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Abstract. Recent literature shows several examples of sim-
plified approaches that perform flood hazard (FH) assess-
ment and mapping across large geographical areas on the
basis of fast-computing geomorphic descriptors. These ap-
proaches may consider a single index (univariate) or use a5

set of indices simultaneously (multivariate). What is the po-
tential and accuracy of multivariate approaches relative to
univariate ones? Can we effectively use these methods for
extrapolation purposes, i.e., FH assessment outside the re-
gion used for setting up the model? Our study addresses these10

open problems by considering two separate issues: (1) map-
ping flood-prone areas and (2) predicting the expected water
depth for a given inundation scenario. We blend seven geo-
morphic descriptors through decision tree models trained on
target FH maps, referring to a large study area (∼ 105 km2).15

We discuss the potential of multivariate approaches relative
to the performance of a selected univariate model and on the
basis of multiple extrapolation experiments, where models
are tested outside their training region. Our results show that
multivariate approaches may (a) significantly enhance flood-20

prone area delineation (accuracy: 92 %) relative to univariate
ones (accuracy: 84 %), (b) provide accurate predictions of ex-
pected inundation depths (determination coefficient ∼ 0.7),
and (c) produce encouraging results in extrapolation.

1 Introduction 25

Every year flood events worldwide cause vast economic
losses as well as heavy social and environmental impacts,
which have been steadily increasing over the last 5 decades
(Jongman et al., 2014; Guha-Sapir et al., 2016), mainly be-
cause of the complex interaction between the intensifica- 30

tion of extreme hydrological events due to climate change
(e.g., Brunetti et al., 2002; Uboldi and Lussana, 2018) and
anthropogenic pressure (i.e., land-use and land-cover mod-
ifications; see Di Baldassarre et al., 2013; Domeneghetti et
al., 2015; Requena et al., 2017). Thus, nowadays, success- 35

ful flood hazard mapping for flood hazard management is
a major task for the whole scientific community (Alfieri et
al., 2014; Dottori et al., 2016). Traditional methods to as-
sess fluvial flood hazard rely on hydrological and hydraulic
numerical models, whose improvement allows the simula- 40

tion of any scenario for different geometrical or hydrolog-
ical conditions, obtaining very accurate results (Horritt and
Bates, 2002; Costabile et al., 2012; Bellos and Tsakiris,
2016). However, a high amount of hydrologic and hydraulic
input information is required to adequately describe the ge- 45

ometry and hydraulic behaviour of the system; thus consid-
erable effort and computation capacity are needed. Conse-
quently, numerical models are unsuitable for large-scale ap-
plications and in data-scarce regions. To overcome this issue,
other mapping techniques have been proposed that take ad- 50

vantage of the wealth of topographic information contained
in digital elevation models (DEMs): flood-related geomor-
phic descriptors (or features or indices) can be derived from
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2 A. Magnini et al.: Multivariate geomorphic flood hazard modelling

DEMs and used to obtain a measure of flood hazard. The
first DEM-based approaches proposed in the literature (see,
e.g., Williams et al., 2000; Noman et al., 2001; Dodov and
Foufoula-Georgiou, 2006; Nardi et al., 2006; Manfreda et al.,
2011, 2014, 2015; Samela et al., 2017; and De Risi et al.,5

2018) consider a single geomorphic index (these approaches
are referred to as univariate hereafter), which is used as a bi-
nary classifier to distinguish between flood-prone and flood-
free areas through the definition of a threshold value. The
optimal threshold value is identified by means of an iterative10

calibration procedure, which optimizes the agreement of the
binary map with a reference pre-existing flood hazard map
obtained, for example, from hydrological–hydraulic numer-
ical simulations. Several authors (see, e.g., Manfreda et al.,
2015, and Samela et al., 2017) highlight that the performance15

of the considered geomorphic index can change according
to the geographical context of the application. In particular,
the descriptor named geomorphic flood index (GFI; Samela
et al., 2017) has been shown to have good effectiveness in
mountainous as well as in predominantly flat areas and thus20

has been used extensively by many authors for developing
web services, platforms, and geographic information system
(GIS) tools for flood hazard mapping applications (Samela
et al., 2018; Tavares da Costa et al., 2019). A second class of
DEM-based approaches to be investigated can be named as25

multivariate as they rely on the combination of different ge-
omorphic descriptors (GDs). The relation between the com-
bination of GDs and flood hazard can be searched through
numerous statistical methods. Commonly, machine-learning
(ML; Breiman, 1984) models are used, often ensembled with30

multi-criteria decision-making techniques (Triantaphyllou et
al., 2000; Ho et al., 2010). Some authors (Degiorgis et al.,
2012; Gnecco et al., 2017) have tested a blend of GDs, while
some others mixed these indices with information on land
use, soil geology, and climate and compared different com-35

bination strategies (e.g., Wang et al., 2015; Lee et al., 2017;
Khosravi et al., 2018; Arabameri et al., 2019; Janizadeh et
al., 2019; Costache et al., 2020). These studies suggest that
data-driven flood hazard mapping has a remarkable potential.
However, in most of the studies, the reference flood hazard40

information used to set up the models consists of a dataset
of isolated historical events observed in the study area (Lee
et al., 2017; Khosravi et al., 2018; Janizadeh et al., 2019;
Arabameri et al., 2019; Costache et al., 2020), leading to
case-specific prediction skills.45

