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Abstract 19 

Debris flow is one of the main causes of life loss and infrastructure damage in mountainous areas. This hazard 20 

should be recognized in the early stage of land development planning. According to field investigation and expert 21 

experience, a scientific and effective quantitative susceptibility assessment model was established in Pinggu District 22 

of Beijing. This model is based on Geographic Information System (GIS), combining with grey relational, data-23 

driven and fuzzy logic methods. The influence factors, which are divided into two categories and consistent with the 24 

system characteristics of debris flow gully, are selected, also a new important factor is proposed. The results of the 25 

17 models are verified using data published by the authority, and validated by two other indexes as well as Area 26 

Under Curve (AUC). Through the comparison and analysis of the results, we believe that the streamlining of factors 27 

and scientific classification should attract attention from other researchers to optimize a model. We also propose a 28 

good perspective to make better use of the watershed feature parameters. These parameters fit well with the watershed 29 

units. With full use of insufficient data, scientific calculation, and reliable results, the final optimal susceptibility map 30 

could potentially help decision makers in determining regional-scale land use planning and debris flow hazard 31 

mitigation. The model has advantages in economically backward areas with insufficient data in mountainous areas 32 

because of its simplicity, interpretability and engineering usefulness. 33 
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1 Introduction 36 

Debris flows are processes of rapid transport of water and soil materials in mountain watersheds, with sudden 37 

and destructive outbreaks(Di et al., 2019). Some debris flows can often cause devastating disasters and huge 38 

losses(Zhang et al., 2021) and seriously threaten the lives and properties of people in the mountains, the safety of 39 

major projects, and restrict social and economic development (Iverson, 1997; Hungr et al., 2005; Hu et al., 2011; 40 

Takahashi, 2014; Wu et al., 2019). Mass movements in Beijing range in scale from shallow slope failures and rockfalls 41 

to catastrophic rock avalanches frequently mobilize to form debris flows, threatening the ecological environment of 42 

the mountainous area (Zhong et al., 2004). Especially, in recent years, due to the superposition of extreme rainstorm 43 

weather and human engineering activities, debris flow events have increased gradually(Li et al., 2021b). As the capital 44 

of China, Beijing also has strong influence and radiation at home and abroad, where geological disasters are widely 45 

concerned (Xie et al., 2004; Li et al., 2020b). With the deepening understanding of debris flow disaster and the 46 

updating of database, a new and more accurate evaluation is also very necessary. Therefore, it is of great significance 47 

to establish accurate and scientific debris flow susceptibility map. 48 

Through previous studies, it can be summarized that the current research on debris flow mainly focuses on the 49 

following aspects: study on mechanism of debris flow, study on early warning and prediction of debris flow, study 50 

on numerical simulation of debris flow and study on debris flow hazard analysis. Especially, studies on debris flow 51 

hazard analysis have raised the attention of the researchers as soon as it appears(Dong et al., 2009). Communicating 52 

information about debris flow hazard analysis is a crucial component of preparedness and hazard mitigation (Chiou 53 

et al., 2015). Susceptibility assessment, an important part of a hazard assessment of geological processes, is more 54 

flexible(Li et al., 2021a). In the early days, the susceptibility assessment of debris flows was mainly qualitative 55 

research using geomorphological information (Guzzetti et al., 1999). In 1976, the United Nations commissioned the 56 

International Union of Engineering Geology to conduct a risk assessment of debris flows, which marked the 57 

beginning of research on the susceptibility assessment of debris flows as an important research direction for disaster 58 

prevention and prediction (Li et al., 2020b). Many methods and techniques have been proposed to evaluate debris 59 

flow susceptibility assessment based on different qualitative and quantitative approaches along with geo-60 

environmental information (Liu and Wang, 1995), Such as the analytic hierarchy process (Wu et al., 2016), logistic 61 

regression method (Regmi et al., 2013; Conoscenti et al., 2015), information value (Akbar and Ha, 2011; Melo et al., 62 

2012), support vector machine(Pourghasemi et al., 2017), frequency ratio (FR) (Sun et al., 2018), certainty factor 63 

(CF) (Tsangaratos and Ilia, 2015), neural network (Lee et al., 2003; Liu et al., 2005) and Bayesian network algorithm 64 

(Liang et al., 2012; Tien Bui et al., 2012), etc. These methods have corresponding advantages and limitations for 65 

research subjects with different geological conditions. Generally speaking, it is easier to get satisfactory results by 66 

combining and comparing various methods (Meyer et al., 2014; Di Napoli et al., 2020; Fang et al., 2020). In summary, 67 

with the development of mathematical theory, the susceptibility assessment of debris flows has been extensively and 68 

quantitatively studied, and the research methods have also changed from single to comprehensive. 69 

The economy in mountainous areas is often backward, we cannot supervise and verify every basin due to limited 70 

funds. The debris flow susceptibility assessment can give decision makers a basis for rational allocation of resources, 71 

and determine which gullies should be focused on. In other words, the study plays a link role for other studies. 72 
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Recently, with the development of mathematical theory, computer technology, the application of 3S (Remote sensing, 73 

Geography information systems, Global positioning systems), the susceptibility assessment of debris flows has been 74 

extensively and quantitatively studied(Li et al., 2020a). As research progresses, debris flows are increasingly seen as 75 

an open system. There are many factors influencing the system and the combination of factors is non-linear and the 76 

interactions are chaotic. Therefore, it is very difficult to find a unified and standard evaluation model. At present, 77 

when the information is insufficient, field investigation and experience of experts are necessary. However, the 78 

experience is often subjective and needs a lot of professional experience accumulation. It is very important to express 79 

the experience of experts objectively and understandably to serve decision makers. The application of fuzzy set theory 80 

in GIS environments is effective for similar problems(Luo and Dimitrakopoulos, 2003; Porwal et al., 2006). 81 

