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Abstract 

Previous seismic damage reports have shown that the damage and collapse of buildings is the leading cause of 

fatality and property loss. To enhance the estimation accuracy of economic loss and fatality casualty in seismic 

risk assessment, a high-resolution building exposure model is importantnecessary. Previous studies in developing 15 

global and regional building exposure models usually use coarse administrative level (e.g., country, or sub-country 

level) census data as model inputs, which cannot fully reflect the spatial heterogeneity of buildings in large 

countries like China. To develop a high-resolution residential building stock model for mainland China, this paper 

uses finer urbanity level population and building-related statistics extracted from the records in Tabulation of the 

2010 Population Census of the People’s Republic of China (hereafter abbreviated as the “2010-census”). In the 20 

2010-census records, for each province, the building-related statistics are categorized into three urbanity levels 

(urban, township, and rural). Statistics of each urbanity level are from areas with a similar development background 

but belong to different administrative prefectures and counties. Due to privacy protection-related issues, these 

urbanity level statistics are not geo-coded. Therefore, beforeTo disaggregating disaggregate these statistics into 

high-resolution grid level, we need to determine the urbanity attributes of grids within each province. For this 25 

purpose, the geo-coded population density profile (with 1km×1km resolution) developed in the 2015 Global 

Human Settlement Layer (GSHL) project is selected to divide the 31 provinces of mainland China into 1km×1km 

grids. Then for each province, the grids are assigned with urban/township/rural attributes according to the 

population density in the 2015 GHSL profile. Next for each urbanity of each province, the urbanity level building-

related statistics extracted from the 2010-census records can be disaggregated into the 2015 GHSL geo-coded 30 

grids, and the 2015 GHSL population in each grid is used as the disaggregation weight. Based on the four structure 

types (steel/reinforced-concrete, mixed, brick/wood, other) and five storey classes (1, 2-3, 4-6, 7-9, ≥10) of 

residential buildings classified in the 2010-census records, we reclassify the residential buildings into 17 building 

subtypes attached with both structure type and storey class and estimate their unit construction prices. Finally, we 

develop a geo-coded 1km×1km resolution residential building exposure model for 31 provinces of mainland China. 35 
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In each 1km×1km grid, the floor areas of the 17 residential building subtypes and their replacement values are 

estimated. To evaluate the model performance is evaluated to be satisfactory, comparisons with the wealth capital 

stock values estimated in previous studies at the administrative prefecture-level and with the residential floor area 

statistics in the 2010-census at the administrative county/prefecture-level are conducted. Theand its practicability 

of the modeled results in seismic risk assessment is also checkedconfirmed. by estimating the seismic loss of 40 

residential buildings in Sichuan Province combined with the intensity map of the 2008 Wenchuan Ms8.0 

earthquake and an empirical loss function developed from historical seismic damage information in China. Our 

estimated seismic loss range is close to that derived from field investigation reports. Limitations of this papere 

proposed model and directions for future improvement directions are discussed. More importantly, tThe whole 

modeling process of presented in this paper is fully reproducible, and all the modeled results are publicly accessible. 45 

Given that the building stock in China is changing rapidly, the results can be conveniently updated when new 

datasets are available. 

Key Words: residential building stock modeling, 2010-census records, dasymmetric disaggregation 

1. Introduction 

The frequent occurrence of earthquakes and other natural hazards (typhoon, flood, tsunami, etc.) can lead to 50 

tremendous and often crippling economic losses. According to the estimation in Daniell et al. (2017), from 1900-

2016, 2.3 million earthquake fatalities from 2233 fatal events occurred worldwide. Economic losses (direct and 

indirect) associated with the occurrence of over 9,900 damaging earthquakes reached USD 3.41 trillion (in 2016 

prices). For cases in China, the combination of high seismic activity, population density, and building vulnerability 

cause even higher seismic risk: Earthquakes that occurred in China during the 110 years from 1900 to 2010 55 

accounted for about 2.5% of radiated energy globally, but the earthquake fatality ratio is around 1/3 of the world 

(Wu et al., 2013). Among the losses caused by natural disasters, buildings are considered as the most important 

asset category, since the main sources of loss and fatality that occurs during earthquakes are related to building 

damage and collapse (e.g., Neumayer and Barthel, 2011; Yuan, 2008). Information on the exposed value of 

buildings is key to seismic loss estimation, whose accuracy will further affect the effectiveness in earthquake 60 

response and rescue (Xu et al., 2016a). Therefore, in any seismic risk mitigation effort, the estimation of the 

building stock and the values at risk should be given top priority. This is even more urgent for seismic active and 

disaster vulnerable countries like China (Allen et al., 2009), where rapid urbanization has led to a massive increase 

in both the asset value and population that are exposed to a potential seismic hazard (Hu et al., 2010; Yang and 

Kohler, 2008). 65 

Modeling seismic loss to buildings requires quantifying their exposure in terms of floor area and monetary value 

(Paprotny et al., 2020). A series of micro-, meso- and macro-scale approaches have been developed for this purpose. 

The scale of the method depends not only on the size of the study area but also on the goal of the investigation, 

the availability of necessary data, time, money, and human resources (Messner and Meyer 2006). For example, 

micro-scale analyses calculate the asset value based on individual buildings, which requires detailed information 70 

on building characteristics (e.g., occupancy, age, structure type, building height, or the number of floors). However, 

since great efforts and considerable expenses are required to collect such information for each building, micro-

scale methods are rarely applicable on a regional or (inter)national level (e.g., Figueiredo and Martina, 2016; Erdik, 
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2017). When further limited by the privacy protection issue, information on asset values of individual buildings is 

more difficult to obtain (Wünsch et al., 2009). In contrast, meso- and macro-scale methods that use aggregated 75 

exposure data on building characteristics procured from official statistics and organized in administrative units 

(e.g., country, province, prefecture, county/district, etc.) are more commonly used in modeling building values 

exposed to future earthquakes. 

Since building-related statistics are usually aggregated at a coarse administrative level, while seismic hazards are 

usually modeled with high spatial resolution, there is a spatial mismatch between exposure data and hazard 80 

mapping (e.g., Chen et al., 2004; Thieken et al., 2006). This mismatch may delay and mislead the recuse decision-

making after large earthquakes. For example, after the occurrence of the Ms8.0 Wenchuan earthquake, one of the 

most severely affected areas, Qingchuan County, did not get an appropriate rescue response, while most of the 

recuse resources were sent to the less damaged Dujiangyan City. The major reason for this problem was: The 

exposure data (population, buildings) used to assess seismic loss were based on administrative units (Xu et al., 85 

2016). Therefore, to enhance seismic risk assessment accuracy, the aggregated building statistics data need to be 

spatialized into high-resolution grids levels. Several interpolation and decomposition methods (e.g., areal 

weighting, pycnophylactic interpolation, dasymetric mapping) have been developed for this purpose. Compared 

with the areal weighting method, in which the aggregated building data are evenly distributed (e.g., Goodchild et 

al. 1993), pycnophylactic interpolation method uses a smoothing function of distance to determine the 90 

disaggregation weight (e.g., Tobler, 1979) and tends to be more reasonable, since the distribution of buildings 

within an administrative unit is heterogeneous. Based on the pycnophylactic interpolation method, the dasymetric 

mapping method (Bhaduri et al., 2007) further utilizes finer resolution ancillary spatial data to augment the 

interpolation process and is now widely used.  

When using the dasymetric mapping method to spatialize the administrative level building exposure data, the 95 

selection of appropriate ancillary information is thought to be the most difficult part (Wu et al., 2018), since such 

information should not only be geo-coded and readily available but also have a high correlation with the building 

exposure data to be disaggregated. A range of remote sensing data (e.g., nightlight data, road density, land use/land 

type, population spatial distribution datasets, etc.) has been employed as ancillary information in the literature. A 

detailed summary of these ancillary data will be given in the Data Sources and Methodology section. 100 

Based on the aggregated building-related statistics and using the dasymetric mapping method, this paper develops 

a high-resolution residential building model (in terms of building floor area and replacement value) for seismic 

risk assessment in mainland China. This issue has been explored in many previous studies and a series of global 

and regional building exposure models have been developed. One famous such global model is the PAGER 

(Prompt Assessment of Global Earthquakes for Response) building inventory database, which is the first open, 105 

publicly available, transparently developed global model (Jaiswal et al., 2010). However, the PAGER inventory 

was developed to rapidly estimate human occupancies in different structure types for earthquake fatality 

assessment. It lacks information in actual building counts and does not use available information from a 

commercial database or remote sensing data, thus cannot be used for building asset evaluation immediately 

(Dell’Acqua et al., 2013). To overcome this difficulty, at least partially, the GED4GEM (the Global Exposure 110 

Database for the Global Earthquake Model) project develops a complementary approach that can provide a spatial 

inventory of exposed assets for catastrophe modeling and loss estimation worldwide (Gamba, 2014). The input 
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datasets ingested into the GED4GEM are at multiple spatial scales, from coarse country-level statistics to finer 

compilations of each building in some sample regions. There are also other global models, such as the series of 

building stock models released by the Global Assessment Report (De Bono and Chatenous, 2015; De Bono and 115 

Mora, 2014; De Bono et al., 2013) of the United Nations International Strategy for Disaster Reduction (UNISDR), 

and the global exposure dataset created by Gunasekera et al. (2015). When focusing on the modelling of building 

stock in China, a common limitation shared by these global models is that the building-related statistics they 

disaggregate are only of country/sub-country level, although finer level statistics are already available. Thus, a 

general assumption in the disaggregation process of these global models is that building stock value per capita 120 

within the country/sub-country is uniform. A similar assumption is also made in studies that develop building 

exposure models specifically for China (e.g., Yang and Kohler, 2008; Hu et al., 2010). For computational 

convenience, such an assumption is acceptable. However, for improving the seismic risk assessment accuracy in 

each specific country, more detailed aggregated data at a finer level, if available, should be fully employed in the 

development of their building exposure model.  125 

By considering the depreciation of all physical fixed assets (including residential and non-residential buildings, 

infrastructures, tools, machinery, and equipment), Wu et al. (2014) estimated the wealth capital stock (WKS) value 

for 344 prefectures in mainland China using the perpetual inventory method (PIM). Later, Wu et al. (2018) 

decomposed the prefecture-level WKS value into building assets, infrastructure assets, and other assets with fixed 

percentage shares of 44%, 19%, and 37% for all 344 prefectures. And these three asset components were further 130 

disaggregated into 800m×800m high-resolution grids by using LandScan population, road density, and nighttime 

light as ancillary information, respectively. The basic idea of combining the use of different ancillary information 

to disaggregate the WKS value in Wu et al. (2018) is good. However, the over-simplification in fixing the 

percentage shares of the building, infrastructure, and other assets in all prefectures limits the applicability of their 

results in actual seismic risk assessment. 135 

Based on the county-level building-related statistics extracted from the 2010-census records, Xu et al. (2016b) 

developed the nation-wide dasymetric foundation data (including population and buildings) for quick earthquake 

disaster loss assessment and emergency response in China by using the multi-variate regression method (Xu et al., 

2016a). The multivariate regression method used in Xu et al. (2016a) was explained in more detail by Chen et al. 

(2012) and Han et al. (2013), in which they developed the population and building exposure models for areas in 140 

Yunnan Province. Fu et al. (2014a) also used the multi-variate regression method to produce the 1km×1km 

resolution population grids in the years 2005 and 2010 for mainland China. Important assumptions in this 

multivariate regression method are: (1) The spatial distribution of population is limited within the six land use 

types (namely cultivated land, forest land, grass land, rural residential land, urban residential land, industrial and 

transportation land) recognized from the Landsat TM images; (2) For counties with similar geographical and 145 

demographic characteristics (e.g., population number, structure and economy development level), the population 

density within each land use type is the same. Recently, Lin et al. (2020) conducted a township/street level 

comparison of population models generated by Fu et al. (2014a) and other institutes for Guangdong Province, 

China with the surveyed population in 2010-census records. Their comparison shows that the township/street level 

population generated by using the multi-variate regression method in Fu et al. (2014a) tends to overpredict the 150 

population density in a sparsely populated area and underpredict the population density in a densely populated 

area, especially the downtown area of metropolitan cities like Shenzhen and Guangzhou. The reasons for such 
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discrepancies are that: (1) The population density developed for each land use type by using the multi-variate 

regression method is the average population density, thus the over/under prediction of the actual population density 

in certain areas is inevitable; (2) When applying the multi-variate regression method, no additional supplementary 155 

data (e.g., road density, nighttime light) is employed to adjust the level of development in different regions, which 

is necessary because the level of development is much higher than the average in places such as the downtown 

area of metropolitan cities like Shenzhen and Guangzhou.The reason for these discrepancies is obvious: Since the 

population density developed for each land use type by using the multi-variate method is the average population 

density. Although the building exposure model developed by Xu et al. (2016b) has not yet been tested, we conclude 160 

that the model of Xu et al. (2016b) also suffers from the over/under prediction problem in Fu et al. (2014a). 

