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Abstract. Mass livestock mortality events during severe winters, a phenomenon that Mongolians call dzud, cause the 15 

country significant socioeconomic problems. Dzud is an example of a compound event, meaning that multiple climatic and 

social drivers contribute to the risk of occurrence. Existing studies argue that the frequency and intensity of dzud are rising 

due to the combined effects of climate change and variability, most notably summer drought and severe winter conditions, 

on top of socioeconomic dynamics such as overgrazing. Summer droughts are a precondition for dzud because scarce grasses 

cause malnutrition, which in turn makes livestock more vulnerable to harsh winter conditions. However, these studies 20 

typically look at a short time frame (i.e., after 1940);), and few have investigated either the risk or the recurrence of dzud 

over a century-scale climate record.  This study aims to fill the gaps in technical knowledge about the recurrence probability 

of dzud by estimating the return levelsperiods of relevant climatic variables: summer drought conditions and winter 

minimum temperature. We divide the country into three regions (Northwest, Southwest, and East Mongolia) based on the 

mortality index at the soum (county) level. For droughts, our study uses as a proxy the tree-ring reconstructed Palmer 25 

Drought Severity Index (PDSI) for three regions between 1700-2013. For winter severity, our study uses observational data 

of winter minimum temperature after 1901 while inferring winter minimum temperature in Mongolia from instrumental data 

in Siberia that extends to the early 19th century. TheUsing a Generalized Extreme Value (i.e., the statistical method to infer 

the probability of very rare or extreme events) showsdistribution with time-varying parameters we find  that the return 

levelsperiods of drought conditions are changing over time, with variability increasing for all the regions. Winter severity, 30 

however, is constant.not changing with time. The median medians of the 100-year return levelsperiods of the winter 

minimum temperature in Mongolia have been, over the past 300 years, are estimated as -26.08°C for the Southwest, -

27.99°C for the Northwest, and -25.31°C for the East. This study thusThe co-occurrence of summer drought and winter 
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severity increases  in all the regions in the early 21st century. The analysis suggests that a continued trend in summer drought 

would lead to increased vulnerability and malnutrition. Here, we link meteorological characteristics to socioeconomic 35 

impacts related to livestock populations and draws attention to the needProspects for livestockclimate index insurance for 

livestock are discussed. 

1 Introduction 

1.1 BackgroundsBackground 

Mass livestock mortality induced by dry summers followed by unusually cold and/or snowy winters, known as dzud, causes 40 

problems for pastoral herding and the economy in Mongolia.1 A total of 20 million livestock died of climate extremes from 

2000-2002, and 2009-2010 (Rao et al., 2015). In the 2009-2010 dzud alone, approximately 20% of the country’s livestock 

population died, which affectedaffecting 769,000 people, 28% of the population in Mongolia (Middleton et al., 2015) .  

Dzud is a compound hazard (Field, 2012), encompassing drought, heavy snowfall, extreme cold and windstorms. Dzud can 

cause mass livestock mortality, which leads to severe socioeconomic consequences such as unemployment, poverty, and 45 

mass migration from rural to urban areas (Dagvadorj et al., 2009; Kakinuma et al., 2019). The causes of dzud are complex. 

Increased population of livestock along with other land use changes such as urbanization and mining are viewed as a major 

cause of the decline in pasture quality in the region (Bat-Oyun et al., 2016; Berger et al., 2013; Hilker et al., 2014). Along 

with Other socio-economic factors, such as overgrazing, livestock mortality is caused and exacerbated by the following 

climate factors: summer drought, heavy snow, and high winds in concurrence with extreme cold winter temperature 50 

(Morinaga et al., 2003).are also implicated. Livestock mortality is strongly associated with winter (November – February) 

temperatures and prior summer (July – September) droughts (Rao et al., 2015) and precipitation (Tachiiri et al., 2008; Rao et 

al., 2015). For example, Rao et al. (2015) showed that thea model based on winter temperature, summer drought, summer 

precipitation, and summer potential evapotranspiration explains 48.4% of the entire variability of mortality. Extreme cold 

temperature as well as exposure to storms or high winds cause livestock to freeze to death while heavy snow, ice or drought, 55 

prevent livestock from grazing and accessing fodder, which results in weakening immune system response and starvation 

(Begzsuren et al., 2004; Fernandez-Gimenez et al., 2012; Morinaga et al., 2003; Rao et al., 2015). . In addition to extreme 

winter temperature and snowfall, summer drought is an important driver because droughts deteriorate grazing and prevent 

livestock from surviving during severe winters (Begzsuren et al., 2004; Rao et al., 2015; Tachiiri et al., 2008). For example, 

the climate factors that contributed to the dzud in 1999-2002 and 2009-2010 were summer drought followed by extreme cold 60 

and snowfall in winter (Field, 2012). In this case, summer drought is regarded as a preconditioning factor for the dzud as a 

compound event (Zscheischler et al., 2020).  

 
1 Dzud is Russian way of notation, and it is locally written as “zud” in Mongolia. 
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Understanding mechanisms and impacts of dzud and climate extremes has wider implications for sustainability in 

rangelands, which account for 50% of Earth’s land surface, where 40% of the world’s populations reside (Fernandez-

Gimenez et al., 2012; Reynolds et al., 2007). A better understanding of the climate drivers of dzud and extreme events is also 65 

critical for preventive and responsive measures, such as weather index insurance. Weather index insurance recently became 

widely available, and its indemnities are paid based on realizations of a weather index such as rainfall and temperature that 

are expected to be highly correlated with actual losses, rather than on actual losses experienced by the policyholder (Barnett 

and Mahul, 2007). The advantage of index insurance is that the pre-determined index cannot be manipulated by the third 

parties. Payment is faster than loss-based insurance because payment will be made once the predetermined index exceeds the 70 

threshold. In contrast, for loss-based insurance, an insurance company must assess losses before making payment, which 

requires labor and time. The lower transaction costs of index insurance can also make it a more affordable product for the 

purchaser and thus a more viable offering for the insurance provider. The index-based livestock insurance program (IBLIP) 

was institutionalized in 2014 to respond to the extreme climate disasters by the Government of Mongolia with help from the 

World Bank (Skees and Enkh-Amgalan, 2002; Mahul et al., 2015; Mahul and Skees, 2007).  75 

Hessl et al. (2018)Few studies have performed risk analysis analyzed variabilities of dzuddrought in Mongolia using long-

term climate data. One reason for this isSuch studies are still limited by the fact that there are few long-term instrumental 

records of climate in the region, and the records that do exist are often not continuous and contain missing data. Though 

historical documents record the occurrence of dzud from the 19th century, changes in climate in Mongolia have been 

observed in instrumental records only since 1940 (Batima et al., 2005). AdditionallySome studies concludedreported that the 80 

frequency of dzud has increased since, such as after 1950 (Fernandez-Gimenez et al., 2012; Middleton et al., 2015) or after 

2000 (Munkhjargal et al., 2020) and.  Furthermore, another study concluded that it is expected to increase with future 

climatic changes (Bayasgalan et al., 2009). using Coupled Model Intercomparison Project’s climate models. Natsagdorj 

(2001) shows that the trends of drought and the dzud index, estimated by normalized monthly temperature and precipitation, 

are increasing. However, these studies are based on observational data of dzud, which are available only from about 1940. It 85 

is critical to extend the time horizon in order to improve the reliability of the return period estimation of catastrophic dzud., 

and of the assertions of secular changes in the causal climate variables. Long-term climate proxies, such as tree rings, have 

the potential to do so by deriving recurrence periods of dzud and climate extremes, especially to improve index insurance 

products (Bell et al., 2013). Yet, one of the challenges of improving the reliability of recurrence estimations is the lack of 

scientific understanding of the historical trends of past climate events due to the short meteorological record (Mahul and 90 

Stutley, 2010; Mcsharry, 2014; Rao et al., 2015).  

