total floor area of each of the 17 building subtypes in each grid can be derived. Finally, for each building subtype, their replacement value emerges from a multiplication of the floor area with the unit construction price.
- By combining the five storey classes (1, 2-3, 4-6, 7-9, ≥10) with the four structure types (steel/RC, mixed, other, brick/wood), the building types in the 2010-census records can be initially reclassified into 20 building subtypes. According to Hu et al. (2015) and Wang et al. (2018), most brick/wood buildings are with quite low height (1 or 2-3 storey), while steel/RC buildings are generally quite high with 10-storey height and above. Therefore, in this paper it is assumed that for "brick/wood" structure type, there are only two storey classes (1, 2-3); while for "steel/RC", "mixed", and "other" structure types, all five storey classes (1, 2-3, 4-6, 7-9, ≥10) are available (namely
- the assumptions in Step 2-1 and 2-2 of Fig. 3). Thus, the number of building subtypes with known storey class and structure type is reduced from 20 to 17. The abbreviations of these 17 building subtypes are listed in Table 4.

After performing the calculations in Step 1 of Fig. 3, the grid level populations living in buildings grouped either by the number of storey (1, 2-3, 4-6, 7-9,  $\geq$ 10) or by structure type (steel/RC, mixed, other, brick/wood) are

420 derived for all geo-coded grids. Thus, we know in each grid the number of population living in buildings of the five storey classes, but we do not know for each storey class how the population is distributed among the four structure types. Also, we know how many people live in steel/RC buildings or other structure types, but for each structure type, we do not know how they are distributed into the five storey classes. For each grid, to derive the number of population living in each of the 17 building subtypes with known structure type and storey class, we are distributed to solve 17 unknown variables from 9 equations. The 9 equations are listed as follows:

430

BRIWOMC1 + STLRCMC1 + MIXEDMC1 + OTHERMC1 = Num<sub>storey1</sub> (1) BRIWOMC23 + STLRCMC23 + MIXEDMC23 + OTHERMC23 = Num<sub>storey23</sub> (2) STLRCMC46 + MIXEDMC46 + OTHERMC46 = Num<sub>storey46</sub> (3) STLRCMC79 + MIXEDMC79 + OTHERMC79 = Num<sub>storey79</sub> (4) STLRCMC10 + MIXEDMC10 + OTHERMC10 = Num<sub>storey10</sub> (5) BRIWOMC1 + BRIWOMC23 = Num<sub>BRIW0</sub> (6) STLRCMC1 + STLRCMC23 + STLRCMC46 + STLRCMC79 + STLRCMC10 = Num<sub>STLRC</sub> (7) MIXEDMC1 + MIXEDMC23 + MIXEDMC46 + MIXEDMC79 + MIXEDMC10 = Num<sub>MIXED</sub> (8) OTHERMC1 + OTHERMC23 + OTHERMC46 + OTHERMC79 + OTHERMC10 = Num<sub>OTHER</sub> (9)

- The 17 to-be-solved variables on the left side of this equation set represent the numbers of populations living in the 17 buildings subtypes (as defined in Table 4); on the right side, the numbers are populations living in buildings classified by fives storey class and four structure types, which are already known after performing the calculations in Step 1 of Fig. 3. Since this set of 9 equations contains 17 unknown variables, it is an underdetermined linear problem. In order to provide values for the 17 unknowns, additional assumptions have to be utilized.
- 440 The strategy we employ here to derive the population living in each of the 17 building subtypes of each grid is a series of distribution steps based on a prioritized ranking of building types and storey classes. For example, we first assign 1 storey class buildings into brick/wood structure type and distribute≥10-storey class as steel/RC structure type (following the assumptions in Step 2-1 and 2-2 of Fig. 3). Although this distribution strategy may deviate from the actual situation, the basic requirement, that in each grid the sum of the population living in the 17
- 445 building subtypes is equal to the population living in building types grouped by structure type or by storey class, is satisfied. The main distribution steps are summarized in Appendix A.

## 2.4.3 Step 3 - Derive the residential floor area of the 17 residential building subtypes in each grid

Based on the distribution processes in Appendix A, we derive the number of populations living in each of the 17 building subtypes in each gird. To derive the residential floor area of each building subtype, the average residential floor area per capita is needed, which is given in the Short Table of 2010-census (namely factor *F4* in Step 3-1 of Fig. 3) for each urbanity level of each province. Therefore, the floor area of the 17 building subtypes in each grid can be directly derived. This grid level residential building floor area distribution map is available from the online supplement. Comparison between the modeled floor area and the 2010-census recorded floor area for residential buildings at county/district-level will be performed in Sect. 3.2.2.

## 455 2.4.4 Step 4 - Derive the replacement value of the 17 residential building subtypes in each grid

With the residential building floor area for each building subtype in each grid being derived in Step 3, to get the corresponding replacement value, the unit construction prices of the 17 building subtypes need to be estimated

(namely factor F5 in Step 4-1 of Fig. 3). Given the uniqueness of the building reclassification strategy adopted in this paper, there are no standard unit construction price evaluations for the building subtypes we use here.

- 460 Therefore, we estimate the unit construction prices of the 17 building subtypes (as listed in Table 4) by averaging the construction prices given in different literature (e.g., 2015 China Construction Statistical Yearbook, the World Housing Encyclopedia, real-estate agency reports, etc.). For the 17 building subtypes in each grid, by multiplying their floor area with the corresponding unit construction price in Table 4, their replacement values can be directly derived. This grid level residential building replacement value distribution map is also available from the online
- 465 supplement. We emphasize that in this paper, the term "replacement value" refers to the amount of money needed to rebuild a property exactly as it is before its destruction regardless of any depreciation, namely the gross capital stock. A prefecture-level comparison between our modeled residential building replacement value and the wealth capital stock value in Wu et al. (2014) will be given in Sect. 3.2.1.

## 3. **Results and Performance Evaluation**

## 470 3.1 Results

## 3.1.1 Modeled floor area and replacement value for residential buildings in each urbanity of each province

The grid level residential building floor area and replacement value (unit: RMB, in 2015 current price) are aggregated into urbanity level (urban/township/rural) for each province, as listed in Table 5. The total modeled residential building floor area for mainland China in 2015 reaches 42.31 billion m<sup>2</sup>. By applying the same unit construction prices for the same 17 building subtypes in all the urban/township/rural areas of the 31 provinces, the initially modeled replacement value of residential buildings in mainland China is 77.8 trillion RMB (in 2015 current price). It is clear that like all other building stocks, the Chinese building stock is a complicated economic, physical and social system (Yang and Kohler, 2008). There are significant differences across the country in terms of economic development level, geographic and climatic diversity, and standardization in building construction.
Therefore, it is mainly for computational convenience that this paper applies the same unit construction price for all the provinces and all the urbanity levels. To improve accuracy in future seismic risk assessment, the unit construction prices of specific building types in the target study area should be adjusted accordingly.

## 3.1.2 An example illustrating the distribution of modeled floor area in Shanghai

For better visualization of the modeled floor area at grid level<u>and to help potential readers to conduct direct</u> comparison with other reports or modeling results, we plot the residential building floor area distribution map and the 2015 GHSL population of Shanghai as an example. As can be seen from Fig. 4, grids with a high density of floor area typically cluster in the downtown area (including eight administrative districts, namely Yangpu, Hongkou, Zhabei, Putuo, Changning, Xuhui, Jing'an, and Huangpu) and the Pudong district. This corresponds to the fact that these districts are the most developed in Shanghai. As revealed by the 3D view of the population distribution in panel (c) of Fig. 4, districts with a high density of floor area also have a high population density.

### **3.2 Performance Evaluation**

As of now, we have developed a high-resolution  $(1\text{km}\times1\text{km})$  residential building stock model (in terms of floor area and replacement value) for mainland China. This model is established by disaggregating the urbanity level building-related statistics in 2010-census records into grid level and using the 2015 GHSL geo-coded population

- 495 as the disaggregation weight. Due to the approximations and assumptions made in the modeling process, the reasonability and consistency of the modeled results need to be evaluated. Due to the typical lack of official statistics on high-resolution building stock from the government (Wu et al., 2018), direct comparison of the modeled floor area and replacement value at grid level with that from official census or statistical yearbooks are not instantly available. Instead, we will compare our modeled results with other studies or census records at a coarser level. Moreover, since the development of such a high-resolution residential building model is mainly
- targeted for seismic risk assessment in mainland China, we will also apply our modeled results to seismic loss estimation combining with the 2008 Wenchuan Ms8.0 earthquake intensity map and an empirical loss function. The estimated losses will be compared with those recorded in affected counties/districts of Sichuan Province.

# 3.2.1 Prefecture-level comparison between the modeled residential building replacement value and the net capital stock value estimated in Wu et al. (2014)

Due to the lack of officially published datasets on the value of fixed capital stock in China (Wu et al., 2018), previous studies (e.g., Holz, 2006; Wang and Szirmai, 2012) mainly employed the perpetual inventory method (PIM) in which economic indicators (e.g., gross fixed capital formation, total investment in fixed assets, etc.) are used. The resolutions of these estimations were almost exclusively limited at national/provincial-level (Wu et al.,

- 510 2014). This coarse spatial resolution forms a major obstacle in applying the model in disaster loss estimation, where high-resolution hazard data are used. To overcome this gap, Wu et al., (2014) estimated the net capital stock values from 1978 to 2012 for 344 prefectures in mainland China by using the PIM. In their Appendix Table A1, the net capital stock values calculated in 2012 current price for 344 prefectures were provided, with the depreciation of all exposed assets (i.e., residential and non-residential building structures, tools, machinery, orguinment, and infractructure) being considered.
- 515 equipment, and infrastructure) being considered.

To compare with the net capital stock value in Wu et al. (2014), the grid level residential building replacement value modeled in this paper (namely the gross value of residential building stock) was aggregated into prefecturelevel. Pearson's correlation coefficient ( $R^2$ ) was used to measure the degree of collinearity between two datasets, with higher  $R^2$  indicating a stronger correlation. As shown in Fig. 5, there is a high correlation ( $R^2 = 0.9512$ )

- 520 between our residential building replacement values and the net capital stock values in Wu et al. (2014) at the prefecture-level. The absolute replacement value of residential buildings is around 0.54 times the net capital stock value in Wu et al. (2014). To explain this discrepancy, we collected the annual fixed asset investment on residential buildings and on all types of buildings for each of the 31 provinces during the years 2004-2014 from the statistical yearbooks (detailed statistics are available from the online supplement). As can be seen from Fig. 6, for each
- 525 province the sum of fixed asset investment on residential buildings during 2004-2014 is around 0.45 times the investment on all types of buildings, quite close to the 0.54 ratio in Fig. 5. The replacement value we estimate is purely for residential buildings without depreciation, while the net capital stock value in Wu et al. (2014) includes

depreciation of all exposed assets (residential, non-residential buildings, infrastructures, and equipment). Thus, we consider our model results as reasonable.

# 530 **3.2.2** County/prefecture-level comparison between modeled residential building floor area and records in the 2010-census

Compared with previous studies related to building stock modeling in China, we have used finer urbanity level building-related statistics as input to generate the grid level residential building stock model. In each urbanity, the building-related statistics extracted from the 2010-census records are from areas with a similar development background, but they belong to different administrative units (i.e., prefectures and counties). Also, within the same prefecture or county, the geo-coded grids are of different urbanity attributes. Therefore, the reliability of our model can be better proved if the modeled results correlate well with actual records at the county or prefecture-level. After a thorough search, we find that county-level records of residential building floor area are also available for 28 provinces in mainland China, except for Hunan, Liaoning, and Sichuan provinces, for which only prefecture-

540 level records of residential building floor area can be found from the 2010-census records. Then, to compare our modeled floor area with the 2010-census records at the county/prefecture-level, the modelled grid level residential building floor area was first aggregated into counties/districts for the 28 provinces, and prefectures for Hunan, Liaoning, and Sichuan, respectively. The final comparison between our estimated residential building floor area with that recorded in the 2010-census is plotted in Fig. 7.

- As can be seen from Fig. 7, there is a high correlation ( $R^2 = 0.9376$ ) between modeled floor area and that recorded in the 2010-census at the county/prefecture-level. The regression relation indicates that our modeled floor area for 2015 is around 1.14 times that in the 2010-census. In Step 1-3 of the modeling process (Fig. 3), for each urbanity level of each province, the building-related statistics extracted from the 2010-census records were amplified into the 2015 level by multiplying the factor *F2*. Mathematically speaking, *F2* is the ratio of the 2015 GHSL population
- to the 2010-census recorded population. F2 is 1.13 for the whole mainland China, which can be derived by following the derivation process of F2 illustrated in Sect. 2.4.1 based on the statistics in Table 2. Therefore, we consider the ratio of 1.14 between our modeled floor area for 2015 and that recorded in the 2010-census at the county/prefecture-level as quite reasonable. For each province, we also plotted the correlation analyses for the population (between the 2015 GHSL population and 2010-census recorded population) and for the residential building floor area (between the modeled floor area and the 2010-census recorded floor area), which are available
- from the online supplement. The corresponding regression parameters and correlation coefficients for the population and the residential building floor area of each province are listed in Table 6.

From Table 6 we can see that the correlation between the 2015 GHSL population and the 2010-census recorded population, and the correlation between the modeled floor area and the 2010-census recorded floor area are

- 560 generally very high for a majority of provinces (with  $R^2 \ge 0.9$ ). This indicates the plausibility of choosing the 2015 GHSL population as the ancillary information to disaggregate the urbanity level building-related statistics, and the reliability of our modeled floor area at the county/prefecture-level. However, it is also worth noting that for coastal provinces like Fujian and Jiangsu, the correlation coefficients of floor area are lower (with  $R^2 < 0.82$ ). We explain this discrepancy with an overpredicted population in the 2015 GHSL profile for the capital or the most
- developed cities in these provinces (as can be checked from the population correlation analyses for these provinces

from the online supplement). Many people tend to work in the capital or the most developed cities without being officially registered as residents. These people are not counted in the 2010-census of these cities but are included in the 2015 GHSL population density profile, which is derived from remote sensing data combined with the actual population density.

#### 570 3.2.3 Application of the residential building stock model to seismic loss estimation

Since the residential building model developed in this paper is targeted for seismic risk analysis, we now use the modeled replacement value to estimate the seismic loss to residential buildings in Sichuan province caused by the Wenchuan Ms8.0 earthquake. The hazard component used for this loss estimation is the macro-seismic intensity map of the 2008 Wenchuan Ms8.0 earthquake (Fig. 8), which was issued by the China Earthquake Administration

- 575 (CEA) based on post-earthquake field investigations. The vulnerability function used was the empirical loss function developed in Daniell (2014, Page 242) for mainland China, which provides the relation between macroseismic intensity and loss ratio (the ratio between repairment cost and replacement cost of buildings damaged in an earthquake). This empirical vulnerability function was developed based on reported seismic damage and loss related to earthquakes that occurred in mainland China in the past few decades. Such information was retrieved
- 580 through an extensive collection of damage and loss records from journals, books, reports, conference proceedings, and even newspapers.

Our estimated seismic loss of residential buildings in Sichuan province due to the Wenchuan Ms8.0 earthquake is around 432 billion RMB (in 2015 current price). The spatial distribution of loss ratios, i.e., the ratio of the estimated loss to the total residential building replacement value in counties/districts of Sichuan province, is shown in Fig. 585 9. In other reports and studies on the loss assessment of the Wenchuan earthquake, e.g., in Yuan (2008), the estimated loss to residential buildings in Sichuan province was around 170 billion RMB (in 2008 current price). The officially issued loss estimated by the Expert Panel of Earthquake Resistance and Disaster Relief (EPERDR, 2008) to residential buildings in Sichuan province was around 98.3-435.4 billion RMB, with the median loss around 212.32-247.25 billion RMB (in 2008 current price). It should be noted that in these studies, the unit 590 construction price used for rural/urban/township building replacement was around 800-1500 RMB per m<sup>2</sup>, which is 1/2.5-1/1.5 of the unit construction price used in this paper as listed in Table 4. Dividing our estimated loss by the factor of 1.5-2.5, then the difference in construction price used in this paper and previous studies are eliminated, and the estimated loss based on our building exposure model turns from 432 billion to around 144-288 billion RMB (in 2015 current price), which is now consistent with that estimated by EPERDR and Yuan (2008). This

595

simple test further indicates the applicability of our model in seismic loss estimation. Thus, the grid level residential building floor area and replacement value developed in this paper can be regarded as reliable exposure inputs for future seismic risk assessment in mainland China.