To overcome the limitations in building exposure models developed for mainland China in previous studies, this 

paper aims to present an improved method for generating a high-resolution residential building stock model (in 

terms of building floor area and replacement value) for mainland China. The main improvements in this paper are: 

(1) Compared with global building exposure models, we will use finer urbanity level (urban, township and rural) 165 

building related statistics extracted from the 2010-census records as model inputs; (2) Compared with Wu et al. 

(2018), in which the building assets are decomposed from the composite WKS value with fixed percentage share 

for all prefectures, we will use statistics that are directly related to residential buildings for each urbanity level of 

each province; (3) Compared with Xu et al. (2016b), in which only land use data are employed in the multi-variate 

method to derive the average building floor area density within each grid, we will use the ancillary population 170 

density profile generated from the 2015 Global Human Settlement Layer (GHSL), which is considered to be the 

best available assessment of spatial extents of human settlements with unprecedented spatial-temporal coverage 

and detail (e.g., Freire et al., 2016). 

The organization of the paper is as follows. Sect. 2 (Data Sources and Methodology) will firstly describe the 

building-related statistics to be used as model inputs that extracted from the 2010-census records (Sect. 2.1), the 175 

review and selection of ancillary data to disaggregate these statistics into grid level (Sect. 2.2), and the derivation 

of residential building floor area and replacement value in each grid based on these statistics and the ancillary data 

(Sect. 2.3 and 2.4). Then the major results will be presented (Sect. 3.1) and comparisons with other independent 

data sources will be conducted (Sect. 3.2). Limitations in this paper and further improvement directions will also 

be discussed in Sect. 4.  Conclusions will be drawn in Sect. 5. 180 

2. Data Sources and Methodology 

In dasymetric mapping, the use of finer scale census data as input and the choice of appropriate ancillary remote 

sensing data to disaggregate the census data into a higher grid level are the two controlling factors for the quality 

of the building stock model. For China, after the 2010 Sixth Population Census (namely the 2010-census), detailed 

statistical data related to residential building characteristics (e.g., building occupancy, structure type, height classes, 185 

etc.) are available for each province at the urbanity level (urban/township/rural). These urbanity level building-

related statistics are good data sources to develop the building exposure model for China. To disaggregate these 

statistics into grid level, the correlation between the ancillary remote sensing data and the building-related statistics 

needs to be established. Then, the building floor area and replacement value at the grid level can be estimated. 

Therefore, in this section we will introduce the residential building-related statistics as extracted from the 2010-190 
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census records, the review/selection of ancillary remote sensing data to disaggregate these statistics into grid level, 

and the method to derive the grid level residential building floor area and replacement value based on these 

statistics and the ancillary remote sensing data. 

2.1 The building-related statistics in the 2010-census records 

The statistics to be used in this paper for building stock modeling are extracted from the Tabulation of the 2010 195 

Population Census of the People’s Republic of China (namely the 2010-census) particularly for residential 

buildings. Like in most countries of the world, the nation-wide population and housing census in China are carried 

out at the 10-year interval. Detailed statistics for the year 2020 are not publicly accessible yet. Therefore, census 

data for the year 2010 will be used to elaborate the modeling processThe census for the year 2020 is just initiated 

and normally it takes around two years to publish the final surveyed data. Therefore, the current latest census data 200 

are for the year 2010. In the 2010-census, there are two types of tables: Long Table and Short Table. Long Table 

includes summaries based on the surveys of 10% of the total population in mainland China, while the Short Table 

summaries are based on the surveys of the whole population. Statistics on building characteristics (e.g., building 

occupancy type, height classes, structure type, etc.) are extracted from the Long Table of the 2010-census. 

Supplementary demographic statistics (e.g., the total population in each urbanity, the average number of people 205 

per family, and average floor area per person) are extracted from the Short Table of the 2010-census. A detailed 

introduction of corresponding sources of these data is given in Table 1.  

For each of the 31 provincial administrative units in mainland China (including five autonomous regions: Xinjiang, 

Tibet, Ningxia, Inner Mongolia, Guangxi; and four municipalities: Beijing, Shanghai, Tianjin, Chongqing; 

hereafter all referred to as provinces), statistics on building characteristics in the Long Table of the 2010-census 210 

are aggregated into three urbanity levels (urban/township/rural). The urbanity attribute is determined according to 

the administrative unit of the surveyed population. As listed in Table 2, these statistics will be used as model inputs 

to develop the grid level residential building model in terms of floor area and replacement value. Compared with 

country/sub-country level census data used in previous global or regional models, the further categorization of 

building-related statistics into urbanity level in the 2010-census helps differentiate the spatial heterogeneity of 215 

buildings within each province, since the building-related statistics of the same urbanity level are from areas with 

similar development background but different administrative units. The spatial administrative boundaries used in 

this paper are from the National Geomatics Centre of China (see Data/Code Availability section for access). 

2.2 Review/Selection of ancillary remote sensing data for dasymetric building stock modeling 

Before disaggregating the urbanity level building-related statistics into 1km×1km grid level, appropriate ancillary 220 

information needs to be carefully selected and evaluated. The use of remote sensing data as ancillary information 

to determine the disaggregation weight is common in dasymetric modeling and has been frequently adopted in 

previous studies (e.g., Aubrecht et al. 2013; Gunasekera et al., 2015; Silva et al., 2015). The most commonly used 

remote sensing data include land use/land cover data (LULC, e.g., Eicher and Brewer, 2001; Wünsch et al., 2009; 

Seifert et al., 2010; Thieken et al., 2006), nighttime light data (e.g., Doll et al 2006; Ghosh et al, 2010; Chen and 225 

Nordhaus 2011; Ma et al., 2012) and road density data (e.g., Gunasekera et al., 2015; Wu et al., 2018). According 

to Wu et al. (2018), the LULC, nighttime light, road density data can be categorized as primary remote sensing 

data. 
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Each primary remote sensing data has its pros and cons when used for dasymetric disaggregation. For example, 

studies using LULC data (e.g., Globcover, GLC2000, MODIS, GlobeLand30) assume the population within each 230 

land-use type is uniformly distributed, which is a better assumption compared with believing in an evenly 

distributed population within an administrative unit. But this assumption is not consistent with the real situation. 

(Thieken et al., 2006), specifically in suburban and rural areas, where the dispersion of population is greater than 

in urban areas (Bhaduri et al., 2007). Therefore, LULC data is inadequate to fully reflect the spatial heterogeneity 

within each land use or land cover class.  In contrast, nighttime light data, acquired by the U.S. Air Force Defense 235 

Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) (Elvidge et al., 2007) and provided 

by the National Oceanic and Atmospheric Administration (NOAA) every year, are considered the most suitable 

ancillary information for indicating both the distribution and the density of human settlements and economic 

activities (Wu et al., 2018). Nighttime light data have been widely used to produce grid-based global population 

and GDP data sets (e.g., Ghosh et al, 2010; Chen and Nordhaus 2011; Ma et al., 2012). However, the drawbacks 240 

of nighttime light intensity data are also obvious. Limited by the operating conditions of DMSP satellites, the range 

of nighttime light density is within a narrow interval of 0-63, thus leading to the pixel oversaturation in urban 

centers (Elvidge et al., 2007). For areas other than city centers (e.g., mountainous rural area), the coverage of 

nighttime light data is incomplete as it cannot correctly reflect the distribution of nonluminous objects (e.g., road 

transportation facilities, electricity infrastructure). Compared with the LULC and nighttime light data, road 245 

distribution data are more frequently used for assessing infrastructure assets, since power lines, energy pipelines, 

water supply, and sewage pipelines are generally buried along the roads (Wu et al., 2018). Currently, road density 

data can be converted from road networks like OpenStreetMap, which is an openly available but crowdsourced 

online database (Zhang et al., 2015). As these data are not systematically compiled, there is still room for 

improvements (Wu et al., 2018).  250 

Given the limitation of each primary remote sensing data, a series of secondary ancillary datasets are developed 

based on the combined use of these primary datasets. For example, the famous LandScan population density profile 

was produced by apportioning the best available census counts into cells based on probability coefficients, which 

were derived from road proximity, slope, land cover, and night-time lights (Dobson et al., 2000). Based on these 

primary and secondary ancillary datasets, a series of studies have been conducted to disaggregate administrative 255 

level building census data into geo-coded grids. For example, Silva et al. (2015) disaggregated the building stock 

at parish level for mainland Portugal based on the population density profile at 30×30 arc-sec resolution cells from 

LandScan. Gunasekara et al. (2015) developed an adaptive global exposure model (including three independent 

geo-referenced databases, namely building inventory stock, non-building infrastructure, and sector-based GDP), 

in which build-up area and LandScan population density are used to disaggregate country-level exposed asset 260 

value. Wu et al. (2018) established a high-resolution asset value map for mainland China by spatializing the 

prefecture-level depreciated capital stock value into girds using the combination of three ancillary datasets—

nighttime light, LandScan population, and road density, to name just a few. 

In this paper, we follow the assumption of Thieken et al. (2006) that the distribution of residential asset values can 

be directly reflected by population distribution. Now the remaining question is to select appropriate ancillary 265 

population spatial distribution data to disaggregate building-related statistics in the 2010-census records. The 

candidate population datasets include Gridded Population of the World (GPW, Balk and Yetman, 2004), Global 

Rural-Urban Mapping Project (GRUMP) population (see section Data/Code Availability), LandScan (Bhaduri et 
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al., 2007), WorldPop (Linard et al., 2012) or AsiaPop (Gaughan et al., 2013), PopGrid China (Fu et al., 2014b), 

Global Human Settlement Layer (GHSL) population grids (Freire et al., 2016; Pesaresi et al., 2013) etc. GPW is a 270 

product of simple areal weighting interpolation and GRUMP is derived through simple dasymetric modeling, while 

LandScan is structurally a multidimensional dasymetric model (Bhaduri et al., 2007). According to Gunasekera et 

al. (2015), the LandScan gridded population dataset was identified as the best-suited dataset for exposure 

disaggregation, while other gridded population datasets such as GPW and GRUMP were too coarse in resolution 

and accuracy. According to Wu et al. (2018), LandScan, AsiaPop, and PopGrid China are the most promising 275 

population density datasets for asset value disaggregation in China since they all contain high-resolution attributes. 

However, some population data of China are missing from the current AsiaPop. And compared with LandScan, 

the spatial coverage of PopGrid China is limited,. which is due to an assumption in its development method, 

namely the multi-variate regression method (Fu et al., 2014a). It was assumed that the spatial distribution of 

population is limited to the six land use types recognized from the Landsat TM images, namely cultivated land, 280 

forest land, grass land, rural residential land, urban residential land, industrial and transportation land. However, 

in reality, the population is distributed more widely beyond these land use types. Thus, the LandScan dataset was 

used for the final disaggregation of building assets in Gunasekera et al. (2015) and Wu et al. (2018). However, due 

to its commercial nature, the details to create the LandScan population datasets are less transparent, although being 

considered as one of the best global population density data sets (Sabesan et al., 2007). In contrast, the population 285 

datasets developed by the GHSL project of Joint Research Center of the European Commission based on the global 

human settlement areas extracted from multi-scale textures and morphological features are transparent and freely 

available. The built-up area in GHSL was built by combining the MODIS 500 Urban Land Cover (MODIS500) 

and the LandScan 2010 population layer and are among the best-known binary products based on remote sensing 

(Ji et al., 2020). Preliminary tests confirm that the quality of the information on built-up areas delivered by GHSL 290 

is better than other available global information layers extracted by automatic processing of Earth observation data 

(Lu et al., 2013; Pesaresi et al., 2016). Furthermore, Different from LandScan, which aims at representing the 

ambient population, namely the average population over a typical diurnal cycle (Elvidge et al., 2007), GHSL 

population grids represent the residential population in buildings (Corbane et al., 2017). The building-related 

statistics in the 2010-census are also for residential buildings. Therefore, the GHSL population grids are the best 295 

candidate ancillary information for this paper to disaggregate the urbanity level building-related statistics extracted 

from the 2010-census records into grid level. The high correlation (R2 = 0.9662, as shown in Fig. 1) between the 

GHSL population and the 2010-census recorded population at the county-level further indicates its appropriateness. 

Detailed county-level population correlation analyses for each of the 31 provinces in mainland China are also 

provided and can be found from the online supplement. The accesses to the remote sensing data mentioned above 300 

are provided in the Data/Code Availability section. 

2.3 Assign urbanity attribute (urban/township/rural) to the geo-coded grids in the 2015 GHSL population 

density profile 

In the 2015 GHSL population density profile, the number of populations in each geo-coded grid is given (it is 

worth noting that this dataset has been updated in 2019 during the preparation of this work). The original resolution 305 

of the 2015 GHSL population density profile is 250m×250m. For computational convenience, it is resampled to 

1km×1km resolution before further analysis. Based on the urbanity level residential building-related statistics 

extracted from the 2010-census records, a top-down dasymetric mapping method will be performed to disaggregate 
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the urbanity level statistics into 1km×1km resolution grids for mainland China. The urbanity attribute of statistics 

in the 2010-census records is determined according to the administrative unit of the surveyed population. For 310 

example, if a residence is from a village, then the related statistics are aggregated into rural urbanity level; and if 

from a town, then it is township level; if from a city, it is urban level. However, for the geo-coded population grids 

in the 2015 GHSL profile, the corresponding urbanity attributes remain to be defined. Therefore, before performing 

the disaggregation, we will first define the urbanity attribute of each geo-coded grid in the 2015 GHSL profile by 

applying the reallocation approach developed by Aubrecht and Leon Torres (2015) and illustrated in Gunasekera 315 

et al. (2015). 