The main objective of this paper is to propose a quantitative geographic information system (GIS)-based model. 82 

The results of expert experience scoring and site surveys are used as guidance and reference in the modelling process. 83 

We have tried to apply methods that can indicate the non-linearity of the debris flow system. Finally, the modelling 84 

process should respect the laws of geomorphological evolution and the geological basis. Otherwise, the result will 85 

tend to be simply data fitting(Porwal et al., 2006). 86 

2 Study area 87 

The study area is located on the northeast of Beijing, China (Fig. 1), with a total area of 948.24 square kilometers. 88 

The elevation of Pinggu is high in the northeast and low in the southwest. It is surrounded by mountains, accounts 89 

for about two-thirds of the total area, on three sides in the southeast and north. The central and southern parts are 90 

alluvial plains. The area, geologically, is the west extension of the famous Jixian section, whose bedrock is mainly 91 

Middle and Late Proterozoic dolomite(Lü et al., 2017). The administrative unit of Pinggu District is used as the study 92 

area boundary, mainly considering that geological hazards frequently influence human economic activities, so 93 

political factors must be taken into account. And within the administrative region, inconsistent decision-making can 94 

be effectively avoided.  95 
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 96 
Fig. 1 Study area 97 

3. Data and Methodology 98 

In this study, the susceptibility assessment of debris flow hazard was based on the drainage basin unit. In such 99 

a model, hydro-logical response unit can fully represent the hydrological process of hillside and will make the results 100 

more meaningful(Khan et al., 2013; Khan et al., 2016; Zou et al., 2019). First, drainage networks were extracted from 101 

the ASTER-DEM by using the ArcGIS ArcHydro Toolbox and regions without obvious watershed characteristics 102 

were directly deleted. Then for each drainage basin, 19 controlling and triggering factors divided into two types were 103 

calculated. In addition, for these factors have different characteristics, different methods were used to calculate the 104 

fuzzy membership for different type factors. Field investigation is generally required in geological hazard surveys. If 105 

these data are applied to the model, it can help with the model building and reduce the time for model training. The 106 

weights derived from the grey relational analysis method used in the following section (section 3.4.1) are based on 107 

the data from the field investigation. While geology and geomorphology factors are independent of watershed 108 

characteristics, it is suitable to use statistical methods to determine the objective weight. Finally, the debris flow 109 

susceptibility index (DFSI) map was derived by overlaying the factor thematic layers with fuzzy logic method. The 110 

workflow of debris flow susceptibility assessment is showed in Fig.2. First, a DEM map of the Pinggu area was 111 

downloaded. Then, the basin units were generated from the DEM map using the ArcHydro tool. The derived results 112 

were analyzed and units that did not fit the characteristics of the watershed were removed. During the analysis, the 113 

field investigation data and Google images were referenced. After that, the controlling and triggering factors for the 114 

remaining 135 catchments were counted. For the fuzzy memberships, watershed characteristic parameters were 115 

determined by grey correlation, the geological and geomorphological factors were determined by the frequency ratio 116 

(FR) method and the cosine amplitude method. Finally, the individual layers were overlaid by fuzzy logic operations 117 

to obtain the final map. As there were different combinations of factors, 17 results were derived. Three indexes (AUC, 118 
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AR and RR) were used to evaluate advantages and disadvantages of these results. 119 

 120 

Fig.2 Workflow of debris flow susceptibility assessment 121 

3.1 Debris flow basin division and inventory 122 

There are many geological hazard points in mountainous area, so it is not realistic to monitor them completely 123 

by professional teams. According to the monitoring and preventing staff and the villagers, the detailed field 124 

investigation (Fig.3) for the evidence collection of debris flows will be carried out at the reported disaster point, 125 

aiming at record the loose material, delineating the basin and exploring other important information of the debris 126 

flow gullies. Moreover, field investigation is also very important for model modification. Then based on the 127 

Hydrology module in ArcGIS 10.2, the research object can be determined. Compared with grid unit and slope unit, 128 

hydrological response unit for susceptibility of debris flow has greater advantages(Li et al., 2021b; Zou et al., 2019). 129 

Finally, referring to the result of the field investigation and the remote sensing image, 135 basins are divided after 130 

removing the flat and irregular areas (Fig. 4), and 48 basins of them were investigated on field, accounting for 36%. 131 
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 132 

Fig.3 Field investigation photos. a Loose material; b Middle and Late Proterozoic dolomite; c colluvium deposit; d 133 

Slope fracture; e Channel erosion phenomenon 134 

 135 
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 136 
Fig. 4 Debris flow basin division and inventory.  137 

Note: The data of debris flow points comes from Beijing Municipal Commission of Planning and Natural Resources 138 

websites (http://ghzrzyw.beijing.gov.cn/zhengwuxinxi/zxzt/dzzhfzzt/zzzhdcpg/202008/t20200807_1976436.html) 139 

3.2 Debris flow controlling and triggering factors 140 

The basic requirement for the assessment of debris flows is that some factors included are easily obtainable, 141 

meaningful for susceptibility assessment, and can be used for evaluating the need for passive or active debris flow 142 

mitigation. According to previous studies, 19 factors are selected in this study. the factors are divided into two types 143 