#### 4. Limitations in the model and directions for future improvement

600

According to studies on assessing the resolution of exposure data required for different types of natural hazards (e.g., Chen et al., 2004; Thieken et al., 2006; Bal et al., 2010; Figueiredo and Martina, 2016; Röthlisberger et al., 2018; Dabbeek et al., 2021), the 1km×1km residential building stock model developed in this paper is sufficient for seismic risk assessment. However, limitations in our model are inevitable due to the assumptions and approximations employed in the modeling process. For example, when disaggregating the urbanity level buildingrelated statistics in the 2010-census into grid level and scaling these statistics from 2010 to 2015, we assume that

- 605 the number of residential buildings in each grid is proportional to its population weight and the increase in buildingrelated statistics of each urbanity is equal to its population increase, which needs to be carefully evaluated by the local development of building stock (e.g., Fuchs et al., 2015). Secondly, to derive the population living in each of the 17 building subtypes in each grid, we assume that brick/wood buildings are limited to 1 and 2-3 storey classes and distribute the number of steel/RC buildings to ≥10-storey class first, which may not be fully consistent with
- 610 the real cases. Furthermore, we use the same unit construction prices for the same building subtypes regardless of their variation across province and urbanity, which also needs certain readjustment when applying our modeled residential building replacement value into actual seismic risk analyses.

In the future, with the increasing availability of open source datasets that track individual building features in detail, the current limitations in this paper can possibly be overcome. Attempts have been made to combine publicly 615 available building vector data (which contains the spatial location, footprint, and height of each building) and census records to improve the exposure estimation (e.g., Figueiredo and Martina, 2016, Wu et al., 2019, Paprotny et al., 2020). Algorithms to extract building footprints and height from aerial imagery and using computer vision techniques have been used by commercial companies like Google and Microsoft (Parikh, 2012; Bing Maps Team, 2014). More recently, by using an unmanned aerial vehicle and a convolutional neural network, Xiong et al. (2020) 620 introduced an automated building seismic damage assessment method, in which not only the 3D building structure can be constructed, but also the building damage state can be predicted automatically with an accuracy of 89%. In addition, Li et al. (2020) developed the first continental-scale dataset on 3D building structure (including building footprint, height, and volume) at 1km×1km resolution for Europe, China, and the US by using random forest models fed with remote sensing and Synthetic Aperture Radar imagery data. Liu et al. (2021) developed the urban 625 floor area map for mainland China at 130m×130m resolution based on high spatial resolution nighttime light LUOJIA 1-01 images, a population map and a single building dataset encompassing 71 cities. Ji et al. (2020) generated the 10m×10m resolution model of rural settlements in the Yangtze River Delta of China by using the multi-source remote sensing datasets with the Google Earth Engine Platform. Cao and Huang (2021) proposed a multi-spectral, multi-view, and multi-task deep network (called M<sup>3</sup>Net) for building height estimation. They 630 estimated the building height at a spatial resolution of 2.5m×2.5m for 42 Chinese cities. Comparison with the results in Li et al. (2020) indicated that the M<sup>3</sup>Net method in Cao and Huang (2021) can better alleviate the saturation effect of high-rise building height estimation than the random forest method used in Li et al. (2020). We take these attempts as an indicator that the high-resolution modeling of building stock for individual buildings

## 635 **5.** Conclusion

will become more widely available in the future.

In this paper, a 1km×1km resolution residential building stock model (in terms of floor area and replacement value) targeted for seismic risk analysis for mainland China is developed, by using the 2015 GHSL population density profile as the bridge and by disaggregating the finer urbanity level 2010-census records into grid level for each province. In each grid, a building distribution strategy is adopted to derive the number of population living in each of the 17 building subtypes with structure type and storey class attributes, based on which the floor area and

replacement value of each building subtype are derived. In each urbanity of each province, the building-related statistics extracted from the 2010-census records are from areas with a similar development background but different administrative units (i.e., prefectures and counties). Therefore, to evaluate the model performance, the residential building replacement value is first compared with the net capital stock value estimated in Wu et al.

- 645 (2014) at the prefecture-level. These two datasets are well correlated, and the former is around 0.45 of the latter, which is quite reasonable referring to the fact that for each province the sum of fixed asset investment value on residential buildings is around 0.54 of the sum of investment values on all types of buildings during 2004-2014. Furthermore, county/prefecture-level comparisons of the residential floor area modeled in this paper with records from the 2010-census are also conducted. It turns out that the modeled and recorded residential building floor areas
- are highly compatible for many counties and prefectures. To further check the applicability of the modeled results in seismic risk assessment, an empirical seismic loss estimation is performed based on the intensity map of the 2008 Wenchuan Ms8.0 earthquake, the empirical loss function in Daniell (2014), and our modelled replacement value of residential buildings in Sichuan province. By reducing the difference in unit construction price used in this paper and other studies, our estimated loss range is consistent with the loss derived from damage reports based
- 655 on field investigation. These comparisons indicate the reliability of the geo-coded grid level residential building exposure model developed in this paper. More importantly, the whole modeling process is fully reproducible, and all the modeled results are available from the online supplement, which can also be easily updated when more recent or detailed census data are available.

## Appendix

660 In Appendix A, to derive the population living in each of the 17 building subtypes of each grid, the distribution strategy mentioned in Sect. 2.4.2 is explained in detail. In addition, a MATLAB script is provided to help understand this strategy.

## **Data/Code Availability**

- The accesses to data used or mentioned in this paper are as follows: (1) 2010 China Sixth Population Census Tab
  ulation (http://www.stats.gov.cn/tjsj/pcsj/rkpc/6rp/indexch.htm); (2) 2015 Global Human Settlement Layer (GHS
  L) population density profile (http://data.europa.eu/89h/jrc-GHS-ghs\_pop\_gpw4\_globe\_r2015a) ; (3) The spatial
  administrative boundaries from the National Geomatics Centre of China (http://www.ngcc.cn/ngcc/html/1/391/3
  92/16114.html); (4) The Globcover land cover maps (http://due.esrin.esa.int/page\_globcover.php); (5) The GLC2
  000 landcover classes (https://forobs.jrc.ec.europa.eu/products/glc2000/legend.php); (6) The MODIS imaging pr
  oject (https://modis.gsfc.nasa.gov/about/); (7) The GlobeLand30 project (http://www.globallandcover.com/); (8)
  The DMSP-OLS nighttime light datasets (https://data.noaa.gov/metaview/page?xml=NOAA/NESDIS/NGDC/ST
  P/DMSP/iso/xml/G01119.xml&view=getDataView&header=none); (9) OpenStreetMap (https://www.openstreet
- map.org/); (10) Gridded Population of the World (GPW, http://sedac.ciesin.columbia.edu/gpw/global.jsp); (11) G
   lobal Rural-Urban Mapping Project-Population (GRUMP-population, https://sedac.ciesin.columbia.edu/data/coll
   ection/grump-v1); (12) LandScan Global Population Datasets (https://landscan.ornl.gov/landscan-datasets); (13)
   WorldPop/AsianPop (https://www.worldpop.org/geodata/listing?id=29); (14) PopGrid China (http://www.geodo
  - i.ac.cn/edoi.aspx?DOI=10.3974/geodb.2014.01.06.V1); (15) An example illustrating the multi-variate equation s

olving process in Sect. 2.4.2, including the input file and the MATLAB script that are available from the online s upplement.

## 680 Supplement

685

The supplementary data related to this work are available online at https://doi.org/10.5281/zenodo.4669800.

## **Author contribution**

DX conducted the data collection and preparation, analyses of results, model validation, and prepared the draft manuscript. JD guided the data collection and preparation process, developed the modeling methodology and performed the calculation and co-analysed the results. HT and FW supervised the project and provided advice and feedback in the process. All authors contributed to the revision of the manuscript.

## **Competing interests**

The authors declare that they have no conflict of interests.

## **Acknowledgements**

690 The authors thank the Editor Sven Fuchs for actively monitoring the whole review process. We appreciate the efforts and time spent by four anonymous reviewers. Their suggestions have greatly improved the quality of this work.

## **Financial Support**

 This research was jointly supported by the China Scholarship Council (CSC), the Karlsruhe House of Young
 Scientists (KHYS) from the Karlsruhe Institute of Technology (KIT), China Postdoctoral Science Foundation (Grant Number 2021M691408) and National Natural Science Foundation of China (Grant Number 41922024).

## References

700

Allen, T. I., Wald, D. J., Earle, P. S., Marano, K. D., Hotovec, A. J., Lin, K. and Hearne, M. G.: An Atlas of ShakeMaps and population exposure catalog for earthquake loss modeling, Bull Earthquake Eng, 7(3), 701–718, doi:10.1007/s10518-009-9120-y, 2009.

Aubrecht, C. and León Torres, J. A.: Top-down identification of mixed vs. residential use in urban areas: Evaluation of remotely sensed nighttime lights for a case study in Cuenca City, Ecuador, in: Proceedings of the 1st International Electronic Conference on Remote Sensing, 22 June-5 July 2015, online (sciforum.net), available at: https://www.researchgate.net/publication/300483105 (last access: 17 January 2021), 2015. 705 Aubrecht, C., Steinnocher, K., K O Stl, M., Z U Ger, J. and Loibl, W.: Long-term spatio-temporal social vulnerability variation considering health-related climate change parameters particularly affecting elderly, Natural Hazards, 68(3), 1371–1384, doi:10.1007/s11069-012-0324-0, 2013.

Bal, I. E., Bommer, J. J., Stafford, P. J., Crowley, H., and Pinho, R.: The Influence of Geographical Resolution of Urban Exposure Data in an Earthquake Loss Model for Istanbul, Earthquake Spectra, 26, 619–634, doi:10.1193/1.3459127, 2010.

Balk, D. and Yetman, G.: The global distribution of population: evaluating the gains in resolution refinement, Center for International Earth Science Information Network (CIESIN), Columbia University, New York, USA, available at https://www.researchgate.net/publication/228735948 (last access: 17 January 2021), 2004.

Bhaduri, B., Bright, E., Coleman, P. and Urban, M. L.: LandScan USA: a high-resolution geospatial and temporal
modeling approach for population distribution and dynamics, GeoJournal, 69(1–2), 103–117, doi:10.1007/s10708-007-9105-9, 2007.

Bing Maps Team: Over 100 New Streetside and 3D Cities Go Live on Bing Maps, available at https://blogs.bing.com/maps/2014/08/20/over-100-new-streetside-and-3d-cities-go-live-on-bing-maps/ (last access: 17 January 2021), 2014.

Bird, J. F. and Bommer, J. J.: Earthquake losses due to ground failure, Engineering Geology, 75(2), 147–179, doi: 10.1016/j.enggeo.2004.05.006, 2004.

Cao, Y. and Huang, X.: A deep learning method for building height estimation using high-resolution multi-view imagery over urban areas: A case study of 42 Chinese cities, Remote Sensing of Environment, 264(2021), 112590, do:10.1016/j.rse.2021.112590, 2021.

725 Chen, K., McAneney, J., Blong, R., Leigh, R., Hunter, L. and Magill, C.: Defining area at risk and its effect in catastrophe loss estimation: a dasymetric mapping approach, Applied Geography, 24(2), 97–117, doi: 10.1016/j.apgeog.2004.03.005, 2004.

Chen, X. and Nordhaus, W. D.: Using luminosity data as a proxy for economic statistics, Proceedings of the National Academy of Sciences, 108(21), 8589–8594, doi:10.1073/pnas.1017031108, 2011.

Chen, Z., Li, Z., Ding, W. and Han, Z.: Study of Spatial Population Distribution in Earthquake Disaster Reduction
 ---- A Case Study of 2007 Ning'er Earthquake, Technology for Earthquake Disaster Prevention, 7(3), 273–284, doi:10.3969/j.issn.1673-5722.2012.03.006, 2012 (in Chinese).

Corbane, C., Hancilar, U., Ehrlich, D. and De Groeve, T.: Pan-European seismic risk assessment: a proof of concept using the Earthquake Loss Estimation Routine (ELER), Bulletin of Earthquake Engineering, 15(3), 1057–1083, doi: 10.1007/s10518-016-9993-5, 2017.

Dabbeek, J., Crowley, H., Silva, V., Weatherill, G., Paul, N., and Nievas, C. I.: Impact of exposure spatial resolution on seismic loss estimates in regional portfolios, Bulletin of Earthquake Engineering, doi:10.1007/s10518-021-01194-x, 2021.

735

Daniell, J.: Development of socio-economic fragility functions for use in worldwide rapid earthquake loss estimation procedures, Ph.D. Thesis, Karlsruhe Institute of Technology, Karlsruhe, Germany, 2014.

Daniell, J. E., Schaefer, A. M. and Wenzel, F.: Losses Associated with Secondary Effects in Earthquakes, Front. Built Environ., 3, doi:10.3389/fbuil.2017.00030, 2017.

De Bono, A. and Chatenoux, B.: A global exposure model for GAR 2015, United Nations International Strategy for Disaster Reduction, Geneva, Switzerland, available at https://www.researchgate.net/publication/275639260 (last access: 17 January 2021), 2015.

De Bono, A. and Mora, M. G.: A global exposure model for disaster risk assessment, International Journal of Disaster Risk Reduction, 10(2014), 442–451, doi:10.1016/j.ijdrr.2014.05.008, 2014.

745

De Bono, A., Chatenoux, B., Herold, C. and Peduzzi, P.: Global Assessment Report on Disaster Risk Reduction 2013: From shared risk to shared value-The business case for disaster risk reduction, United Nations International

750 Strategy for Disaster Reduction, Geneva, Switzerland, available at https://archive-ouverte.unige.ch/unige:32532 (last access: 17 January 2021), 2013.

Dell'Acqua, F., Gamba, P. and Jaiswal, K.: Spatial aspects of building and population exposure data and their implications for global earthquake exposure modeling, Natural Hazards, 68(3), 1291–1309, doi:10.1007/s11069-012-0241-2, 2013.

755 Dobson, J. E., Bright, E. A., Coleman, P. R., Durfee, R. C. and Worley, B. A.: LandScan: a global population database for estimating populations at risk, Photogrammetric Engineering and Remote Sensing, 66(7), 849–857, available at https://www.researchgate.net/publication/267450852 (last access: 17 January 2021), 2000.

Doll, C. N. H., Muller, J.-P. and Morley, J. G.: Mapping regional economic activity from night-time light satellite imagery, Ecological Economics, 57(1), 75–92, doi:10.1016/j.ecolecon.2005.03.007, 2006.

Eicher, C. L. and Brewer, C. A.: Dasymetric Mapping and Areal Interpolation: Implementation and Evaluation,
 Cartography and Geographic Information Science, 28(2), 125–138, doi:10.1559/152304001782173727, 2001.

Elvidge, C. D., Tuttle, B. T., Sutton, P. C., Baugh, K. E., Howard, A. T., Milesi, C., Bhaduri, B. and Nemani, R.: Global distribution and density of constructed impervious surfaces, Sensors, 7(9), 1962–1979, available at https://www.mdpi.com/1424-8220/7/9/1962/pdf (last access: 17 January 2021), 2007.

765 EPERDR: Expert Panel of Earthquake Resistance and Disaster Relief: Comprehensive Disaster and Risk Analysis of Wenchuan Earthquake, Science Press, Beijing, China, 2008 (in Chinese).

Erdik, M.: Earthquake risk assessment, Bulletin of Earthquake Engineering, 15(12), 5055–5092, https://doi.org/10.1007/s10518-017-0235-2, 2017.

Figueiredo, R. and Martina, M.: Using open building data in the development of exposure data sets for catastrophe
risk modeling, Natural Hazards and Earth System Sciences, 16(2), 417–429, doi:10.5194/nhess-16-417-2016, 2016.

Freire, S., MacManus, K., Pesaresi, M., Doxsey-Whitfield, E. and Mills, J.: Development of new open and free multi-temporal global population grids at 250m resolution, in: Proceedings of the 19th AGILE Conference on Geographic Information Science, 14-17 June 2016, Helsinki, Finland, available at https://www.researchgate.net/publication/304625387 (last access: 17 January 2021), 2016.

Fu, J., Jiang, D. and Huang, Y.: Populationgrid\_China, Acta Geographica Sinica, 69(Supplement), 41-44, doi:

10.11821/dlxb2014S006, 2014a (in Chinese).

Fu, J., Jiang, D. and Huang, Y.: 1 KM Grid Population Dataset of China, doi:10.3974/geodb.2014.01.06.V1, 2014b (in Chinese).

Fuchs, S., Keiler, M., and Zischg, A.: A spatiotemporal multi-hazard exposure assessment based on property data, Nat. Hazards Earth Syst. Sci., 15, 2127–2142, doi:10.5194/nhess-15-2127-2015, 2015.

Gamba, P.: Global Exposure Database: Scientific Features, Global Earthquake Model (GEM) Foundation, Pavia, Italy, available at https://storage.globalquakemodel.org/resources/publications/technical-reports/global-exposure-database-scientific-features/ (last access: 17 January 2021), 2014.