Aubrecht and Leon Torres (2015) identify the geospatial areas of mixed and residential grids within the urban 

extent of Cuenca City, Ecuador by using the Impervious Surface Area (ISA) data as they show strong spatial 

correlations with the built-up areas. The assumption behind their method was that intense lighting is associated 

with a high likelihood of commercial and/or industrial presence (which is commonly clustered in certain parts of 320 

a city, such as central business districts and/or peripheral commercial zones, and such areas are defined as “mixed-

use area”), and areas of low light intensity are more likely to be pure residence zone (defined as “residential use 

area”). In Gunasekera et al. (2015), a similar procedure was used in developing the building stock model for the 

entire globe. The difference is that Gunasekera et al. (2015) sorted the grids according to the population density in 

the LandScan population dataset and assigned the gird with urban/rural attributes. For each country, the largest 325 

and most populated contiguous grids are classified as urban. This step was repeated iteratively until the urban 

population proportion for each country was reached. 

In this paper, to assign the urbanity attributes (namely urban/township/rural) to geo-coded population grids in the 

2015 GHSL profile, for each province we follow the urban/township/rural population proportions (as listed in 

Table 3) derived from the population statistics in the Short Table of the 2010-census. The assumption behind this 330 

urbanity attribute assignment practice is that the larger the population density in a grid, the higher its potential to 

be assigned as “urban”. An example demonstrating the distribution of the 2015 GHSL population grids assigned 

with urban/township/rural attributes for Baoshan District of Shanghai is shown in Fig. 2. For instance, in Shanghai, 

the urban/township/rural population proportion derived from the 2010-census records is 76.64%, 12.66%, and 

10.7%, respectively. Then, following Gunasekera et al. (2015), the grids (1km×1km) in the 2015 GHSL profile of 335 

Shanghai are sorted from the largest to the smallest in population density. The population in those most populated 

grids are selected and summed up until the urban population proportion (i.e., 76.64% for Shanghai) is reached. 

Then those selected grids are assigned with the “urban” attribute and the smallest population among these grids 

determines the threshold to divide urban and non-urban grids (for Shanghai this urban/non-urban grid population 

threshold is 4936 per km2). For the remaining non-urban grids, the same process is repeated iteratively until the 340 

township population proportion (i.e., 12.66% for Shanghai) is reached. These grids are assigned with the “township” 

attribute and the smallest population among these grids determines the threshold to divide township and rural grids 

(for Shanghai this township/rural grid population threshold is 2750 per km2). The remaining grids are thus assigned 

with the “rural” attribute. The urban/township and township/rural population thresholds for 31 provinces in 

mainland China are listed in Table 3. This process is repeated for all provinces. 345 
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2.4 Residential building stock modeling process 

The following section will introduce the key steps in residential building stock modeling, including the 

disaggregation of urbanity level statistics extracted from the 2010-census records into grid level, the 

reclassification of building subtypes with both structure type and storey class, the derivation of residential building 

floor area and replacement value in each grid. The flowchart in Fig. 3 gives an overview of the whole modeling 350 

process. 

2.4.1 Step 1 - Disaggregate urbanity level building-related statistics from the 2010-census into grid level 

Like in many other countries, the population and housing census data in mainland China are particularly surveyed 

for residential buildings. Therefore, the building stock model developed in this paper is for residential building 

stock. As listed in Table 2, building-related statistics extracted from the 2010-census records include the number 355 

of families living in buildings grouped either by the number of the storey (i.e., 1, 2-3, 4-6, 7-9, ≥10) or by structure 

type (i.e., steel/reinforced-concrete, mixed, brick/wood, other; hereafter steel/reinforced-concrete is abbreviated 

as steel/RC; and “mixed” refer to different combinations of masonry buildings), the average population per family 

and the average floor area per capita. For each urbanity level of each province, the number of families living in 

buildings grouped by storey number or structure type is extracted from the Long Table of the 2010-census, which 360 

is based on the survey of only 10% of the total population in mainland China (as noted in Table 1). Therefore, the 

number of families living in different building types needs to be extended from 10% to 100% population first. This 

is achieved directly by multiplying the number of families with the factor of 10 (namely factor F0 in Step 1-1 of 

Fig. 3). Multiplying the number of families with the average number of population per family (namely factor F1 

in Step 1-2 of Fig. 3, with values listed in Table 2) provides the number of populations living in buildings grouped 365 

by storey number (1, 2-3, 4-6, 7-9, ≥10) or structure type (steel/RC, mixed, other, brick/wood) for each urbanity 

of each province. 

The geo-coded population grids in the 2015 GHSL profile with assigned urbanity attributes (Sect. 2.3) and the 

number of populations living in buildings grouped by storey number or structure type derived for each urbanity of 

each province seem to allow the direct disaggregation of the 2010-census statistics into the 2015 GHSL grids. 370 

However, the GHSL population is for the year 2015, while the derived population living in different structure type 

or storey class from the building-related statistics is for the year 2010. The increase in population/building from 

2010 to 2015 must be considered. Here we assume that the increase in population living in buildings grouped by 

storey class or structure type from 2010 to 2015 is equal to the increase in population from the 2010-census records 

to the 2015 GHSL profile. Therefore, for each urbanity of each province, the derived number of populations living 375 

in building types grouped by storey class or structure type (after performing Step 1-1 and 1-2 in Fig. 3) will be 

further amplified to the year 2015 by multiplying the population amplification factor (namely factor F2 in Step 1-

3 of Fig. 3). For each urbanity of each province, the value of F2 is equal to the ratio of the 2015 GHSL population 

to the sum of the population living in buildings of different occupancy types. For example, in urbanity “1001” of 

Anhui province in Table 2, the value of F2 (1.32) results from the ratio of the 2015 GHSL population (12165295) 380 

to the product of the number of families living in three occupancy types (331730+9035+287 = 341052; based on 

surveys of 10% of the whole population), the average number of population per family (F1 = 2.71), and the factor 
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to extend the 10% population survey to 100% population (F0 = 10), namely 12165295 / (341052×2.71×10) = 

1.32.  

Thus, for each urbanity of each province, the number of populations living in buildings grouped by storey class or 385 

structure type in 2015 is derived by multiplying the original number of families living in different building types 

(based on surveys of 10% of the whole population) in Table 2 with factor F0, F1, F2. These urbanity level statistics 

can be disaggregated into the geo-coded grids of the 2015 GHSL profile. The population share in each grid (relative 

to the sum of population of grids with the same urbanity) is used as the disaggregation weight (namely factor F3 

in Step 1-4 of Fig. 3). By multiplying the urbanity level population living in buildings grouped by storey class or 390 

structure type with the disaggregation factor F3 of each grid, the grid level number of populations living in 

buildings grouped by storey class or structure type can be directly derived. 

2.4.2 Step 2 - Derive the population living in the 17 building subtypes within each grid 

As explained in Section 2.4.1, after multiplying the original number of families living in different building types 

extracted from the 2010-census records (Table 2, based on surveys of 10% of the whole population) with factor 395 

F0, F1, F2, and F3 in Step 1 of Fig. 3, the grid level populations living in buildings grouped either by the number 

of storey (1, 2-3, 4-6, 7-9, ≥10) or by structure type (steel/RC, mixed, other, brick/wood) are derived for all geo-

coded grids in the 2015 year level. To further estimate the residential building floor area and replacement value in 

each grid, we need to evaluate the unit construction prices of the building types in each grid. Currently, the building 

types are grouped either by storey number or by structure type, and they need to be reclassified into building 400 

subtypes with both storey class and structure type attributes. Then it will be easier and more reasonable to estimate 

the unit construction prices of these building subtypes, compared to the estimation made in studies based on 

building occupancy type (e.g., Wu et al., 2019). 

In the following description, we will first introduce the reclassification of building subtypes with both storey class 

and structure type attributes. Then we will estimate the population living in each of the 17 building subtypes. Based 405 

on the statistics of average floor area per capita in each urbanity level extracted from the 2010-census records (as 

listed in Table 2), the total floor area of each of the 17 building subtypes in each grid can be derived. Finally, for 

each building subtype, their replacement value emerges from a multiplication of the floor area with the unit 

construction price. 

By combining the five storey classes (1, 2-3, 4-6, 7-9, ≥10) with the four structure types (steel/RC, mixed, other, 410 

brick/wood), the building types in the 2010-census records can be initially reclassified into 20 building subtypes. 

According to Hu et al. (2015) and Wang et al. (2018), most brick/wood buildings are with quite low height (1 or 

2-3 storey), while steel/RC buildings are generally quite high with 10-storey height and above. Therefore, in this 

paper it is assumed that for “brick/wood” structure type, there are only two storey classes (1, 2-3); while for 

“steel/RC”, “mixed”, and “other” structure types, all five storey classes (1, 2-3, 4-6, 7-9, ≥10) are available (namely 415 

the assumptions in Step 2-1 and 2-2 of Fig. 3). Thus, the number of building subtypes with known storey class and 

structure type is reduced from 20 to 17. The abbreviations of these 17 building subtypes are listed in Table 4. 

After performing the calculations in Step 1 of Fig. 3, the grid level populations living in buildings grouped either 

by the number of storey (1, 2-3, 4-6, 7-9, ≥10) or by structure type (steel/RC, mixed, other, brick/wood) are 
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derived for all geo-coded grids. Thus, we know in each grid the number of population living in buildings of the 420 

five storey classes, but we do not know for each storey class how the population is distributed among the four 

structure types. Also, we know how many people live in steel/RC buildings or other structure types, but for each 

structure type, we do not know how they are distributed into the five storey classes. For each grid, to derive the 

number of population living in each of the 17 building subtypes with known structure type and storey class, we 

need to solve 17 unknown variables from 9 equations. The 9 equations are listed as follows: 425 

𝐵𝑅𝐼𝑊𝑂𝑀𝐶1 + 𝑆𝑇𝐿𝑅𝐶𝑀𝐶1 + 𝑀𝐼𝑋𝐸𝐷𝑀𝐶1 + 𝑂𝑇𝐻𝐸𝑅𝑀𝐶1 = 𝑁𝑢𝑚𝑠𝑡𝑜𝑟𝑒𝑦1 (1) 

𝐵𝑅𝐼𝑊𝑂𝑀𝐶23 + 𝑆𝑇𝐿𝑅𝐶𝑀𝐶23 + 𝑀𝐼𝑋𝐸𝐷𝑀𝐶23 + 𝑂𝑇𝐻𝐸𝑅𝑀𝐶23 = 𝑁𝑢𝑚𝑠𝑡𝑜𝑟𝑒𝑦23 (2) 

𝑆𝑇𝐿𝑅𝐶𝑀𝐶46 + 𝑀𝐼𝑋𝐸𝐷𝑀𝐶46 + 𝑂𝑇𝐻𝐸𝑅𝑀𝐶46 = 𝑁𝑢𝑚𝑠𝑡𝑜𝑟𝑒𝑦46 (3) 

𝑆𝑇𝐿𝑅𝐶𝑀𝐶79 + 𝑀𝐼𝑋𝐸𝐷𝑀𝐶79 + 𝑂𝑇𝐻𝐸𝑅𝑀𝐶79 = 𝑁𝑢𝑚𝑠𝑡𝑜𝑟𝑒𝑦79 (4) 

𝑆𝑇𝐿𝑅𝐶𝑀𝐶10 + 𝑀𝐼𝑋𝐸𝐷𝑀𝐶10 + 𝑂𝑇𝐻𝐸𝑅𝑀𝐶10 = 𝑁𝑢𝑚𝑠𝑡𝑜𝑟𝑒𝑦10 (5) 430 

𝐵𝑅𝐼𝑊𝑂𝑀𝐶1 + 𝐵𝑅𝐼𝑊𝑂𝑀𝐶23 = 𝑁𝑢𝑚𝐵𝑅𝐼𝑊𝑂 (6) 

𝑆𝑇𝐿𝑅𝐶𝑀𝐶1 + 𝑆𝑇𝐿𝑅𝐶𝑀𝐶23 + 𝑆𝑇𝐿𝑅𝐶𝑀𝐶46 + 𝑆𝑇𝐿𝑅𝐶𝑀𝐶79 + 𝑆𝑇𝐿𝑅𝐶𝑀𝐶10 = 𝑁𝑢𝑚𝑆𝑇𝐿𝑅𝐶 (7) 

𝑀𝐼𝑋𝐸𝐷𝑀𝐶1 + 𝑀𝐼𝑋𝐸𝐷𝑀𝐶23 + 𝑀𝐼𝑋𝐸𝐷𝑀𝐶46 + 𝑀𝐼𝑋𝐸𝐷𝑀𝐶79 + 𝑀𝐼𝑋𝐸𝐷𝑀𝐶10 = 𝑁𝑢𝑚𝑀𝐼𝑋𝐸𝐷 (8) 

𝑂𝑇𝐻𝐸𝑅𝑀𝐶1 + 𝑂𝑇𝐻𝐸𝑅𝑀𝐶23 + 𝑂𝑇𝐻𝐸𝑅𝑀𝐶46 + 𝑂𝑇𝐻𝐸𝑅𝑀𝐶79 + 𝑂𝑇𝐻𝐸𝑅𝑀𝐶10 = 𝑁𝑢𝑚𝑂𝑇𝐻𝐸𝑅 (9) 

The 17 to-be-solved variables on the left side of this equation set represent the numbers of populations living in 435 

the 17 buildings subtypes (as defined in Table 4); on the right side, the numbers are populations living in buildings 

classified by fives storey class and four structure types, which are already known after performing the calculations 

in Step 1 of Fig. 3. Since this set of 9 equations contains 17 unknown variables, it is an underdetermined linear 

problem. In order to provide values for the 17 unknowns, additional assumptions have to be utilized.  