(Table 1) because of their different characteristics. Watershed characteristic factors (Type A) can be directly 144 

quantified, once the basin is determined (Fig. 5). The influence of these parameters is bounded by the watershed; 145 

Geology and geomorphology factors (Type B) need to be further processed, even if the watershed is determined. The 146 

scope of these parameters is independent of the watershed boundary.  147 

 148 
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Table 1 Factors for susceptibility assessment 149 

Factors and Description Significance Obtaining ways 

Watershed 

characteristic 

factors  

(Type A) 

A1 

The planimetric 

(projected) area of the 

catchment 

Geometric parameter; affecting the accumulative total volume 

of water and representing the potential 

magnitude(Zhang et al., 2011; Cao et al., 2016; Chang and 

Chien, 2007)  

Derived from DEM 

A2 
The curved surface area of 

the catchment 
Real contact area between rainfall and basin Derived from DEM 

A3 
The surface roughness of 

the catchment 

Dimensionless parameters, reflecting the fragmentation 

degrees of the surface and the ground surface micro-

topography. Wu et al. (2019) believe the factor can further 

reflects the ability of the earth to resist wind erosion. 

Calculated by A3= A2 / A1 

A4 
The perimeter of 

catchment 

Geometric parameter, controlling the boundaries of a 

watershed 
Derived from DEM 

A5 Form factor 
Hydrologic parameter, related to the distribution of flow rate 

hydrograph(Chang and Chien, 2007) 
Calculated by 𝐴5 =

𝐴4

2√𝜋𝐴1
 

A6 
The curve length of the 

main channel 

Importance for the travel distance of materials and affecting 

the potential of erosive agents to dislodge and transport 

materials(Gómez and Kavzoglu, 2005) 

Derived from DEM 

A7 
The straight length of the 

main channel 

Geometric parameter, representing the change of material 

source in space 
Derived from DEM 

A8 
Bending coefficient of the 

main channel 

Affecting the discharge situation of debris flows(Li et al., 

2020a; Zhang et al., 2013) 
Calculated by A8=A6/A7 

A9 
The gradient of the main 

channel 

Hydraulic gradient parameter, affecting water transport 

capacity 
Calculated by A9=A12/A6 

A10 
Maximum elevation in the 

catchment 
Affecting vegetation and bedrock exposure Derived from DEM 

A11 
Minimum elevation in the 

catchment 
Affecting vegetation and bedrock exposure slightly Derived from DEM 

A12 
Maximum relative relief in 

the catchment 

The higher the value of A12 is, the large relative relief 

provides favorable terrain conditions for the initiation of the 

debris flow source.  

Calculated by A12=A10-A11 

A13 

Basin volume: the 

volume above the level of 

the minimum elevation in 

the basin 

Representing the maximum material source that can be 

produced in an ideal state, loose material volume 
Derived from DEM 

A14 Drainage density 
Representing the geological structure, lithology, and the 

degree of rock weathering comprehensively and affecting the 

The ratio of the total length of 

river network lines to A1 
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range of lateral erosions and retrogressive(Cao et al., 2016; 

Zhang et al., 2011) 

Geology and 

geomorphology 

factors  

(Type B) 

B1  Lithology 
Affecting the rock mass shear strength and 

permeability (Donati and Turrini, 2002) 

Derived from 1:50,000 

geological maps 

B2 
Proximity to 

faults 

correlated with slope failures by generally 

reducing the strength of the rock mass (Dramis and Sorriso-

Valvo, 1994; Korup, 2004; Kellogg, 2001; Kritikos and 

Davies, 2015). 

Derived from 1:50,000 

numerical geological maps  

B3 Slope (degrees) 

correlated with the probability of landslide occurrence (Dai 

and Lee, 2002; Lee and Choi, 2004; He and Beighley, 2008). 

The greater the slope, the greater the vertical component of 

gravity (Donati and Turrini, 2002), and the higher frequency 

of slope failures (Lee and Sambath, 2006; Lee and Talib, 

2005) 

Derived from DEM  

B4 Slope aspect 

affecting slope instability directly or indirectly, as a result of 

drying winds, sunlight, rainfall and vegetation (Dai and Lee, 

2002; Dai et al., 2001). 

Derived from DEM  

B5 Curvature 

Affecting slope stability. While Lee and Talib (2005) and 

Ohlmacher (2007) argue on how curvature affect slope 

stability. 

Derived from DEM  

Note: The geological maps are provided by Beijing institute of geological and prospecting engineering and the digital elevation model-(DEM) of study area are from 150 

SRTM-DEM with a solution. of 30 m (http://gdex. cr. usgs. gov/gdex/). 151 

 152 
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 153 
Fig. 5 Graphical illustration of some Type A factors. A

1
 is the planimetric (projected) area of the catchment; A

2
 is 154 

the curved surface area of the catchment; A
4
 is the perimeter of catchment; A

6
 is the curve length of the main channel; 155 

A
7 

is the straight length of the main channel;
 
A

13
 is basin volume 156 

3.3 Fuzzy logic in susceptibility modelling 157 

Fuzzy set theory is proposed by Zadeh (1965). It is an efficient way of expressing the concept of partial set 158 

membership degree. This concept differs from classical binary (0-1 value) logic. More words with a transitional fuzzy 159 

descriptions (such as low, medium, and high) are used (Kritikos and Davies, 2015). This fuzzy expression is 160 

particularly applicable to geological hazard classification. In the theory of fuzzy sets, elements have different degrees 161 

of membership in the interval [0,1]. 1 represents complete membership, and 0 represents non membership. Ross 162 

