

1 ***Reviewer #1's Comments***

2 ***1. General comments***

3 The paper entitled "Regional-scale GIS-models with fuzzy logic for Susceptibility Maps of
4 debris flow: A Case Study in Pinggu District of Beijing, China", focused on the debris flow
5 susceptibility map computation of a series of drainage basins of the Pinggu District of Beijing.
6 The authors proposed a methodology based on GIS-models, combining diverse methods: grey
7 relational method, data-driven and fuzzy logic methods. The manuscript deals with the application
8 of susceptibility analysis on debris flow. The topic is interesting and is suitable for the journal. The
9 model used in the manuscript not only considers the scientificity and accuracy, but also considers
10 the application in engineering practice. I think the article can be acceptable after some revisions
11 are made.

12 **Response:** Thank you very much for your valuable and constructive comments on this manuscript.
13 Your comments are very helpful for us to improve the manuscript. Based on your comments, we
14 have carefully revised the relevant content of the manuscript. Please see the specific responses
15 below for more details.

16 ***2. Specific comments***

17 **Comment 1:** In ArcGIS, the watershed algorithm is to obtain the sub watershed units of the whole
18 Pinggu region. How can the author select these specific watersheds in the article? How are other
19 unqualified units excluded?

20 **Response:** Thank you for your professional comments. According to your suggestions, we
21 screened the watersheds, which is one of the features. We first removed the flat areas from the
22 study area and then divided the remaining watersheds using the hydrology module of ArcGIS. The
23 specific process is divided into the following steps: (1) Filling the initial digital elevation model to
24 eliminate the common errors caused by the resolution and rounding of the data. (2) Encoding the
25 outflow direction of each pixel in the grid based on an 8-direction algorithm. (3) Calculating
26 accumulated flow as the accumulated weight of all cells flowing into each downslope cell in the
27 output raster. (4) Applying a threshold to the results obtained by the flow accumulation tool based
28 on a condition function and describing the drainage network of the study area. (5) Extracting the
29 basic drainage basins unit of the study area, that is, the basic unit for susceptibility assessment.
30 The fourth of five steps, threshold determination is a factor of subjective human choice, and my
31 current research involves how to choose this parameter objectively.

32 In our research, typical valley debris flows are the major research object. Therefore, as shown in
33 the figure below, A has typical watershed characteristics, but B and C do not. There is another
34 advantage of determining the length of the main ditch in the watershed parameter characteristics.
35 For watersheds without obvious watershed characteristics, it is difficult to determine their length
36 from the picture. Similarly, the calculation of drainage density is very difficult.

37

38

39 **Comment 2:** How to explain the similarities and differences between models R6-R17?

40 **Response:** Thank you for your professional comments. Table 5 is one of our most important
41 findings. It is our illustration of the results in terms of the emphasis on non-linear combinations
42 of factors rather than simple linear superposition. In order to characterize the development of
43 debris flows in an area, information mining is an effective means. The similarity of the models
44 is that the individual R6-R17 models are all calculated using fuzzy logistic operations and
45 perform well in the AUC test. The differences are that the data are pre-processed differently
46 when using this algorithm. However, four of the models performed above 94, mainly due to the
47 small number of watersheds in the study area and the small number of mudslides that could be
48 used for the test.

49

50 **Comment 3:** The introduction needs a section concerning susceptibility methods.

51 **Response:** Thank you for your professional comments. According to your suggestions, we have
52 read more literature to add to the relevant research developments.

53 Communicating information about debris flow hazard analysis is a crucial component of
54 preparedness and hazard mitigation (Chiou et al. 2015). Susceptibility assessment, an important
55 part of a hazard assessment of geological processes is more flexible (Li et al. 2021a). In the
56 early days, the susceptibility assessment of debris flows was mainly qualitative research using
57 geomorphological information (Guzzetti et al. 1999). In 1976, the United Nations
58 commissioned the International Union of Engineering Geology to conduct a risk assessment of
59 debris flows, which marked the beginning of research on the susceptibility assessment of debris
60 flows as an important research direction for disaster prevention and prediction (Li et al. 2020b).
61 Many methods and techniques have been proposed to evaluate debris flow susceptibility
62 assessment based on different qualitative and quantitative approaches and geo-environmental
63 information (Liu and Wang 1995), Such as the analytic hierarchy process (Wu et al. 2016),
64 logistic regression method (Conoscenti et al. 2015, Regmi et al. 2013), information value
65 (Akbar and Ha 2011, Melo et al. 2012), support vector machine(Pourghasemi et al. 2017),
66 frequency ratio (FR) (Sun et al. 2018), certainty factor (CF) (Tsangaratos and Ilia 2015), neural
67 network (Lee et al. 2003, Liu et al. 2005) and Bayesian network algorithm (Liang et al. 2012,
68 Tien Bui et al. 2012), etc. These methods have corresponding advantages and limitations for