To improve risk analysis of dzud, the investigation of extreme distributions of climate extremes is critical. D'arrigo et al. 

(2001) inferred using millennial length tree-ring data that temperatures in Mongolia in the late 1990s and early 2000s were 

extraordinarily.extraordinary. Based on well-calibrated and verified millennial-length tree-ring reconstruction of summer 

temperatures, Davi et al. (2015) and Davi et al. (2021) show that the recent warming trend since the 1990s is anomalous in 95 
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the long-term context in Mongolia. In addition, Davi et al. (2010) conducted spectral analysis to discover the periodicity of 

droughts in Mongolia by using tree-ring based reconstructed Palmer Drought Severity Index (PDSI). However, these studies 

do not estimate probability distributions of extreme climatic events or improve the reliability of the estimation of return 

periods of dzud for risk analysis. Here, we use the term “risk analysis” to refer to the analysis of the probability of an 

extreme event whose consequences could be substantial (Rootzén and Katz, 2013), but not the analysis where risk refers to 100 

the combination of the probability of an event and its associated expected losses.  

1.2 Objectives of the study 

The objective of this study is to conduct risk analysis for the climatic variables that cause dzud, namely summer drought 

followed by extreme cold temperature and snowfall, in Mongolia while attempting to improve the reliability of the return 

period estimation of dzud utilizing tree-ring proxies and historical data on climatic variables. The study also explores the 105 

implications of the risk analysis and return period estimation for index insurance using tree-ring data. To address these 

objectives, we posed the following research question:  

• How can the reliability of the return period estimation of climate extremes be improved?  

 

There are two important climatic variables to predict dzud: summer drought conditions and winter temperatures (Lall et al., 110 

2016; Rao et al., 2015). Notably, this study estimates return periods of extreme drought conditions, by using tree-ring based 

reconstructed PDSI from the Monsoon Asia Drought Atlas or MADA (Cook et al., 2010). It also estimates return periods of 

extreme cold temperatures in Mongolia. Since temperature data in Mongolia is only available from the early- to-mid 20th 

century, we simulate them from meteorological data in neighboring Siberia, which has records that extend back to the late 

1800s, through a statistical model presented here. Tree-ring based temperature reconstructions in the region are typically 115 

limited to the summer growing season and do not capture winter temperatures.  

In Mongolia, the term “dzud” refers to high livestock mortality (Fernandez-Gimenez et al., 2012; Morinaga et al., 2003), 

however, we use climate variables to determine risk rather than mortality because mortality rate assumes that the size of the 

population does not matter. In fact, changes in livestock populations also matter since they can also be related to changes in 

socio-economic factors, such as shortage of food supply, which can be related to non-climate factors. Other socio-economic 120 

factors also determine livestock herding loss, including the total number of animals and the density per square kilometer. 

These numbers drastically increased after a transition to private ownership in 1990s (Douglas A. Johnson, 2006; Rao et al., 

2015; Reading et al., 2006). The increased livestock population results in overgrazing and degradation of the grassland, 

which resulted in a decrease in the grassland carrying capacity and a high mortality rate (Bat-Oyun et al., 2016; Berger et al., 

2013; Hilker et al., 2014; Liu et al., 2013). 125 

In order to estimate a return levelperiod of an extreme climate event, extreme value theory (EVT) can beis useful (Cheng et 

al., 2014; Katz et al., 2002). There are ongoing debates about which methods are most suitable for estimating extremes, such 
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as the return period and expected number of exceedance (Read and Vogel, 2015; Rootzén and Katz, 2013; Salas and 

Obeysekera, 2014). EVT informs us how to extrapolate a rare event which has not been experienced for a long time from 

existing observational data with a short record. EVT is a widely used method for estimating the probability of extreme 130 

hydroclimatic events (Katz, 2010; Leonard et al., 2014; Slater et al., 2021), such as floods (Prosdocimi et al., 2015; Willner 

et al., 2018) (Willner et al., 2018), precipitation (Gao et al., 2018; Minářová et al., 2017), and compound events (Leonard et 

al., 2014)This enables. EVT helps us to formulate a risk management strategy by deriving a distribution of extreme climate 

events and estimating a possible extreme value for the future.future’s preparedness. There are two main approaches in EVT: 

The block maximum approach and the threshold approach, which will be described in Data and Methodology. The 135 

objectives of this study were to; 

• 1. Estimate return periods of extreme drought conditions by using reconstructed PDSI based on extreme 

value theories..  

• 2. Estimate return periods of extreme cold temperatures in Mongolia by using long instrumental data from 

Siberia.   140 

 Conventionally, in estimating return periods, a stationarity process is assumed. to estimate return periods,. Here, we 

consider the extension of the record by explicit dependence on climate proxies.  Of course, this gives us a stationary return 

period, which is useful for risk assessment and writing a parametric insurance policy. However, we alsoWe examine how the 

return periods may change over time due to slowly and systematically changing climate conditions, persistence in the PDSI, 

or other climate records. Exploring the nonstationary approach to return period and risk opens “many opportunities” (Salas 145 

& Obeysekera, 2014). This has the advantage of reducing the bias in the near-term projection, assessment of the return 

period, and recurrence interval associated with the event. Given this information, either the parametric insurance could be 

repriced up or down, or preparatory actions could be undertaken.  

The studyWe also exploresexplore the utility of using long-term climate proxies in the context of index insurance. In general, 

the index used for index insurance must be scientifically objective and easily measurable. Though The Index-Based 150 

Livestock Insurance Program (IBLIP) in Mongolia uses mortality rate as the index, this.  Our study will explore ifprovides 

insights into the long term variations in the mortality rate due to  climate proxies have the potential to improvewith the 

designgoal of reducing the IBLIPbias and the variance of the estimates of the probability of the index used, by identifying 

the trend, and using a longer record, respectively.  

2 Data and Methodology  155 

2.1 Data and Preliminary Analysis 

2.2.1 Tree-ring Reconstructed PDSI 

Data 
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PDSI is a standardized index that ranges from -10 (dry) and +10 (wet) based on a water balance model, accounting for 

precipitation, evaporation, and soil moisture storage (Cook et al., 2010; Dai et al., 2004; Palmer, 1965). In this study, tree-160 

ring reconstructed PDSI values from 1700 to 2013 are taken from Monsoon Asia Drought Atlas (MADA) (Cook et al., 

2010). MADA is a seasonally resolved gridded spatial reconstruction of drought and pluvials in monsoon Asia over the last 

700 years, derived from a network of tree-ring chronologies (Cook et al., 2010). The benefit of using the three regional 

clusters is to capture smaller-scale regional details of known droughts because it is based only on the chronologies identified 

from the principal component analysis . The MADA can also reveal the occurrence and severity of previously unknown 165 

monsoon droughts (Cook et al., 2010). We consider three regions (Northwest, Southwest, and East Mongolia) in Mongolia, 

as in Figure 1, based on clusters proposed by the previous studies (Kaheil and Lall, 2011; Lall et al., 2016)Kaheil and Lall 

(Figure 1).. These spatial clusters are based on the mortality data at the soum (county) level from 1972 to 2010, using 

hierarchical clustering (Johnson, 1967), which were adjusted with the spatial patterns of the Mongolian topography, climate 

zones, and mean precipitation in growing seasons. It is reasonable to use these clusters because the objective of the study is 170 

to improve risk analysis of Dzud and mortality of livestock in Mongolia.  

 

 

 

Figure 1: Spatial Clusters of Mortality Index based on 1972-2010 soum level mortality indices. Source: Lall and 175 

Kaheil (2011).  