(1995) showed that fuzzy systems are useful in two general situations (Kritikos and Davies, 2015). The method is 163 

very consistent with the characteristics of debris flow system, whose predisposing factors are fuzzy in nature and 164 

mechanism is complex and not fully understood. Application of fuzzy logic method, the critical step is to find the 165 

suitable fuzzy membership of factors. And fuzzy membership degree is equivalent to the weight in expert scoring 166 

method, which is calculated by objective method rather than given subjectively. 167 

3.4 Fuzzy memberships 168 

3.4.1Grey Relational Analysis (GRA) in susceptibility modeling 169 

GRA is proposed by Deng (1982) and it is an important part of grey system theory (Wang et al., 2014). 170 

Comparing with mathematical statistics methods which need lots of sample data, typical probability distribution and 171 

large calculation, GRA is applicable to small sample size with the data whether regular or not. There will be no 172 

inconsistency between qualitative analysis and quantitative analysis (Deng, 1988). Besides it is to excogitate the 173 

leading and potential factors that affect the development of the system, and quantitatively describe the development 174 

and change trend of the system by studying whether the relative change trend of the grey factor variables with 175 

complex relationship is consistent in the process of system development and evolution (Liu et al., 2004). Thus, grey 176 

correlation analysis is introduced to quantify the correlation between each factor and the evaluation results according 177 

to field investigation expert experience. First, the procedure of GRA is to translate the performance of every 178 

alternative into a comparability sequence (Lin and Lin, 2002; Kuo et al., 2008; Wei et al., 2017). Therefore, according 179 

to technical standard, “Specification of geological investigation for debris flow stabilization (DZ/T0220-2006)”, 180 

published by the China Ministry of Lands and Resources, the preliminary assessment results of debris flow 181 

A13

A4

A6

A1

A2
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susceptibility are obtained, which are used as the reference sequence of grey relation method (Table 2). Second, the 182 

grey correlation coefficient of all A factors is calculated by Eq. (1). Finally, the average grey relational coefficient 183 

(the correlation degree) is calculated by Eq. (2) as the fuzzy memberships (Table 3). 184 

𝜉𝑖(𝑘) =
𝑚𝑖𝑛
𝑖

𝑚𝑖𝑛
𝑘

|𝑥0(𝑘)−𝑥𝑖(𝑘)|+0.5𝑚𝑎𝑥
𝑖

𝑚𝑎𝑥
𝑘

|𝑥0(𝑘)−𝑥𝑖(𝑘)|

|𝑥0(𝑘)−𝑥𝑖(𝑘)|+0.5𝑚𝑖𝑛
𝑖

𝑚𝑖𝑛
𝑘

|𝑥0(𝑘)−𝑥𝑖(𝑘)|
                          (1) 185 

Where ξi(k) is the grey relational coefficient, i=1, 2, …, n are the number i type A factors, k=1, 2, …, n are the 186 

number of basins, x0(k) is the reference sequence (ideal target sequence), xi(k) is the number i type A factor sequence  187 

𝑟𝑖 =
1

𝑁
∑ 𝜉𝑖(𝑘)
𝑛
𝑖=1                                      (2) 188 

Where ri is the correlation degree in the range (0,1). N is the total number of basins in Table 2 189 

Table 2 Quantitative evaluation grade standard table for Debris flow susceptibility 

Name g5 g13 g14 g29 g39 g40 g42 g44 g48 g49 g50 g52 g54 

Score 59 54 50 63 61 66 55 65 78 69 85 46 70 

Name g57 g60 g63 g66 g67 g72 g73 g75 g80 g81 g83 g84 g85 

Score 56 63 58 73 62 84 62 67 84 69 80 75 86 

Name g86 g87 g88 g90 g91 g92 g94 g98 g99 g101 g102 g105 g106 

Score 73 84 60 70 80 84 71 78 61 65 67 65 70 

Name g107 g108 g110 g111 g112 g120 g121 g123 g134 - - - - 

Score 45 45 69 69 74 62 63 73 56 - - - - 

Note:（130≥score ≥116, VH）,（115≥score ≥87, M）,（86≥score ≥44, L）,（43≥score ≥15, N） 190 

VH=very high susceptibility, M=moderate susceptibility, L=low susceptibility, N= Non-debris flow 191 

 192 

Table 3 The fuzzy memberships of type A factors 193 

Factor A1 A2 A3 A4 A5 A6 A7 

Fuzzy membership 0.77 0.77 0.63 0.6 0.54 0.55 0.67 

Factor A8 A9 A10 A11 A12 A13 A14 

Fuzzy membership 0.71 0.55 0.55 0.59 0.61 0.79 0.54 

3.4.2 Data-driven method in susceptibility modeling 194 

landslide is one of the main fixed sources of debris flow in mountainous area. Shallow landslides are one of the 195 

most common categories of landslides. They frequently involve large areas and different soils in various climatic 196 

zones (Benda and Dunne, 1987; Selby, 1982; Borrelli et al., 2014). Great debris flows may result from numerous, 197 

small slope failures that subsequently coalesce (Fairchild, 1987; Roeloffs, 1996), from flow enlargement due to 198 

incorporation of bed and bank debris (Pierson et al., 1990; Bovis and Dagg, 1992), or from large, individual landslides 199 

that mobilize partially or almost totally (Vallance and Scott, 1997; Iverson et al., 1997). Debris flows may also scour 200 

steep channels to bedrock and accelerate sediment delivery to downstream, lower-gradient channels. The spatial and 201 

temporal distribution of shallow landslides are important controls on landscape evolution and a major component of 202 

both natural and management-related disturbance regimes in mountain drainage basins (Tsukamoto et al., 1982; 203 