The strategy we employ here to derive the population living in each of the 17 building subtypes of each grid is a 440 

series of distribution steps based on a prioritized ranking of building types and storey classes. For example, we 

first assign 1 storey class buildings into brick/wood structure type and distribute≥10-storey class as steel/RC 

structure type (following the assumptions in Step 2-1 and 2-2 of Fig. 3). Although this distribution strategy may 

deviate from the actual situation, the basic requirement, that in each grid the sum of the population living in the 17 

building subtypes is equal to the population living in building types grouped by structure type or by storey class, 445 

is satisfied. The main distribution steps are summarized in Appendix A. 

2.4.3 Step 3 - Derive the residential floor area of the 17 residential building subtypes in each grid 

Based on the distribution processes in Appendix A, we derive the number of populations living in each of the 17 

building subtypes in each gird. To derive the residential floor area of each building subtype, the average residential 

floor area per capita is needed, which is given in the Short Table of 2010-census (namely factor F4 in Step 3-1 of 450 

Fig. 3) for each urbanity level of each province. Therefore, the floor area of the 17 building subtypes in each grid 

can be directly derived. This grid level residential building floor area distribution map is available from the online 

supplement. Comparison between the modeled floor area and the 2010-census recorded floor area for residential 

buildings at county/district-level will be performed in Sect. 3.2.2. 

2.4.4 Step 4 - Derive the replacement value of the 17 residential building subtypes in each grid 455 

With the residential building floor area for each building subtype in each grid being derived in Step 3, to get the 

corresponding replacement value, the unit construction prices of the 17 building subtypes need to be estimated 
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(namely factor F5 in Step 4-1 of Fig. 3). Given the uniqueness of the building reclassification strategy adopted in 

this paper, there are no standard unit construction price evaluations for the building subtypes we use here. 

Therefore, we estimate the unit construction prices of the 17 building subtypes (as listed in Table 4) by averaging 460 

the construction prices given in different literature (e.g., 2015 China Construction Statistical Yearbook, the World 

Housing Encyclopedia, real-estate agency reports, etc.). For the 17 building subtypes in each grid, by multiplying 

their floor area with the corresponding unit construction price in Table 4, their replacement values can be directly 

derived. This grid level residential building replacement value distribution map is also available from the online 

supplement. We emphasize that in this paper, the term “replacement value” refers to the amount of money needed 465 

to rebuild a property exactly as it is before its destruction regardless of any depreciation, namely the gross capital 

stock. A prefecture-level comparison between our modeled residential building replacement value and the wealth 

capital stock value in Wu et al. (2014) will be given in Sect. 3.2.1. 

3. Results and Performance Evaluation 

3.1 Results 470 

3.1.1 Modeled floor area and replacement value for residential buildings in each urbanity of each province 

The grid level residential building floor area and replacement value (unit: RMB, in 2015 current price) are 

aggregated into urbanity level (urban/township/rural) for each province, as listed in Table 5. The total modeled 

residential building floor area for mainland China in 2015 reaches 42.31 billion m2. By applying the same unit 

construction prices for the same 17 building subtypes in all the urban/township/rural areas of the 31 provinces, the 475 

initially modeled replacement value of residential buildings in mainland China is 77.8 trillion RMB (in 2015 

current price). It is clear that like all other building stocks, the Chinese building stock is a complicated economic, 

physical and social system (Yang and Kohler, 2008). There are significant differences across the country in terms 

of economic development level, geographic and climatic diversity, and standardization in building construction. 

Therefore, it is mainly for computational convenience that this paper applies the same unit construction price for 480 

all the provinces and all the urbanity levels. To improve accuracy in future seismic risk assessment, the unit 

construction prices of specific building types in the target study area should be adjusted accordingly. 

3.1.2 An example illustrating the distribution of modeled floor area in Shanghai 

For better visualization of the modeled floor area at grid level and to help potential readers to conduct direct 

comparison with other reports or modeling results, we plot the residential building floor area distribution map and 485 

the 2015 GHSL population of Shanghai as an example. As can be seen from Fig. 4, grids with a high density of 

floor area typically cluster in the downtown area (including eight administrative districts, namely Yangpu, 

Hongkou, Zhabei, Putuo, Changning, Xuhui, Jing’an, and Huangpu) and the Pudong district. This corresponds to 

the fact that these districts are the most developed in Shanghai. As revealed by the 3D-view of the population 

distribution in panel (c) of Fig. 4, districts with a high density of floor area also have a high population density. 490 



 

14 

3.2 Performance Evaluation 

As of now, we have developed a high-resolution (1km×1km) residential building stock model (in terms of floor 

area and replacement value) for mainland China. This model is established by disaggregating the urbanity level 

building-related statistics in 2010-census records into grid level and using the 2015 GHSL geo-coded population 

as the disaggregation weight. Due to the approximations and assumptions made in the modeling process, the 495 

reasonability and consistency of the modeled results need to be evaluated. Due to the typical lack of official 

statistics on high-resolution building stock from the government (Wu et al., 2018), direct comparison of the 

modeled floor area and replacement value at grid level with that from official census or statistical yearbooks are 

not instantly available. Instead, we will compare our modeled results with other studies or census records at a 

coarser level. Moreover, since the development of such a high-resolution residential building model is mainly 500 

targeted for seismic risk assessment in mainland China, we will also apply our modeled results to seismic loss 

estimation combining with the 2008 Wenchuan Ms8.0 earthquake intensity map and an empirical loss function. 

The estimated losses will be compared with those recorded in affected counties/districts of Sichuan Province.  

3.2.1 Prefecture-level comparison between the modeled residential building replacement value and the net 

capital stock value estimated in Wu et al. (2014) 505 

Due to the lack of officially published datasets on the value of fixed capital stock in China (Wu et al., 2018), 

previous studies (e.g., Holz, 2006; Wang and Szirmai, 2012) mainly employed the perpetual inventory method 

(PIM) in which economic indicators (e.g., gross fixed capital formation, total investment in fixed assets, etc.) are 

used. The resolutions of these estimations were almost exclusively limited at national/provincial-level (Wu et al., 

2014). This coarse spatial resolution forms a major obstacle in applying the model in disaster loss estimation, 510 

where high-resolution hazard data are used. To overcome this gap, Wu et al., (2014) estimated the net capital stock 

values from 1978 to 2012 for 344 prefectures in mainland China by using the PIM. In their Appendix Table A1, 

the net capital stock values calculated in 2012 current price for 344 prefectures were provided, with the 

depreciation of all exposed assets (i.e., residential and non-residential building structures, tools, machinery, 

equipment, and infrastructure) being considered. 515 

To compare with the net capital stock value in Wu et al. (2014), the grid level residential building replacement 

value modeled in this paper (namely the gross value of residential building stock) was aggregated into prefecture-

level. Pearson’s correlation coefficient (R2) was used to measure the degree of collinearity between two datasets, 

with higher R2 indicating a stronger correlation. As shown in Fig. 5, there is a high correlation (R2 = 0.9512) 

between our residential building replacement values and the net capital stock values in Wu et al. (2014) at the 520 

prefecture-level. The absolute replacement value of residential buildings is around 0.54 times the net capital stock 

value in Wu et al. (2014). To explain this discrepancy, we collected the annual fixed asset investment on residential 

buildings and on all types of buildings for each of the 31 provinces during the years 2004-2014 from the statistical 

yearbooks (detailed statistics are available from the online supplement). As can be seen from Fig. 6, for each 

province the sum of fixed asset investment on residential buildings during 2004-2014 is around 0.45 times the 525 

investment on all types of buildings, quite close to the 0.54 ratio in Fig. 5. The replacement value we estimate is 

purely for residential buildings without depreciation, while the net capital stock value in Wu et al. (2014) includes 
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depreciation of all exposed assets (residential, non-residential buildings, infrastructures, and equipment). Thus, we 

consider our model results as reasonable. 

3.2.2 County/prefecture-level comparison between modeled residential building floor area and records in 530 

the 2010-census 

Compared with previous studies related to building stock modeling in China, we have used finer urbanity level 

building-related statistics as input to generate the grid level residential building stock model. In each urbanity, the 

building-related statistics extracted from the 2010-census records are from areas with a similar development 

background, but they belong to different administrative units (i.e., prefectures and counties). Also, within the same 535 

prefecture or county, the geo-coded grids are of different urbanity attributes. Therefore, the reliability of our model 

can be better proved if the modeled results correlate well with actual records at the county or prefecture-level. 

After a thorough search, we find that county-level records of residential building floor area are also available for 

28 provinces in mainland China, except for Hunan, Liaoning, and Sichuan provinces, for which only prefecture-

level records of residential building floor area can be found from the 2010-census records. Then, to compare our 540 

modeled floor area with the 2010-census records at the county/prefecture-level, the modelled grid level residential 

building floor area was first aggregated into counties/districts for the 28 provinces, and prefectures for Hunan, 

Liaoning, and Sichuan, respectively. The final comparison between our estimated residential building floor area 

with that recorded in the 2010-census is plotted in Fig. 7. 

As can be seen from Fig. 7, there is a high correlation (R2 = 0.9376) between modeled floor area and that recorded 545 

in the 2010-census at the county/prefecture-level. The regression relation indicates that our modeled floor area for 

2015 is around 1.14 times that in the 2010-census. In Step 1-3 of the modeling process (Fig. 3), for each urbanity 

level of each province, the building-related statistics extracted from the 2010-census records were amplified into 

the 2015 level by multiplying the factor F2. Mathematically speaking, F2 is the ratio of the 2015 GHSL population 

to the 2010-census recorded population. F2 is 1.13 for the whole mainland China, which can be derived by 550 

following the derivation process of F2 illustrated in Sect. 2.4.1 based on the statistics in Table 2. Therefore, we 

consider the ratio of 1.14 between our modeled floor area for 2015 and that recorded in the 2010-census at the 

county/prefecture-level as quite reasonable. For each province, we also plotted the correlation analyses for the 

population (between the 2015 GHSL population and 2010-census recorded population) and for the residential 

building floor area (between the modeled floor area and the 2010-census recorded floor area), which are available 555 

from the online supplement. The corresponding regression parameters and correlation coefficients for the 

population and the residential building floor area of each province are listed in Table 6. 

From Table 6 we can see that the correlation between the 2015 GHSL population and the 2010-census recorded 

population, and the correlation between the modeled floor area and the 2010-census recorded floor area are 

generally very high for a majority of provinces (with R2 ≥ 0.9). This indicates the plausibility of choosing the 560 

2015 GHSL population as the ancillary information to disaggregate the urbanity level building-related statistics, 

and the reliability of our modeled floor area at the county/prefecture-level. However, it is also worth noting that 

for coastal provinces like Fujian and Jiangsu, the correlation coefficients of floor area are lower (with R2 < 0.82). 

We explain this discrepancy with an overpredicted population in the 2015 GHSL profile for the capital or the most 

developed cities in these provinces (as can be checked from the population correlation analyses for these provinces 565 
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from the online supplement). Many people tend to work in the capital or the most developed cities without being 

officially registered as residents. These people are not counted in the 2010-census of these cities but are included 

in the 2015 GHSL population density profile, which is derived from remote sensing data combined with the actual 

population density. 

3.2.3 Application of the residential building stock model to seismic loss estimation 570 

Since the residential building model developed in this paper is targeted for seismic risk analysis, we now use the 

modeled replacement value to estimate the seismic loss to residential buildings in Sichuan province caused by the 

Wenchuan Ms8.0 earthquake. The hazard component used for this loss estimation is the macro-seismic intensity 

map of the 2008 Wenchuan Ms8.0 earthquake (Fig. 8), which was issued by the China Earthquake Administration 

(CEA) based on post-earthquake field investigations. The vulnerability function used was the empirical loss 575 

function developed in Daniell (2014, Page 242) for mainland China, which provides the relation between macro-

seismic intensity and loss ratio (the ratio between repairment cost and replacement cost of buildings damaged in 

an earthquake). This empirical vulnerability function was developed based on reported seismic damage and loss 

related to earthquakes that occurred in mainland China in the past few decades. Such information was retrieved 

through an extensive collection of damage and loss records from journals, books, reports, conference proceedings, 580 

and even newspapers.  