Preliminary Analysis 

The correlation in PDSI values from 1700 to 2013 between three clusters is shown in Table 1Table 1. The Mann-Kendall 

trend test is used to examine the trends of the PDSI data (Kendall, 1948; Mann, 1945).  The Mann-Kendall test shows that 

there are no monotonic trends in the PDSI data for all clusters (Table 1Table 1). Yet, times series of tree-ring reconstructed 180 

PDSI by clusters show that there is significant centennial- scale variability, which is important to consider since they suggest 

that there are persistent regimes that can last for decades to centurycentennial time scales (Figure 2Figure 2 (a)-(c)). Though 
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these may occur randomly or reflect systematic cyclical behavior, their consideration in a risk management strategy is 

critical.  

 185 
Table 1: CorrelationsCorrelation coefficients of PDSI values from 1700 to 2013 between the three clusters 

 Mann-Kendall 

valuePearson 

Correlation 

Coefficients 

Pearson Correlation CoefficientsMann-

Kendall value 

Southwest 0.0004 - 

East 0.0002 - 

Northeast -0.0026 - 

Southwest and Northwest 0.78- 0.000478 

Southwest and East 0.50- 0.000250 

Northwest and East 0.69- -0.002669 
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Figure 2: Time series of tree-ring reconstructed PDSI in (a) the Southwest, (b) the Northwest, and (c) East clusters . The horizontal 

line represents the estimated line of the regression of PDSI on year, and the red curve represents a lowess smooth of the data.the 

East clusters.  195 

The autocorrelation function (ACF) and Partial ACF of all the regions show that there are significant autocorrelations in the 

PDSI data in all clusters (in Figure S1 and S2). The development of a time series simulation model that uses these long lead 

correlations would help inform the risk analysis associated with the persistent regimes identified earlier. Thus, 

Autoregressive– Integrated Moving -Average (ARMAARIMA) models with different orders arewere evaluated based on the 

Bayesian Information Criterion (BIC), which can account for fitting errors for the Bayesian conditional mechanism of 200 

models. Please note that the BIC is standard information-theoretic criteria whose relative magnitudes allow one to choose 

one model over another (Akaike, 1979; Burnham and Anderson, 2004). The order of the best ARIMA models in each cluster 

is (3,0,0) for the Southwest, (1,0,2) for the Northwest, and (1,0,0) for the East. These ARIMA models will be used later to 

forecast the effective return periods of droughts.  

2.2.2 Climate variables 205 

Models that use climate variables as covariates are explored for developing a nonstationary risk model. These data are 

summarized in Table 2Table 2.  We use high-resolution gridded datasets at Climate Research Unit (CRU) at University of 

East Anglia for monthly temperature, and summer (May-August) and winter (November-February) precipitation for the three 

clusters (Harris et al., 2014). All the gridded points within each cluster are averaged. We also used average monthly 

temperature data from instrumental records in Siberia, including Irkutsk (1882-2011), Minusinsk (1886- 2011), and Ulan 210 

Ude (1895-1989). We also use the Arctic Oscillation (AO) index, which comes from two sources: the Joint Institute for the 

Study of the Atmosphere and Ocean (JISAO) and the National Oceanic and Atmospheric Administration (NOAA). The two 

records were scaled to be merged into one record (e.g. Kaheil and Lall, 2011)). The AO index is closely associated with 

summer and winter climates in East Asia (He et al., 2017). In particular, the negative phase of AO is associated with more 

frequent cold air outbreaks in East Asia, including Mongolia (Cohen et al., 2010; He et al., 2017; Yu et al., 2015). Finally, 215 

please note that though dry conditions of PDSI is negative, all the analyzed PDSI values below are presented in reversed 

values because the used R package, extReme (Gilleland and Katz, 2016), will capture the maximum values. 

Table 2: List of data analyzed in this study 

 Types Periods Regions Source 

Tree-ring 

reconstructed PDSI 

data 

534 grid point 

reconstructions 

on a 2.5x2.5° 

grid 

1700 –- 2013 Southwest, 

Northwest,  

And East Mongolia 

Cook et al (2010) 

Formatted: Font: Not Bold
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Monthly 

temperature 

High-resolution 

gridded climate 

datasets (0.5 x 

0.5-degree 

resolution) 

1901 - 2014 Southwest, 

Northwest,  

And East Mongolia 

World 

Meteorological 

Organization  

Monthly minimum 

temperature 

High-resolution 

gridded climate 

datasets (0.5 x 

0.5-degree 

resolution) 

1901 –- 2014 Southwest, 

Northwest,  

And East Mongolia 

World 

Meteorological 

Organization   

 

Monthly 

temperature in 

Irkutsk, Siberia 

Instrumental 

climate data 

Sept. 1820 - June 

2016 

- 52.27N,   104.32E.      

469.0m (prob:  

490m) 

- WMO station code: 

30710 IRKUTSK 

GHCN-M 

v3.3.0.20160703 

Monthly 

temperature in 

Ulan-UDE, Siberia 

Instrumental 

climate data 

Aug. 18861866 - 

Dec. 1990 

- 51.83N,   107.60E,   

515.0m (prob:  

641m) 

- WMO station code: 

30823 ULAN-UDE 

GHCN-M 

v3.3.0.20160703 

Monthly 

temperature in 

Minusinsk, Siberia 

Instrumental data Jan. 1886 - June 

2016. 

- 53.70N,   91.70E,     

254.0m (prob:  

369m) 

- WMO station code: 

29866 MINUSINSK   

GHCN-M 

v3.3.0.20160703 

Summer and 

Winter 

precipitation 

High-resolution 

gridded datasets 

(0.5 x 0.5-degree 

resolution) 

1901 –- 2014 

 

Southwest, 

Northwest,  

And East Mongolia 

CRU 
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AO – -Index  1903 - 2010  Joint Institute for the 

Study of the 

Atmosphere and 

Ocean (JISAO) and 

National Oceanic and 

Atmospheric 

Administration 

(NOAA). 

 

 220 

2.2 Methodology 

Extreme Value Analysis (EVA) is utilized in this study. In EVA, the distribution of many variables can be stabilized so that 

their extreme values asymptotically follow specific distribution functions (Coles et al., 2001). There are two primary ways to 

analyze extreme data. The first approach, the so- called block maxima approach, reduces the data by taking maxima of long 

blocks data, such as annual maxima (Coles et al., 2001). The Generalized Extreme Value (GEV) distribution function is 225 

fittedfit to maxima of block data, as given by  

G(z) = exp⁡ [− {1 + 𝜀(
𝑧 − 𝜇

𝜎
)} +

−/𝜀
] (1)2 

where, 𝑦+ = max{𝑦, 0} , 𝜎 > 0, 𝑎𝑛𝑑 − ∞ < 𝜇, 𝜀 < ∞. 

Equation (1) enclosecovers three types of distribution functionfunctions depending on the sign of the shape parameter  The 

Fréchet distribution function is for    while the upper bounded Weibull distribution function is for (Gilleland and 

Katz, 2016).  The Gumbel type is obtained in the limit as →0, which results in  230 

G(z) = exp [−𝑒𝑥𝑝 [− {
𝑧 − 𝜇

𝜎
}]] , −∞ < 𝑧 < ∞ (2) 

 

The second approach, the so-called threshold excess approach, is to analyze excesses over a high threshold (Coles et al., 

2001). The Generalized Pareto Distribution (GPD) has a theoretical justification for fitting to the threshold excess approach 

(Gilleland and Katz, 2016), as given by  

 
2 For mathematical notation, y+ means max (y, 0), meaning that if y is negative, choose zero, otherwise choose y. Then, in 

equation 1, “+” indicates the same meaning. If the inside of the parentheses is negative, take zero. 