69 research subjects with different geological conditions. Generally speaking, it is easier to get
70 satisfactory results by combining and comparing various methods (Di Napoli et al. 2020, Fang
71 et al. 2020, Meyer et al. 2014). In summary, with the development of mathematical theory, the
72 susceptibility assessment of debris flows has been extensively and quantitatively studied, and
73 the research methods have also changed from single to comprehensive.

74

75 **Cited reference:**

76 Akbar TA and Ha SR (2011) Landslide hazard zoning along himalayan kaghan valley of pakistan—by integration
77 of gps, gis, and remote sensing technology. *Landslides* 8: 527-540. doi: 10.1007/s10346-011-0260-1

78 Chiou IJ, Chen CH, Liu WL, Huang SM, Chang YM (2015) Methodology of disaster risk assessment for debris
79 flows in a river basin *Stoch Env Res Risk A* 29:775-792 doi:10.1007/s00477-014-0932-1

80 Conoscenti C, Ciaccio M, Caraballo-Arias NA, Gómez-Gutiérrez Á, Rotigliano E and Agnesi V (2015)
81 Assessment of susceptibility to earth-flow landslide using logistic regression and multivariate adaptive
82 regression splines: A case of the belice river basin (western sicily, italy). *Geomorphology* 242: 49-64. doi:
83 10.1016/j.geomorph.2014.09.020

84 Di Napoli M, Carotenuto F, Cevasco A, Confuorto P, Di Martire D, Firpo M, Pepe G, Raso E and Calcaterra D
85 (2020) Machine learning ensemble modelling as a tool to improve landslide susceptibility mapping reliability.
86 *Landslides* 17: 1897-1914. doi: 10.1007/s10346-020-01392-9

87 Fang Z, Wang Y, Peng L and Hong H (2020) A comparative study of heterogeneous ensemble-learning techniques
88 for landslide susceptibility mapping. *International Journal of Geographical Information Science* 35: 321-347.
89 doi: 10.1080/13658816.2020.1808897

90 Guzzetti F, Carrara A, Cardinali M and Reichenbach P (1999) Landslide hazard evaluation: A review of current
91 techniques and their application in a multi-scale study, central italy. *Geomorphology* 31: 181-216. doi:
92 10.1016/s0169-555x(99)00078-1

93 Lee S, Ryu J-H, Min K and Won J-S (2003) Landslide susceptibility analysis using gis and artificial neural
94 network. *Earth Surface Processes and Landforms* 28: 1361-1376. doi: 10.1002/esp.593

95 Li Y, Chen J, Li Z, Han X, Zhai S, Li Y, Zhang Y (2021a) A case study of debris flow risk assessment and hazard
96 range prediction based on a neural network algorithm and finite volume shallow water flow model
97 *Environmental Earth Sciences* 80 doi:10.1007/s12665-021-09580-z

98 Li Z, Chen J, Tan C, Zhou X, Li Y, Han M (2021b) Debris flow susceptibility assessment based on
99 topo-hydrological factors at different unit scales: a case study of Mentougou district, Beijing *Environmental*
100 *Earth Sciences* 80 doi:10.1007/s12665-021-09665-9

101 Liang W-j, Zhuang D-f, Jiang D, Pan J-j and Ren H-y (2012) Assessment of debris flow hazards using a bayesian
102 network. *Geomorphology* 171-172: 94-100. doi: 10.1016/j.geomorph.2012.05.008

103 Liu L, Wang S (1995) Fuzzy comprehensive evaluation on landslide and debris flow risk degree in Zaotong,
104 *Yunnan Mountain Research* 13:261-266

105 Liu Y, Guo HC, Zou R and Wang LJ (2005) Neural network modeling for regional hazard assessment of debris
106 flow in lake qionghai watershed, china. *Environmental Geology* 49: 968-976. doi: 10.1007/s00254-005-0135-7

107 Melo R, Vieira G, Caselli A and Ramos M (2012) Susceptibility modelling of hummocky terrain distribution using
108 the information value method (deception island, antarctic peninsula). *Geomorphology* 155-156: 88-95. doi:
109 10.1016/j.geomorph.2011.12.027