785 Gaughan, A. E., Stevens, F. R., Linard, C., Jia, P. and Tatem, A. J.: High Resolution Population Distribution Maps for Southeast Asia in 2010 and 2015, PLoS ONE, 8(2), e55882, doi:10.1371/journal.pone.0055882, 2013.

Ghosh, T., L Powell, R., D Elvidge, C., E Baugh, K., C Sutton, P. and Anderson, S.: Shedding light on the global distribution of economic activity, The Open Geography Journal, 3(1), available at https://www.researchgate.net/publication/228371381 (last access: 17 January 2021), 2010.

Goodchild, M. F., Anselin, L. and Deichmann, U.: A Framework for the Areal Interpolation of Socioeconomic Data, Environ Plan A, 25(3), 383–397, doi:10.1068/a250383, 1993.

Gunasekera, R., Ishizawa, O., Aubrecht, C., Blankespoor, B., Murray, S., Pomonis, A. and Daniell, J.: Developing an adaptive global exposure model to support the generation of country disaster risk profiles, Earth-Science Reviews, 150, 594–608, doi:10.1016/j.earscirev.2015.08.012, 2015.

Han, Z., Li, Z., Chen, Z., Ding, W. and Wang, L.: Population, Housing Statistics Data Spatialization Research in the Application of Rapid Earthquake Loss Assessment ---- A Case of Yiliang Earthquake, Seismology and Geology, 35(4), 894–906, doi:10.3969/j.issn.0253-4967.2013.04.018, 2013 (in Chinese).

Holz, C. A.: New capital estimates for China, China Economic Review, 17(2), 142–185, doi: 10.1016/j.chieco.2006.02.004, 2006.

800 Hu, D., Zhang, F., Xiao, X., Shi, Q., Li, L., Zhang, Z. and Wang, X.: Survey and Statistical Study of Rural Buildings in Southwest China, Earthquake Resistant Engineering and Retrofitting, 37(3), 113–120, doi: 10.16226/j.issn.1002-8412.2015.03.019, 2015 (in Chinese).

Hu, M., Bergsdal, H., Voet, E. van der, Huppes, G. and Müller, D. B.: Dynamics of urban and rural housing stocks in China, Building Research & Information, 38(3), 301–317, doi:10.1080/09613211003729988, 2010.

Jaiswal, K., Wald, D. and Porter, K.: A global building inventory for earthquake loss estimation and risk management, Earthquake Spectra, 26(3), 731–748, doi:10.1193/1.3450316, 2010.

Ji, H., Li, X., Wei, X., Liu, W., Zhang, L. and Wang, L.: Mapping 10-m Resolution Rural Settlements Using Multi-Source Remote Sensing Datasets with the Google Earth Engine Platform, Remote Sensing, 12(17), 2832, doi:10.3390/rs12172832, 2020.

810 Jiang, D., Yang, X., Wang, N. and Liu, H.: Study on spatial distribution of population based on remote sensing and GIS, Advances in Earth Sciences, 17(5), 734–738, doi:10.3321/j.issn:1001-8166.2002.05.016, 2002 (in Chinese).

Li, M., Koks, E., Taubenböck, H., and van Vliet, J.: Continental-scale mapping and analysis of 3D building structure, Remote Sensing of Environment, 245(2020), 111859, doi:/10.1016/j.rse.2020.111859, 2020.

815 Lin, D., Tan, M., Liu, K., Liu, L. and Zhu, Y.: Accuracy Comparison of Four Gridded Population Datasets in Guangdong Province, China, Tropical Geography, 40(2), 346–356, doi:10.13284/j.cnki.rddl.003220, 2020 (in Chinese).

Linard, C., Gilbert, M., Snow, R. W., Noor, A. M. and Tatem, A. J.: Population distribution, settlement patterns and accessibility across Africa in 2010, PloS one, 7(2), e31743, doi:10.1371/journal.pone.0031743, 2012.

820 Liu, M., Ma, J., Zhou, R., Li, C., Li, D., and Hu, Y.: High-resolution mapping of mainland China's urban floor area, Landscape and Urban Planning, 214(2021), 104187, doi:10.1016/j.landurbplan.2021.104187, 2021.

Lu, L., Guo, H., Pesaresi, M., Soille, P. and Ferri, S.: Automatic Recognition of Built-up Areas in China Using CBERS-2B HR Data, in: Proceedings of the JURSE 2013, 21-23 April 2013, São Paulo, Brazil, available at https://publications.jrc.ec.europa.eu/repository/handle/JRC86187 (last access: 17 January 2021), 2013.

- Ma, T., Zhou, C., Pei, T., Haynie, S. and Fan, J.: Quantitative estimation of urbanization dynamics using time series of DMSP/OLS nighttime light data: A comparative case study from China's cities, Remote Sensing of Environment, 124, 99–107, doi:10.1016/j.rse.2012.04.018, 2012.
  - Messner, F. and Meyer, V.: FLOOD DAMAGE, VULNERABILITY AND RISK PERCEPTION CHALLENGES FOR FLOOD DAMAGE RESEARCH, in: Flood Risk Management: Hazards, Vulnerability and Mitigation Measures, edited by: Schanze J., Zeman E., and Marsalek J., Springer, Dordrecht, Netherlands, 149–
- 167, doi: 10.1007/978-1-4020-4598-1\_13, 2006.

830

Neumayer, E. and Barthel, F.: Normalizing economic loss from natural disasters: a global analysis, Global Environmental Change, 21(1), 13–24, doi:10.1016/j.gloenvcha.2010.10.004, 2011.

Paprotny, D., Kreibich, H., Morales-Nápoles, O., Terefenko, P. and Schröter, K.: Estimating exposure of
 residential assets to natural hazards in Europe using open data, Natural Hazards and Earth System Sciences, 20(1),
 323–343, doi:10.5194/nhess-20-323-2020, 2020.

Parikh, B.: Expanded coverage of building footprints in Google Maps, available at http://google-latlong.blogspot.com/2012/10/expanded-coverage-of-building.html (last access: 17 January 2021), 2012.

Pesaresi, M., Huadong, G., Blaes, X., Ehrlich, D., Ferri, S., Gueguen, L., Halkia, M., Kauffmann, M., Kemper, T.,
Lu, L., Marin-Herrera, M. A., Ouzounis, G. K., Scavazzon, M., Soille, P., Syrris, V. and Zanchetta, L.: A Global Human Settlement Layer From Optical HR/VHR RS Data: Concept and First Results, IEEE J. Sel. Top. Appl. Earth Observations Remote Sensing, 6(5), 2102–2131, doi:10.1109/JSTARS.2013.2271445, 2013.

Pesaresi, M., Ehrlich, D., Ferri, S., Florczyk, A. J., Freire, S., Halkia, M., Julea, A., Kemper, T., Soille, P. and Syrris, V.: Operating procedure for the production of the Global Human Settlement Layer from Landsat data of the epochs 1975, 1990, 2000, and 2014, Jlint Research Center (JRC) Technical Reports, European Commission, Ispra (VA), Italy, doi:10.2788/253582, 2016.

Röthlisberger, V., Zischg, A. P., and Keiler, M.: A comparison of building value models for flood risk analysis, Nat. Hazards Earth Syst. Sci., 18, 2431–2453, doi:10.5194/nhess-18-2431-2018, 2018.

Sabesan, A., Abercrombie, K., Ganguly, A. R., Bhaduri, B., Bright, E. A. and Coleman, P. R.: Metrics for the
 comparative analysis of geospatial datasets with applications to high-resolution grid-based population data,
 GeoJournal, 69(1), 81–91, doi:10.1007/s10708-007-9103-y, 2007.

Seifert, I., Thieken, A. H., Merz, M., Borst, D. and Werner, U.: Estimation of industrial and commercial asset values for hazard risk assessment, Natural Hazards, 52(2), 453–479, doi:10.1007/s11069-009-9389-9, 2010.

Silva, V., Crowley, H., Varum, H. and Pinho, R.: Seismic risk assessment for mainland Portugal, Bulletin of Earthquake Engineering, 13(2), 429–457, doi:10.1007/s10518-014-9630-0, 2015.

Thieken, A. H., M U Ller, M., Kleist, L., Seifert, I., Borst, D. and Werner, U.: Regionalisation of asset values for risk analyses, Natural Hazards and Earth System Sciences, 6(2), 167–178, doi:10.5194/nhess-6-167-2006, 2006.

Tobler, W.: Smooth Pycnophylactic Interpolation for Geographic Regions, Journal of American Statistical Association, 74(367), 519–530, doi:10.1080/01621459.1979.10481647, 1979.

860 Wang, L. and Szirmai, A.: Capital inputs in the Chinese economy: Estimates for the total economy, industry and manufacturing, China Economic Review, 23(1), 81–104, doi:10.1016/j.chieco.2011.08.002, 2012.

Wang, Z., Yi, W. and Wang, M.: Statistical analysis of natural vibration period of high-rise and super high-rise concrete and steel-reinforced concrete mixed structures in China, Building Structure, 48(3), 85–89, doi:10.19701/j.jzjg.2018.03.016, 2018 (in Chinese).

Wu, J., Li, N. and SHI, P.: Benchmark wealth capital stock estimations across China's 344 prefectures: 1978 to 2012, China Economic Review, 31, 288–302, doi:10.1016/j.chieco.2014.10.008, 2014.

Wu, J., Li, Y., Li, N. and Shi, P.: Development of an asset value map for disaster risk assessment in China by spatial disaggregation using ancillary remote sensing data, Risk Analysis, 38(1), 17–30, doi:10.1111/risa.12806, 2018.

Wu, J., Ye, M., Wang, X. and Koks, E.: Building asset value mapping in support of flood risk assessments: A case study of Shanghai, China, Sustainability, 11(4), 971, doi:10.3390/su11040971 2019.

Wu, Z., Ma, T., Jiang, H. and Jiang, C.: Multi-scale seismic hazard and risk in the China mainland with implication for the preparedness, mitigation, and management of earthquake disasters: An overview, International Journal of Disaster Risk Reduction, 4, 21–33, doi:10.1016/j.ijdrr.2013.03.002, 2013.

875 Wünsch, A., Herrmann, U., Kreibich, H. and Thieken, A. H.: The Role of Disaggregation of Asset Values in Flood Loss Estimation: A Comparison of Different Modeling Approaches at the Mulde River, Germany, Environmental Management, 44(3), 524–541, doi:10.1007/s00267-009-9335-3, 2009.

Xiong, C.: Automated regional seismic damage assessment of buildings using an unmanned aerial vehicle and a convolutional neural network, Automation in Construction, 14, doi:10.1016/j.autcon.2019.102994, 2020.

880 Xu, J., An, J. and Nie, G.: A quick earthquake disaster loss assessment method supported by dasymetric data for emergency response in China, Natural Hazards and Earth System Sciences, 16, 885–899, doi:10.5194/nhess-16-885-2016, 2016a.

885

Xu, J., An, J. and Nie, G.: Development of Earthquake Emergency Disaster Information Pre-Evaluation Data Based on km Grid, Seismology and Geology, 38(3), 760–772, doi:10.3969/j.issn.0253-4967.2016.03.020, 2016b (in Chinese).

Yang, W. and Kohler, N.: Simulation of the evolution of the Chinese building and infrastructure stock, Building Research and Information, 36(1), 1–19, doi:10.1080/09613210701702883, 2008.

Yuan, Y.: Impact of intensity and loss assessment following the great Wenchuan Earthquake, Earthquake Engineering and Engineering Vibration, 7(3), 247–254, doi: 10.1007/s11803-008-0893-9, 2008.

Zhang, Y., Li, X., Wang, A., Bao, T. and Tian, S.: Density and diversity of OpenStreetMap road networks in China, Journal of Urban Management, 4(2), 135–146, doi:10.1016/j.jum.2015.10.001, 2015.

## Figures



**Figure 1**: County-level comparison of the population between the 2015 GHSL profile and the 2010-census records.



**Figure 2**: An example showing the assignment of urbanity attribute in the 2015 GHSL population grids for Baoshan district in Shanghai. The urban/township and township/rural population thresholds for Shanghai are 4936/km<sup>2</sup> and 2750/km<sup>2</sup>, respectively (see context in **Sect. 2.3** for more details). This figure is plotted by using the QGIS platform (<u>https://qgis.org/en/site/</u>) and the background satellite map is provided by Bing map service (© Microsoft).

## Modeling Process



Figure 3: Flowchart of the residential building stock modeling process adopted in this paper (see context in Sect.

905 **2.4** for more details).



**Figure 4**. An example illustrating the building stock model of Shanghai: (a) The distribution of modeled floor area (unit: m<sup>2</sup>) in each 1km×1km grid (note that the legend in Figure 4 is different from that in Figure 2); (b) A table

showing the modeled floor area of the 17 building subtypes, the total population "GRIDPOP" and the total modeled floor area "Sqm\_sum" in an example grid; (c) The 3D view of the modeled floor area and the 2015 GHSL population (the height of the cuboid in each grid is proportional to its population density). This figure is plotted by using the QGIS platform and the background satellite map is provided by the Bing map service (© Microsoft).



915

**Figure 5**: Prefecture-level comparison of the modeled residential building replacement value in this paper (unit: billion RMB in 2015 current price) with the net capital stock value estimated in Wu et al. (2014) by using the perpetual inventory method (unit: billion RMB in 2012 current price). Note: the net capital stock value estimated in Wu et al. (2014) includes the depreciated value of all exposed elements, namely the residential buildings, non-residential buildings, infrastructures, and equipment (see context in **Sect. 3.2.1** for more details).



**Figure 6**: Comparison of the sum of the annual fixed asset investment (unit: billion RMB) on residential buildings with investment on all types of buildings during 2004-2014 in each of the 31 provinces in mainland China. Detailed investment statistics are available from the online supplement.



**Figure 7**: County/prefecture-level comparison of the modeled residential building floor area (km<sup>2</sup>) in this paper with that recorded in the 2010-census for 31 provinces in mainland China (see context in **Sect. 3.2.2** for more details).



Intensity map of 2008.05.12 Wenchuan Ms8.0 earthquake

**Figure 8**. Macro-seismic intensity map of the 2008 Wenchuan Ms8.0 earthquake, modified after the base intensity map issued by China Earthquake Administration (CEA).



935 **Figure 9**. Distribution of seismic loss ratio (the ratio between repairment cost and replacement cost) of residential buildings in affected districts/counties of Sichuan province due to the 2008 Wenchuan Ms8.0 earthquake. Black

contours represent the extent of each intensity zone of the Wenchuan earthquake (see context in Sect. 3.2.3 for more details).