   

 

12 

 

H(x) = 1 −⁡[1 + 𝜀 (
𝑥 − 𝜇

𝜎𝜇
)] +

−1/𝜀
 (3) 

where μ  is a high threshold, x> ⁡μ , scale parameter 𝜎𝜇>0 and shape parameter −∞ < 𝜀 < ∞ .  The shape parameter 𝜀 235 

determines three types of distribution functions: heavy-tailed Pareto when 𝜀>0, upper bounded Beta when 𝜀<0, and the 

exponential is obtained by taking the limit as 𝜀 → 0, which gives 

H(x) = 1 − 𝑒−(𝑥−𝜇)/𝜎  (4) 

The extreme value models can be applied in the presence of temporal dependence (Coles et al., 2001), as given below: 

Zt~⁡GEV⁡(μ(t), σ(t), ε(t)) (5) 

Where 

where, μ(t) = ⁡𝛼0 + 𝛼1𝑡 + 𝛼2𝑡
2+. . +𝛼𝑛𝑡

𝑛 240 

σ(t) = exp⁡(𝛽0 + 𝛽1𝑡+. . +𝛽𝑛𝑡
𝑛) 

ε(t) = {
𝜀0, 𝑡 ≤ 𝑡0
𝜀1, 𝑡 > 𝑡0

 

By examining the times series of the PDSI values and winter minimum temperature, we can enhance the understanding of 

how return periods of droughts, and extreme cold weather have changed over time. The best GEV and GPD models are 

selected based on Maximum Likelihood Estimation (MLE) and BIC (Katz, 2013). Also, it is examined in diagnostic plots 245 

were used to assess whether the best GEV and GPD models are reasonably fitfits to the distributions or not.   

3 Main Results and Discussion 

 3.1 Return Periods of Droughts Using Tree-ring Reconstructed PDSI data 

In this section, to find the best model to predict a drought condition with the extended time, GEV and GP distributions are fit 

to the tree-ring reconstructed PDSI values for approximately 300 years, from 1700 to 2013. Specifically, in order to estimate 250 

return periods of extreme drought conditions, tree-ring based reconstructed PDSI and extreme value theories are used. Block 

maximum approach by using GEV distributions and threshold approach by using GPDs will be used while checking the 

stationarity of the data. If it is not stationary, the non-stationary extreme value technique will be used. Stationarity is assessed 

through the comparison of the BIC applied to a set of candidate models formualted using equation 5, with terms that include 

time or not.  255 

The procedure is implemented as follows: 

1. Fit GEV distributions to the tree-ring reconstructed PDSI values, allowing for non-stationarity by making µ, σ, 

and/ or ε a function of time.  

2. Fit GEV distributions to the tree-ring reconstructed PDSI values using climate variables (AO index, summer 

precipitation, snow, and minimum temperatures).  260 
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3. Evaluate models based on BIC.  

4. Using the best GEV model, return periods are estimated.  

5. The above procedure is repeated for GPDs fit to the tree-ring reconstructed PDSI values.  

3.1.1 Fitting GEV to the Tree-Ring Reconstructed PDSI for Return Period Estimation 

We construct two types of models: (1) stationary and nonstationary extreme value models, and (2) nonstationary models 265 

using climatic variables as covariates.  First, we consider polynomial models in time of the order of 0 to 2 for both the 

location and scale parameters of the GEV distribution, resulting in seven models to be tested, including the stationary model, 

for each region. In addition, autoregressive (AR) models are examined. The models are evaluated based on the BIC (Table 

3Table 3).  The best GEV models and its maximum likelihood estimates (MLE) with 95% confidence intervals are as 

follows (Table 3Table 3, Figure 3Figure 3):  270 

• Southwest: the model with a constant in the location parameter and temporally linear model in the scale parameter;  

the AR (3) model: 

μ = −0.42; ⁡σ = exp⁡(0.95 + 0.002t; ); ⁡ε = −0.23.⁡⁡(BIC = 1045). 

μ = −0.39 + 0.36𝑃𝐷𝑆𝐼𝑡−3; ⁡σ = 1.19⁡; ⁡ε = −0.29.⁡⁡(BIC = 1005). 

• Northwest: the model with a constant both in the location and scale parameters; AR (3) model:  275 

μ = −0.67; ⁡σ = 1.68; ⁡ε = −0.25; (BIC = 1241).  

μ = −0.57 + 0.50𝑃𝐷𝑆𝐼𝑡−3; ⁡σ = 1.47⁡; ⁡ε = −0.27.⁡⁡(BIC = 1146). 

• East: the model with a constant both in the location and scale parameters; AR (1) model: 

μ = −0.93; ⁡σ = 1.65; ⁡ε = −0.31; (BIC = 1212).  

μ = −0.55 + 0.62𝑃𝐷𝑆𝐼𝑡−1; ⁡σ = 1.25⁡; ⁡ε = −0.22.⁡⁡(BIC = 1064). 280 

Table 3: BIC values for stationary and non-stationary GEV models fitted to the tree-ring reconstructed PDSI values. 

    Southwest Northwest East 

Stationary model   1049 1241 1212 
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Figure 3: 95% Confidence intervals of parameters based on the normal approximation for each parameter. Also 

numerical values are listed in Table S.1.  300 

These results suggest that in the long run, a stationary model for PDSI in Mongolia may be appropriate. Only the Southwest 

has nonstationarity in the scale parameter, and. This nonstationarity in the scale parameter for the Southwest, with a mean 

coefficient of 0.002 relative to the constant value of 0.95, means that over 100 years the variability could increase from 0. 9 

to 1.05. If we take 0.9 to be a mid-period estimate, this would be rather a modest change. This could be a real feature or an 

artifact of the non-constant reconstruction variance from the tree ring reconstruction algorithm.  305 

 

Next, we estimate parameters of the GEV distribution functions fit to the PDSI values by including other climate variables 

such as AO index, summer precipitation, snow, and minimum temperatures as covariates from 1903 to 2010. Summer 

precipitation is a mean of May to August of a previous year, while snow is mean of values from November of a previous 

year to February of the year (. Also, AO index data starts in 1903. Thus, we use data starting 1903 though the data itself 310 

exists since 1901).. The minimum temperature is a minimum value from November of a previous year to October of the 

year. The GEV models with the lowest BIC for each cluster and MLEs with the 95% confidence intervals are as follows 

(Table 4Table 4 and Figure 4Figure 4):  

• Southwest: Precipitation data as a linear covariate in the location parameter: 

 μ = 3.63 − 0.14𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛; ⁡σ = 1.12; ⁡ε = −0.21. (BIC = 358). 315 
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• Northwest: Precipitation data as a linear covariate in the location parameter and snow data as a linear covariate in 

the scale parameter. 

 μ = 6.25 − 0.15𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛; ⁡σ = 2.38 − 0.31𝑠𝑛𝑜𝑤; ε = −0.07. (BIC = 380). 

• East: Precipitation data as a linear covariate in the location parameter. 

 μ = 5.09 − 0.13𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛; ⁡σ = 1.48; ⁡ε = −0.24. (BIC = 380).  320 

In the GEV models, climate variables (precipitation and snow) are important covariates for the extreme values of the PDSI 

values and improve the model performance (Table 3Table 3).  These climate variables have no inter-year dependence that is 

significant based on ARIMA, and hence there is no memory in these variables and the best model is stationary model. 

Consequently, no near-term forecast is feasible.  