Dietrich et al., 1986; Benda, 1987; Crozier et al., 1990). Therefore, the landslide susceptibility assessment methods 204 

can be used for reference to debris flow susceptibility assessment. 205 

For type B factors which cannot be characterized by a specific number, the frequency ratio (FR) method and the 206 

cosine amplitude method can be used to derive their fuzzy memberships. The FR ratio defined as Eq. (3). Considering 207 

the fuzzy membership must be in the interval [0,1], the FR values of the different categories are normalized by the 208 
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largest FR value (Lee, 2006; Pradhan, 2010, 2011a, b) within the same type factor ( Table 4) in order to derive the 209 

function. 210 

𝐹𝑅 =
𝑁(𝐷𝑖) 𝑁(𝐶𝑖)⁄

𝑁(𝐷) 𝑁(𝐴)⁄
                                    （3） 211 

where N(Di) is the number of debris flow pixels in the category i, N(ci) is the total number of pixels in the category 212 

i, N(D) is total number of debris flow pixels in the study area, and N(A) is the total number of pixels in the study area.  213 

 214 

The cosine amplitude method (Ross, 1995) is also widely used (Ercanoglu and Gokceoglu, 2004; Kanungo et 215 

al., 2006; Kanungo et al., 2009; Ercanoglu and Temiz, 2011) to establish relationships among elements of two or 216 

more datasets (Kritikos and Davies, 2015). Assuming that n is the number of data samples (categories of a factor 217 

used in the analysis) represented as an array X = {x1, x2, …, xn} and that each of its elements, xi, is a vector of length 218 

m (i.e. the size of the raster image) and can be expressed as X = {xi1, xi2, …, xim}, then each element of a relation rij 219 

results from a pairwise comparison of a factor category xi with a category of the debris flow distribution layer xj 220 

(debris flow or non-debris flow). The memberships can be calculated by Eq. (4): 221 

𝑟𝑖𝑗 =
|∑ 𝑥𝑖𝑘

𝑚
𝑘=1 𝑥𝑗𝑘|

√(∑ 𝑥𝑖𝑘
2𝑚

𝑘=1 )(∑ 𝑥𝑗𝑘
2𝑚

𝑘=1 )

                                （4） 222 

Analogy with the study of Kanungo et al. (2006), we defined the rij value for any given factor category as the 223 

ratio of the total number of debris flow pixels in the category to the square root of the product of the total number of 224 

pixels in that category and the total number of debris flow pixels in the area. Values of rij close to 1 indicate similarity 225 

whereas values close to 0 indicate dissimilarity between the two datasets (Kritikos and Davies, 2015). What’s more, 226 

every thematic layer must use the same pixel size to use the method properly. 227 

 228 
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Table 4 Factor categories and their fuzzy membership degrees  229 

Factor Factor class 
Number of 

pixels 

Number 

of 

pixels % 

Number of 

pixels 

classified as 

debris flows 

Number of 

pixels 

classified as 

debris flow % 

Frequency 

ratio 

(FR) 

Normalized 

frequency 

ratio 

rij 

Comprehensive 

ratio 

(FRR) 

Lithology 

Quanternary sediments-

unconsolidatede clastic 

sediments 

7562017 0.320 48190 0.017 0.026 0.021 0.091 0.002  

Coarse-grained sediments 1148321 0.049 21741 0.008 0.076 0.063 0.061 0.004  

Medium-grained 

sediments 
259619 0.011 12013 0.004 0.186 0.154 0.045 0.007  

Fine-grained sediments 754655 0.032 76380 0.027 0.407 0.337 0.114 0.038  

High-grade metamorphics 986435 0.042 154332 0.055 0.629 0.522 0.162 0.085  

Granitoids 725651 0.031 140936 0.050 0.781 0.648 0.155 0.100  

Mafic extrusive 75495 0.003 16398 0.006 0.873 0.724 0.053 0.038  

Terrigenous clastic rock 3289458 0.139 986495 0.352 1.205 1.000 0.41 0.410  

Limestones 8804379 0.373 1343754 0.480 0.614 0.509 0.478 0.243  

Proximity 

to faults 

<100 1057209 0.045 231016 0.083 0.878 1.000 0.198 0.198  

100-500 3778095 0.160 774566 0.277 0.824 0.938 0.363 0.341  

500-1000 3894600 0.165 716963 0.256 0.740 0.842 0.349 0.294  

1000-2000 5707265 0.241 760699 0.272 0.536 0.610 0.36 0.220  

2000-3000 2749240 0.116 246925 0.088 0.361 0.411 0.205 0.084  

>3000 6421103 0.272 69382 0.025 0.043 0.049 0.109 0.005  

Slope 

(degrees) 