Our estimated seismic loss of residential buildings in Sichuan province due to the Wenchuan Ms8.0 earthquake is 

around 432 billion RMB (in 2015 current price). The spatial distribution of loss ratios, i.e., the ratio of the estimated 

loss to the total residential building replacement value in counties/districts of Sichuan province, is shown in Fig. 

9. In other reports and studies on the loss assessment of the Wenchuan earthquake, e.g., in Yuan (2008), the 585 

estimated loss to residential buildings in Sichuan province was around 170 billion RMB (in 2008 current price). 

The officially issued loss estimated by the Expert Panel of Earthquake Resistance and Disaster Relief (EPERDR, 

2008) to residential buildings in Sichuan province was around 98.3-435.4 billion RMB, with the median loss 

around 212.32-247.25 billion RMB (in 2008 current price). It should be noted that in these studies, the unit 

construction price used for rural/urban/township building replacement was around 800-1500 RMB per m2, which 590 

is 1/2.5-1/1.5 of the unit construction price used in this paper as listed in Table 4. Dividing our estimated loss by 

the factor of 1.5-2.5, then the difference in construction price used in this paper and previous studies are eliminated, 

and the estimated loss based on our building exposure model turns from 432 billion to around 144-288 billion 

RMB (in 2015 current price), which is now consistent with that estimated by EPERDR and Yuan (2008). This 

simple test further indicates the applicability of our model in seismic loss estimation. Thus, the grid level residential 595 

building floor area and replacement value developed in this paper can be regarded as reliable exposure inputs for 

future seismic risk assessment in mainland China. 

4. Limitations in the model and directions for future improvement 

According to studies on assessing the resolution of exposure data required for different types of natural hazards 

(e.g., Chen et al., 2004; Thieken et al., 2006; Bal et al., 2010; Figueiredo and Martina, 2016; Röthlisberger et al., 600 

2018; Dabbeek et al., 2021), the 1km×1km residential building stock model developed in this paper is sufficient 

for seismic risk assessment. However, limitations in our model are inevitable due to the assumptions and 
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approximations employed in the modeling process. For example, when disaggregating the urbanity level building-

related statistics in the 2010-census into grid level and scaling these statistics from 2010 to 2015, we assume that 

the number of residential buildings in each grid is proportional to its population weight and the increase in building-605 

related statistics of each urbanity is equal to its population increase, which needs to be carefully evaluated by the 

local development of building stock (e.g., Fuchs et al., 2015). Secondly, to derive the population living in each of 

the 17 building subtypes in each grid, we assume that brick/wood buildings are limited to 1 and 2-3 storey classes 

and distribute the number of steel/RC buildings to ≥10-storey class first, which may not be fully consistent with 

the real cases. Furthermore, we use the same unit construction prices for the same building subtypes regardless of 610 

their variation across province and urbanity, which also needs certain readjustment when applying our modeled 

residential building replacement value into actual seismic risk analyses.  

In the future, with the increasing availability of open source datasets that track individual building features in detail, 

the current limitations in this paper can possibly be overcome. Attempts have been made to combine publicly 

available building vector data (which contains the spatial location, footprint, and height of each building) and 615 

census records to improve the exposure estimation (e.g., Figueiredo and Martina, 2016, Wu et al., 2019, Paprotny 

et al., 2020). Algorithms to extract building footprints and height from aerial imagery and using computer vision 

techniques have been used by commercial companies like Google and Microsoft (Parikh, 2012; Bing Maps Team, 

2014). More recently, by using an unmanned aerial vehicle and a convolutional neural network, Xiong et al. (2020) 

introduced an automated building seismic damage assessment method, in which not only the 3D building structure 620 

can be constructed, but also the building damage state can be predicted automatically with an accuracy of 89%. In 

addition, Li et al. (2020) developed the first continental-scale dataset on 3D building structure (including building 

footprint, height, and volume) at 1km×1km resolution for Europe, China, and the US by using random forest 

models fed with remote sensing and Synthetic Aperture Radar imagery data. Liu et al. (2021) developed the urban 

floor area map for mainland China at 130m×130m resolution based on high spatial resolution nighttime light 625 

LUOJIA 1-01 images, a population map and a single building dataset encompassing 71 cities. Ji et al. (2020) 

generated the 10m×10m resolution model of rural settlements in the Yangtze River Delta of China by using the 

multi-source remote sensing datasets with the Google Earth Engine Platform. Cao and Huang (2021) proposed a 

multi-spectral, multi-view, and multi-task deep network (called M3Net) for building height estimation. They 

estimated the building height at a spatial resolution of 2.5m×2.5m for 42 Chinese cities. Comparison with the 630 

results in Li et al. (2020) indicated that the M3Net method in Cao and Huang (2021) can better alleviate the 

saturation effect of high-rise building height estimation than the random forest method used in Li et al. (2020).  

We take these attempts as an indicator that the high-resolution modeling of building stock for individual buildings 

will become more widely available in the future. 

5. Conclusion 635 

In this paper, a 1km×1km resolution residential building stock model (in terms of floor area and replacement value) 

targeted for seismic risk analysis for mainland China is developed, by using the 2015 GHSL population density 

profile as the bridge and by disaggregating the finer urbanity level 2010-census records into grid level for each 

province. In each grid, a building distribution strategy is adopted to derive the number of population living in each 

of the 17 building subtypes with structure type and storey class attributes, based on which the floor area and 640 
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replacement value of each building subtype are derived. In each urbanity of each province, the building-related 

statistics extracted from the 2010-census records are from areas with a similar development background but 

different administrative units (i.e., prefectures and counties). Therefore, to evaluate the model performance, the 

residential building replacement value is first compared with the net capital stock value estimated in Wu et al. 

(2014) at the prefecture-level. These two datasets are well correlated, and the former is around 0.45 of the latter, 645 

which is quite reasonable referring to the fact that for each province the sum of fixed asset investment value on 

residential buildings is around 0.54 of the sum of investment values on all types of buildings during 2004-2014. 

Furthermore, county/prefecture-level comparisons of the residential floor area modeled in this paper with records 

from the 2010-census are also conducted. It turns out that the modeled and recorded residential building floor areas 

are highly compatible for many counties and prefectures. To further check the applicability of the modeled results 650 

in seismic risk assessment, an empirical seismic loss estimation is performed based on the intensity map of the 

2008 Wenchuan Ms8.0 earthquake, the empirical loss function in Daniell (2014), and our modelled replacement 

value of residential buildings in Sichuan province. By reducing the difference in unit construction price used in 

this paper and other studies, our estimated loss range is consistent with the loss derived from damage reports based 

on field investigation. These comparisons indicate the reliability of the geo-coded grid level residential building 655 

exposure model developed in this paper. More importantly, the whole modeling process is fully reproducible, and 

all the modeled results are available from the online supplement, which can also be easily updated when more 

recent or detailed census data are available. 

Appendix 

In Appendix A, to derive the population living in each of the 17 building subtypes of each grid, the distribution 660 

strategy mentioned in Sect. 2.4.2 is explained in detail. In addition, a MATLAB script is provided to help 

understand this strategy.  

Data/Code Availability 

The accesses to data used or mentioned in this paper are as follows: (1) 2010 China Sixth Population Census Tab

ulation (http://www.stats.gov.cn/tjsj/pcsj/rkpc/6rp/indexch.htm); (2) 2015 Global Human Settlement Layer (GHS665 

L) population density profile (http://data.europa.eu/89h/jrc-GHS-ghs_pop_gpw4_globe_r2015a) ; (3) The spatial

 administrative boundaries from the National Geomatics Centre of China (http://www.ngcc.cn/ngcc/html/1/391/3

92/16114.html); (4) The Globcover land cover maps (http://due.esrin.esa.int/page_globcover.php); (5) The GLC2

000 landcover classes (https://forobs.jrc.ec.europa.eu/products/glc2000/legend.php); (6) The MODIS imaging pr

oject (https://modis.gsfc.nasa.gov/about/); (7) The GlobeLand30 project (http://www.globallandcover.com/); (8) 670 

The DMSP-OLS nighttime light datasets (https://data.noaa.gov/metaview/page?xml=NOAA/NESDIS/NGDC/ST

P/DMSP/iso/xml/G01119.xml&view=getDataView&header=none); (9) OpenStreetMap (https://www.openstreet

map.org/); (10) Gridded Population of the World (GPW, http://sedac.ciesin.columbia.edu/gpw/global.jsp); (11) G

lobal Rural-Urban Mapping Project-Population (GRUMP-population, https://sedac.ciesin.columbia.edu/data/coll

ection/grump-v1); (12) LandScan Global Population Datasets (https://landscan.ornl.gov/landscan-datasets); (13) 675 

WorldPop/AsianPop (https://www.worldpop.org/geodata/listing?id=29); (14) PopGrid China (http://www.geodo

i.ac.cn/edoi.aspx?DOI=10.3974/geodb.2014.01.06.V1); (15) An example illustrating the multi-variate equation s

http://www.stats.gov.cn/tjsj/pcsj/rkpc/6rp/indexch.htm
http://data.europa.eu/89h/jrc-GHS-ghs_pop_gpw4_globe_r2015a
http://www.ngcc.cn/ngcc/html/1/391/392/16114.html
http://www.ngcc.cn/ngcc/html/1/391/392/16114.html
http://due.esrin.esa.int/page_globcover.php
https://forobs.jrc.ec.europa.eu/products/glc2000/legend.php
https://modis.gsfc.nasa.gov/about/
http://www.globallandcover.com/
https://data.noaa.gov/metaview/page?xml=NOAA/NESDIS/NGDC/STP/DMSP/iso/xml/G01119.xml&view=getDataView&header=none
https://data.noaa.gov/metaview/page?xml=NOAA/NESDIS/NGDC/STP/DMSP/iso/xml/G01119.xml&view=getDataView&header=none
https://www.openstreetmap.org/
https://www.openstreetmap.org/
http://sedac.ciesin.columbia.edu/gpw/global.jsp
https://sedac.ciesin.columbia.edu/data/collection/grump-v1
https://sedac.ciesin.columbia.edu/data/collection/grump-v1
https://landscan.ornl.gov/landscan-datasets
https://www.worldpop.org/geodata/listing?id=29
http://www.geodoi.ac.cn/edoi.aspx?DOI=10.3974/geodb.2014.01.06.V1
http://www.geodoi.ac.cn/edoi.aspx?DOI=10.3974/geodb.2014.01.06.V1
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olving process in Sect. 2.4.2, including the input file and the MATLAB script that are available from the online s

upplement. 

Supplement 680 

The supplementary data related to this work are available online at https://doi.org/10.5281/zenodo.4669800. 
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Figures 

 

Figure 1: County-level comparison of the population between the 2015 GHSL profile and the 2010-census records. 895 
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Figure 2: An example showing the assignment of urbanity attribute in the 2015 GHSL population grids for 

Baoshan district in Shanghai. The urban/township and township/rural population thresholds for Shanghai are 

4936/km2 and 2750/km2, respectively (see context in Sect. 2.3 for more details). This figure is plotted by using the 900 

QGIS platform (https://qgis.org/en/site/) and the background satellite map is provided by Bing map service (© 

Microsoft).  

https://qgis.org/en/site/
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Figure 3: Flowchart of the residential building stock modeling process adopted in this paper (see context in Sect. 

2.4 for more details). 905 
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e 

Figure 4. An example illustrating the building stock model of Shanghai: (a) The distribution of modeled floor area 

(unit: m2) in each 1km×1km grid (note that the legend in Figure 4 is different from that in Figure 2); (b) A table 910 
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showing the modeled floor area of the 17 building subtypes, the total population “GRIDPOP” and the total modeled 

floor area “Sqm_sum” in an example grid; (c) The 3D view of the modeled floor area and the 2015 GHSL 

population (the height of the cuboid in each grid is proportional to its population density). This figure is plotted by 

using the QGIS platform and the background satellite map is provided by the Bing map service (© Microsoft). 

 915 

Figure 5:   Prefecture-level comparison of the modeled residential building replacement value in this paper (unit: 

billion RMB in 2015 current price) with the net capital stock value estimated in Wu et al. (2014) by using the 

perpetual inventory method (unit: billion RMB in 2012 current price). Note: the net capital stock value estimated 

in Wu et al. (2014) includes the depreciated value of all exposed elements, namely the residential buildings, non-

residential buildings, infrastructures, and equipment (see context in Sect. 3.2.1 for more details). 920 
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Figure 6: Comparison of the sum of the annual fixed asset investment (unit: billion RMB) on residential buildings 

with investment on all types of buildings during 2004-2014 in each of the 31 provinces in mainland China. Detailed 

investment statistics are available from the online supplement. 

 925 

Figure 7: County/prefecture-level comparison of the modeled residential building floor area (km2) in this paper 

with that recorded in the 2010-census for 31 provinces in mainland China (see context in Sect. 3.2.2 for more 

details). 
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 930 

 

Figure 8. Macro-seismic intensity map of the 2008 Wenchuan Ms8.0 earthquake, modified after the base intensity 

map issued by China Earthquake Administration (CEA). 