110 Meyer NK, Schwanghart W, Korup O, Romstad B and Etzelmüller B (2014) Estimating the topographic
111 predictability of debris flows. *Geomorphology* 207: 114-125. doi: 10.1016/j.geomorph.2013.10.030

112 Pourghasemi HR, Yousefi S, Kornejady A and Cerda A (2017) Performance assessment of individual and ensemble

113 data-mining techniques for gully erosion modeling. *Sci Total Environ* 609: 764-775. doi:
114 10.1016/j.scitotenv.2017.07.198
115 Regmi NR, Giardino JR, McDonald EV and Vitek JD (2013) A comparison of logistic regression-based models of
116 susceptibility to landslides in western colorado, USA. *Landslides* 11: 247-262. doi: 10.1007/s10346-012-0380-2
117 Sun X, Chen J, Bao Y, Han X, Zhan J and Peng W (2018) Landslide susceptibility mapping using logistic
118 regression analysis along the jinsha river and its tributaries close to derong and deqin county, southwestern china.
119 *ISPRS International Journal of Geo-Information* 7. doi: 10.3390/ijgi7110438
120 Tien Bui D, Pradhan B, Lofman O, Revhaug I and Dick OB (2012) Landslide susceptibility assessment in the hoa
121 binh province of vietnam: A comparison of the levenberg–marquardt and bayesian regularized neural networks.
122 *Geomorphology* 171-172: 12-29. doi: 10.1016/j.geomorph.2012.04.023
123 Tsangaratos P and Ilia I (2015) Landslide susceptibility mapping using a modified decision tree classifier in the
124 xanthi perfection, greece. *Landslides* 13: 305-320. doi: 10.1007/s10346-015-0565-6
125 Wu Y, Li W, Liu P, Bai H, Wang Q, He J, Liu Y and Sun S (2016) Application of analytic hierarchy process model
126 for landslide susceptibility mapping in the gangu county, gansu province, china. *Environmental Earth Sciences*
127 75. doi: 10.1007/s12665-015-5194-9
128

129 **Comment 4:** The Results and Discussion needs to be more detailed and organized.

130 **Response:** Thank you for your professional comments. According to your suggestions, we will
131 carefully and exhaustively sort out the ideas in the article. Then the discussion and conclusion
132 will be reorganized to make this section more logical and systematic as well as readable.

133 Through the original modelling process, relatively satisfactory results are obtained in this paper.
134 The predictive performance of the output debris flow susceptibility maps, obtained from
135 seventeen different models, is verified by comparing with maps published by authority. By
136 comparing the results, the following results are discussed:

137 First, comparing R_1 , R_2 , R_3 , R_4 and R_5 , it can be concluded that the model based on field
138 investigation and expert experience is more effective than data- driven directly, when the
139 sufficient information cannot be obtained. This is mainly because when the basin area reaches a
140 certain size, it is no longer controlled by one or several factors, but becomes a complex system.
141 It is not only the factors that affect the system, but also the system will react on each factor.
142 Geomorphic evolution is basically the result of the interaction of the endogenic and exogenic
143 geological processes. A geological period can be regarded as the beginning of an endogenic
144 geological processes to the next one. In the early stage of geological period, endogenic
145 geological processes play a major role, and in the later relatively stable period, exogenic
146 geological processes will play a more and more important role. In this large cycle, the basin
147 continuously occurs a small cycle of accumulating and releasing energy, which leads to
148 extremely complex system changes. In addition, there is a contradiction between the scale of
149 geological evolution and the scale of engineering activities. So limited information can be
150 obtained under these conditions that leads to the unreliability of data-driven evaluation.
151 Therefore, in the current period, field investigation and expert experience are fundamental.

152 Second, by comparing R_4 and R_5 , R_6 and R_9 , R_7 and R_{10} , R_8 and R_{11} , R_{12} and R_{15} , R_{13} and R_{16} , R_{14}
153 and R_{17} , it can be concluded that the accuracy and resolution of the model can be improved by
154 simplifying the factors, which will eliminate the weak correlation and independence factors. In
155 practical application, even if the susceptibility map is obtained, the classification of the
156 susceptibility degree is still a very difficult problem. Because everyone's subjective definition of

157 "susceptibility degree" is different. By simplifying the factors, the main factors can be selected,
158 which magnifies the differences between basins, so the boundaries between different
159 susceptibility degrees are more obvious.