0-5 9674508 0.410 153889 0.055 0.064 0.056 0.162 0.009  

5-10 2815606 0.119 383198 0.137 0.547 0.480 0.255 0.123  

10-15 2955913 0.125 521040 0.186 0.709 0.622 0.298 0.185  

15-20 2879704 0.122 570515 0.204 0.797 0.699 0.312 0.218  

20-25 2432724 0.103 498303 0.178 0.824 0.723 0.291 0.210  

25-30 1620325 0.069 350686 0.125 0.870 0.764 0.244 0.187  

30-35 837185 0.035 209574 0.075 1.007 0.883 0.189 0.167  

35-40 294141 0.012 82000 0.029 1.121 0.983 0.118 0.116  

40-45 77038 0.003 21133 0.008 1.103 0.968 0.06 0.058  

>45 30091 0.001 8529 0.003 1.140 1.000 0.038 0.038  

Slope 
aspect 

Flat 380875 0.016 463 0.000 0.005 0.005 0.009 0.000  

North 2370048 0.100 296900 0.106 1.006 1.000 0.318 0.111  

Northeast 2193998 0.093 279917 0.100 0.513 0.510 0.218 0.092  

East 2873308 0.122 295555 0.106 0.414 0.411 0.224 0.111  
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Southeast 3122267 0.132 353489 0.126 0.455 0.453 0.245 0.108  

South 3219111 0.136 354420 0.127 0.443 0.440 0.246 0.133  

Southwest 3144353 0.133 400064 0.143 0.512 0.509 0.261 0.135  

West 3525895 0.149 436381 0.156 0.498 0.495 0.273 0.140  

Northwest 2787380 0.118 381679 0.136 0.551 0.547 0.255 0.318  

Curvature 

Concave 490900 0.021 109157 0.039 0.893 1.000 0.136 0.136  

Less concave 2037602 0.269 394583 0.141 0.778 0.871 0.259 0.226  

Flat 18364429 15.992 1769210 0.631 0.387 0.433 0.549 0.238  

Less convex 2202019 8.482 416142 0.149 0.759 0.850 0.266 0.226  

Convex 522285 0.692 112740 0.040 0.867 0.971 0.139 0.135  
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3.5 DFSI map 231 

To derive the debris flow susceptibility index (DFSI) map by overlaying the factor thematic layers using fuzzy 232 

logic method, the "fuzzified" factors represented by information layers in raster format with values ranging from 0 233 

to 1 need to be combined. Compared with other four fuzzy operators, Fuzzy Gamma (Eq.5) is more suitable for the 234 

research (Kritikos and Davies, 2015). To determine the appropriate γ value, the results of different gamma values 235 

were compared by the greatest distance (Kritikos and Davies, 2015) between the average DFSI curves of the debris 236 

flows locations and non-debris flows locations (For example, flat pixels)(Fig. 6). Finally, 0.9 is determined for the γ 237 

value, because there is the greatest difference between debris flow and non-debris flows locations areas. In order to 238 

illustrate the superiority of our model through comparison, 17 results are calculated in ArcGIS.  239 

𝜇(𝑥) = (1 −∏ (1 − 𝜇𝑖)
𝑛
𝑖=1 )𝛾 ∗ (∏ 𝜇𝑖

𝑛
𝑖=1 )1−𝛾                   (5) 240 

where μ(x) is the combined membership value, μi is the fuzzy membership function for the ith map, i=1,2, …, n 241 

are the numbers of thematic layers to be combined, and γ is a parameter in the range (0,1).  242 

 243 
Fig. 6 Effect of γ value on Debris flow susceptibility index (DFSI). Curves d, e and f correspond to debris flow pixels, 244 

and curves a, b and c correspond to non-debris flow area where a Debris flow is unlikely. According to curve i, the 245 

maximum difference between the average DFSI values is observed for γ≈0.9 246 

 247 

To find the optimal model, 17 results were compared (Table 5). According to the distribution map of potential 248 

geological hazard points and susceptibility map in Pinggu District published by Beijing Municipal Commission of 249 

Planning and Natural Resources(Bmcp&Nr, 2020), three indexes are used to verify the validity and accuracy of the 250 

model. 251 

The results of the model are independent of the model itself, so the predictive performance of the final map is 252 
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not just “the goodness of fit” of the data (Chung et al., 1995; Remondo et al., 2003). A relatively reliable technique 253 

for quantitatively assessing how well a model is the construction of validation or success rate curves (Chung and 254 

Fabbri, 1999; Westen et al., 2003; Remondo et al., 2003; Frattini et al., 2010) based on a comparison between the 255 

spatial distribution of debris flows and modelled debris flow susceptibility. The curves illustrate the debris flow 256 

recorded in the area with respect to susceptibility values also expressed as cumulative percentages of the total area. 257 

The area under the curve (AUC) defines the success rate (Marjanović et al., 2011). Generally, AUC values above 0.7 258 

indicate model performance can be acceptable, while below 0.7, the performance is considered poor (Kritikos and 259 

Davies, 2015).  260 

Although AUC is an effective evaluation method, the results are not comprehensive as mathematical features 261 

for selecting the best measurement model because of insufficiency data for validation. In order to ensure the 262 

objectivity of the results, we can only effectively use the recorded debris flow gully as positive, while the others as 263 

negative. Thus, a two-category test is proposed to verify the model in this paper. First, the DFSI map of each model 264 

are divided into two categories by Natural Breaks (Jenks) method (Fig. 7). Then the accuracy ratio (AR) is defined 265 

as the frequency of the number of debris flow both classified by model and simultaneously recorded in site to the 266 

number of debris flow recorded in site. The Resolution Ratio (RR) is defined as the number of debris flow 267 

classified by model and simultaneously recorded in site to the total number debris flow classified by the model (in 268 

red color). Take R4 for example, there are total 135 basins in the research area, but only 46 records of debris flows 269 