 

Figure 9. Distribution of seismic loss ratio (the ratio between repairment cost and replacement cost) of residential 935 

buildings in affected districts/counties of Sichuan province due to the 2008 Wenchuan Ms8.0 earthquake. Black 
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contours represent the extent of each intensity zone of the Wenchuan earthquake (see context in Sect. 3.2.3 for 

more details).  
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Tables 

Table 1: Main data sources used in this paper. Accesses to these data are provided in the Data/Code Availability 940 

section. 

Data source Data description Resolution Data location Indicator in 

this paper 

Notes 

2010-census 

Short Table 

Overall population urban/township/rural 

level for each of the 

31 provinces in 
mainland China;  

(the urbanity level in 

the census is defined 

according to the 

administrative unit 
of the surveyed 

population) 

Table 1-1a, 1-

1b, 1-1c 

N/A Based on surveys of 100% of the 

population in mainland China 

2010 -census 
Long Table 

Number of families 
living in buildings 

grouped by usage 

(residential, 
commercial, mixed) 

Table 9-1a, 9-
1b, 9-1c 

N/A Based on surveys of 10% of the 
overall population in mainland 

China 

Number of families 

dwelled in buildings 
grouped by storey 

number (1, 2-3, 4-6, 7-

9, ≥10) 

Number of families 
dwelled in buildings 

grouped by 

structuretype 
(steel/RC, mixed, 

other, brick/wood) 

2010-census 
Short Table 

Average population 
per family 

Table 1-1a, 1-
1b, 1-1c 

F2 of Fig. 3 Based on surveys of 100% of the 
population in mainland China 

Average residential 

floor area (m2) per 
person  

Table 1-14a, 

1-14b, 1-14c 

F4 of Fig. 3 

2015 GHSL 
population 

density 
profile 

The number of 
populations in each 

geo-coded grid 

1km×1km N/A λ The original resolution is 

250m×250m and was resampled 

to 1km×1km 

Wu et al. 

(2014) 

The estimated net 

wealth capital stock 

value in 344 
prefectures of 

mainland China 

Prefecture-level N/A N/A All exposed assets (residential and 

non-residential buildings, 

infrastructures, instruments, etc.) 
and their depreciation are 

considered 

2010-census 
Short Table 

The residential 
building floor area 

statistics in 

administrative units 

Prefecture-level for 
Hunan, Liaoning, 

and Sichuan; 

county-level for 
other 28 provinces 

Table 1-1, 1-
14 in the 

2010-census 

book of each 
province 

N/A Some data are downloaded from 
the commercial website 

(https://www.yearbookchina.com/)  

Note: The “2010-census” in “Data source” is the abbreviation of the “2010 Population Census of the People’s Republic of China”; “Data 

location” refers to the serial number of the table in the original data source (see context in Sect. 2.1 for more details). 

 

 945 
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Table 2: In each urbanity, the population sum of the 2015 GHSL profile and the residential building-related statistics extracted from the 2010-census records. 

“Urba

nity”+

”0”+”

Prov_I

D” 

Province 2015 

GHSL 

population 

in each 

urbanity  

Floor 

area 

per 

capita 

(m2) 

Aver. 

pop. 

per 

family 

Number of families 

grouped by occupancy 

Number of families grouped by storey class Number of families grouped by structure 

type 

Amp. 

factor  

living comme

rcial 

mixe

d 

1 2-3 4-6 7-9 ≥10 steel/RC mixed 

masonry 

brick/w

ood 

others 
 

urban 

1001 Anhui 12165295 29.42 2.71 331730 9035 287 44093 82489 175486 20922 17775 135377 176462 26705 2221 1.32 

1002 Beijing 18598941 27.81 2.40 517975 6482 988 127740 33290 193270 21919 148238 226367 212873 83192 2025 1.47 

1003 Chongqing 8402588 29.77 2.65 258417 3956 247 17185 39448 39087 85383 81270 131656 112494 13433 4790 1.21 

1004 Fujian 12702780 30.29 2.70 360721 13488 736 30557 97680 135725 79915 30332 213350 124702 23948 12209 1.25 

1005 Gansu 5296224 26.69 2.68 160717 3134 107 24489 21076 75051 34161 9074 78731 66665 15057 3398 1.21 

1006 Guangdong 56529958 26.37 2.63 1466895 34218 513 152601 299326 453172 412315 183699 748196 663772 76682 12463 1.43 

1007 Guangxi 8484803 30.71 2.93 238044 5912 264 26305 53876 99335 52485 11955 86601 138730 16271 2354 1.19 

1008 Guizhou 5475276 25.94 2.82 157713 5141 19 17373 38055 50766 49256 7404 78055 75834 7703 1262 1.19 

1009 Hainan 2334559 25.42 3.17 56383 1602 68 9674 14288 13787 13124 7112 41510 10814 4948 713 1.27 

1010 Hebei 14837665 30.10 2.95 419978 3950 96 100741 42944 230919 29889 19435 155581 211716 54745 1886 1.19 

1011 Heilongjiang 14368585 23.72 2.58 455996 6911 418 122051 20020 130862 173283 16691 163427 188650 104208 6622 1.20 

1012 Henan 18535815 34.02 3.05 521036 7612 215 79535 122569 244091 64920 17533 190648 307902 28268 1830 1.15 

1013 Hubei 17545544 33.22 2.82 502439 12733 349 40937 132838 179474 126270 35653 180316 298109 33900 2847 1.21 

1014 Hunan 12920714 33.45 2.89 358447 9813 501 32935 92165 160007 62887 20266 132713 201615 31404 2528 1.21 

1015 Jiangsu 30871919 33.86 2.81 876264 14961 802 129293 224580 412115 65052 60185 325288 469388 92721 3828 1.23 

1016 Jiangxi 7845049 29.76 3.19 201690 3594 201 17052 46727 85663 48457 7385 111658 76679 15396 1551 1.20 

1017 Jilin 10272119 25.21 2.62 329782 4910 1777 59861 13029 149906 96067 15829 175788 108325 48852 1727 1.17 

1018 Liaoning 22179450 25.76 2.57 768884 7122 843 111439 28046 366106 211530 58885 321935 381031 71386 1654 1.11 

1019 Inner Mongolia 8313523 24.86 2.67 251738 6951 631 84432 24977 133932 11690 3658 105902 87092 61924 3771 1.20 

1020 Ningxia 2222156 28.38 2.71 64336 1829 29 10922 7958 44770 1313 1202 24606 34483 6352 724 1.24 

1021 Qinghai 1478166 27.77 2.74 41342 1229 62 4877 8035 20737 6292 2630 13527 26113 2415 516 1.27 

1022 Shaanxi 9028318 28.81 2.70 269044 4820 362 33723 56478 122687 37356 23620 89287 173753 8694 2130 1.22 

1023 Shandong 28926001 32.41 2.80 855282 15616 242 252471 88326 432226 67205 30670 348873 356038 161295 4692 1.19 

1024 Shanghai 20564236 25.11 2.52 604654 9991 928 60506 116799 304794 27780 104766 268377 249438 93734 3096 1.33 

1025 Shanxi 9838476 25.77 2.88 282847 4319 87 53815 47879 157087 18683 9702 90187 163209 29124 4646 1.19 

1026 Sichuan 15739421 30.70 2.67 499024 9628 630 47158 79975 198299 136824 46396 218827 247875 34088 7862 1.16 

1027 Tianjin 10012784 25.51 2.65 237060 2606 167 34902 12083 143755 28570 20356 58333 156521 23467 1345 1.58 

1028 Xinjiang 6579942 28.00 2.56 201621 2686 84 32261 24343 129144 12124 6435 88699 94628 18420 2560 1.26 

1029 Tibet 286242 31.81 2.45 8394 973 7 2930 4798 1580 47 12 5449 2227 1020 671 1.25 

1030 Yunnan 6548268 31.27 2.59 200602 7122 172 21262 45555 93027 36704 11176 102015 85386 13317 7006 1.22 

1031 Zhejiang 21735537 30.97 2.54 675858 19305 774 80859 193447 332899 50666 37292 220048 393843 74559 6713 1.23 

township 

2001 Anhui 13378847 32.20 2.95 355306 19130 477 144219 160370 67744 1426 677 95625 182264 91921 4626 1.21 

2002 Beijing 1548170 33.20 2.52 41959 1129 143 21808 2812 16414 710 1344 6224 20550 15964 350 1.42 

2003 Chongqing 6401393 34.91 2.73 187287 7816 357 35957 71385 40448 41156 6157 46425 112018 23805 12855 1.20 

2004 Fujian 8618108 37.67 3.09 224647 11851 318 44154 105240 65529 18822 2753 100650 83984 28551 23313 1.18 

2005 Gansu 3941847 25.92 3.17 101071 5160 124 58128 13450 30226 4198 229 31721 30839 34944 8727 1.17 
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2006 Guangdong 17952939 26.41 3.52 357650 15136 348 119634 161452 60743 27235 3722 124661 175520 63890 8715 1.37 