Table 4: BIC values in estimated GEV models fitted to the PDSI values using the climate variables from 1903 to 2010. 325 

    Scale 

Southwest 

    Constant AO Snow Tmin Precip 

Location Constant 392 397 397 394 391 

Linear trend 390 393 393 394 393 

Quadratic trend 387 390 391 387 390 

AO 397 401 401 397 393 

Snow 397 401 401 398 395 

Tmin 396 401 401 396 395 

Precip 358 361 362 362 362 

Northwest 

    Constant AO Snow Tmin Precip 

Location Constant 430 434 433 433 432 

Linear trend 433 437 437 437 436 

Quadratic trend 427 431 431 429 425 

AO 434 438 437 437 437 

Snow 434 438 437 437 437 

Tmin 433 437 437 436 436 

Precip 384 388 380 387 387 

East 
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    Constant AO Snow Tmin Precip 

Location Constant 439 437 444 443 440 

Linear trend 441 446 445 446 445 

Quadratic trend 440 445 445 445 443 

AO 444 448 448 448 445 

Snow 439 444 442 443 441 

Tmin 444 448 448 448 444 

Precip 416 418 418 420 419 

 

 

 



   

 

19 

 

 

Figure 4: 95% Confidence intervals of parameters, using other climate variables based on the normal approximation. 330 

Also numerical values are listed in Table S.2.   

 

The time series of effective return periods of 100-year events for the GEV distribution functions fitted to the PDSI using the 

climate variables are shown in the Southwest, Northwest, and East from 1903 to 2010 (Figure 5Figure 5). This shows that 

variabilities of return periods of 100-year events of the PDSI values become larger over time in all the regions. Before 1940, 335 

the variabilities are small possibly because the instrumental data records began in 1940’s. Even after 1940’s, it also shows 

that the magnitude of 100-year events has increased in the last half of the data series. A PDSI value of 3 used to be a 100 

year event around 1920. Yet, around the beginning of the 21st century, it has increased to be between 4 and 5. However, 

considerable inter-annual and decadal variability is evident.  

 340 

Formatted: Font: Not Bold



   

 

20 

 

 

 

Figure 5: Estimated effective return levelsperiods of a 100-years event from the GEV distribution function fitted the 

PDSI values in the Southwest over 1903 to 2010 with precipitation data as a linear covariate in the location 

parameter. Variabilities of return periods of 100-year events of the PDSI values become larger over time in all the 345 
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regions. The blue horizontal line is the mean of the effective return levelsperiods while the red one is its median. 

Please note that the vertical axis is shown by the reversed values of PDSI values, meaning that a positive value is a 

drought condition.  

  

The relationship between significant climate covariates and reversed reconstructed PDSI values based on the best GEV 350 

models for each return period of 10, 50, and 100 years events are shown in Figure 6Figure 6 and Figure 7Figure 7. This 

shows that less precipitation leads to higher reversed reconstructed PDSI values, meaning more likelihood of droughts.  

Consequently, with this model, future projections of precipitation could be helpful to predict drought severity and frequency.  

 

  355 
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Figure 6: Relationship between precipitation and reversed reconstructed PDSI values in the Southwest (left) and the 

East (right) based on the best GEV model. Since the PDSI values are reversed, the positive values mean drought 

conditions. The red, blue and green lines are 10 year, 50 year, and 100 year events.  This shows that less precipitation 

leads to higher reversed reconstructed PDSI values, meaning more likelihood of droughts .   360 

 

 

Figure 7: Relationship between precipitation, snow and reversed reconstructed PDSI values in the Northwest based 

on the best GEV model. Since the PDSI values are reversed, the positive values mean drought conditions. The x axis 

is precipitation, the y-axis is snow, and the z-axis is reversed reconstructed PDSI values. The rightleft? cube is for 10-365 

year events, the central is for 50-year events, and the right is for 100-year events. Since the best GEV model contains 

precipitation and snow as covariates, the model for the Northwest is cubic. This shows that less precipitation leads to 

higher reversed reconstructed PDSI values, meaning more likelihood of droughts.   

3.1.2 Fitting GPD to the Tree-Ring Reconstructed PDSI for the Return Periods Estimation 

To fit a GPD, a threshold needs to be selected. We selected a threshold of 1.0 (please see the appendix ASupplement S1 for 370 

the detailed explanation of how we chosenchose the threshold). GPDs are fit to the tree-ring reconstructed PDSI values from 
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1700 C.E. as both stationary and non-stationary models (Table 5Table 5). The model of stationarity is best in terms of BIC 

for all clusters.  

 

Table 5: BIC values for non-stationary models in the scale parameters of GPD models fitted to the tree-ring 375 

reconstructed PDSI from 1700 for each clusterscluster.  

BIC Constant Linear in time Quadratic in time 

Southwest 97.00 100.30 104.40 

Northwest 184.69 188.37 188.41 

East 143.49 145.01 148.25 

 

The likelihood ratio test shows similar results. The likelihood ratio between temporal linear and stationary models shows that 

the p-value is 0.24. The likelihood ratio test between temporal quadratic and stationarity model shows 0.49 of p-values. Both 

results show that the subset models do not improve significantly.  These results confirm that for PDSI values a stationary 380 

model is appropriate.  

Being similar to the GEV cases, we analyze the other climate variables after 1903. Table 6Table 6 shows that the best model 

of GPD is the one with a constant in the scale parameters in terms of BIC for all clusters. MLEs estimated by the best GPD 

models are shown in Figure 8Figure 8. The table shows that for catastrophic droughts, climate variables are not a significant 

covariate, although the differences in BIC values in the Southwest and Northwest between the ones with constants and with 385 

AO index are small. The estimated effective return periods based on these best GPD models are listed in Table 7Table 7. In 

Table 7, the difference between the values for 10, 50, and 100 years is slight because the shape parameters estimated from 

the GEV for each case are negative. This means that the data is negatively skewed and this leads to an implicit upper bound 

for the process. As a result, each of the quantiles is restricted by that upper bound and ends up quite close to each other.   

Table 6: BIC values for different GPD models fitted to the tree-ring reconstructed PDSI values from 1903 with 390 

climate variables for all clusters 

Predictors in the scale 

parameters 

Constant AO Snow Tmin Precip 

Northwest 30.21  31.37  32.16  32.20  31.96 

Southwest 50.38  50.82 53.00 52.09 52.76 

East 65.49  68.84 68.62 68.86 67.80 
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Figure 8: 95% Confidence intervals of parameters, using other climate variables based on the normal approximation. 395 

Also numerical values are listed in Table S.3 
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Table 7: Effective return levelsperiods of 10, 50, and 100 year events of the PDSI values, based on the best GPD 

models. (Actual PDSI values are negative of these values). 

 10 year event 50 year event 100 year event 

Southwest 3.82 4.08 4.17 

Northwest 4.68 4.75 4.76 

East 3.85 3.87 3.87 

 

Results Based on GEV and GPD Models 400 

In this section, we fitted the GEV and GPD distribution functions to the PDSI values. Results are the following:  

• All The results show that the PDSI values will follow the distributions with ε<0, namely the Weibull distribution for 

the GEV models and the upper-bounded Beta distribution for the GPD models. This information can be used to 

estimate return periods of extreme drought.  

• For the Southwest, the non-stationary models performed better if we look at GEV without a threshold. However, 405 

with a threshold of 1 for the GPDs, the stationary models perform better than the non-stationary models, which 

indicate that all trends in reconstructed PDSI values are influenced by small events, not by extreme events; i.e. 

extreme events are stationary. For both the Northwest and East, stationary models performed better for both the 

GEV and GPD models.  

• Compared to the models with constants in the parameters, the GEV model with the climate variables are better in 410 

terms of the BIC value. Therefore, establishing a relationship between drought conditions and climate variables, 

particularly precipitation and snow, is useful in understanding the dynamics that determine dry conditions.  

However, compared to the models with constants in the scale parameters, the GPD models with the climate 

variables don’t lead to the improvement of the model performance. Hence, the climate variables are not so useful 

for understanding the catastrophic dry conditions.  in terms of the BIC criteria.  415 

• In terms of BIC, the models of a GPD fitted to tree-ring reconstructed PDSI values show better performance than 

the GEV models.  

• Because of the third point, the effective return periods based on the GEV models change with the climate variables. 