## Tables

940 **Table 1**: Main data sources used in this paper. Accesses to these data are provided in the Data/Code Availability section.

| Data source                                   | Data description                                                                                                                                                                                                                                                                                                      | Resolution                                                                                                                                      | Data location                                                         | Indicator in this paper | Notes                                                                                                                                                |
|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2010-census<br>Short Table                    | Overall population                                                                                                                                                                                                                                                                                                    | urban/township/rural<br>level for each of the<br>31 provinces in                                                                                | Table 1-1a, 1-<br>1b, 1-1c                                            | N/A                     | Based on surveys of 100% of the population in mainland China                                                                                         |
| 2010 -census<br>Long Table                    | Number of families<br>living in buildings<br>grouped by usage<br>(residential,<br>commercial, mixed)<br>Number of families<br>dwelled in buildings<br>grouped by storey<br>number (1, 2-3, 4-6, 7-<br>$9, \ge 10$ )<br>Number of families<br>dwelled in buildings<br>grouped by<br>structuretype<br>(steel/RC, mixed, | mainland China;<br>(the urbanity level in<br>the census is defined<br>according to the<br>administrative unit<br>of the surveyed<br>population) | Table 9-1a, 9-<br>1b, 9-1c                                            | N/A                     | Based on surveys of 10% of the<br>overall population in mainland<br>China                                                                            |
| 2010-census                                   | other, brick/wood)<br>Average population                                                                                                                                                                                                                                                                              |                                                                                                                                                 | Table 1-1a, 1-                                                        | F2 of Fig. 3            | Based on surveys of 100% of the                                                                                                                      |
| Short Table                                   | per family                                                                                                                                                                                                                                                                                                            |                                                                                                                                                 | 1b, 1-1c                                                              | 0.1                     | population in mainland China                                                                                                                         |
|                                               | Average residential<br>floor area (m <sup>2</sup> ) per<br>person                                                                                                                                                                                                                                                     |                                                                                                                                                 | Table 1-14a,<br>1-14b, 1-14c                                          | F4 of Fig. 3            |                                                                                                                                                      |
| 2015 GHSL<br>population<br>density<br>profile | The number of<br>populations in each<br>geo-coded grid                                                                                                                                                                                                                                                                | 1km×1km                                                                                                                                         | N/A                                                                   | λ                       | The original resolution is 250m×250m and was resampled to 1km×1km                                                                                    |
| Wu et al.<br>(2014)                           | The estimated net<br>wealth capital stock<br>value in 344<br>prefectures of<br>mainland China                                                                                                                                                                                                                         | Prefecture-level                                                                                                                                | N/A                                                                   | N/A                     | All exposed assets (residential and<br>non-residential buildings,<br>infrastructures, instruments, etc.)<br>and their depreciation are<br>considered |
| 2010-census<br>Short Table                    | The residential<br>building floor area<br>statistics in<br>administrative units                                                                                                                                                                                                                                       | Prefecture-level for<br>Hunan, Liaoning,<br>and Sichuan;<br>county-level for<br>other 28 provinces                                              | Table 1-1, 1-<br>14 in the<br>2010-census<br>book of each<br>province | N/A                     | Some data are downloaded from<br>the commercial website<br>(https://www.yearbookchina.com/)                                                          |

Note: The "2010-census" in "**Data source**" is the abbreviation of the "2010 Population Census of the People's Republic of China"; "**Data location**" refers to the serial number of the table in the original data source (see context in **Sect. 2.1** for more details).

| "Urba              | Province       | 2015       | Floor             | Aver.  | Numb    | er of famili | nilies Number of families grouped by storey class Number of families grouped by structure |         |        |        | Amp.   |        |          |         |         |        |        |
|--------------------|----------------|------------|-------------------|--------|---------|--------------|-------------------------------------------------------------------------------------------|---------|--------|--------|--------|--------|----------|---------|---------|--------|--------|
| nity"+             |                | GHSL       | area              | pop.   | grouped | by occupa    | ncy                                                                                       |         |        | •      |        |        |          | typ     | e       |        | factor |
| "0 <sup>"</sup> +" |                | population | per               | per    | living  | comme        | mixe                                                                                      | 1       | 2-3    | 4-6    | 7-9    | ≥10    | steel/RC | mixed   | brick/w | others |        |
| Prov_I             |                | in each    | capita            | family | -       | rcial        | d                                                                                         |         |        |        |        |        |          | masonry | ood     |        |        |
| D"                 |                | urbanity   | (m <sup>2</sup> ) |        |         |              |                                                                                           |         |        |        |        |        |          | -       |         |        |        |
|                    |                |            |                   |        |         |              |                                                                                           | urban   |        |        |        |        |          |         |         |        |        |
| 1001               | Anhui          | 12165295   | 29.42             | 2.71   | 331730  | 9035         | 287                                                                                       | 44093   | 82489  | 175486 | 20922  | 17775  | 135377   | 176462  | 26705   | 2221   | 1.32   |
| 1002               | Beijing        | 18598941   | 27.81             | 2.40   | 517975  | 6482         | 988                                                                                       | 127740  | 33290  | 193270 | 21919  | 148238 | 226367   | 212873  | 83192   | 2025   | 1.47   |
| 1003               | Chongqing      | 8402588    | 29.77             | 2.65   | 258417  | 3956         | 247                                                                                       | 17185   | 39448  | 39087  | 85383  | 81270  | 131656   | 112494  | 13433   | 4790   | 1.21   |
| 1004               | Fujian         | 12702780   | 30.29             | 2.70   | 360721  | 13488        | 736                                                                                       | 30557   | 97680  | 135725 | 79915  | 30332  | 213350   | 124702  | 23948   | 12209  | 1.25   |
| 1005               | Gansu          | 5296224    | 26.69             | 2.68   | 160717  | 3134         | 107                                                                                       | 24489   | 21076  | 75051  | 34161  | 9074   | 78731    | 66665   | 15057   | 3398   | 1.21   |
| 1006               | Guangdong      | 56529958   | 26.37             | 2.63   | 1466895 | 34218        | 513                                                                                       | 152601  | 299326 | 453172 | 412315 | 183699 | 748196   | 663772  | 76682   | 12463  | 1.43   |
| 1007               | Guangxi        | 8484803    | 30.71             | 2.93   | 238044  | 5912         | 264                                                                                       | 26305   | 53876  | 99335  | 52485  | 11955  | 86601    | 138730  | 16271   | 2354   | 1.19   |
| 1008               | Guizhou        | 5475276    | 25.94             | 2.82   | 157713  | 5141         | 19                                                                                        | 17373   | 38055  | 50766  | 49256  | 7404   | 78055    | 75834   | 7703    | 1262   | 1.19   |
| 1009               | Hainan         | 2334559    | 25.42             | 3.17   | 56383   | 1602         | 68                                                                                        | 9674    | 14288  | 13787  | 13124  | 7112   | 41510    | 10814   | 4948    | 713    | 1.27   |
| 1010               | Hebei          | 14837665   | 30.10             | 2.95   | 419978  | 3950         | 96                                                                                        | 100741  | 42944  | 230919 | 29889  | 19435  | 155581   | 211716  | 54745   | 1886   | 1.19   |
| 1011               | Heilongjiang   | 14368585   | 23.72             | 2.58   | 455996  | 6911         | 418                                                                                       | 122051  | 20020  | 130862 | 173283 | 16691  | 163427   | 188650  | 104208  | 6622   | 1.20   |
| 1012               | Henan          | 18535815   | 34.02             | 3.05   | 521036  | 7612         | 215                                                                                       | 79535   | 122569 | 244091 | 64920  | 17533  | 190648   | 307902  | 28268   | 1830   | 1.15   |
| 1013               | Hubei          | 17545544   | 33.22             | 2.82   | 502439  | 12733        | 349                                                                                       | 40937   | 132838 | 179474 | 126270 | 35653  | 180316   | 298109  | 33900   | 2847   | 1.21   |
| 1014               | Hunan          | 12920714   | 33.45             | 2.89   | 358447  | 9813         | 501                                                                                       | 32935   | 92165  | 160007 | 62887  | 20266  | 132713   | 201615  | 31404   | 2528   | 1.21   |
| 1015               | Jiangsu        | 30871919   | 33.86             | 2.81   | 876264  | 14961        | 802                                                                                       | 129293  | 224580 | 412115 | 65052  | 60185  | 325288   | 469388  | 92721   | 3828   | 1.23   |
| 1016               | Jiangxi        | 7845049    | 29.76             | 3.19   | 201690  | 3594         | 201                                                                                       | 17052   | 46727  | 85663  | 48457  | 7385   | 111658   | 76679   | 15396   | 1551   | 1.20   |
| 1017               | Jilin          | 10272119   | 25.21             | 2.62   | 329782  | 4910         | 1777                                                                                      | 59861   | 13029  | 149906 | 96067  | 15829  | 175788   | 108325  | 48852   | 1727   | 1.17   |
| 1018               | Liaoning       | 22179450   | 25.76             | 2.57   | 768884  | 7122         | 843                                                                                       | 111439  | 28046  | 366106 | 211530 | 58885  | 321935   | 381031  | 71386   | 1654   | 1.11   |
| 1019               | Inner Mongolia | 8313523    | 24.86             | 2.67   | 251738  | 6951         | 631                                                                                       | 84432   | 24977  | 133932 | 11690  | 3658   | 105902   | 87092   | 61924   | 3771   | 1.20   |
| 1020               | Ningxia        | 2222156    | 28.38             | 2.71   | 64336   | 1829         | 29                                                                                        | 10922   | 7958   | 44770  | 1313   | 1202   | 24606    | 34483   | 6352    | 724    | 1.24   |
| 1021               | Qinghai        | 1478166    | 27.77             | 2.74   | 41342   | 1229         | 62                                                                                        | 4877    | 8035   | 20737  | 6292   | 2630   | 13527    | 26113   | 2415    | 516    | 1.27   |
| 1022               | Shaanxi        | 9028318    | 28.81             | 2.70   | 269044  | 4820         | 362                                                                                       | 33723   | 56478  | 122687 | 37356  | 23620  | 89287    | 173753  | 8694    | 2130   | 1.22   |
| 1023               | Shandong       | 28926001   | 32.41             | 2.80   | 855282  | 15616        | 242                                                                                       | 252471  | 88326  | 432226 | 67205  | 30670  | 348873   | 356038  | 161295  | 4692   | 1.19   |
| 1024               | Shanghai       | 20564236   | 25.11             | 2.52   | 604654  | 9991         | 928                                                                                       | 60506   | 116799 | 304794 | 27780  | 104766 | 268377   | 249438  | 93734   | 3096   | 1.33   |
| 1025               | Shanxi         | 9838476    | 25.77             | 2.88   | 282847  | 4319         | 87                                                                                        | 53815   | 47879  | 157087 | 18683  | 9702   | 90187    | 163209  | 29124   | 4646   | 1.19   |
| 1026               | Sichuan        | 15739421   | 30.70             | 2.67   | 499024  | 9628         | 630                                                                                       | 47158   | 79975  | 198299 | 136824 | 46396  | 218827   | 247875  | 34088   | 7862   | 1.16   |
| 1027               | Tianjin        | 10012784   | 25.51             | 2.65   | 237060  | 2606         | 167                                                                                       | 34902   | 12083  | 143755 | 28570  | 20356  | 58333    | 156521  | 23467   | 1345   | 1.58   |
| 1028               | Xinjiang       | 6579942    | 28.00             | 2.56   | 201621  | 2686         | 84                                                                                        | 32261   | 24343  | 129144 | 12124  | 6435   | 88699    | 94628   | 18420   | 2560   | 1.26   |
| 1029               | Tibet          | 286242     | 31.81             | 2.45   | 8394    | 973          | 7                                                                                         | 2930    | 4798   | 1580   | 47     | 12     | 5449     | 2227    | 1020    | 671    | 1.25   |
| 1030               | Yunnan         | 6548268    | 31.27             | 2.59   | 200602  | 7122         | 172                                                                                       | 21262   | 45555  | 93027  | 36704  | 11176  | 102015   | 85386   | 13317   | 7006   | 1.22   |
| 1031               | Zhejiang       | 21735537   | 30.97             | 2.54   | 675858  | 19305        | 774                                                                                       | 80859   | 193447 | 332899 | 50666  | 37292  | 220048   | 393843  | 74559   | 6713   | 1.23   |
|                    |                |            |                   |        |         |              |                                                                                           | townshi | р      |        |        |        |          |         |         |        |        |
| 2001               | Anhui          | 13378847   | 32.20             | 2.95   | 355306  | 19130        | 477                                                                                       | 144219  | 160370 | 67744  | 1426   | 677    | 95625    | 182264  | 91921   | 4626   | 1.21   |
| 2002               | Beijing        | 1548170    | 33.20             | 2.52   | 41959   | 1129         | 143                                                                                       | 21808   | 2812   | 16414  | 710    | 1344   | 6224     | 20550   | 15964   | 350    | 1.42   |
| 2003               | Chongqing      | 6401393    | 34.91             | 2.73   | 187287  | 7816         | 357                                                                                       | 35957   | 71385  | 40448  | 41156  | 6157   | 46425    | 112018  | 23805   | 12855  | 1.20   |
| 2004               | Fujian         | 8618108    | 37.67             | 3.09   | 224647  | 11851        | 318                                                                                       | 44154   | 105240 | 65529  | 18822  | 2753   | 100650   | 83984   | 28551   | 23313  | 1.18   |
| 2005               | Gansu          | 3941847    | 25.92             | 3.17   | 101071  | 5160         | 124                                                                                       | 58128   | 13450  | 30226  | 4198   | 229    | 31721    | 30839   | 34944   | 8727   | 1.17   |

**Table 2**: In each urbanity, the population sum of the 2015 GHSL profile and the residential building-related statistics extracted from the 2010-census records.