2007 Guangxi 10219075 34.43 3.34 264485 12263 480 94666 111560 58971 11002 549 53729 175149 42500 5370 1.10 

2008 Guizhou 6164328 28.39 3.12 159970 12522 41 65929 60006 34332 11785 440 44016 89287 28725 10464 1.15 

2009 Hainan 1988812 23.78 3.42 45035 2592 51 26889 15458 4359 607 314 19912 12356 14449 910 1.22 

2010 Hebei 17725642 30.74 3.40 454034 12232 203 338450 45232 73026 3484 6074 90952 165751 204531 5032 1.12 

2011 Heilongjiang 7328148 22.67 2.63 230438 7764 526 152211 13711 54825 16851 604 26869 70838 130084 10411 1.17 

2012 Henan 18087162 32.04 3.60 435993 14307 304 242151 151413 53669 2676 391 91696 240373 114219 4012 1.11 

2013 Hubei 10290017 38.10 3.12 267951 11284 318 65151 136106 59020 18152 806 75159 150951 47125 6000 1.18 

2014 Hunan 15931187 36.74 3.18 413160 16084 1397 107304 216464 90305 12926 2245 103618 225168 92116 8342 1.16 

2015 Jiangsu 17597864 39.53 3.00 493818 16021 436 194665 224247 86379 2299 2249 99148 264939 142526 3226 1.15 

2016 Jiangxi 12543925 33.57 3.54 283781 10796 1125 57795 138466 80093 17102 1121 144491 98662 45425 5999 1.20 

2017 Jilin 4484285 22.51 2.70 139477 4710 1966 90313 10161 37025 6460 228 34567 30467 73754 5399 1.14 

2018 Liaoning 5200437 26.23 2.75 168663 5618 94 100064 11565 51923 9229 1500 51280 52098 69815 1088 1.08 

2019 Inner Mongolia 5919165 24.38 2.74 172725 9637 1622 124351 14566 41832 1422 191 43195 35332 90983 12852 1.17 

2020 Ningxia 1041959 24.82 3.14 25273 1397 58 16542 2590 7308 176 54 6140 7109 12255 1166 1.24 

2021 Qinghai 1237394 21.94 3.06 28364 1806 1694 15491 4641 9622 386 30 8482 9814 8928 2946 1.27 

2022 Shaanxi 8394596 28.85 3.05 218969 10349 295 103810 63776 53427 6133 2172 61288 115983 30075 21972 1.20 

2023 Shandong 19633371 32.14 3.03 555539 16773 117 412345 53861 102936 2235 935 105549 177664 274908 14191 1.13 

2024 Shanghai 3391859 30.25 2.45 100049 3066 715 24233 44272 29262 638 4710 35992 46750 19423 950 1.33 

2025 Shanxi 8098814 25.43 3.24 208837 7124 292 128133 41454 42626 2929 819 49930 87194 66418 12419 1.16 

2026 Sichuan 16241360 34.47 2.80 494678 24545 2048 133695 170345 141458 64579 9146 144800 259633 80423 34367 1.11 

2027 Tianjin 1605727 29.64 2.98 36626 688 6 20978 1965 12727 559 1085 5896 13066 18217 135 1.44 

2028 Xinjiang 3536387 26.04 2.75 95090 2368 50 57285 7087 32598 301 187 31109 21827 34576 9946 1.32 

2029 Tibet 444301 33.52 2.89 10835 1334 69 5712 5333 1058 39 27 5633 2406 2961 1169 1.26 

2030 Yunnan 9949242 30.04 3.29 249892 15089 538 95990 113777 49076 5598 540 85728 73181 58444 47628 1.14 

2031 Zhejiang 14035213 38.53 2.66 435571 17019 321 78393 215994 143891 9590 4722 88524 262572 92204 9290 1.16 

rural 

3001 Anhui 33860554 34.04 3.12 972114 12697 1032 594442 384935 5062 259 113 122416 440296 399437 22662 1.10 

3002 Beijing 3289036 35.39 2.76 85494 2139 89 81788 2698 2877 93 177 2991 19546 63298 1798 1.36 

3003 Chongqing 13078118 42.04 2.72 436237 8496 810 215548 219389 6337 3076 383 34275 160849 146892 102717 1.08 

3004 Fujian 16018762 41.24 3.16 447940 13851 615 152099 279696 27946 1860 190 105558 152003 108638 95592 1.11 

3005 Gansu 16451585 21.94 3.89 444734 2789 233 434394 12043 911 94 81 23583 50990 233241 139709 0.94 

3006 Guangdong 38064798 25.99 3.74 825588 7932 862 473821 328499 27016 3542 642 168179 388958 244088 32295 1.22 

3007 Guangxi 28011829 28.82 3.47 788492 7837 834 494076 294396 7474 300 83 100152 424443 210891 60843 1.01 

3008 Guizhou 22784212 27.92 3.29 657275 13176 244 526145 137494 5485 1206 121 80232 208026 247780 134413 1.03 

3009 Hainan 4359920 21.29 3.63 109378 771 69 101212 8248 437 217 35 22309 16584 68949 2307 1.09 

3010 Hebei 41530827 30.09 3.50 1138877 6755 525 1108487 32754 3591 510 290 65563 351042 689663 39364 1.04 

3011 Heilongjiang 17281672 20.92 3.19 472849 3926 1647 469755 3174 2668 1148 30 5933 44163 339849 86830 1.13 

3012 Henan 58410084 32.23 3.58 1593259 18790 715 1263614 341472 6231 554 178 170146 778487 632719 30697 1.01 

3013 Hubei 28154883 38.64 3.40 805308 11381 807 395220 405959 12191 2267 1052 87280 373421 286599 69389 1.01 

3014 Hunan 37743917 34.27 3.54 1008324 9900 2170 496152 516168 5569 262 73 113888 408562 427367 68407 1.04 

3015 Jiangsu 31993485 42.35 3.03 978352 13096 999 526012 444382 17344 893 2817 77218 494838 411206 8186 1.06 

3016 Jiangxi 26200474 33.81 3.86 627420 6578 1410 251425 373710 8390 355 118 184327 209487 198186 41998 1.07 

3017 Jilin 12896125 20.98 3.35 353543 2220 2523 347297 3170 4561 676 59 11283 35524 274007 34949 1.07 

3018 Liaoning 16667944 25.95 3.12 519784 3994 237 512930 6643 3709 390 106 31856 123657 360371 7894 1.02 

3019 Inner Mongolia 11371410 22.17 2.97 337168 4773 1167 331674 6301 3644 77 245 10616 34647 206674 90004 1.12 
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3020 Ningxia 3514019 22.12 3.54 86461 1371 35 80927 1965 4863 64 13 4944 9056 60381 13451 1.13 

3021 Qinghai 3331549 18.51 4.06 71842 604 1521 69459 2789 181 7 10 2675 9718 36221 23832 1.11 

3022 Shaanxi 20681076 31.22 3.54 572916 6711 497 481090 94599 3360 348 230 60338 235474 142395 141420 1.01 

3023 Shandong 49111245 31.95 3.07 1549890 8748 182 1511164 40165 6807 399 103 77610 400711 1025247 55070 1.03 

3024 Shanghai 2868506 38.83 2.37 90972 1752 1153 31644 57352 3415 49 264 8884 48551 33963 1326 1.29 

3025 Shanxi 19383034 25.09 3.44 521669 4921 593 481296 38553 6348 290 103 34053 138101 243316 111120 1.07 

3026 Sichuan 47509769 36.63 3.10 1625052 36122 3253 1067677 574735 16573 1425 764 147168 513785 611594 388627 0.92 

3027 Tianjin 3005963 25.95 3.21 78318 570 30 74498 686 3345 110 249 2325 7772 68306 485 1.19 

3028 Xinjiang 13519120 22.35 3.55 314397 2226 115 309505 2663 4345 82 28 11730 36704 207565 60624 1.20 

3029 Tibet 2461371 27.55 4.95 44816 1260 718 27819 17858 360 26 13 2594 5152 23631 14699 1.06 

3030 Yunnan 30970894 25.61 3.89 756974 10742 1276 461191 296513 6950 2470 592 68863 112129 239753 346971 1.04 

3031 Zhejiang 22249067 49.12 2.67 740469 17587 807 152558 544733 58732 1649 384 60829 419761 236627 40839 1.10 

Note: The three urbanity attributes, namely urban/township/rural, are represented by number 1/2/3 in the first column of this table; “Prov_id” refers to the ID number of each province; “Aver. pop. per family” refers to 

the average number of population per family; “Amp. factor” refers to the amplification factor used to amplify the building related statistics from 2010 to 2015 (see Sect. 2.1 and 2.4.1 for more details). 
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Table 3: The population proportions and thresholds used for each province to assign the grids in the 2015 GHSL profile with urban/township/rural attributes. 950 

 Province Province ID 2010-census recorded population in each urbanity  Population proportion Population threshold (PT) 

urban township rural sum urban township rural PT1 (urban/township) PT2 (township/rural) 

Anhui 01 12182587 13394530 33923351 59500468 20.47% 22.51% 57.01% 13950 6907 

Beijing 02 15563215 1295477 2753676 19612368 79.35% 6.61% 14.04% 2702 1775 

Chongqing 03 8681611 6614192 13550367 28846170 30.10% 22.93% 46.97% 11194 5412 

Fujian 04 12548384 8513556 15832277 36894217 34.01% 23.08% 42.91% 6020 2586 

Gansu 05 5258935 3932250 16384078 25575263 20.56% 15.38% 64.06% 15167 9337 

Guangdong 06 52388382 16641873 35290204 104320459 50.22% 15.95% 33.83% 5229 2996 

Guangxi 07 8352777 10065066 27605918 46023761 18.15% 21.87% 59.98% 11694 5065 

Guizhou 08 5537562 6199971 23011023 34748556 15.94% 17.84% 66.22% 18152 10413 

Hainan 09 2324288 1984228 4362969 8671485 26.80% 22.88% 50.31% 8256 3679 

Hebei 10 14388021 17187307 40278882 71854210 20.02% 23.92% 56.06% 5682 2403 

Heilongjiang 11 14122516 7201199 16990276 38313991 36.86% 18.80% 44.34% 3848 1485 

Henan 12 18331493 17888274 57810172 94029939 19.50% 19.02% 61.48% 15199 8456 

Hubei 13 17928160 10516925 28792642 57237727 31.32% 18.37% 50.30% 11667 6345 

Hunan 14 12738442 15714621 37247699 65700762 19.39% 23.92% 56.69% 13552 5876 

Jiangsu 15 30166466 17205022 31289453 78660941 38.35% 21.87% 39.78% 6559 3341 

Jiangxi 16 7504291 11995669 25067837 44567797 16.84% 26.92% 56.25% 11326 3400 

Jilin 17 10196745 4451454 12804616 27452815 37.14% 16.21% 46.64% 6168 2866 

Liaoning 18 22021184 5166779 16558360 43746323 50.34% 11.81% 37.85% 3511 1882 

Inner Mongolia 19 8011564 5708610 10986117 24706291 32.43% 23.11% 44.47% 11152 5036 

Ningxia 20 2059295 962727 3279328 6301350 32.68% 15.28% 52.04% 11659 7624 

Qinghai 21 1368033 1148221 3110469 5626723 24.31% 20.41% 55.28% 11850 5113 

Shaanxi 22 8837175 8222162 20268042 37327379 23.67% 22.03% 54.30% 13731 6872 

Shandong 23 28364984 19255743 48171992 95792719 29.61% 20.10% 50.29% 6577 3372 

Shanghai 24 17640842 2914256 2464098 23019196 76.64% 12.66% 10.70% 4936 2750 

Shanxi 25 9414053 7746486 18551562 35712101 26.36% 21.69% 51.95% 8804 3890 

Sichuan 26 15915660 16428768 48073100 80417528 19.79% 20.43% 59.78% 14668 8123 

Tianjin 27 8858126 1419767 2660800 12938693 68.46% 10.97% 20.56% 3138 1872 

Xinjiang 28 6071803 3263949 12480063 21815815 27.83% 14.96% 57.21% 10473 3620 

Tibet 29 272322 408267 2321576 3002165 9.07% 13.60% 77.33% 9751 4522 

Yunnan 30 6324830 9634242 30007694 45966766 13.76% 20.96% 65.28% 19028 8699 

Zhejiang 31 20386294 13163915 20876682 54426891 37.46% 24.19% 38.36% 5599 2513 

Note: For each province, “PT1(urban/township)” and “PT2 (township/rural)” are the population thresholds to assign the grids in the 2015 GHSL profile with urban/township/rural attributes. According to the population 

density 𝜆 in each grid, the assignment criteria are that: if 𝜆≥PT1, the grid is assigned as urban; if PT1>𝜆≥PT2, township; if 𝜆<PT2, rural (see context in Sect. 2.3 for more details).  
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Table 4: Average unit construction price (per m2) for each of the 17 building subtypes used in this paper. 

Structure type Storey class Building subtype  

abbreviation 

Unit construction price (RMB/m2  

in 2015 current price) 

brick/wood 
1 BRIWOMC1 2050 

2-3 BRIWOMC23 2350 

steel/RC 

1 STLRCMC1 3700 

2-3 STLRCMC23 3900 

4-6 STLRCMC46 4100 

7-9 STLRCMC79 4300 

≥10 STLRCMC10 4500 

mixed 

1 MIXEDMC1 2800 

2-3 MIXEDMC23 3000 

4-6 MIXEDMC46 3200 

7-9 MIXEDMC79 3400 

≥10 MIXEDMC10 3600 

others 

1 OTHERMC1 2600 

2-3 OTHERMC23 2800 

4-6 OTHERMC46 3000 

7-9 OTHERMC79 3200 

≥10 OTHERMC10 3400 



 

40 

Table 5: The modeled floor area and replacement value of residential buildings in urban/township/rural urbanity 955 

of the 31 provinces in mainland China. 

Province 
ID 

Province name 

Modeled residential building 

floor area (million m2) in each urbanity 

level 

Modeled residential building replacement value 

(billion RMB, in 2015 current price) in each urbanity 

level 

  urban township rural urban township rural 

01 Anhui 357  431  1150  507  498  1080  

02 Beijing 516  51  117  1920  147  223  

03 Chongqing 250  222  550  564  428  825  

04 Fujian 377  326  667  1000  648  1240  

05 Gansu 141  102  351  231  114  259  

06 Guangdong 1640  448  864  4130  798  1060  

07 Guangxi 260  350  808  618  691  1160  

08 Guizhou 143  175  635  221  197  487  

09 Hainan 60  47  86  141  79  89  

10 Hebei 448  544  1210  916  880  1370  

11 Heilongjiang 341  166  360  844  257  365  

12 Henan 630  580  1880  1120  1020  2550  

13 Hubei 582  392  1090  1270  610  1400  

14 Hunan 431  583  1290  749  786  1360  

15 Jiangsu 1040  695  1350  3250  1910  3130  

16 Jiangxi 234  419  884  387  533  845  

17 Jilin 258  100  266  1080  268  483  

18 Liaoning 572  136  426  2080  353  710  

19 
Inner 

Mongolia 
206  143  247  1170  485  559  

20 Ningxia 63  26  78  185  56  121  

21 Qinghai 41  26  60  107  55  87  

22 Shaanxi 260  242  644  597  523  960  

23 Shandong 936  632  1530  2450  1380  2480  

24 Shanghai 516  102  109  2120  339  254  

25 Shanxi 255  206  484  661  361  587  

26 Sichuan 483  556  1740  795  780  1780  

27 Tianjin 255  48  78  1000  204  217  

28 Xinjiang 184  92  299  516  206  279  

29 Tibet 9  15  67  25  35  83  

30 Yunnan 221  312  767  334  431  727  

31 Zhejiang 673  542  1090  1820  1200  1910  

In total: 12400 8710  21200  32808 16300 28700 

Note: (a) In this paper, for each of the 17 building subtypes in each grid, the same unit construction price is used to derive the replacement 

value in different urbanities and provinces; (b) The modeled floor area and replacement value are for residential buildings (see context in Sect. 