In contrast, the effective return levelsperiods based on the GPD models are constant: for example, a 100-year event 

is the PDSI value of -4.17 for the Southwest, -4.76 for the Northwest, and -3.87 for the East. This suggests that 420 

while the magnitude of the annual maxima seems to change with the base climate conditions, the frequency of the 

extreme events beyond a threshold is not affected that much.  
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3.2 Simulating Annual Minimum Temperature in Mongolia Using Siberia Data 

Instrumental winter temperature data in Mongolia is limited before 1950. Also the gridded climate database that cover 

Mongolia starts after 1901. Thus, we attempt to estimate the Mongolia data from longer records from Siberia, which can get 425 

back to 1820. Existing studies suggest the winter temperatures between Mongolia and Siberia are correlated spatially, driven 

by polar jet dynamics (He et al., 2017; Iijima and Hori, 2018; Munkhjargal et al., 2020). First, winter temperatures in 

Mongolia will be simulated by using instrumental temperature data from Siberia (in Section 3.2). By using the simulated 

winter temperature in Mongolia, return periods of extreme cold temperature during winters will be estimated in Section 3.3.  

Instrumental winter temperature data in Mongolia is limited before 1950. Thus, we attempt to estimate the Mongolia data 430 

from longer records from Siberia. The procedure was implemented as follows: 

1. Conduct correlation analysis between Siberia and Mongolia data to select which station data are informative for 

temperature in Mongolia.  

2. Impute missing data of instrumental data in Siberia 

3. Fit a GEV and GPD to the winter minimum temperature in Mongolia with the Siberia data 435 

4. Simulate winter minimum temperature of Mongolia from Siberia data based on the best GEV model.  

5. Calculate effective return periods of 10, 50, and 100 years from the simulated winter minimum temperature of 

Mongolia.  

First, correlation analysis is conducted to see which station data in Siberia is useful for Mongolia data. Temperature data in 

both Mongolia and Siberia is monthly data. Thus, to remove the seasonality, We use minimum temperature and average 440 

temperature during the winter time (October to April).) to remove the seasonality. We remove the seasonality because if both 

series data have seasonality (or periodicity), the correlation between them will be high just for that reason. Removing 

seasonality helps us identify if the anomalies from the periodic behavior are correlated, or namely if they share similar 

dynamics in effects induced by atmospheric circulation beyond the seasonal cycle. Data are taken for the common periods 

when all the points have data (i.e. between 1901 – 1990). Irkutsk data alone is used since it alone shows significant 445 

correlations between the temperature data in Mongolia and Siberia (Results of Pearson and Spearman correlation coefficients 

and scatter plots are shown respectively in Table S.4, Figure S.58 and Figure S.69 in the appendixsupplement.) We also 

check the ACF of residuals between data from Irkutsk, Siberia and winter average temperature of each cluster, and find out 

that there is no significant ACF structures between these data (Figure S.710).  

 450 

Next, we checked the structures of missing data from Irkutsk. Some years are missing all monthly records. We impute 

Irkutsk’s data with pattern matching methods, which is equivalent to k-nearest neighbors, by Gibbs sampling using 

predictive mean matching method (Van Buuren and Groothuis-Oudshoorn, 2011). Using winter minimum temperature from 

the Irkutsk data in Siberia (TminIrkutsk) as a covariate, we fit the Mongolia winter minimum temperature (Tminmongolia) based 

on the GEV and GPD models.  455 
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3.2.1 Fitting GEV to the Winter Minimum Temperature in Mongolia 

The results for GEV models based on BIC are shown in Table 8Table 8. Models with Siberia data both in the location and 

scale parameter are the lowest BIC for the Southwest and Northwest. For the Southwest and East, the one with Siberia data 

in the location parameter and constant in the scale parameter shows the lowest BIC (Table 8Table 8).  The best models for 

each region are shown in Figure 9Figure 9 and in the following: 460 

H(𝑇𝑚𝑖𝑛𝑚𝑜𝑛𝑔𝑜𝑙𝑖𝑎) = 1 −⁡[1 + 𝜀 (
𝑇𝑚𝑖𝑛𝑚𝑜𝑛𝑔𝑜𝑙𝑖𝑎 − 𝜇

𝜎𝜇
)] +

−1/𝜀
 (6) 

Zt~⁡GEV⁡(μ(t), σ(t), ε(t)) (7) 

where 

𝜇(𝑇𝑚𝑖𝑛𝐼𝑟𝑘𝑢𝑡𝑠𝑘) = ⁡𝛽0 + 𝛽1 ∗ 𝑇𝑚𝑖𝑛𝐼𝑟𝑘𝑢𝑡𝑠𝑘 

σ(𝑇𝑚𝑖𝑛𝐼𝑟𝑘𝑢𝑡𝑠𝑘) = exp⁡(𝛽3 + 𝛽4 ∗ 𝑇𝑚𝑖𝑛𝐼𝑟𝑘𝑢𝑡𝑠𝑘) 

ε(t) = {
𝜀0, 𝑡 ≤ 𝑡0
𝜀1, 𝑡 > 𝑡0

 

Southwest:⁡μ = 11.80 + 0.39𝑇𝑚𝑖𝑛𝐼𝑟𝑘𝑢𝑡𝑠𝑘; ⁡σ = 1.90; ⁡ε = −0.25.⁡ 465 

Northwest:⁡μ = 12.67 + 0.52𝑇𝑚𝑖𝑛𝐼𝑟𝑘𝑢𝑡𝑠𝑘; ⁡σ = 𝑒𝑥𝑝(0.35 + 0.06𝑇𝑚𝑖𝑛𝐼𝑟𝑘𝑢𝑡𝑠𝑘); ⁡ε = −0.18. 

East:⁡μ = 10.20 + 0.48𝑇𝑚𝑖𝑛𝐼𝑟𝑘𝑢𝑡𝑠𝑘; ⁡σ = 1.40; ⁡ε = −0.38.⁡ 

Table 8: BIC values for GEV models using Irkutsk data for 3 clusters 

 Stationary Location=  =TminIrkutsk, 

scale =1 

Location= = 1, 

scale = TminIrkutsk 

Location= = TminIrkutsk, 

scale = TminIrkutsk 

Southwest 527.40 494.45 528.98 497.40 

Northwest 537.04 467.87 532.89 467.74 

East 495.48 403.36 846.02 901.64 
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Figure 9: Estimated parameters based on the best GEV model fitted to the winter minimum temperature in 

Southwest using Irkutsk data. Numerical values are listed in Table S.5. 475 

3.2.2 Fitting GPD to the Winter Minimum Temperature in Mongolia 

For GPD, we select 20 (-2023 (-23 degrees in reality) as a threshold. (Please see Section S.1, Figure S6 and Figure S.7 in 

Supplemental regarding how the thresholds were selected). In this case, the one with the Irkutsk’s data in the scale parameter 

has the lowest BICs for all clusters as Table 9Table 9 shows.  

 480 

Table 9: BIC values of GPD models using Irkutsk data for 3 clusters 

 Stationary Scale = TminIrkutsk 

Southwest 242.0054.78 236.0053.26 

Northwest 503.92282.30 479.89270.72 

East 203.5231.38 180.1528.49 

 

 

 

 485 
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Figure 10: Estimated parameters based on the best GPD model fitted to the winter minimum temperature in 

Southwest using Irkutsk data. Numerical values are listed in Table S.6.  

3.2.3 Results based on GEV and GPD models 

In this section, we fitted the GEV and GPD distribution functions to the winter minimum temperature in Mongolia. The 490 

results are as follows:  

• All the results show that the winter minimum temperature will follow the distributions with ε<0, namely the 

Weibull distribution for GEV and the upper-bounded Beta distribution.  