| 2007         Guanga         1021975         84.43         33.4         26448         11560         8907         1102         549         53729         175149         4200         53720         175149         4200         53720         175149         4200         53720         175149         4200         53720         175149         4200         53720         175149         4200         5370         17519         4200         53720         175149         4200         5370         17519         4200         5370         17519         12255         14449         910         1.22           2010         Helongiung         7328148         2267         2.63         338430         422151         13113         5560         2.676         91         91066         24073         14214         1411         1701         14114         141117         1311         1313         50051         2112         50051         2112         50051         2112         50051         2112         50012         1181         50051         2112         50051         2112         50012         1181         50105         2112         14012         1181         50105         2112         1181         5010         5010         5016 </th <th>2006</th> <th>Guangdong</th> <th>17952939</th> <th>26.41</th> <th>3.52</th> <th>357650</th> <th>15136</th> <th>348</th> <th>119634</th> <th>161452</th> <th>60743</th> <th>27235</th> <th>3722</th> <th>124661</th> <th>175520</th> <th>63890</th> <th>8715</th> <th>1.37</th> | 2006 | Guangdong      | 17952939 | 26.41 | 3.52 | 357650  | 15136 | 348  | 119634  | 161452 | 60743  | 27235 | 3722 | 124661 | 175520 | 63890  | 8715   | 1.37 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------|----------|-------|------|---------|-------|------|---------|--------|--------|-------|------|--------|--------|--------|--------|------|
| 2008         Gaizbau         616428         82.39         3.12         15970         1522         41         6929         60006         3322         1178         4400         49012         1235         1444         910         122           2010         Hebein         17725442         3074         3.40         45034         1222         203         338450         45323         705         344         6074         99952         16775         20431         5012         112           2010         Hebein         18087162         32.04         3.00         43993         4107         344         24151         15141         5562         5821         1701         5825         5886         6074         99929         24037         14124         4002         111           2013         Hubei         1991165         3.10         41814         1666         13964         80909         1250         22161         01014         14041         9662         45135         5400         1418         14064         14041         9662         45135         5406         1439         14091         1418         14064         14091         1418         1406         14149         14429         1418 <td>2007</td> <td>Guangxi</td> <td>10219075</td> <td>34.43</td> <td>3.34</td> <td>264485</td> <td>12263</td> <td>480</td> <td>94666</td> <td>111560</td> <td>58971</td> <td>11002</td> <td>549</td> <td>53729</td> <td>175149</td> <td>42500</td> <td>5370</td> <td>1.10</td>                                      | 2007 | Guangxi        | 10219075 | 34.43 | 3.34 | 264485  | 12263 | 480  | 94666   | 111560 | 58971  | 11002 | 549  | 53729  | 175149 | 42500  | 5370   | 1.10 |
| 2009         Hainan         1988812         23.78         3.42         45035         2592         51         26880         15488         607         314         1902         12256         14449         910         1.22           2011         Hellongjiang         7328148         22.67         2.63         230348         6741         521         2668         676159         15051         24531         9010         1.12           2012         Helman         1897162         32.04         3.060         45323         73026         6848         6745         91066         20473         14219         4012         1.17           2014         Human         1937163         3.18         4310         10641         21646         90105         1202         2240         90148         20493         14256         1205         110           2016         Jamgu         73784         3.53         3.518         1271         13866         8003         1702         112         14401         4502         41256         1026         1120         1230         5108         90451         1028.1         117           2016         Luming         52037         6433         2.24         1406                                                                                                                                                                                                                                                                                                                                | 2008 | Guizhou        | 6164328  | 28.39 | 3.12 | 159970  | 12522 | 41   | 65929   | 60006  | 34332  | 11785 | 440  | 44016  | 89287  | 28725  | 10464  | 1.15 |
| 2010         Hebel         17725642         30.74         30.74         2272         203         338450         4523         7026         5484         6074         90052         16571         20453         10411         11.7           2011         Heinan         18087162         32.04         3.60         439993         14307         304         242151         15415         3064         26686         75159         15091         47122         6000         1.18           2014         Human         19931187         3.6.74         3.18         413106         16084         1397         107304         12262         22424         180318         22168         92116         8342         1.16           2016         Jiangau         1779764         3.93.0         493181         10076         125         57795         18346         80093         17102         1121         144491         98662         45425         5999         1.24           2017         Jiangau         1797974         2.043         1274         1272         6663         1452         2906         1232         54567         53529         10848         1285         1.16           2010         Mingaia         101                                                                                                                                                                                                                                                                                                                       | 2009 | Hainan         | 1988812  | 23.78 | 3.42 | 45035   | 2592  | 51   | 26889   | 15458  | 4359   | 607   | 314  | 19912  | 12356  | 14449  | 910    | 1.22 |
| 9010         Helman         B80874         22.07         2.6.3         23.038         77.4         52.6         152211         157.11         53.069         207.6         30.1         91096         20.0737         141.01         11.11           2013         Huban         1020017         38.10         3.12         2.079514         13.18         43.16         10.11         11.11         20.075         31.0         10.06         7.159         15.0931         47125         60.00         1.16           2014         Human         15.97184         39.33         3.00         493.818         10.021         12.046         90.03         12.02         22.49         99.44         26.492         52.999         12.02           2016         Janaga         17.54422         3.73         3.54         2.817         17.07         10.10         12.44131         14.06         10.04         11.65         519.3         70.05         512.08         53.042         90.948         12.85         10.68         10.03         10.01         12.55         15.02         13.00         12.02         2.038         10.01         12.02         12.02         12.02         12.02         12.02         12.02         12.02         12.02                                                                                                                                                                                                                                                                                           | 2010 | Hebei          | 17725642 | 30.74 | 3.40 | 454034  | 12232 | 203  | 338450  | 45232  | 73026  | 3484  | 6074 | 90952  | 165751 | 204531 | 5032   | 1.12 |
| D101         Hema         18087162         32.04         3.00         4.3399         14307         30.4         242151         15.118         53669         26.76         391         91696         24037         11.121         4012         11.125           2014         Hunan         15931187         56.74         3.18         413160         10684         1397         107304         2166         2209         2249         2449         91486         264939         14.255         6326         1.15           2016         Jiangua         17379864         35.3         3.04         43818         1001         1016         3702         2109         2144         91686         244325         5209         1.14           2017         Jilin         444825         52.7         178666         5168         94         10064         1165         5123         5200         51280         53332         99837         1168         1.18           2010         Ningxia         1014199         24.82         3.44         2533         1471         1943         3047         5129         1.21         1.249         1.18         1.30         1.312         1.2423         1.131         1.312         1.312                                                                                                                                                                                                                                                                                                                     | 2011 | Heilongjiang   | 7328148  | 22.67 | 2.63 | 230438  | 7764  | 526  | 152211  | 13711  | 54825  | 16851 | 604  | 26869  | 70838  | 130084 | 10411  | 1.17 |
| 0104         Huban         10290017         38.10         31.81         31.810         103.14         31.8         651.51         130.00         902.00         181.52         80.00         751.59         150.90         127.16         32.21         81.21         82.216.8         92.2116         83.22         11.6           2016         Jiangsa         17.257864         39.53         3.54         23.831         10706         11.25         57750         13.846         80.09         17102         11.21         144.91         966.2         42.425         99.99         1.20           2017         Jilian         44.84285         22.55         1.270         173.94         710         19.6         903.31         10.16         570.25         512.00         512.08         50.098         10.89         1.285         1.16           2010         Imark Mongola         591916.5         2.33         2.7.7         168663         561.9         41.00         157.6         53.27         163.28         170.6         14.19         1.128         1.290         1.33         1.285         1.30         1.285         1.30         1.32         1.31         1.41         1.31.2         1.210         1.288         3.00         1.                                                                                                                                                                                                                                                                                      | 2012 | Henan          | 18087162 | 32.04 | 3.60 | 435993  | 14307 | 304  | 242151  | 151413 | 53669  | 2676  | 391  | 91696  | 240373 | 114219 | 4012   | 1.11 |
| 2014         Huan         1931187         36.74         3.18         413160         1064         19304         21464         90.05         1226         2249         9914         26193         914526         3226         1.15           2016         Jiangsu         1757965         3380         14352         1330         1066         3702         249         9914         26493         45673         3457         37374         5109         13466         10004         1150         1702         1111         144491         98662         45425         5399         1.10           2017         Jilin         444285         223         1275         16366         5618         94         100064         1565         5123         229         1500         51208         69918         1088         1.088           2019         Mingia         1041959         24.82         2.14         2333         1397         58         16542         2307         308         1632         1212         1238         1419         1.13           2021         Oinghai         1237794         2.14         30.05         121871         117         14134         5361         1033         2175         530                                                                                                                                                                                                                                                                                                                               | 2013 | Hubei          | 10290017 | 38.10 | 3.12 | 267951  | 11284 | 318  | 65151   | 136106 | 59020  | 18152 | 806  | 75159  | 150951 | 47125  | 6000   | 1.18 |
| 2015         Jiangai         12597864         39.53         3.00         493818         1002         14266         22478         86.79         129         2249         91.48         264939         14252         53.26         1.15           2016         Jiangai         12543925         33.57         3.54         28.071         1070         1101         14444         98662         44425         53.99         1.14           2018         Liconing         55.040437         26.2         12.6663         5618         44         1565         51.92         12.9         143.195         53.32         90983         12852         1.16           2020         Jingai         1237394         2.142         3.06         2.873         1377         58         16542         2.906         7.88         50         8.842         9814         8282         2.916         1.17           2021         Shandadi         1963371         3.2.14         3.03         5.555.39         1673         1.17         41234         5361         10235         2.955         10549         177664         2.908         3.017         1.312           2023         Shandai         196831         3.243         3.244                                                                                                                                                                                                                                                                                                                            | 2014 | Hunan          | 15931187 | 36.74 | 3.18 | 413160  | 16084 | 1397 | 107304  | 216464 | 90305  | 12926 | 2245 | 103618 | 225168 | 92116  | 8342   | 1.16 |
| 2016         Jiang         1254392         3.5.7         3.5.4         28.781         10.796         11.25         57795         13.8466         80093         17102         11.14         14.4419         98662         45.452         5099         1.1.4           2017         Jian         444285         52.0         2.7.0         16863         50.18         94         10004         1282         1920         51280         52098         69815         1888         1.08           2019         Incremongoia         5201915         2.4.8         2.7.7         16328         1.2451         14505         51923         9229         15106         1.242         191         41195         5323         20981         1.282         1.166         1.242           2021         Olinghai         123734         2.14         3.05         2.18960         1.0349         54427         6333         2.12         6128         1.109         3.017         1.24         1.2434         5381         1.0103         2.9935         1.05549         1.764         2.74         1.031         1.24245         5.299         1.10         1.13         1.14         1.2419         1.161           2023         Shanang         3.098514                                                                                                                                                                                                                                                                                                      | 2015 | Jiangsu        | 17597864 | 39.53 | 3.00 | 493818  | 16021 | 436  | 194665  | 224247 | 86379  | 2299  | 2249 | 99148  | 264939 | 142526 | 3226   | 1.15 |
| 2017         Jian         444428         2.2.5         2.7.0         13947         4710         1966         90313         7010         7025         6460         728         34567         30467         7374         5399         1.14           2018         Linoming         559103         5203         720         1500         5128         5208         6088         1088         108           2020         Ningxia         101495         2428         1412         1562         2500         7388         176         54         6140         770         128         1166         1.24           2021         Oinghai         123734         2149         303         25859         1677         171         41235         4427         638         1282         10589         10764         21909         1.31           2023         Shandia         391899         30.25         2.42         2088         14124         4202         6439         4471         6418         1.21         1.31           2024         Shandia         160372         2.94         2.90         2.68         6         2.978         1.94         44404         563         4444         4564         1.44 <td>2016</td> <td>Jiangxi</td> <td>12543925</td> <td>33.57</td> <td>3.54</td> <td>283781</td> <td>10796</td> <td>1125</td> <td>57795</td> <td>138466</td> <td>80093</td> <td>17102</td> <td>1121</td> <td>144491</td> <td>98662</td> <td>45425</td> <td>5999</td> <td>1.20</td>                                                             | 2016 | Jiangxi        | 12543925 | 33.57 | 3.54 | 283781  | 10796 | 1125 | 57795   | 138466 | 80093  | 17102 | 1121 | 144491 | 98662  | 45425  | 5999   | 1.20 |
| 2019         Linoning         5200437         26.23         2.7.5         16866         5618         94         10004         11565         5123         92.29         1500         51208         52008         69815         10188         10188           2019         Imme Mongelia         5919165         2.438         1.71723         9307         122         124351         14506         14832         1419         43195         9332         9908         1252         1.166         1.24           2021         Qinghai         123734         2.14         3.05         2.15509         1.0381         6376         5427         6133         2.172         61288         1.10764         2.7108         1.101         1.132           2023         Shandpal         393189         30.25         2.48         100049         0.64717         2.423         4.424         4.206         2.29         4.013         5.5953         1.013         1.131         1.4124         4.206         2.29         8.08         4.1490         1.130         1.419         1.161         1.202         1.130         1.414         4.202         1.203         1.419         1.161         1.204         1.101         1.204         1.101         1                                                                                                                                                                                                                                                                                              | 2017 | Jilin          | 4484285  | 22.51 | 2.70 | 139477  | 4710  | 1966 | 90313   | 10161  | 37025  | 6460  | 228  | 34567  | 30467  | 73754  | 5399   | 1.14 |
| 2019         Inner Mongolia         5919165         24.38         2.74         17275         9637         1622         1248         1442         1275         176         54         6140         7100         7105         54         6140         7100         7105         54         6140         7105         54         6140         7105         54         6140         7105         543         7125         710         7105         710         7105         7105         7105         7105         7105         7105         7105         7105         7105         7105         7105         7105         7105         7105         7105         7105         7105         7105         7105         7105         7105         7105         7105         7105         7105         7105         7105         7105         7105         7105         7105         7105         7105         7105         7105         7105         7105         7105         7105         7105         7105         7105         7105         7105         7105         7105         7105         7105         7105         7105         7105         7105         7105         7105         7105         7105         7105         7105 <t< td=""><td>2018</td><td>Liaoning</td><td>5200437</td><td>26.23</td><td>2.75</td><td>168663</td><td>5618</td><td>94</td><td>100064</td><td>11565</td><td>51923</td><td>9229</td><td>1500</td><td>51280</td><td>52098</td><td>69815</td><td>1088</td><td>1.08</td></t<>                                        | 2018 | Liaoning       | 5200437  | 26.23 | 2.75 | 168663  | 5618  | 94   | 100064  | 11565  | 51923  | 9229  | 1500 | 51280  | 52098  | 69815  | 1088   | 1.08 |
| 2020         Ningxia         104199         24.82         31.4         22.73         1397         58         106         176         54         61.40         7100         122.55         11.66         1.24           2021         Qinghai         1237394         23.08         30.05         28.88         30.05         21.90         12.02           2023         Shanding         1653371         32.14         30.35         55553         107.71         412.345         53.81         10.255         955         105.94         17.064         24.908         14.19           2025         Shanding         1693371         32.44         20.85         14.454         42.626         29.29         81.9         49.900         87.19         46.41.84         14.164         14.164         24.903         81.94         14.164         14.164         14.164         14.164         14.164         14.164         14.164         14.164         14.164         14.164         14.164         14.164         14.164         14.164         14.164         14.164         14.164         14.164         14.164         14.164         14.164         14.164         14.164         14.164         14.164         14.164         14.164         14.164                                                                                                                                                                                                                                                                                       | 2019 | Inner Mongolia | 5919165  | 24.38 | 2.74 | 172725  | 9637  | 1622 | 124351  | 14566  | 41832  | 1422  | 191  | 43195  | 35332  | 90983  | 12852  | 1.17 |
| Qinghi         123734         21.94         3.06         28364         1806         1641         9622         386         30         8482         9814         8928         2946         1.27           2022         Shandong         19633371         32.14         3.03         55559         1673         117         412345         53861         102936         2235         935         105549         17764         274908         14191         1.13           2024         Shandi         3098814         2543         3.24         20887         7124         2926         53861         102936         2199         9146         6418         12419         1.16           2025         Shanxi         8098814         2543         3.24         20887         7124         2926         1695         1727         559         1085         5896         13066         115         1.14           2026         Sighting         5353837         2.604         2.75         9990         13377         49076         5598         540         8723         7318         5444         47628         1.16           2029         Tibet         444301         3326         2.66         435571         1709 </td <td>2020</td> <td>Ningxia</td> <td>1041959</td> <td>24.82</td> <td>3.14</td> <td>25273</td> <td>1397</td> <td>58</td> <td>16542</td> <td>2590</td> <td>7308</td> <td>176</td> <td>54</td> <td>6140</td> <td>7109</td> <td>12255</td> <td>1166</td> <td>1.24</td>                                                            | 2020 | Ningxia        | 1041959  | 24.82 | 3.14 | 25273   | 1397  | 58   | 16542   | 2590   | 7308   | 176   | 54   | 6140   | 7109   | 12255  | 1166   | 1.24 |
| 2022         Shandong         1963371         218909         10349         295         10341         63776         53427         6133         2172         61288         115983         30075         21972         120           2023         Shandpai         3391859         30.25         2.45         100049         306         715         24233         44272         29262         638         4710         35992         46750         19423         49614         14191         1.13           2026         Shanaxi         8098814         23.43         3.24         208837         7124         292         12313         41454         42626         229         819         49930         80743         380423         380423         380423         380423         380423         380423         380423         380423         380423         380423         380423         380423         380421         1.11         1.12         1.20         711         1.31         1.44         42626         229         1.08         5806         1.006         18207         1.32         1.33         1.41         1.32         1.31         1.21         1.13         1.22         1.21         1.33         1.277         5.533                                                                                                                                                                                                                                                                                                        | 2021 | Qinghai        | 1237394  | 21.94 | 3.06 | 28364   | 1806  | 1694 | 15491   | 4641   | 9622   | 386   | 30   | 8482   | 9814   | 8928   | 2946   | 1.27 |
| 2023         Shanqbal         1963371         32.14         30.3         55553         10.73         117         41245         53861         10236         2235         935         105549         107664         27408         11419         1.13           2024         Shangha         3391859         0.025         3.34         20837         7124         292         12813         41454         4262         2929         819         49900         87194         66418         1249         1.16           2026         Sichuan         1624130         3.4.47         2.80         494678         2442         2048         13459         170345         141458         64579         9146         144800         25963         80423         34367         1.11           2027         Tingin         1050727         2.946         2.66         688         6         2078         1058         39         7         5563         2.406         2.81         1.44           2028         Tinanji         10352         2.269         10351         1334         69         5712         5533         108         39         2.76         8.4957         1.32           2029         Tinanji         14433                                                                                                                                                                                                                                                                                                                                | 2022 | Shaanxi        | 8394596  | 28.85 | 3.05 | 218969  | 10349 | 295  | 103810  | 63776  | 53427  | 6133  | 2172 | 61288  | 115983 | 30075  | 21972  | 1.20 |
| 2024         Shanghai         331859         30.25         2.4.5         100049         3066         715         24233         44127         29262         6.58         4710         3592         46750         19423         990         1.33           2025         Shanxi         8098814         25.43         3.24         208837         7124         2921         18138         41454         46579         9146         144800         25933         80423         34367         1.11           2027         Tianjin         1605727         2.64         2.98         36626         688         60         5728         7085         1085         5896         13066         18217         135         1.44           2028         Xinjiang         355387         2.049         2.88         50         5728         7087         32598         301         187         331109         21827         33456         946         1.26           2030         Yuman         9994213         38.53         2.66         435571         17019         321         78393         21594         14381         9590         4722         88524         262572         9204         9209         1.16           2030                                                                                                                                                                                                                                                                                                                                | 2023 | Shandong       | 19633371 | 32.14 | 3.03 | 555539  | 16773 | 117  | 412345  | 53861  | 102936 | 2235  | 935  | 105549 | 177664 | 274908 | 14191  | 1.13 |
| 2025         Shanxi         809814         24.3         3.24         208837         7124         292         12133         41454         42626         2929         819         449030         87194         66418         12419         1.16           2026         Sichuan         16241300         34.47         2.80         494678         24545         2048         133695         170345         141458         64579         9146         144800         225633         80423         34367         1.11           2027         Tingin         1655772         29.64         2.75         95000         2.368         50         5728         7087         3259         301         187         31109         21827         34576         9946         1.32           2029         Tibet         444301         3.52         2.89         13085         3.40         9579         1727         5533         2400         2901         1.16           2030         Yunnan         994242         30.04         3.29         2.49892         13077         43076         5538         540         85728         7318         58444         47628         1.142           2030         Maini         33860554                                                                                                                                                                                                                                                                                                                                  | 2024 | Shanghai       | 3391859  | 30.25 | 2.45 | 100049  | 3066  | 715  | 24233   | 44272  | 29262  | 638   | 4710 | 35992  | 46750  | 19423  | 950    | 1.33 |
| 2026         Sichuan         16241360         34.47         2.80         494678         24.45         20.48         133695         170345         141488         64579         9146         144800         259633         80423         34367         1.11           2027         Tinajin         1605727         2.9.4         2.9.8         36626         688         6         2078         1227         559         1085         5896         13066         18217         1.35         1.44           2029         Tibet         444301         335.2         2.89         10835         1334         69         5712         5333         1058         39         2.7         5633         2406         2961         1169         1.2           2031         Zhejang         14035213         38.53         2.66         435571         17019         321         78333         15994         14380         9590         4722         8854         26257         9214         1264         44029         39437         22662         1.0           3001         Anhui         3386055         35.39         2.76         85494         2139         89         81788         2698         2837         93         177 </td <td>2025</td> <td>Shanxi</td> <td>8098814</td> <td>25.43</td> <td>3.24</td> <td>208837</td> <td>7124</td> <td>292</td> <td>128133</td> <td>41454</td> <td>42626</td> <td>2929</td> <td>819</td> <td>49930</td> <td>87194</td> <td>66418</td> <td>12419</td> <td>1.16</td>                                            | 2025 | Shanxi         | 8098814  | 25.43 | 3.24 | 208837  | 7124  | 292  | 128133  | 41454  | 42626  | 2929  | 819  | 49930  | 87194  | 66418  | 12419  | 1.16 |
| 2027         Tianjin         1605727         29,64         29,8         36626         688         6         20978         1965         12727         559         1085         5896         13066         18217         135         144           2028         Tibtet         444430         33.52         2.89         10835         1334         69         5712         5333         1058         30         187         31109         21827         34576         9940         1.26           2030         Yunnan         9949242         30.04         3.29         249892         15089         538         9590         11377         49076         5598         540         85728         73181         58444         47628         1.14           201         Anhui         3380554         34.04         3.12         972114         1207         1032         594442         38493         5062         259         113         12246         63298         1798         1.36           3002         Beijing         3380554         34.04         2.76         85494         2138         81988         21938         6337         3076         383         34275         160848         164592         1.0217 <td>2026</td> <td>Sichuan</td> <td>16241360</td> <td>34.47</td> <td>2.80</td> <td>494678</td> <td>24545</td> <td>2048</td> <td>133695</td> <td>170345</td> <td>141458</td> <td>64579</td> <td>9146</td> <td>144800</td> <td>259633</td> <td>80423</td> <td>34367</td> <td>1.11</td>                                        | 2026 | Sichuan        | 16241360 | 34.47 | 2.80 | 494678  | 24545 | 2048 | 133695  | 170345 | 141458 | 64579 | 9146 | 144800 | 259633 | 80423  | 34367  | 1.11 |
| 2028         Xinjiang         3536387         2.6.04         2.75         95090         2.368         50         57285         7087         32598         301         187         31109         21827         34576         9946         1.32           2029         Tibet         444301         3.352         2.89         10835         134         69         5712         5333         1058         39         27         5633         2406         2961         1169         1.26           2030         Yunnan         9949242         30.04         3.29         249892         15089         538         215944         143891         950         4722         88524         262572         9204         9290         1.16           2001         Anhui         33860554         34.04         3.12         972114         12697         1032         594442         384935         5062         259         113         122416         440296         399437         22662         1.10           3002         Beijing         3280036         35.39         2.76         85494         813         151         12099         30766         383         34275         160849         14682         10217         1                                                                                                                                                                                                                                                                                                                        | 2027 | Tianjin        | 1605727  | 29.64 | 2.98 | 36626   | 688   | 6    | 20978   | 1965   | 12727  | 559   | 1085 | 5896   | 13066  | 18217  | 135    | 1.44 |
| 2029         Tibet         444301         33.52         2.89         10835         1334         69         5712         5333         1058         39         27         5633         2406         2961         1169         1.26           2030         Yunnan         9949242         30.04         3.29         249892         15089         538         95900         113777         49076         5598         540         85728         73181         58444         47628         1.14           2031         Jaks5213         38.53         2.66         7371         78393         215994         143891         9500         4722         88524         262572         92204         1.16           3002         Beijing         33860554         34.04         3.12         97214         12697         9493         5062         259         113         12416         440296         399437         22662         1.01           3002         Beijing         13078118         42.04         2.72         436237         8496         810         215548         219389         6337         3076         383         34275         160849         14682         102171         1.08           3005 <t< td=""><td>2028</td><td>Xinjiang</td><td>3536387</td><td>26.04</td><td>2.75</td><td>95090</td><td>2368</td><td>50</td><td>57285</td><td>7087</td><td>32598</td><td>301</td><td>187</td><td>31109</td><td>21827</td><td>34576</td><td>9946</td><td>1.32</td></t<>                                                                   | 2028 | Xinjiang       | 3536387  | 26.04 | 2.75 | 95090   | 2368  | 50   | 57285   | 7087   | 32598  | 301   | 187  | 31109  | 21827  | 34576  | 9946   | 1.32 |
| 2030         Yunnan         9949242         30.04         3.29         249892         1508         538         95990         113777         49076         5598         540         85728         73181         58444         47628         1.14           2031         Zhogiang         14/33213         38.53         2.66         43571         17019         321         73833         21594         14389         9590         4722         88524         26272         9204         1.16           3001         Anhui         33860554         34.04         3.12         972114         12697         1032         594442         384935         5062         259         113         122416         440296         399437         22662         1.10           3003         Chongqing         1307818         42.04         2.72         8496         810         21548         21939         6337         3037         3633         34275         160849         14692         1.020         1.018           3004         Fujian         16018762         41.24         3.16         44794         13851         615         152099         27966         27946         1860         190         105558         152003 <td< td=""><td>2029</td><td>Tibet</td><td>444301</td><td>33.52</td><td>2.89</td><td>10835</td><td>1334</td><td>69</td><td>5712</td><td>5333</td><td>1058</td><td>39</td><td>27</td><td>5633</td><td>2406</td><td>2961</td><td>1169</td><td>1.26</td></td<>                                                            | 2029 | Tibet          | 444301   | 33.52 | 2.89 | 10835   | 1334  | 69   | 5712    | 5333   | 1058   | 39    | 27   | 5633   | 2406   | 2961   | 1169   | 1.26 |
| 2031         Zhejiang         14035213         38.53         2.66         435571         17019         321         78393         215994         143891         9590         4722         88524         262572         92204         9290         1.16           ururu           ururu           3000         Anhui         33860554         34.04         3.12         972114         12697         1032         59442         38495         5062         259         113         122416         440296         399437         22662         1.10           3002         Beijing         3289036         35.39         2.76         85494         2139         89         81788         2698         2877         93         177         2991         1956         63298         1798         1.36           3003         Chongqing         13078118         42.04         2.72         436237         8496         810         21548         19189         481         2338         34275         160849         146892         102171         1.08           3005         Gansu         1661585         21.94         3.84         44734         28149         2016         544 <t< td=""><td>2030</td><td>Yunnan</td><td>9949242</td><td>30.04</td><td>3.29</td><td>249892</td><td>15089</td><td>538</td><td>95990</td><td>113777</td><td>49076</td><td>5598</td><td>540</td><td>85728</td><td>73181</td><td>58444</td><td>47628</td><td>1.14</td></t<>                                                                                           | 2030 | Yunnan         | 9949242  | 30.04 | 3.29 | 249892  | 15089 | 538  | 95990   | 113777 | 49076  | 5598  | 540  | 85728  | 73181  | 58444  | 47628  | 1.14 |
| visual         visual           3001         Anhui         33860554         34.04         3.12         972114         12697         1032         594442         384935         5062         259         113         122416         440296         399437         22662         1.10           3002         Beijing         3289036         35.39         2.76         85494         2139         89         81788         2698         2877         93         177         291         19546         63298         179         1.06           3003         Chongqing         13078118         42.04         2.72         436237         8496         810         21548         219389         6337         3076         383         34275         160849         146892         10217         1.08           3004         Fujian         16018762         41.24         3.16         447940         13851         615         152099         27946         1860         190         105558         152003         108638         95592         1.11           3005         Gausu         16451585         21.94         3.824         7837         834         494076         294396         7474         300         83                                                                                                                                                                                                                                                                                                                             | 2031 | Zhejiang       | 14035213 | 38.53 | 2.66 | 435571  | 17019 | 321  | 78393   | 215994 | 143891 | 9590  | 4722 | 88524  | 262572 | 92204  | 9290   | 1.16 |
| 3001         Anhui         33860554         34.04         3.12         972114         12697         1032         59442         384935         5062         259         113         122416         440296         399437         22662         1.10           3002         Beijing         3289036         35.39         2.76         85494         213         89         8178         2698         2877         93         117         2991         19546         63282         1798         1.36           3004         Fujian         16018762         41.24         3.16         44794         13851         615         15209         27966         2796         1860         190         105558         15003         10838         95592         1.11           3005         Gansu         16451585         21.94         3.89         444734         2789         2.33         43494         12043         911         94         81         23588         50900         233241         139709         0.94           3007         Guangdong         38064798         2.599         3.74         8258         473821         32499         714         30         831         100152         424443         21081                                                                                                                                                                                                                                                                                                                            |      |                |          |       |      |         |       |      | rural   |        |        |       |      |        |        |        |        |      |
| 3002Beijing328903635.392.76854942139898178826982877931772991195466329817981.363003Chongqing1307811842.042.7243633784968102155482193963373076383342751608491468921027171.083004Fujian1601876241.243.164479401385161515209927969279461860190105558152003108638955921.113005Ganagdong380647982.5993.7482558793286247382132849927016354264216817938895824408322951.223007Guangxia2801182928.823.477884927837834494076294396747430083100152424443210891608431.013008Guizhou2278421227.923.29657275131762445261451374945451216121802322080662477801344131.033009Haina43592021.293.6311388776755525110848732753174266811483059334416333949868301.133010Hebei4153853.643.038193251675525110848731742668114830593344163339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3001 | Anhui          | 33860554 | 34.04 | 3.12 | 972114  | 12697 | 1032 | 594442  | 384935 | 5062   | 259   | 113  | 122416 | 440296 | 399437 | 22662  | 1.10 |
| 3003Chongqing1307811842.042.7243623784968102154821938963373076383342751608491468921027171.083004Fujian1601876241.243.164479401385161515209927966279461860190105558152003108638955921.113005Gansu1645158521.943.894447327892.3343343412043911948123583509092.32411397090.943006Guangdong3806479825.993.748255879328624738213284992701635426421680138832408832251.223007Guangxi2801182928.823.47788492783783449407629439674743008310015242443210891608431.013008Guizhou2278421227.923.29657251317624452614513749454851206121802322080262477801344131.033009Hainan435992021.293.631193787716910121282484372173522309165846894923071.093010Hebei4153082730.093.5011387767555251108475317426811483059334163339841.04 </td <td>3002</td> <td>Beijing</td> <td>3289036</td> <td>35.39</td> <td>2.76</td> <td>85494</td> <td>2139</td> <td>89</td> <td>81788</td> <td>2698</td> <td>2877</td> <td>93</td> <td>177</td> <td>2991</td> <td>19546</td> <td>63298</td> <td>1798</td> <td>1.36</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3002 | Beijing        | 3289036  | 35.39 | 2.76 | 85494   | 2139  | 89   | 81788   | 2698   | 2877   | 93    | 177  | 2991   | 19546  | 63298  | 1798   | 1.36 |
| 3004         Fujian         16018762         41.24         3.16         447940         13851         615         152099         27966         27966         1860         190         105558         15203         108638         95592         1.11           3005         Gansu         1645185         21.94         3.89         444734         2789         233         434394         12043         911         94         81         23583         50990         233241         139709         0.94           3006         Guangdong         38064798         25.99         3.74         82588         7932         862         473821         328499         27016         3542         642         168179         38958         32295         1.22           3007         Guangding         28801829         28.82         3.77         788492         7817         644         526145         13749         5485         1206         121         80232         208026         247480         13413         1.03           3009         Hainan         4359920         21.29         3.63         109378         771         69         101212         8248         437         217         35         22309         16584 <td>3003</td> <td>Chongqing</td> <td>13078118</td> <td>42.04</td> <td>2.72</td> <td>436237</td> <td>8496</td> <td>810</td> <td>215548</td> <td>219389</td> <td>6337</td> <td>3076</td> <td>383</td> <td>34275</td> <td>160849</td> <td>146892</td> <td>102717</td> <td>1.08</td>                                 | 3003 | Chongqing      | 13078118 | 42.04 | 2.72 | 436237  | 8496  | 810  | 215548  | 219389 | 6337   | 3076  | 383  | 34275  | 160849 | 146892 | 102717 | 1.08 |
| 3005Gansu1645158521.943.8944473427892334339412043911948123583509902332411397090.943006Guangdong3806479825.993.748255887932862473821328499270163542642168179388958244088322951.223007Guangxi2801182928.823.477884927837834494076294396747430083100152424443210891608431.013008Guizhou2278421227.923.2965727513176244526145137494548512061218023292080262477801344131.033009Haina435992021.293.6310937877169101212824843721735223091655435104268966333641.043010Hebei4153082730.093.50113877675552511084873275435915102906555335104268966333641.043011Heilongjiang1728167220.923.194728493926164746975531742668114830593344163339849868301.133012Henan5841008432.233.58159325918707151263614341472623155417817014677847                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3004 | Fujian         | 16018762 | 41.24 | 3.16 | 447940  | 13851 | 615  | 152099  | 279696 | 27946  | 1860  | 190  | 105558 | 152003 | 108638 | 95592  | 1.11 |
| 3006Guangdong3806479825.993.748255887932862473821328499270163542642168179388958244088322951.223007Guangxi2801182928.823.477884927837834494076294396747430083100152424443210891608431.013008Guizhou2278421227.923.296572751317624452614513749454851206121802322080262477801344131.033009Hainan435992021.293.63109378771691011282484372173522309165846894923071.093010Hebei4153082730.093.501138877675552511084873275435915102906556335104268963393641.043011Heilongjiang1728167220.923.194728493926164746975531742668114830593344163339849868301.133012Henan5841008432.233.581593259187907151263614341472623155417817014677847632719306971.013013Hubei281548338.643.4080530811381807395204055951219122671052872803734212865                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3005 | Gansu          | 16451585 | 21.94 | 3.89 | 444734  | 2789  | 233  | 434394  | 12043  | 911    | 94    | 81   | 23583  | 50990  | 233241 | 139709 | 0.94 |
| 3007Guangxi2801182928.823.477884927837834494076294396747430083100152424443210891608431.013008Guizhou2278421227.923.296572751317624452614513749454851206121802322080262477801344131.033009Hainan435992021.293.631093787716910121282484372173522309165846894923071.093010Hebei4153082730.093.5011388776755525110848732754359151029065563351042689663393641.043011Heilongjiang1728167220.923.194728493926164746975531742668114830593344163339849868301.133012Henan5841008432.233.5815932591879071512636143414726231554178170146778487632719306971.013013Hubei2815488338.643.40805308113818073952040559121912267105287280373421286599693891.013014Human3774391734.273.54100832499002170496152516168559227311388408562427367 <td>3006</td> <td>Guangdong</td> <td>38064798</td> <td>25.99</td> <td>3.74</td> <td>825588</td> <td>7932</td> <td>862</td> <td>473821</td> <td>328499</td> <td>27016</td> <td>3542</td> <td>642</td> <td>168179</td> <td>388958</td> <td>244088</td> <td>32295</td> <td>1.22</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3006 | Guangdong      | 38064798 | 25.99 | 3.74 | 825588  | 7932  | 862  | 473821  | 328499 | 27016  | 3542  | 642  | 168179 | 388958 | 244088 | 32295  | 1.22 |
| 3008Guizhou2278421227.923.296572751317624452614513749454851206121802322080262477801344131.033009Hainan435992021.293.631093787716910121282484372173522309165846894923071.093010Hebei4153082730.093.5011388776755525110848732754359151029065563351042689663393641.043011Heilongjiang1728167220.923.194728493926164746975531742668114830593344163339849868301.133012Henan5841008432.233.5815932591879071512636143414726231554178170146778487632719306971.013013Hubei2815488338.643.408053081138180739520405959121912267105287280373421286599693891.013014Hunan3774391734.273.54100832499002170496152516168556926273113888408562427367684071.043015Jiangsu3199348542.353.03978352130699952601244438217344893281777184948384112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3007 | Guangxi        | 28011829 | 28.82 | 3.47 | 788492  | 7837  | 834  | 494076  | 294396 | 7474   | 300   | 83   | 100152 | 424443 | 210891 | 60843  | 1.01 |
| 3009Hainan435992021.293.631093787716910121282484372173522309165846894923071.093010Hebei4153082730.093.5011388776755525110848732754359151029065563351042689663393641.043011Heilongijang1728167220.923.194728493926164746975531742668114830593344163339849868301.133012Henan5841008432.233.5815932591879071512636143414726231554178170146778487632719306971.013013Hubei2815488338.643.408053081138180739520405959121912267105287280373421286599693891.013014Hunan3774391734.273.5410083249900217049615251616855692627311388408562427367684071.043015Jiangsu3199348542.353.03978352130969995260124443821734489328177721849483841120681861.063016Jiangxi2620047433.813.8662742065781410251425373710839035511818432720948719818                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3008 | Guizhou        | 22784212 | 27.92 | 3.29 | 657275  | 13176 | 244  | 526145  | 137494 | 5485   | 1206  | 121  | 80232  | 208026 | 247780 | 134413 | 1.03 |
| 3010Hebei4153082730.093.5011388776755525110848732754359151029065563351042689663393641.043011Heilongijang1728167220.923.194728493926164746975531742668114830593344163339849868301.133012Henan5841008432.233.5815932591879071512636143414726231554178170146778487632719306971.013013Hubei2815488338.643.408053081138180739520405959121912267105287280373421286599693891.013014Hunan3774391734.273.54100832499002170496152516168556926273113888408562427367684071.043015Jiangsu3199348542.353.03978352130969995260124443821734489328177721849483841120681861.063016Jiangxi2620047433.813.86627420657814102514253737108390355118184327209487198186419981.073017Jilin1289612520.983.353535432220252334729731704561676591128335524 <t< td=""><td>3009</td><td>Hainan</td><td>4359920</td><td>21.29</td><td>3.63</td><td>109378</td><td>771</td><td>69</td><td>101212</td><td>8248</td><td>437</td><td>217</td><td>35</td><td>22309</td><td>16584</td><td>68949</td><td>2307</td><td>1.09</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3009 | Hainan         | 4359920  | 21.29 | 3.63 | 109378  | 771   | 69   | 101212  | 8248   | 437    | 217   | 35   | 22309  | 16584  | 68949  | 2307   | 1.09 |
| 3011Heilongjiang1728167220.923.194728493926164746975531742668114830593344163339849868301.133012Henan5841008432.233.5815932591879071512636143414726231554178170146778487632719306971.013013Hubei2815488338.643.408053081138180739520405959121912267105287280373421286599693891.013014Hunan3774391734.273.5410083249900217049615251616855692627311388408562427367684071.043015Jiangsu3199348542.353.03978352130969995260124443821734489328177721849483841120681861.063016Jiangxi2620047433.813.86627420657814102514253737108390355118184327209487198186419981.073017Jilin1289612520.983.35353543222025233472973170456167659112833554274007349491.073018Liaoning1666794425.953.1251978439942375129306643370939010631856123657                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3010 | Hebei          | 41530827 | 30.09 | 3.50 | 1138877 | 6755  | 525  | 1108487 | 32754  | 3591   | 510   | 290  | 65563  | 351042 | 689663 | 39364  | 1.04 |
| 3012Henan5841008432.233.5815932591879071512636143414726231554178170146778487632719306971.013013Hubei2815488338.643.408053081138180739520405959121912267105287280373421286599693891.013014Hunan3774391734.273.54100832499002170496152516168556926273113888408562427367684071.043015Jiangsu3199348542.353.03978352130969995260124443821734489328177721849483841120681861.063016Jiangxi2620047433.813.86627420657814102514253737108390355118184327209487198186419981.073017Jilin1289612520.983.353535432220252334729731704561676591128335524274007349491.073018Liaoning1666794425.953.125197843994237512930664337093901063185612365736037178941.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3011 | Heilongjiang   | 17281672 | 20.92 | 3.19 | 472849  | 3926  | 1647 | 469755  | 3174   | 2668   | 1148  | 30   | 5933   | 44163  | 339849 | 86830  | 1.13 |
| 3013Hubei2815488338.643.4.08053081138180739520405959121912267105287280373421286599693891.013014Hunan3774391734.273.54100832499002170496152516168556926273113888408562427367684071.043015Jiangsu3199348542.353.03978352130969995260124443821734489328177721849483841120681861.063016Jiangxi2620047433.813.86627420657814102514253737108390355118184327209487198186419981.073017Jilin1289612520.983.353535432220252334729731704561676591128335524274007349491.073018Liaoning1666794425.953.125197843994237512930664337093901063185612365736037178941.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3012 | Henan          | 58410084 | 32.23 | 3.58 | 1593259 | 18790 | 715  | 1263614 | 341472 | 6231   | 554   | 178  | 170146 | 778487 | 632719 | 30697  | 1.01 |
| 3014         Hunan         37743917         34.27         3.54         1008324         9900         2170         496152         516168         5569         262         73         113888         408562         427367         68407         1.04           3015         Jiangsu         31993485         42.35         3.03         978352         13096         999         526012         444382         17344         893         2817         77218         494388         411206         8186         1.06           3016         Jiangxi         26200474         33.81         3.86         627420         6578         1410         251425         373710         8390         355         118         184327         209487         198186         41998         1.07           3017         Jilin         12896125         20.98         3.35         353543         2220         2523         347297         3170         4561         676         59         11283         35524         274007         34949         1.07           3018         Liaoning         16667944         25.95         3.12         519784         3994         237         512930         6643         3709         390         106                                                                                                                                                                                                                                                                                                                        | 3013 | Hubei          | 28154883 | 38.64 | 3.40 | 805308  | 11381 | 807  | 395220  | 405959 | 12191  | 2267  | 1052 | 87280  | 373421 | 286599 | 69389  | 1.01 |
| 3015       Jiangsu       31993485       42.35       3.03       978352       13096       999       526012       444382       17344       893       2817       77218       494838       411206       8186       1.06         3016       Jiangxi       26200474       33.81       3.86       627420       6578       1410       251425       373710       8390       355       118       184327       209487       198186       41998       1.07         3017       Jilin       12896125       20.98       3.35       353543       2220       2523       347297       3170       4561       676       59       11283       35524       274007       34949       1.07         3018       Liaoning       16667944       25.95       3.12       519784       3994       237       512930       6643       3709       390       106       31856       123657       360371       7894       1.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3014 | Hunan          | 37743917 | 34.27 | 3.54 | 1008324 | 9900  | 2170 | 496152  | 516168 | 5569   | 262   | 73   | 113888 | 408562 | 427367 | 68407  | 1.04 |
| 3016Jiangxi2620047433.813.86627420657814102514253737108390355118184327209487198186419981.073017Jilin1289612520.983.353535432220252334729731704561676591128335524274007349491.073018Liaoning1666794425.953.125197843994237512930664337093901063185612365736037178941.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3015 | Jiangsu        | 31993485 | 42.35 | 3.03 | 978352  | 13096 | 999  | 526012  | 444382 | 17344  | 893   | 2817 | 77218  | 494838 | 411206 | 8186   | 1.06 |
| 3017         Jilin         12896125         20.98         3.35         353543         2220         2523         347297         3170         4561         676         59         11283         35524         274007         34949         1.07           3018         Liaoning         16667944         25.95         3.12         519784         3994         237         512930         6643         3709         390         106         31856         123657         360371         7894         1.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3016 | Jiangxi        | 26200474 | 33.81 | 3.86 | 627420  | 6578  | 1410 | 251425  | 373710 | 8390   | 355   | 118  | 184327 | 209487 | 198186 | 41998  | 1.07 |
| 3018 Liaoning 16667944 25.95 3.12 519784 3994 237 512930 6643 3709 390 106 31856 123657 360371 7894 1.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3017 | Jilin          | 12896125 | 20.98 | 3.35 | 353543  | 2220  | 2523 | 347297  | 3170   | 4561   | 676   | 59   | 11283  | 35524  | 274007 | 34949  | 1.07 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3018 | Liaoning       | 16667944 | 25.95 | 3.12 | 519784  | 3994  | 237  | 512930  | 6643   | 3709   | 390   | 106  | 31856  | 123657 | 360371 | 7894   | 1.02 |
| 3019 Inner Mongolia 11371410 22.17 2.97 337168 4773 1167 331674 6301 3644 77 245 10616 34647 206674 90004 1.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3019 | Inner Mongolia | 11371410 | 22.17 | 2.97 | 337168  | 4773  | 1167 | 331674  | 6301   | 3644   | 77    | 245  | 10616  | 34647  | 206674 | 90004  | 1.12 |