(Fig.3). And in the results of two categories by Natural Breaks (Jenks) method, 20 basins are divided in to debris 270 

flow, while there are only 14 debris flows among them. Then AR is calculated by dividing 14 into 46 and RR was 271 

calculated by dividing 14 into 20. 272 

The higher the two values, the better the susceptibility map. Finally, the performance of models (P value) can 273 

be obtained by the Eq. (6). AUC values less than 0.6 are directly eliminated. Comparing the results of rest models, 274 

the result of R16 is optimal, and the results of DFSI map are in good agreement with those of field investigation 275 

(Fig. 8). 276 

𝑃 = 𝐴𝑈𝐶 + √(𝐴𝑅 ∗ 𝑅𝑅)                                 （6） 277 

Table 5 Predictive performance of different models 278 

Result and Description AUC 

Two-category test 
Performance 

index 

(centesimal 

grade) 

Accuracy 

Ratio (AR) 

Resolution 

Ratio  

(RR) 

A factors 

only or B 

factors only 

R1 B factors with rij 0.460 / / / 

R2 B factors with FR 0.687 / / / 

R3 B factors with FRR 0.602 / / / 

R4 All A factors 0.786 0.304 0.700 83 

R5 Selected A factors  0.760 0.391 0.750 94 

All factors 

as a single 

thematic 

layer 

R6 
All A factors and B 

factors with rij  
0.776 0.261 0.667 74 

R7 
All A factors and B 

factors with FR 
0.779 0.283 0.684 78 

R8 
All A factors and B 
factors with FRR 

0.753 0.326 0.600 76 

R9 Selected A factors and B 0.746 0.348 0.727 86 
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factors with rij 

R10 
Selected A factors B 

factors with FR 
0.761 0.348 0.727 87 

R11 
Selected A factors B 

factors with FRR 
0.740 0.348 0.727 85 

A factors 

combined 

into one 

thematic 

layers, B 

factor 

combined 

into another 

thematic 

layers   

R12 
All A factors and B 

factors with rij  
0.708 0.5 0.511 82 

R13 
All A factors and B 

factors with FR 
0.753 0.848 0.394 99 

R14 
All A factors and B 

factors with FRR 
0.711 0.870 0.404 96 

R15 
Selected A factors and B 

factors with rij 
0.726 0.348 0.667 80 

R16 
Selected A factors and B 

factors with FR 
0.768 0.739 0.442 100 

R17 
Selected A factors B 

factors with FRR 
0.740 0.457 0.600 88 

Note: Selected A factors with fuzzy membership more than 0.6; FRR represents the product of FR and rij; Performance 279 

index is normalized by the largest FR value 280 

 281 

 282 
Fig.7 Results of two categories by Natural Breaks (Jenks) method 283 
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 284 

 285 
Fig. 8 Debris flow susceptibility maps. Note: AUC results of R1-R4 below 0.7 were not shown. 286 

4 Results and Discussion 287 

R4 R5 R6 R7 R8

R17R13 R15R14

R9 R10 R12R11

R16
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Through the modelling process, relatively satisfactory results are obtained in this paper. The predictive 288 

performance of the output debris flow susceptibility maps, obtained from 17 different models, is verified by 289 

comparing with maps published by authority. By comparing the results, the following results are discussed:  290 

Firstly, comparing R1, R2, R3, R4 and R5, it can be concluded that the model based on field investigation and 291 

expert experience is more effective than data- driven directly, when the information is insufficient. This is mainly 292 

because when the basin area reaches a certain size, it is no longer controlled by one or several factors, but becomes 293 

a complex system. It is not only the factors that affect the system, but also the system will react on each factor. 294 

Geomorphic evolution is basically the result of  interaction of the endogenic and exogenic geological processes. A 295 

geological period can be regarded as the beginning of an endogenic geological processes to the next one. In the early 296 

stage of geological period, endogenic geological processes play a major role, and in the later relatively stable period, 297 

exogenic geological processes will take on more important parts. In this large cycle, the basin continuously occurs a 298 

small cycle of energy accumulating and releasing, which leads to extremely complex system changes. In addition, 299 

there is a contradiction between the scale of geological evolution and the scale of engineering activities. So limited 300 

information can be obtained under these conditions that leads to the unreliability of data-driven evaluation. Therefore, 301 

in the current period, field investigation and expert experience are fundamental.  302 

Secondly, by comparing R4 and R5, R6 and R9, R7 and R10, R8 and R11, R12 and R15, R13 and R16, R14 and R17, it 303 

can be concluded that the accuracy and resolution of the model can be improved by simplifying the factors, which 304 

will eliminate the ones with weak correlation and independence. In practical application, even if the susceptibility 305 

map is obtained, the classification of the susceptibility degree is still a very difficult problem. Because everyone's 306 

subjective definition of "susceptibility degree" is different. By simplifying the factors, the main ones can be selected, 307 

which magnifies the differences between basins, so the boundaries between different susceptibility degrees are more 308 

obvious.  309 

Thirdly, by comparing R6 and R12, R7 and R13, R8 and R14, R9 and R15, R10 and R16, R11 and R17, it can be 310 

concluded that the model in which factors are classified into two types is better than the one in which all factors as a 311 

single thematic layer without classification. Because the factors categorized separately are more closely linked and 312 

has consistent influence on the system in mechanism. We can also infer that the non-linear combination characteristics 313 

between different types are stronger and scientific classification can improve the performance of the model.  314 

Fourthly, comparing R12 and R13, R15 and R16, it can be concluded that the frequency ratio method is better than 315 

the cosine amplitude method in the study. Different from the study of (Kritikos and Davies, 2015), the watershed unit 316 

rather than the grid unit is used, which indicates that the former has a wide range of application, while the latter has 317 

a disadvantage of strict conditions. 318 

Based on the results of the above four analyses, the most optimal model should have the features of being based 319 

on expert experience, using selected factors, classifying factors before using them, and using frequency ratio method. 320 