• Based on BIC, GPD models show better performance in both Southwest and East regions, while the GED models 

show better performance in Northwest.  495 

3.3 Return Periods of the Winter Minimum Temperature in Mongolia Simulated from Siberia Data 

Next, we simulate the Mongolia winter minimum temperature based on data from Irkutsk Siberia for 197 years using the 

parameters estimated by the best GEV model. We use the GEV model because the winter minimum temperature data is a 

single extreme value and that the GEV model is suitable for maxima and minima of block data. Then, using this simulated 

Mongolia winter minimum temperatures, we estimate the 90% confidence intervals of return levelsperiods of 10, 50 and 100 500 

year events for each cluster (Figure 11Figure 11). The median of 100 year return levelsperiods are -26.08, -27.99, and -
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25.31 Celsius degrees for the Southwest, Northwest, and East.   The variations in these density plots come from both the 

statistical properties of the Mongolia data itself and variations attributed to Siberia data.    

 

 505 

Figure 11: Density plots of 10, 50, and 100-year return levelsperiods of the winter minimum temperatures in the 

Southwest, Northwest, and East of Mongolia with 90% confidence intervals. Please note that the x-axis shows 

temperature below zero (i.e., for Southwest, the axis shows negative 23.5 to 27 Celsius degree). The data is simulated 

100 times from the Siberia data. For example, the plots show that the median of 100 year return levelsperiods are -

26.08, -27.99, and -25.31 Celsius degrees for the Southwest, Northwest, and East.   510 

4. Binary Index 

Based on the thresholds used in the GPD approaches, we also explored if the frequency of the co-occurrence of summer 

drought and cold winter temperatures has changed over time. First, we counted cases as a binary value of 1 when both 

summer drought and cold winter temperatures in Mongolia are below thresholds (-1 for PDSI values and -23 degree for 

winter temperatures), otherwise zero. Then, we fitted the local binomial and Poisson regressions while computing 515 

generalized cross-validation statistic to determine the smoothing parameter (Loader, 2006) (please see Section S.2 in the 

supplement for used alpha values for each cluster). Figure 12Figure 12 shows Northwest and East have similar long-term 
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trends: decreasing trends in the early 20th century and the slightly increasing trends since 1990s. The Southwest shows an 

increase in the mid-20th century and has started happening again in the early 21st century.  

 520 

 

Figure 124: Binary index for the co-occurrence of threshold exceedance of PDSI values and winter temperature. The local 

regression is based on the optimal bandwidth of a local quadratic regression function based on the GCV criteria considering that 

the binary indicator is an outcome of a nonhomogeneous Poisson process. Note the tendency for a cluster in the beginning for the 

Northwest and the East. The increase in the frequency for the trend function in the most recent period could represent more of an 525 
edge effect of the regression.  

5. Conclusions  

Meteorological data in Mongolia is limited in length with many missing values. Therefore, we utilize longer records from 

paleoclimate proxy data and meteorological data from neighboring Siberia.  This study attemptsThe motivation was to 

improve risk estimation for dzud in Mongolia. Based on extreme value theory, this study derives fitted distributions for 530 

drought and winter extreme cold conditions. The study also improves the estimation of return periods of extreme drought 
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conditions and winter temperature, using tree-ring reconstructed self-calibrated PDSI, and station records from Mongolia and 

Siberia.  

GEV models without a threshold show that there is a non-stationarity trend in tree-ring reconstructed PDSI data in the 

Southwest, while there is a stationarityno trend in PDSI in both the Northwest and East. However, the threshold approach 535 

indicates that extreme events in reconstructed PDSI values are stationary, indicating that catastrophic drought conditions 

arewere stationary for the last 300 years. si 

The study estimated the extreme distributions of drought and winter minimum temperatures in Mongolia. The PDSI values 

follow the distributions with ε<0, namely the Weibull distribution for the GEV models and the upper-bounded Beta 

distribution for the GPD models. Also, the results of the study show that the winter minimum temperature follow the 540 

distributions with ε<0, namely the Weibull distribution for GEV and the upper-bounded Beta distribution. These estimated 

distributions can be used to improve the risk calculations for livestock index insurance in Mongolia.  

Based on the results of our GEV fitted to the PDSI values, we show that climate variables, such as precipitation and snow, 

are important covariates for the extreme values of the reconstructed PDSI values. However, for catastrophic drought events, 

climate variables are not significant covariates based on the results of the GPD model fitted to the PDSI values.  545 

The GEV model also shows that the return levelsperiods of drought conditions are changing over time and variability is 

increasing for all the regions. Yet, based on GPD, the return levelsperiods of drought conditions are constant: for example, 

the actual values of the PDSI for the 100-year events are: -4.17 for the Southwest, -4.76 for the Northwest, and -3.87 for the 

East. The median of 100-year return levelsperiods of the winter minimum temperature in Mongolia is -26.08 Celsius degrees 

for the Southwest, -27.99 Celsius degrees for the Northwest, and -25.31 Celsius degrees for the East.   550 

This study improves the return period estimation of droughts and winter minimum temperature. Summer drought and winter 

temperature are important predictors for livestock mortality since they explain 48.4% of the total variability in the mortality 

data, along with summer precipitation and summer potential evapotranspiration (Rao et al., 2015). Therefore, this long-term 

estimation of return periods of these significant predictors can be used to improve risk analysis of high livestock mortal ity in 

order to prepare for the winter catastrophes through early warning systems and index insurance. 555 

A binary index for the co-occurrence of threshold exceedance of drought severity and temperature was developed and its 

temporal variation assessed.  The index shows that all the regions have increasing trends of these co-occurrence. Begzsuren 

et al. (2004) identify that mortality rates are highest in combined drought and dzuds years than those with dzuds or drought 

alone while examining the co-occurrence of these extreme events with 51 years of observational data. This implies that the 

increasing trends of the co-occurrence would pose severe socioeconomic impacts on the country’s livestock industry. (Rao et 560 

al., 2015) Particularly 

Our study estimates the return intervals and underlying probabilistic characteristics of the climate variables. Index insurance 

requires a proper threshold and the understanding of underlying distributions of risk events. Thus, the estimation of extreme 

value distributions and return levelsperiods has the potential to improve livestock index insurance, which is implemented in 
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Mongolia by the Government of Mongolia with the help of the World Bank (Mahul et al., 2015).. Insurance is priced by 565 

considering the uncertainty associated with the estimation of the probability of exceeding the threshold at which the pay-out 

occurs. The estimation of the uncertainty is reduced as the length of record (in our case from the paleoclimate extension) 

increases. At present, no one in the industry is using paleoclimatic information to extend and reduce coverage costs, but there 

is interest in using it to understand the clustering of pay-outs. Furthermore, the results of this study increase understanding of 

how extreme climatic events in arid regions, which are sensitive to anthropogenic climate change, are changing. The urgent 570 

needs to improve resilience of the society to this winter disaster is even more unequivocal.  
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Supplement 1 

S1: How to select a threshold for GPD.  2 

To fit a GPD, a threshold needs to be selected. We selected the thresholds in the following ways. Figure 3 

S.3 repeatedly fits the GPD to the data for a series of threshold choices along with uncertainty (Gilleland 4 

and Katz, 2016). Figure S.4Figure S.4 plots the mean excess values for a sequence of threshold choices 5 

with some variability information (Gilleland and Katz, 2016). As discussed in Gilleland and Katz (2016), 6 

choice of a threshold is subjective. Because a good choice of the threshold is near the inflection point of 7 

the right tail of the distribution, the value of 1.0 is selected as a threshold. This selection of 1 seems to 8 

yield estimates that will not change much as the threshold increases further from Figure S.3. Also, 9 

Gilleland and Katz (2016) suggests selecting a threshold whereby the graph is linear within uncertainty 10 

bounds in the plot of the mean excess values. Following this, the threshold value of 1 is a reasonable 11 

choice in Figure S.4. Furthermore, if I use this value for the threshold, the exceedance percentile of the 12 

threshold (a ratio of the number of exceedance to the number of total data) is 0.210 in the Southwest and 13 