| 3020 | Ningxia  | 3514019  | 22.12 | 3.54 | 86461   | 1371  | 35   | 80927   | 1965   | 4863  | 64   | 13  | 4944   | 9056   | 60381   | 13451  | 1.13 |
|------|----------|----------|-------|------|---------|-------|------|---------|--------|-------|------|-----|--------|--------|---------|--------|------|
| 3021 | Qinghai  | 3331549  | 18.51 | 4.06 | 71842   | 604   | 1521 | 69459   | 2789   | 181   | 7    | 10  | 2675   | 9718   | 36221   | 23832  | 1.11 |
| 3022 | Shaanxi  | 20681076 | 31.22 | 3.54 | 572916  | 6711  | 497  | 481090  | 94599  | 3360  | 348  | 230 | 60338  | 235474 | 142395  | 141420 | 1.01 |
| 3023 | Shandong | 49111245 | 31.95 | 3.07 | 1549890 | 8748  | 182  | 1511164 | 40165  | 6807  | 399  | 103 | 77610  | 400711 | 1025247 | 55070  | 1.03 |
| 3024 | Shanghai | 2868506  | 38.83 | 2.37 | 90972   | 1752  | 1153 | 31644   | 57352  | 3415  | 49   | 264 | 8884   | 48551  | 33963   | 1326   | 1.29 |
| 3025 | Shanxi   | 19383034 | 25.09 | 3.44 | 521669  | 4921  | 593  | 481296  | 38553  | 6348  | 290  | 103 | 34053  | 138101 | 243316  | 111120 | 1.07 |
| 3026 | Sichuan  | 47509769 | 36.63 | 3.10 | 1625052 | 36122 | 3253 | 1067677 | 574735 | 16573 | 1425 | 764 | 147168 | 513785 | 611594  | 388627 | 0.92 |
| 3027 | Tianjin  | 3005963  | 25.95 | 3.21 | 78318   | 570   | 30   | 74498   | 686    | 3345  | 110  | 249 | 2325   | 7772   | 68306   | 485    | 1.19 |
| 3028 | Xinjiang | 13519120 | 22.35 | 3.55 | 314397  | 2226  | 115  | 309505  | 2663   | 4345  | 82   | 28  | 11730  | 36704  | 207565  | 60624  | 1.20 |
| 3029 | Tibet    | 2461371  | 27.55 | 4.95 | 44816   | 1260  | 718  | 27819   | 17858  | 360   | 26   | 13  | 2594   | 5152   | 23631   | 14699  | 1.06 |
| 3030 | Yunnan   | 30970894 | 25.61 | 3.89 | 756974  | 10742 | 1276 | 461191  | 296513 | 6950  | 2470 | 592 | 68863  | 112129 | 239753  | 346971 | 1.04 |
| 3031 | Zhejiang | 22249067 | 49.12 | 2.67 | 740469  | 17587 | 807  | 152558  | 544733 | 58732 | 1649 | 384 | 60829  | 419761 | 236627  | 40839  | 1.10 |