3.1.1 for more details).  
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Table 6: The regression parameters and correlation coefficients for population and floor area in each province. 960 

Province ID Province name Pop_a Pop_b Pop_R2 FloorArea_a FloorArea_b Area_R2 

01 Anhui 1.227 -121096 0.9525 1.2256 -4000000 0.917 

02 Beijing 1.4375 -11276 0.9986 1.4947 -3000000 0.9993 

03 Chongqing 1.1261 -68344 0.9624 1.2336 -6000000 0.9049 

04 Fujian 1.2485 -66004 0.9741 0.9975 2000000 0.8165 

05 Gansu 1.1977 -38495 0.9876 1.1499 -651568 0.9526 

06 Guangdong 1.5014 -212584 0.9712 1.6419 -9000000 0.9285 

07 Guangxi 0.936 43874 0.9251 0.9482 993643 0.8633 

08 Guizhou 1.1151 -37198 0.99 1.2213 -2000000 0.961 

09 Hainan 1.2608 -80398 0.9692 1.2068 -2000000 0.9675 

10 Hebei 1.1402 -27316 0.9832 1.05 184103 0.9276 

11 Heilongjiang 1.1307 -30556 0.9839 1.0486 118704 0.977 

12 Henan 1.1817 -93834 0.9599 1.0788 -554637 0.9039 

13 Hubei 1.2252 -101914 0.9788 1.374 -7000000 0.9387 

14 Hunan 1.1237 -212458 0.9628 1.032 6000000 0.8858 

15 Jiangsu 1.3726 -266170 0.9335 1.2612 6000000 0.7783 

16 Jiangxi 1.1411 -18384 0.9901 1.0855 252638 0.9365 

17 Jilin 1.0739 -16159 0.9907 0.9804 715875 0.9894 

18 Liaoning 1.1467 -273787 0.9957 1.0608 -933912 0.9902 

19 Inner Mongolia 1.1574 -11718 0.9814 1.1262 -162051 0.978 

20 Ningxia Hui 1.2559 -37867 0.9668 1.0727 507343 0.9588 

21 Qinghai 1.1457 -1152.1 0.9935 0.9763 377230 0.9851 

22 Shaanxi 1.2448 -53315 0.9857 1.2304 -1000000 0.9459 

23 Shandong 1.1272 -35525 0.9725 1.0518 392271 0.934 

24 Shanghai 1.1752 286962 0.9665 1.2034 6000000 0.9368 

25 Shanxi 1.2375 -38478 0.9904 1.1738 -474998 0.9456 

26 Sichuan 1.175 -478703 0.9754 1.0902 -7000000 0.9561 

27 Tianjin 1.1832 274914 0.8724 1.2782 4000000 0.8993 

28 Xinjiang 1.1519 -2241.9 0.9827 1.1454 -10818 0.9789 

29 Tibet 1.2168 -3498.3 0.9834 1.1196 -1699.8 0.9199 

30 Yunnan 1.1632 -26658 0.9898 0.9589 1000000 0.9083 

31 Zhejiang 1.2686 -45842 0.9751 1.323 -4000000 0.88 

Note: “Pop_a” and “Pop_b” are the linear regression parameters between the 2015 GHSL population and the 2010-census recorded population; 

“FloorArea_a” and “FloorArea_b” are the linear regression parameters between the modeled residential building floor area in this paper and 

that extracted from the 2010-census records; “Pop_R2” and “FloorArea_R2” are the correlation coefficients of population and floor area, 

respectively. For Hunan, Liaoning, and Sichuan provinces, the population and floor area comparisons are compared at the prefecture-level; 

while for the other 28 provinces, the population and floor area comparisons are at the county-level. The correlation analysis figures for each of 965 

the 31 provinces are available from the online supplement (see the context in Sect. 3.2.2 for more details). 
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Appendix A 

For each grid, to derive the population living in each of the 17 building subtypes (their abbreviations are given in 

Table 4), namely the 17 to-be-solved variables on the left side of the equation set in Sect. 2.4.2., a series of 970 

distribution steps based on a prioritized ranking of building types and storey classes are used in this paper. A 

MATLAB script and an input file illustrating the distribution processes are also available from the online 

supplement. With the help of the MATLAB script, it will be easier to understand the distribution steps as follows. 

(1) For brick/wood structure type, in each grid if 𝑁𝑢𝑚𝐵𝑅𝐼𝑊𝑂 < 𝑁𝑢𝑚𝑠𝑡𝑜𝑟𝑒𝑦1, the population living in brick/wood 

structure types (𝑁𝑢𝑚𝐵𝑅𝐼𝑊𝑂) is first placed into the 1-storey class, then we get 𝐵𝑅𝐼𝑊𝑂𝑀𝐶1 =  𝑁𝑢𝑚𝐵𝑅𝐼𝑊𝑂  975 

and the remaining population living in brick/wood structure type is 0, while the remaining population living 

in the 1-storey class is (𝑁𝑢𝑚𝑠𝑡𝑜𝑟𝑒𝑦1 − 𝑁𝑢𝑚𝐵𝑅𝐼𝑊𝑂); but if 𝑁𝑢𝑚𝐵𝑅𝐼𝑊𝑂 ≥ 𝑁𝑢𝑚𝑠𝑡𝑜𝑟𝑒𝑦1, then the population 

living in the 1 storey class buildings (𝑁𝑢𝑚𝑠𝑡𝑜𝑟𝑒𝑦1) are assumed to be in brick/wood structure type, we get 

𝐵𝑅𝐼𝑊𝑂𝑀𝐶1 = 𝑁𝑢𝑚𝑠𝑡𝑜𝑟𝑒𝑦1 and the remaining population living in brick/wood buildings is (𝑁𝑢𝑚𝐵𝑅𝐼𝑊𝑂 −

𝑁𝑢𝑚𝑠𝑡𝑜𝑟𝑒𝑦1), while the remaining population living in the 1-storey class is 0; 980 

(2) If the remaining population living in brick/wood buildings (𝑁𝑢𝑚𝐵𝑅𝐼𝑊𝑂 − 𝑁𝑢𝑚𝑠𝑡𝑜𝑟𝑒𝑦1) < 𝑁𝑢𝑚𝑠𝑡𝑜𝑟𝑒𝑦23 , 

then they are placed into 2-3 storey class and we get 𝐵𝑅𝐼𝑊𝑂𝑀𝐶23 = 𝑁𝑢𝑚𝐵𝑅𝐼𝑊𝑂 − 𝐵𝑅𝐼𝑊𝑂𝑀𝐶1  or 

𝐵𝑅𝐼𝑊𝑂𝑀𝐶23 = 𝑁𝑢𝑚𝐵𝑅𝐼𝑊𝑂 − 𝑁𝑢𝑚𝑠𝑡𝑜𝑟𝑒𝑦1 , and the remaining population in the 2-3 storey class is 

( 𝑁𝑢𝑚𝑠𝑡𝑜𝑟𝑒𝑦23 − (𝑁𝑢𝑚𝐵𝑅𝐼𝑊𝑂 − 𝑁𝑢𝑚𝑠𝑡𝑜𝑟𝑒𝑦1) ); but if (𝑁𝑢𝑚𝐵𝑅𝐼𝑊𝑂 − 𝑁𝑢𝑚𝑠𝑡𝑜𝑟𝑒𝑦1) ≥ 𝑁𝑢𝑚𝑠𝑡𝑜𝑟𝑒𝑦23 , we 

directly assign 𝐵𝑅𝐼𝑊𝑂𝑀𝐶23 =  𝑁𝑢𝑚𝑠𝑡𝑜𝑟𝑒𝑦23 and the remaining population living in brick/wood buildings 985 

is (𝑁𝑢𝑚𝐵𝑅𝐼𝑊𝑂 − 𝑁𝑢𝑚𝑠𝑡𝑜𝑟𝑒𝑦1 − 𝑁𝑢𝑚𝑠𝑡𝑜𝑟𝑒𝑦23); 

(3) For steel/RC structure type, in each grid if 𝑁𝑢𝑚𝑆𝑇𝐿𝑅𝐶 < 𝑁𝑢𝑚𝑠𝑡𝑜𝑟𝑒𝑦≥10, the population living in steel/RC 

structure type (𝑁𝑢𝑚𝑆𝑇𝐿𝑅𝐶) is first placed in the ≥10 storey class, and we get 𝑆𝑇𝐿𝑅𝐶𝑀𝐶10 = 𝑁𝑢𝑚𝑆𝑇𝐿𝑅𝐶 , 

then the remaining population living in the ≥10 storey class is (𝑁𝑢𝑚𝑠𝑡𝑜𝑟𝑒𝑦≥10 − 𝑁𝑢𝑚𝑆𝑇𝐿𝑅𝐶), while the 

remaining population living in steel/RC structure type is 0; but if 𝑁𝑢𝑚𝑆𝑇𝐿𝑅𝐶 ≥ 𝑁𝑢𝑚𝑠𝑡𝑜𝑟𝑒𝑦≥10 , then we 990 

directly assign 𝑆𝑇𝐿𝑅𝐶𝑀𝐶10 = 𝑁𝑢𝑚𝑠𝑡𝑜𝑟𝑒𝑦≥10, and the remaining population living in steel/RC structure type 

is (𝑁𝑢𝑚𝑆𝑇𝐿𝑅𝐶 − 𝑁𝑢𝑚𝑠𝑡𝑜𝑟𝑒𝑦≥10), while the remaining population living in ≥10 storey class is 0; 

(4) Following the above step (3), if 𝑁𝑢𝑚𝑆𝑇𝐿𝑅𝐶 ≥ 𝑁𝑢𝑚𝑠𝑡𝑜𝑟𝑒𝑦≥10, the remaining population living in steel/RC 

structure type is compared with the population living in other storey class and distributed into the remaining 

storey classes from the highest to the lowest, assuming that the least population in steel/RC would be in the 995 

1-storey class, then we get 𝑆𝑇𝐿𝑅𝐶𝑀𝐶79 =  𝑁𝑢𝑚𝑆𝑇𝐿𝑅𝐶 −  𝑁𝑢𝑚𝑠𝑡𝑜𝑟𝑒𝑦≥10 or 𝑆𝑇𝐿𝑅𝐶𝑀𝐶79 = 𝑁𝑢𝑚𝑠𝑡𝑜𝑟𝑒𝑦79 

or 𝑆𝑇𝐿𝑅𝐶𝑀𝐶79 = 0 ;  𝑆𝑇𝐿𝑅𝐶𝑀𝐶46 =  𝑁𝑢𝑚𝑆𝑇𝐿𝑅𝐶 − 𝑁𝑢𝑚𝑠𝑡𝑜𝑟𝑒𝑦≥10 − 𝑁𝑢𝑚𝑠𝑡𝑜𝑟𝑒𝑦79  or 𝑆𝑇𝐿𝑅𝐶𝑀𝐶46 =

𝑁𝑢𝑚𝑠𝑡𝑜𝑟𝑒𝑦46  or 𝑆𝑇𝐿𝑅𝐶𝑀𝐶46 = 0 ; 𝑆𝑇𝐿𝑅𝐶𝑀𝐶23 = 𝑁𝑢𝑚𝑆𝑇𝐿𝑅𝐶 − 𝑁𝑢𝑚𝑠𝑡𝑜𝑟𝑒𝑦≥10 − 𝑁𝑢𝑚𝑠𝑡𝑜𝑟𝑒𝑦79 −

𝑁𝑢𝑚𝑠𝑡𝑜𝑟𝑒𝑦46  or 𝑆𝑇𝐿𝑅𝐶𝑀𝐶23 = 𝑁𝑢𝑚𝑠𝑡𝑜𝑟𝑒𝑦23 − (𝑁𝑢𝑚𝐵𝑅𝐼𝑊𝑂 − 𝑁𝑢𝑚𝑠𝑡𝑜𝑟𝑒𝑦1)  or 𝑆𝑇𝐿𝑅𝐶𝑀𝐶23 = 0 ; 

𝑆𝑇𝐿𝑅𝐶𝑀𝐶1 = 𝑁𝑢𝑚𝑆𝑇𝐿𝑅𝐶 − 𝑁𝑢𝑚𝑠𝑡𝑜𝑟𝑒𝑦≥10 − 𝑁𝑢𝑚𝑠𝑡𝑜𝑟𝑒𝑦79 − 𝑁𝑢𝑚𝑠𝑡𝑜𝑟𝑒𝑦46 − (𝑁𝑢𝑚𝑠𝑡𝑜𝑟𝑒𝑦23 −1000 

(𝑁𝑢𝑚𝐵𝑅𝐼𝑊𝑂 − 𝑁𝑢𝑚𝑠𝑡𝑜𝑟𝑒𝑦1)) or 𝑆𝑇𝐿𝑅𝐶𝑀𝐶1 = (𝑁𝑢𝑚𝑠𝑡𝑜𝑟𝑒𝑦1 − 𝑁𝑢𝑚𝐵𝑅𝐼𝑊𝑂) or 𝑆𝑇𝐿𝑅𝐶𝑀𝐶1 = 0; 
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(5) After getting the population living in 7 building subtypes (𝐵𝑅𝐼𝑊𝑂𝑀𝐶1, 𝐵𝑅𝐼𝑊𝑂𝑀𝐶23, 𝑆𝑇𝐿𝑅𝐶𝑀𝐶10,

𝑆𝑇𝐿𝑅𝐶𝑀𝐶79, 𝑆𝑇𝐿𝑅𝐶𝑀𝐶46, 𝑆𝑇𝐿𝑅𝐶𝑀𝐶23, 𝑆𝑇𝐿𝑅𝐶𝑀𝐶1) and the remaining population living in each of the 

five storey classes determined, to derive the population living in storey class with structure type “mixed” and 

“other”, we assume that the populations living in the five storey classes of “mixed” structure type are equal 1005 

to the product of the remaining population in each storey class and the ratio of 𝑁𝑢𝑚𝑀𝐼𝑋𝐸𝐷/(𝑁𝑢𝑚𝑀𝐼𝑋𝐸𝐷 +

𝑁𝑢𝑚𝑂𝑇𝐻𝐸𝑅); similarly, the populations living in the five storey classes of “other” structure type are equal to 

the product of the remaining population in each storey class and the ratio of 𝑁𝑢𝑚𝑂𝑇𝐻𝐸𝑅/(𝑁𝑢𝑚𝑀𝐼𝑋𝐸𝐷 +

𝑁𝑢𝑚𝑂𝑇𝐻𝐸𝑅). 
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