0.26 for both the northwest and east. These thresholds correspond to 4-5 years return periods.  Setting 14 

these return levels as thresholds is of interest in terms of social concern. Therefore, it is reasonable to use 15 

a threshold of 1.0. In the same way, the threshold value of minus 23 degree is selected for the winter 16 

temperature Figure S.5 and Figure S.6, corresponding the 4-5 years return periods.  17 

S2: Local regression in Section 5 18 

Please note that local Poisson regressions for the Southwest use alpha=0.5, for the Northwest alpha=0.5, 19 

and the East alpha=0.65 for smoothing parameters respectively. Local binomial regressions for the 20 

Southwest use alpha=0.5, for the Northwest alpha=0.8, and for East alpha=0.9. All are a 1 degree of 21 

freedom. 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

 31 



2 
 

 32 

S3: Figures 33 

 34 

 35 

 36 

 37 
Figure S.1: ACF of the tree-ring reconstructed PDSI in each cluster. 38 
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 39 

 40 
 41 
Figure S.2: PACF of the tree-ring reconstructed PDSI in each cluster. 42 

 43 
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 44 

Figure S.3  45 
Figure S.: Threshold Range Plot (1) 46 
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 47 
: Threshold Range Plot. This figure is used to choose a threshold for GPD following Gilleland and Katz (2016). The figure 48 
repeatedly fits the GP distribution function to the data to plot a sequence of threshold choices with some variability 49 
information. A subjective selection of 1 as a threshold appears to yield estimates that will not change much. Also, this 50 
selection is made based on Fig S4 and the theoretical and practical justification (which means that a threshold of 1 51 
corresponds to a 4- 5 year return level, which is of social interests.) Reparametarization means here the scale parameter is 52 
adjusted so that it is not a function of threshold (Gilleland and Katz (2016)).  53 

 54 

 55 
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 56 

Figure S.4: Empirical mean residual life plot to determine a threshold range of PDSI value in the Southwest. The inflection 57 
point is shown around 0-1. We subjectively select 1 as explained in Gilleland and Katz (2016). 58 
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 59 

 60 

Figure S.5: Threshold range plot (2)of temperature in southwest. This figure is used to choose a threshold for GPD following 61 
Gilleland and Katz (2016).  62 

 63 

 64 

 65 

 66 
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 67 

Figure S.6  68 
Figure S.: Empirical mean residual life plot to determine threshold range of temperature in southwest. The inflection point is 69 
shown around 23. We subjectively select 23 as explained in Gilleland and Katz (2016). 70 

 71 



9 
 

 72 
Figure S.7: Scatterplots between winter minimum temperature in three Siberia stations. Red marks show statistical 73 
significance, while red curves show the smoothed curve. One, two or three stars indicate that the corresponding variable 74 
is significant at 10%, 5% and 1% levels, respectively.  75 
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 76 

 77 
Figure S.8: Scatterplots of winter average temperature in three Siberia and three Mongolia clusters. One, two or three 78 
stars indicate that the corresponding variable is significant at 10%, 5% and 1% levels, respectively. 79 

 80 

 81 
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 82 

 83 
Figure S.9: ACF of residuals between data from Irkutsk Siberia and the winter average temperature of each cluster. 84 

 85 

A.3: Tables 86 

Table S.1: 95% Confidence intervals of parameters based on the normal approximation for each region. 87 

 95% lower CI Estimate 95% upper CI 

Southwest    

Location (α0) -0.56 -0.42 -0.28 

Scale (β0) 0.75 0.95 1.15 

Scale (β1) 0.001 0.002 0.003 

Shape (ε) -0.29 -0.23 -0.17 

Northwest    

Location(α0) -0.87 -0.67 -0.46 



12 
 

Scale (β0) 1.53 1.68 1.82 

Shape (ε) -0.32 -0.25 -0.18 

East    

Location(α0) -0.93 -0.73 -0.52 

Scale (β0) 1.51 1.65 1.80 

Shape (ε) -0.38 -0.31 -0.24 

 88 

Table S.2: 95% Confidence intervals of parameters, using other climate variables based on the normal approximation 89 

 95% lower CI Estimates 95% Upper CI 

Southwest    

 Location (α0) 2.49   3.63 4.77 

 Location (β1) -0.18 -0.14 -0.11 

Scale (β0) 0.96 1.12 1.28 

Shape(ε)  -0.33 -0.21 -0.10 

Northwest    

Location (α0) 4.84 6.25 7.67 

Location (α1) -0.17 -0.15 -0.12 

Scale (β0) 1.60 2.38 3.17 

Scale (β1)  -0.48 -0.31 -0.14 

Shape (ε)  -0.20 -0.07 0.06 

East    

Location (α0) 3.01   5.09 7.17 

Location (β1) -0.17 -0.13 -0.08 

Scale (β0) 1.26   1.48 1.71 

Shape (ε)  -0.39 -0.24 -0.10 
 90 

Table S.3: 95% Confidence intervals of parameters, using other climate variables based on the normal approximation 91 

 95% lower CI    Estimate 95% upper CI 

Southwest    

Scale (β0) 0.33   0.78     1.24 

Shape (ε) -0.64 -0.20     0.22 

Northwest    

Scale (β0) 0.78   2.02    3.25 

Shape(ε) -1.01 -0.53 -0.05 

East    

Scale(β0) 0.85   1.88     2.91 

Shape(ε) -1.13 -0.65    -0.18 

 92 

Table S.4: Pearson and Spearman correlation coefficients in winter minimum temperature between Mongolia data and 93 
Siberia data 94 

 Southwest Northwest East 

Pearson correlation 

coefficients 
   

Irkutsk, Siberia 0.57*** 0.72*** 0.76*** 

Ulan-Ude, Siberia -0.14 -0.13 -0.21* 
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Minusinsk, Siberia -0.04 -0.09 -0.16 

Spearman correlation 

coefficients 
   

Irkutsk, Siberia 0.52*** 0.61*** 0.60*** 

Ulan-Ude, Siberia -0.14 -0.19 -0.22* 

Minusinsk, Siberia -0.02 -0.08 -0.08 

Note: One, two or three stars indicate that the corresponding variable is significant at 10%, 5% and 

1% levels, respectively. 
 95 

 96 
 Table S.5: Estimated parameters based on the best GEV model fitted to the winter minimum temperature in Southwest 97 
using Irkutsk data. 98 

 Estimate Standard Error Estimates 

Southwest   

Location (α0)  11.82 1.22 

Location (α1)  0.39 0.06 

Scale (β0)  1.90 0.14 

Shape (ε) -0.25 0.06 

Northwest   

Location  (α0)  12.67 1.00 

Location (α1)  0.52 0.05 

Scale (β0)  0.35 0.66 

Scale  (β1)  0.06 0.03 

Shape -0.18 0.06 

East   

Location (α0)  10.20 0.80 

Location (α1) 0.48 0.04 

Scale (β0) 1.40 0.10 

Shape (ε) -0.38 0.05 

 99 

Table S.6: Estimated parameters based on the best GPD model fitted to the winter minimum temperature in Southwest 100 
using Irkutsk data. 101 

 Estimate Standard Error Estimates 

Southwest   

Scale (α0) -4.187.87 2e-081.60 

Scale (α1) -0.3421 2e-080.09 

Shape -0.541.03 2e-080.13 

Northwest   

Scale(β3) 2.30-3.66 1.222e-08 

Scale (β4) 0.3536 0.0752e-08 

Shape -1.150.70 0.152e-08 

East   

Scale -1.6355 2e-08 

Scale (β4) 0.2612 2e-08 

Shape -1.060.78 2e-080.038 
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