160 Third, by comparing R_6 and R_{12} , R_7 and R_{13} , R_8 and R_{14} , R_9 and R_{15} , R_{10} and R_{16} , R_{11} and R_{17} , it
161 can be concluded that the model in which factors are classified into two types is better than the
162 method in which all factors as a single thematic layer without classification. Because the factors
163 categorized separately are more closely linked and has consistent influence on the system in
164 mechanism. We can also infer that the non-linear combination characteristics between different
165 types are stronger and scientific classification can improve the performance of the model.

166 Fourth, comparing R_{12} and R_{13} , R_{15} and R_{16} , it can be concluded that the frequency ratio method is
167 better than the cosine amplitude method in the study. Different from the study of Kritikos et al.
168 (2015), the watershed unit rather than the grid unit is used, which indicates that the former has a
169 wide range of application, while the latter has a disadvantage of strict conditions.

170 Based on the results of the above four analyses, the most optimal model should have the features
171 of being based on expert experience, using selected factors, classifying factors before using
172 them, and using frequency ratio method. Then the model R_{16} is selected according to the
173 features, which is well in accordance with theoretical method performance score, and gets fine
174 mutual verification.

175 There is much to discuss, the selection of factors is still a very complex dilemma. Although 19
176 factors selected cannot fully evaluate the character of a basin, it is necessary to consider that
177 they are easily and relatively accurately obtainable for each basin. This will facilitate a wide
178 range of applications. Vegetation and rainfall factors are also very important, but there is little
179 difference in vegetation and rainfall across the study area. As for the factors describing debris
180 flow magnitude, usually, several channels have the recorded data. Other factors that also
181 influence the susceptibility of debris flow are usually difficult to obtain, including soil drainage,
182 induration, thickness, conductivity, and strength properties; subsurface flow orientation;
183 bedrock fracture flow; and root strength. The scientific and systematic principles of model
184 building is another challenge. In order to correctly classify the factors, it is necessary to grasp
185 the characteristics of the formation, movement and accumulation of debris flow. Therefore, the
186 classification should comprehensively consider the development background (geology,
187 geomorphology, climate, hydrology, soil, vegetation, human activities and other factors). The practical
188 principle refers to that the study should not only fully obtain scientific and accurate
189 results, but also make the professional results understood by decision makers. The relative
190 simplicity of the model with data easy to obtain is attractive, which can also provide necessary
191 information for debris flow mitigation and land utilization. Although the susceptibility grade
192 and susceptibility value of each watershed is obtained, the results are relatively effective in this
193 study area. In addition, with the development of technology and theory, we should replace some
194 traditional factors which are not easy to quantify with more precise quantitative factors to
195 improve the efficiency and accuracy of evaluation, such as surface roughness instead of
196 drainage density.

197
198 **Comment 5:** Line 26 by the results → by results

199 **Response:** Thank you for your professional comments. According to your suggestion, we will
200 replace the expression.

201
202 **Comment 6:** Line 26 validated by the other two → validated by two other
203 **Response:** Thank you for your professional comments. According to your suggestion, we will
204 replace the expression.

205
206 **Comment 7:** Line 27 the method to → a method to
207 **Response:** Thank you for your professional comments. According to your suggestion, we will
208 replace the expression.

209
210 **Comment 8:** Line 47 significance to establishing → significance to establish
211 **Response:** Thank you for your professional comments. According to your suggestion, we will
212 correct the expression.

213
214 **Comment 9:** Line 76 disaster chain and that the geomorphic → disaster chain and the
215 geomorphic
216 **Response:** Thank you for your professional comments. According to your suggestion, we will
217 replace the expression.

218
219 **Comment 10:** Line 76 rather than simple data fitting → rather than simply data fitting
220 **Response:** Thank you for your professional comments. According to your suggestion, we will
221 correct the expression.

222
223 **Comment 11:** Line 80 account for → accounts for
224 **Response:** Thank you for your professional comments. According to your suggestion, we will
225 correct the expression.

226
227 **Comment 12:** Line 90 1. Data and Methodology → 3 Data and Methodology
228 **Response:** Thank you for your professional comments. According to your suggestion, we will
229 correct the number.

230
231 **Comment 13:** Line 99 watershed characteristics factors → watershed characteristic factors
232 **Response:** Thank you for your professional comments. According to your suggestion, we will
233 correct the mistakes.