Note: The three **urbanity attributes**, namely **urban/township/rural**, are represented by number 1/2/3 in the first column of this table; "**Prov\_id**" refers to the ID number of each province; "**Aver. pop. per family**" refers to the average number of population per family; "**Amp. factor**" refers to the amplification factor used to amplify the building related statistics from 2010 to 2015 (see Sect. 2.1 and 2.4.1 for more details).

| Province       | Province ID | 2010-censu | s recorded po | opulation in e | ach urbanity | Рорг   | lation propo | ortion | Population threshold (PT) |                      |
|----------------|-------------|------------|---------------|----------------|--------------|--------|--------------|--------|---------------------------|----------------------|
|                |             | urban      | township      | rural          | sum          | urban  | township     | rural  | PT1 (urban/township)      | PT2 (township/rural) |
| Anhui          | 01          | 12182587   | 13394530      | 33923351       | 59500468     | 20.47% | 22.51%       | 57.01% | 13950                     | 6907                 |
| Beijing        | 02          | 15563215   | 1295477       | 2753676        | 19612368     | 79.35% | 6.61%        | 14.04% | 2702                      | 1775                 |
| Chongqing      | 03          | 8681611    | 6614192       | 13550367       | 28846170     | 30.10% | 22.93%       | 46.97% | 11194                     | 5412                 |
| Fujian         | 04          | 12548384   | 8513556       | 15832277       | 36894217     | 34.01% | 23.08%       | 42.91% | 6020                      | 2586                 |
| Gansu          | 05          | 5258935    | 3932250       | 16384078       | 25575263     | 20.56% | 15.38%       | 64.06% | 15167                     | 9337                 |
| Guangdong      | 06          | 52388382   | 16641873      | 35290204       | 104320459    | 50.22% | 15.95%       | 33.83% | 5229                      | 2996                 |
| Guangxi        | 07          | 8352777    | 10065066      | 27605918       | 46023761     | 18.15% | 21.87%       | 59.98% | 11694                     | 5065                 |
| Guizhou        | 08          | 5537562    | 6199971       | 23011023       | 34748556     | 15.94% | 17.84%       | 66.22% | 18152                     | 10413                |
| Hainan         | 09          | 2324288    | 1984228       | 4362969        | 8671485      | 26.80% | 22.88%       | 50.31% | 8256                      | 3679                 |
| Hebei          | 10          | 14388021   | 17187307      | 40278882       | 71854210     | 20.02% | 23.92%       | 56.06% | 5682                      | 2403                 |
| Heilongjiang   | 11          | 14122516   | 7201199       | 16990276       | 38313991     | 36.86% | 18.80%       | 44.34% | 3848                      | 1485                 |
| Henan          | 12          | 18331493   | 17888274      | 57810172       | 94029939     | 19.50% | 19.02%       | 61.48% | 15199                     | 8456                 |
| Hubei          | 13          | 17928160   | 10516925      | 28792642       | 57237727     | 31.32% | 18.37%       | 50.30% | 11667                     | 6345                 |
| Hunan          | 14          | 12738442   | 15714621      | 37247699       | 65700762     | 19.39% | 23.92%       | 56.69% | 13552                     | 5876                 |
| Jiangsu        | 15          | 30166466   | 17205022      | 31289453       | 78660941     | 38.35% | 21.87%       | 39.78% | 6559                      | 3341                 |
| Jiangxi        | 16          | 7504291    | 11995669      | 25067837       | 44567797     | 16.84% | 26.92%       | 56.25% | 11326                     | 3400                 |
| Jilin          | 17          | 10196745   | 4451454       | 12804616       | 27452815     | 37.14% | 16.21%       | 46.64% | 6168                      | 2866                 |
| Liaoning       | 18          | 22021184   | 5166779       | 16558360       | 43746323     | 50.34% | 11.81%       | 37.85% | 3511                      | 1882                 |
| Inner Mongolia | 19          | 8011564    | 5708610       | 10986117       | 24706291     | 32.43% | 23.11%       | 44.47% | 11152                     | 5036                 |
| Ningxia        | 20          | 2059295    | 962727        | 3279328        | 6301350      | 32.68% | 15.28%       | 52.04% | 11659                     | 7624                 |
| Qinghai        | 21          | 1368033    | 1148221       | 3110469        | 5626723      | 24.31% | 20.41%       | 55.28% | 11850                     | 5113                 |
| Shaanxi        | 22          | 8837175    | 8222162       | 20268042       | 37327379     | 23.67% | 22.03%       | 54.30% | 13731                     | 6872                 |
| Shandong       | 23          | 28364984   | 19255743      | 48171992       | 95792719     | 29.61% | 20.10%       | 50.29% | 6577                      | 3372                 |
| Shanghai       | 24          | 17640842   | 2914256       | 2464098        | 23019196     | 76.64% | 12.66%       | 10.70% | 4936                      | 2750                 |
| Shanxi         | 25          | 9414053    | 7746486       | 18551562       | 35712101     | 26.36% | 21.69%       | 51.95% | 8804                      | 3890                 |
| Sichuan        | 26          | 15915660   | 16428768      | 48073100       | 80417528     | 19.79% | 20.43%       | 59.78% | 14668                     | 8123                 |
| Tianjin        | 27          | 8858126    | 1419767       | 2660800        | 12938693     | 68.46% | 10.97%       | 20.56% | 3138                      | 1872                 |
| Xinjiang       | 28          | 6071803    | 3263949       | 12480063       | 21815815     | 27.83% | 14.96%       | 57.21% | 10473                     | 3620                 |
| Tibet          | 29          | 272322     | 408267        | 2321576        | 3002165      | 9.07%  | 13.60%       | 77.33% | 9751                      | 4522                 |
| Yunnan         | 30          | 6324830    | 9634242       | 30007694       | 45966766     | 13.76% | 20.96%       | 65.28% | 19028                     | 8699                 |
| Zhejiang       | 31          | 20386294   | 13163915      | 20876682       | 54426891     | 37.46% | 24.19%       | 38.36% | 5599                      | 2513                 |

Table 3: The population proportions and thresholds used for each province to assign the grids in the 2015 GHSL profile with urban/township/rural attributes.