Then the model R16 is selected according to the features, which is well in accordance with theoretical method 321 

performance score, and gets fine mutual verification. 322 

There is also much to discuss, the selection of factors is still a very complex dilemma. Although 19 factors 323 

selected cannot fully evaluate the character of a basin, it is necessary to consider that they are easily and relatively 324 

accurately obtainable for each basin. This will facilitate a wide range of applications. Besides, rainfall and total 325 
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amount of loose material source are also very important influencing factors. But according to the Beijing hydrological 326 

manual, the rainfall change in the study area is not obvious, so it is excluded in model. And the total amount of loose 327 

material source cannot be obtained for the watershed without on-site investigation, so calculations are impossible. In 328 

fact, we indirectly consider the influence of natural loose material source by evaluating geological conditions, but 329 

cannot consider the impact of human activities. As for the factors describing debris flow magnitude, usually, several 330 

channels have the recorded data.  331 

The scientific and systematic principle of model building is another challenge. To correctly classify the factors, 332 

it is necessary to grasp the characteristics of the formation, movement and accumulation of debris flow. Therefore, 333 

the classification should comprehensively consider the development background (geology, geomorphology, climate, 334 

hydrology, soil, vegetation, human activities and other factors). The practical principle refers to that the study should 335 

not only fully obtain scientific and accurate results, but also make the professional results understood by decision 336 

makers. Although the susceptibility grade and susceptibility value of each watershed is obtained, the results are 337 

relatively effective in this study area. In addition, with the development of technology and theory, we should replace 338 

some traditional factors which are not easy to quantify with more precise quantitative factors to improve the efficiency 339 

and accuracy of evaluation, such as surface roughness instead of drainage density. 340 

For the results derived from Table 3, we would like to further discuss. It can be seen from the results that the 341 

occurrence of debris flow is highly correlated with basin volume, basin area and main gully bending coefficient with 342 

fuzzy membership above 0.7 in Beijing area. Rainfall in the study area is abundant to induce the debris flow. Loose 343 

source and sinks the total volume of catchment become more important. The watershed area determines the total 344 

volume of catchment. For the same rainfall, generally, the larger the area, the larger the catchment. The bending 345 

coefficient reflects the replenishment sources along the channel. The greater the coefficient, the slower the flow. Then 346 

loose source along the channel has more time to replenish. Basin volume characterizes the maximum amount of loose 347 

material that can be supplied. These three features reflect the development characteristics of debris flow in the study 348 

area. It also provides ideas for disaster prevention and mitigation. 349 

Finally, we should consider decision making under uncertainty, because the debris flow phenomenon is 350 

extremely complex. The classification of geologists (high, moderate and low) is ambiguous for decision makers. It is 351 

more beneficial for them to use mathematically rigorous definitions. Considering that geological conditions tend to 352 

vary greatly from region to region, it is not appropriate to define a fixed limit. the Jenks method (chosen in this paper) 353 

can be used to classify sensitivity maps according to the characteristics of the data itself. We can also further process 354 

the data according to the needs of decision makers, such as identifying 10% of the watersheds in the entire region as 355 

high risk. However, the applicability of the model to extreme rainfall and seismic conditions is not considered. 356 

5 Conclusion 357 

In this study, a new combination model for debris-flow susceptibility based on GIS was developed in Pinggu. 358 

The objective and motivation of this study is to demonstrate a simple, extensible, and convenient analytical model 359 

for the debris flow prediction. Three methods are selected in the model with their own advantages. GRA has great 360 

advantages in the case of less samples, data-driven method is mainly used to reduce subjectivity and fuzzy logic is 361 

fitted to solve nonlinear problems with fuzzy classification. The output optimal debris flow susceptibility maps 362 
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demonstrated satisfactory performance with the relative higher susceptibility values corresponding to AUC=0.768. 363 

The predictive performance of the susceptibility maps and the spatial correlation of debris flow gully with H and 364 

VH susceptibility with recorded debris flows illustrate that the assessment at regional scale using the proposed 365 

method is feasible. Compared with the previous results(Li et al., 2020b) based on grid units, the evaluation results 366 

are basically the same, but the model are more targeted for debris flow disasters for decision makers. Besides, 367 

considering that the meaning of the used factors is clear and the data is easy to obtain, these conditions mentioned 368 

enable the model to be widely applied. In addition, a new factor (Basin) is proposed in our study, which contributes 369 

higher weight up to 0.79. From our 17 results by comparing the control variables, we suggest that other scholars 370 

should pay more attention to the classification and streamlining of factors, which has indicated the potential value 371 

to improve model accuracy. It was also found that the watershed characteristic parameters can better reflect the 372 

advantages of watershed unit, but further development is needed. 373 

In short, an effort has been made to develop a cost- and time-efficient debris flow susceptibility assessment 374 

model. The model has an acceptable degree of accuracy for regional-scale planning and contributes to make 375 

susceptibility and risk maps more accessible to individuals and local authorities. The GIS-based methods and modern 376 

data availability especially through online databases are significantly beneficial to this aim. However, a challenge 377 

remains in producing results with practical accuracy for the scale of planning, using available resources. Previous 378 

studies highlight that the effectiveness of the final map depends on the quality of input data. Updating and improving 379 

existing debris flow catalogues and inventories are crucial for the development of reliable susceptibility and risk 380 

assessment methods.  381 
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