234
235 **Comment 14:** Line 103 our primary assumption here are → our primary assumptions here are
236 **Response:** Thank you for your professional comments. According to your suggestion, we will
237 correct the expression.

238
239 **Comment 15:** Line 103 First → Firstly
240 **Response:** Thank you for your professional comments. According to your suggestion, we will
241 replace the expression.

242
243 **Comment 16:** Line 105 Second → Secondly

244 **Response:** Thank you for your professional comments. According to your suggestion, we will
245 replace the expression.

246

247 **Comment 17:** Line 114 by professional team → by professional teams

248 **Response:** Thank you for your professional comments. According to your suggestion, we will
249 replace the expression.

250

251 **Comment 18:** Line 138 factors (Type B) factors → factors (Type B)

252 **Response:** Thank you for your professional comments. According to your suggestion, we will
253 correct the mistake..

254

255 **Comment 19:** Line 159 a effective method → an effective method

256 **Response:** Thank you for your professional comments. According to your suggestion, we will
257 correct the mistake.

258

259 **Comment 20:** Line 169 3.4 fuzzy memberships → 3.4 Fuzzy memberships

260 **Response:** Thank you for your professional comments. According to your suggestion, we will
261 correct the mistake.

262

263 **Comment 21:** Line 217 can be used to derived their fuzzy → can be used to derive their fuzzy

264 **Response:** Thank you for your professional comments. According to your suggestion, we will
265 correct the mistake.

266

267 **Comment 22:** Line 238 order to use properly → order to use it properly

268 **Response:** Thank you for your professional comments. According to your suggestion, we will
269 correct the mistake.

270

271 **Comment 23:** Line 247 Compared with other four fuzzy operator → Compared with other four
272 fuzzy operators

273 **Response:** Thank you for your professional comments. According to your suggestion, we will
274 correct the mistake.

275

276 **Comment 24:** Line 247 Fuzzy Gamma (Eq.6) → Eq.5

277 **Response:** Thank you for your professional comments. According to your suggestion, we will
278 correct the mistake.

279

280 **Comment 25:** Line 261 seventeen results were compared (Table.6) → Table.5

281 **Response:** Thank you for your professional comments. According to your suggestion, we will
282 correct the mistake.

283

284 **Comment 26:** Line 278 the results is not comprehensive → the results are not as comprehensive

285 **Response:** Thank you for your professional comments. According to your suggestion, we will
286 correct the mistake.

287
288 **Comment 27:** Line 282 there are total 135 basin → there are total 135 basins
289 **Response:** Thank you for your professional comments. According to your suggestion, we will
290 correct the mistake.
291
292 **Comment 28:** Line 306 uncertain factor compared with factors compared → uncertain factors
293 compared
294 **Response:** Thank you for your professional comments. According to your suggestion, we will
295 correct the mistake.
296
297 **Comment 29:** Line 309 bedrock fracture flow; and root strength → bedrock fracture flow, and
298 root strength
299 **Response:** Thank you for your professional comments. According to your suggestion, we will
300 correct the mistake.
301
302 **Comment 30:** Line 334 in which all factors as a single → in which all factors are considered as a
303 single
304 **Response:** Thank you for your professional comments. According to your suggestion, we will
305 replace the expression.
306
307 **Comment 31:** Line 362 nonlinear methods is consistent → nonlinear method is consistent
308 **Response:** Thank you for your professional comments. According to your suggestion, we will
309 correct the mistake.
310
311 **Comment 32:** Line 377 clear and the data easy to obtain → clear and the data is easy to obtain
312 **Response:** Thank you for your professional comments. According to your suggestion, we will
313 correct the mistake.
314
315 We thank you very much for not lowering your evaluation because of our poor English. The
316 recognition of the value of our research is a great encouragement to us. We have tried our best to
317 improve the manuscript and made changes in the manuscript. We appreciate for your warm work
318 earnestly, and hope that the result will meet with approval. As the manuscript has undergone
319 several previous revisions, there are many errors in detail. We apologize for the very bad effect on
320 your reading experience. Once again, thank you very much for your comments and suggestions!
321 Please feel free to contact me, if any further changes are required. We look forward to hearing
322 from you.
323 Yours sincerely,
324
325 Jianping Chen, Ph.D.
326
327 College of Construction Engineering, Jilin University
328 938 Ximinzhu Road, Changchun 130026, China

329 Phone number: +86 13843047952

330 Email address: chenjp@jlu.edu.cn

331

332

333

334