Note: For each province, "**PT1(urban/township**)" and "**PT2 (township/rural**)" are the population thresholds to assign the grids in the 2015 GHSL profile with urban/township/rural attributes. According to the population density  $\lambda$  in each grid, the assignment criteria are that: if  $\lambda \ge PT1$ , the grid is assigned as **urban**; if  $PT1 > \lambda \ge PT2$ , **township**; *if*  $\lambda < PT2$ , **rural** (see context in **Sect. 2.3** for more details).

| Structure type | Storey class | Building subtype | Unit construction price (RMB/m <sup>2</sup> |
|----------------|--------------|------------------|---------------------------------------------|
|                |              | abbreviation     | in 2015 current price)                      |
| herials/wood   | 1            | BRIWOMC1         | 2050                                        |
| DITCK/WOOD     | 2-3          | BRIWOMC23        | 2350                                        |
|                | 1            | STLRCMC1         | 3700                                        |
|                | 2-3          | STLRCMC23        | 3900                                        |
| steel/RC       | 4-6          | STLRCMC46        | 4100                                        |
|                | 7-9          | STLRCMC79        | 4300                                        |
|                | ≥10          | STLRCMC10        | 4500                                        |
|                | 1            | MIXEDMC1         | 2800                                        |
|                | 2-3          | MIXEDMC23        | 3000                                        |
| mixed          | 4-6          | MIXEDMC46        | 3200                                        |
|                | 7-9          | MIXEDMC79        | 3400                                        |
|                | ≥10          | MIXEDMC10        | 3600                                        |
|                | 1            | OTHERMC1         | 2600                                        |
|                | 2-3          | OTHERMC23        | 2800                                        |
| others         | 4-6          | OTHERMC46        | 3000                                        |
|                | 7-9          | OTHERMC79        | 3200                                        |
|                | ≥10          | OTHERMC10        | 3400                                        |

I

**Table 4**: Average unit construction price (per m<sup>2</sup>) for each of the 17 building subtypes used in this paper.

| 955 | Table 5: The modeled floor area and replacement value of residential buildings in urban/township/rural urbanity |
|-----|-----------------------------------------------------------------------------------------------------------------|
|     | of the 31 provinces in mainland China.                                                                          |

| Province<br>ID | Province name     | Modeled<br>floor area ( <b>mil</b> | residential bui<br>lion m²) in eac<br>level | lding<br>h urbanity | Modeled resi<br>( <b>billion RMB</b> , i | dential building repla<br>n 2015 current price)<br>level | acement value<br>) in each urbanity |
|----------------|-------------------|------------------------------------|---------------------------------------------|---------------------|------------------------------------------|----------------------------------------------------------|-------------------------------------|
|                |                   | urban                              | township                                    | rural               | urban                                    | township                                                 | rural                               |
| 01             | Anhui             | 357                                | 431                                         | 1150                | 507                                      | 498                                                      | 1080                                |
| 02             | Beijing           | 516                                | 51                                          | 117                 | 1920                                     | 147                                                      | 223                                 |
| 03             | Chongqing         | 250                                | 222                                         | 550                 | 564                                      | 428                                                      | 825                                 |
| 04             | Fujian            | 377                                | 326                                         | 667                 | 1000                                     | 648                                                      | 1240                                |
| 05             | Gansu             | 141                                | 102                                         | 351                 | 231                                      | 114                                                      | 259                                 |
| 06             | Guangdong         | 1640                               | 448                                         | 864                 | 4130                                     | 798                                                      | 1060                                |
| 07             | Guangxi           | 260                                | 350                                         | 808                 | 618                                      | 691                                                      | 1160                                |
| 08             | Guizhou           | 143                                | 175                                         | 635                 | 221                                      | 197                                                      | 487                                 |
| 09             | Hainan            | 60                                 | 47                                          | 86                  | 141                                      | 79                                                       | 89                                  |
| 10             | Hebei             | 448                                | 544                                         | 1210                | 916                                      | 880                                                      | 1370                                |
| 11             | Heilongjiang      | 341                                | 166                                         | 360                 | 844                                      | 257                                                      | 365                                 |
| 12             | Henan             | 630                                | 580                                         | 1880                | 1120                                     | 1020                                                     | 2550                                |
| 13             | Hubei             | 582                                | 392                                         | 1090                | 1270                                     | 610                                                      | 1400                                |
| 14             | Hunan             | 431                                | 583                                         | 1290                | 749                                      | 786                                                      | 1360                                |
| 15             | Jiangsu           | 1040                               | 695                                         | 1350                | 3250                                     | 1910                                                     | 3130                                |
| 16             | Jiangxi           | 234                                | 419                                         | 884                 | 387                                      | 533                                                      | 845                                 |
| 17             | Jilin             | 258                                | 100                                         | 266                 | 1080                                     | 268                                                      | 483                                 |
| 18             | Liaoning          | 572                                | 136                                         | 426                 | 2080                                     | 353                                                      | 710                                 |
| 19             | Inner<br>Mongolia | 206                                | 143                                         | 247                 | 1170                                     | 485                                                      | 559                                 |
| 20             | Ningxia           | 63                                 | 26                                          | 78                  | 185                                      | 56                                                       | 121                                 |
| 21             | Qinghai           | 41                                 | 26                                          | 60                  | 107                                      | 55                                                       | 87                                  |
| 22             | Shaanxi           | 260                                | 242                                         | 644                 | 597                                      | 523                                                      | 960                                 |
| 23             | Shandong          | 936                                | 632                                         | 1530                | 2450                                     | 1380                                                     | 2480                                |
| 24             | Shanghai          | 516                                | 102                                         | 109                 | 2120                                     | 339                                                      | 254                                 |
| 25             | Shanxi            | 255                                | 206                                         | 484                 | 661                                      | 361                                                      | 587                                 |
| 26             | Sichuan           | 483                                | 556                                         | 1740                | 795                                      | 780                                                      | 1780                                |
| 27             | Tianjin           | 255                                | 48                                          | 78                  | 1000                                     | 204                                                      | 217                                 |
| 28             | Xinjiang          | 184                                | 92                                          | 299                 | 516                                      | 206                                                      | 279                                 |
| 29             | Tibet             | 9                                  | 15                                          | 67                  | 25                                       | 35                                                       | 83                                  |
| 30             | Yunnan            | 221                                | 312                                         | 767                 | 334                                      | 431                                                      | 727                                 |
| 31             | Zhejiang          | 673                                | 542                                         | 1090                | 1820                                     | 1200                                                     | 1910                                |
| In             | total:            | 12400                              | 8710                                        | 21200               | 32808                                    | 16300                                                    | 28700                               |

Note: (a) In this paper, for each of the 17 building subtypes in each grid, the same unit construction price is used to derive the replacement value in different urbanities and provinces; (b) The modeled floor area and replacement value are for residential buildings (see context in **Sect. 3.1.1** for more details).

| Province ID | Province name  | Pop_a  | Pop_b   | Pop_R <sup>2</sup> | FloorArea_a | FloorArea_b | Area_R <sup>2</sup> |
|-------------|----------------|--------|---------|--------------------|-------------|-------------|---------------------|
| 01          | Anhui          | 1.227  | -121096 | 0.9525             | 1.2256      | -4000000    | 0.917               |
| 02          | Beijing        | 1.4375 | -11276  | 0.9986             | 1.4947      | -3000000    | 0.9993              |
| 03          | Chongqing      | 1.1261 | -68344  | 0.9624             | 1.2336      | -6000000    | 0.9049              |
| 04          | Fujian         | 1.2485 | -66004  | 0.9741             | 0.9975      | 2000000     | 0.8165              |
| 05          | Gansu          | 1.1977 | -38495  | 0.9876             | 1.1499      | -651568     | 0.9526              |
| 06          | Guangdong      | 1.5014 | -212584 | 0.9712             | 1.6419      | -9000000    | 0.9285              |
| 07          | Guangxi        | 0.936  | 43874   | 0.9251             | 0.9482      | 993643      | 0.8633              |
| 08          | Guizhou        | 1.1151 | -37198  | 0.99               | 1.2213      | -2000000    | 0.961               |
| 09          | Hainan         | 1.2608 | -80398  | 0.9692             | 1.2068      | -2000000    | 0.9675              |
| 10          | Hebei          | 1.1402 | -27316  | 0.9832             | 1.05        | 184103      | 0.9276              |
| 11          | Heilongjiang   | 1.1307 | -30556  | 0.9839             | 1.0486      | 118704      | 0.977               |
| 12          | Henan          | 1.1817 | -93834  | 0.9599             | 1.0788      | -554637     | 0.9039              |
| 13          | Hubei          | 1.2252 | -101914 | 0.9788             | 1.374       | -7000000    | 0.9387              |
| 14          | Hunan          | 1.1237 | -212458 | 0.9628             | 1.032       | 6000000     | 0.8858              |
| 15          | Jiangsu        | 1.3726 | -266170 | 0.9335             | 1.2612      | 6000000     | 0.7783              |
| 16          | Jiangxi        | 1.1411 | -18384  | 0.9901             | 1.0855      | 252638      | 0.9365              |
| 17          | Jilin          | 1.0739 | -16159  | 0.9907             | 0.9804      | 715875      | 0.9894              |
| 18          | Liaoning       | 1.1467 | -273787 | 0.9957             | 1.0608      | -933912     | 0.9902              |
| 19          | Inner Mongolia | 1.1574 | -11718  | 0.9814             | 1.1262      | -162051     | 0.978               |
| 20          | Ningxia Hui    | 1.2559 | -37867  | 0.9668             | 1.0727      | 507343      | 0.9588              |
| 21          | Qinghai        | 1.1457 | -1152.1 | 0.9935             | 0.9763      | 377230      | 0.9851              |
| 22          | Shaanxi        | 1.2448 | -53315  | 0.9857             | 1.2304      | -1000000    | 0.9459              |
| 23          | Shandong       | 1.1272 | -35525  | 0.9725             | 1.0518      | 392271      | 0.934               |
| 24          | Shanghai       | 1.1752 | 286962  | 0.9665             | 1.2034      | 6000000     | 0.9368              |
| 25          | Shanxi         | 1.2375 | -38478  | 0.9904             | 1.1738      | -474998     | 0.9456              |
| 26          | Sichuan        | 1.175  | -478703 | 0.9754             | 1.0902      | -7000000    | 0.9561              |
| 27          | Tianjin        | 1.1832 | 274914  | 0.8724             | 1.2782      | 4000000     | 0.8993              |
| 28          | Xinjiang       | 1.1519 | -2241.9 | 0.9827             | 1.1454      | -10818      | 0.9789              |
| 29          | Tibet          | 1.2168 | -3498.3 | 0.9834             | 1.1196      | -1699.8     | 0.9199              |
| 30          | Yunnan         | 1.1632 | -26658  | 0.9898             | 0.9589      | 1000000     | 0.9083              |
| 31          | Zhejiang       | 1.2686 | -45842  | 0.9751             | 1.323       | -4000000    | 0.88                |

## 960 **Table 6**: The regression parameters and correlation coefficients for population and floor area in each province.

Note: "**Pop\_a**" and "**Pop\_b**" are the linear regression parameters between the 2015 GHSL population and the 2010-census recorded population; "**FloorArea\_a**" and "**FloorArea\_b**" are the linear regression parameters between the modeled residential building floor area in this paper and that extracted from the 2010-census records; "**Pop\_R**<sup>2</sup>" and "**FloorArea\_R**<sup>2</sup>" are the correlation coefficients of population and floor area, respectively. For Hunan, Liaoning, and Sichuan provinces, the population and floor area comparisons are compared at the prefecture-level; while for the other 28 provinces, the population and floor area comparisons are at the county-level. The correlation analysis figures for each of the 31 provinces are available from the online supplement (see the context in **Sect. 3.2.2** for more details).

## Appendix A

For each grid, to derive the population living in each of the 17 building subtypes (their abbreviations are given in Table 4), namely the 17 to-be-solved variables on the left side of the equation set in Sect. 2.4.2., a series of distribution steps based on a prioritized ranking of building types and storey classes are used in this paper. A MATLAB script and an input file illustrating the distribution processes are also available from the online supplement. With the help of the MATLAB script, it will be easier to understand the distribution steps as follows.

- (1) For brick/wood structure type, in each grid if Num<sub>BRIWO</sub> < Num<sub>storey1</sub>, the population living in brick/wood
   975 structure types (Num<sub>BRIWO</sub>) is first placed into the 1-storey class, then we get BRIWOMC1 = Num<sub>BRIWO</sub> and the remaining population living in brick/wood structure type is 0, while the remaining population living in the 1-storey class is (Num<sub>storey1</sub> Num<sub>BRIWO</sub>); but if Num<sub>BRIWO</sub> ≥ Num<sub>storey1</sub>, then the population living in the 1 storey class buildings (Num<sub>storey1</sub>) are assumed to be in brick/wood structure type, we get BRIWOMC1 = Num<sub>storey1</sub> and the remaining population living in brick/wood buildings is (Num<sub>BRIWO</sub> Num<sub>storey1</sub>), while the remaining population living in the 1-storey class is 0;
  - (2) If the remaining population living in brick/wood buildings (Num<sub>BRIWO</sub> Num<sub>storey1</sub>) < Num<sub>storey23</sub>, then they are placed into 2-3 storey class and we get BRIWOMC23 = Num<sub>BRIWO</sub> BRIWOMC1 or BRIWOMC23 = Num<sub>BRIWO</sub> Num<sub>storey1</sub>, and the remaining population in the 2-3 storey class is (Num<sub>storey23</sub> (Num<sub>BRIWO</sub> Num<sub>storey1</sub>); but if (Num<sub>BRIWO</sub> Num<sub>storey1</sub>) ≥ Num<sub>storey23</sub>, we directly assign BRIWOMC23 = Num<sub>storey1</sub> Num<sub>storey23</sub> and the remaining population living in brick/wood buildings is (Num<sub>BRIWO</sub> Num<sub>storey1</sub> Num<sub>storey23</sub>);
  - (3) For steel/RC structure type, in each grid if Num<sub>STLRC</sub> < Num<sub>storey≥10</sub>, the population living in steel/RC structure type (Num<sub>STLRC</sub>) is first placed in the ≥10 storey class, and we get STLRCMC10 = Num<sub>STLRC</sub>, then the remaining population living in the ≥10 storey class is (Num<sub>storey≥10</sub> Num<sub>STLRC</sub>), while the remaining population living in steel/RC structure type is 0; but if Num<sub>STLRC</sub> ≥ Num<sub>storey≥10</sub>, then we directly assign STLRCMC10 = Num<sub>storey≥10</sub>, and the remaining population living in steel/RC structure type is (Num<sub>storey≥10</sub>), while the remaining population living in steel/RC structure type is 0; but if Num<sub>storey≥10</sub>, then we directly assign STLRCMC10 = Num<sub>storey≥10</sub>, and the remaining population living in steel/RC structure type is 0;
- (4) Following the above step (3), if Num<sub>STLRC</sub> ≥ Num<sub>storey≥10</sub>, the remaining population living in steel/RC structure type is compared with the population living in other storey class and distributed into the remaining storey classes from the highest to the lowest, assuming that the least population in steel/RC would be in the 1-storey class, then we get STLRCMC79 = Num<sub>STLRC</sub> Num<sub>storey≥10</sub> or STLRCMC79 = Num<sub>storey79</sub> or STLRCMC79 = 0; STLRCMC46 = Num<sub>storey210</sub> Num<sub>storey210</sub> or STLRCMC79 = 0; STLRCMC46 = 0; STLRCMC23 = Num<sub>storey210</sub> Num<sub>storey210</sub> Num<sub>storey210</sub> Num<sub>storey210</sub> or STLRCMC46 = 0; STLRCMC23 = Num<sub>storey210</sub> or STLRCMC23 = 0; Num<sub>storey46</sub> or STLRCMC23 = Num<sub>storey23</sub> (Num<sub>BRIW0</sub> Num<sub>storey20</sub>) or STLRCMC23 = 0;
  1000 STLRCMC1 = Num<sub>storey1</sub>) or STLRCMC1 = (Num<sub>storey1</sub> Num<sub>storey20</sub> or STLRCMC1 = 0;

985

(5) After getting the population living in 7 building subtypes (*BRIWOMC1*, *BRIWOMC23*, *STLRCMC10*, *STLRCMC79*, *STLRCMC46*, *STLRCMC23*, *STLRCMC1*) and the remaining population living in each of the five storey classes determined, to derive the population living in storey class with structure type "mixed" and "other", we assume that the populations living in the five storey classes of "mixed" structure type are equal to the product of the remaining population in each storey classes of "other" structure type are equal to the product of the remaining populations living in the five storey classes of "other" structure type are equal to the product of the remaining population in each storey class and the ratio of  $Num_{MIXED} + Num_{OTHER}$ ); similarly, the population in each storey class and the ratio of  $Num_{OTHER} / (Num_{MIXED} + Num_{OTHER})$ .