Important advantages of DEM-based flood hazard map-
ping methods are their flexibility and, in principle, their
general applicability to any flood-prone area where a reli-
able DEM is available as well as their low computational
costs relative to numerical models. However, two main draw-50

backs must be highlighted: first, DEM-based methods do not
consider the water dynamics, and second, they need a pre-
existing reliable reference flood hazard map, which may or
may not be available for the area of interest. Overall, DEM-
based models are very useful as preliminary flood hazard55

mapping tools in data-scarce contexts and for application in
large areas but cannot yet effectively substitute the traditional
models, especially when detailed results are required. Never-
theless, if a strong and reliable relation to derive flood hazard
from GDs is obtained, the model could be easily applied in 60

extrapolation to any region where the same relation is sup-
posed to be valid (Tavares da Costa et al., 2020).

In this study, multivariate DEM-based flood hazard map-
ping is investigated. We consider a large study area (105 km2)
in northern Italy, which is characterized by markedly differ- 65

ent morphological, hydrological, and climatic conditions. We
use the ∼ 90 m resolution, hydrologically corrected MERIT
DEM (Yamazaki et al., 2017) for deriving a set of GDs. We
then use decision trees, a common machine-learning tech-
nique (Hastie et al., 2009), for assessing flood hazard asso- 70

ciated with a given probability of occurrence (i.e., return pe-
riod) in terms of (a) delineation of flood-prone and flood-free
areas and (b) prediction of expected inundation water depth
(as a measure for flood intensity). The simultaneous com-
bination of the five following meaningful elements makes 75

our study different from all previous works in the litera-
ture. First, only strictly easy-to-retrieve, DEM-based GDs are
used to assess flood hazard, in contrast with several stud-
ies in which also other information is considered. Second,
both generation of binary flood susceptibility maps and pre- 80

diction of expected maximum inundation water depth are
analysed, setting up parallel models. Third, decision trees
are trained using pre-existing flood hazard maps as target
information, in contrast with the discontinuous datasets of
historical events mostly used to train machine-learning mod- 85

els for flood hazard estimation (Lee et al., 2017; Khosravi
et al., 2018; Janizadeh et al., 2019; Arabameri et al., 2019;
Costache et al., 2020). Fourth, a univariate geomorphologi-
cal approach for identification of flood-prone and flood-free
areas (i.e., GFI) is compared with the proposed multivariate 90

approach: this allows us to analyse the actual enhancement
resulting from the use of multiple GDs. Fifth, predictive skill
of the multivariate DEM-based flood hazard approach is as-
sessed in extrapolation by applying models trained on spe-
cific geographical areas to different regions with dissimilar 95

morphological and/or hydrological features. This last aspect
is highly important for possible future applications in data-
scarce environments in extrapolation mode.

By assuming the above-mentioned characteristics, this
study aims to advance previous knowledge on the potential of 100

ML techniques for combining GDs to derive accurate flood
susceptibility maps across large geographical regions. More
precisely, we want to investigate three main research ques-
tions: (1) whether we can we profit from a blend of vari-
ous GDs for flood hazard assessment and mapping relative 105

to a univariate approach, (2) whether we can we use sim-
ple ML techniques for effectively blending multiple GDs,
(3) whether these techniques are capable of providing a re-
liable assessment of flood hazard over large geographical ar-
eas when used in geographical extrapolation. What are the 110

Nat. Hazards Earth Syst. Sci., 22, 1–18, 2022 https://doi.org/10.5194/nhess-22-1-2022



A. Magnini et al.: Multivariate geomorphic flood hazard modelling 3

desired characteristics of the training region or watershed to
make the trained model as general as possible?

The paper is organized as follows: Sect. 2 describes the
methods (GDs and decision trees), Sect. 3 illustrates the
study area and data, Sect. 4 details the analyses we per-5

formed, Sect. 5 shows the results, and Sect. 6 discusses them.

2 Methods

The analyses conducted in the study are based on two main
elements: geomorphic descriptors (GDs) and decision trees
(DTs); simplicity and replicability of these elements repre-10

sent a fundamental aspect and an important advantage of this
contribution. Aiming to estimate flood hazard output vari-
ables (i.e., flood susceptibility and maximum expected water
depth), DT models combine several selected DEM-derived
input features (GDs) based on the availability of target infor-15

mation (i.e., flood hazard reference maps). Consistent with
the aims of our study, we set up two different types of DTs:
classifier DTs to solve the classification problem relative to
flood-extent delineation and regressor DTs to solve the re-
gression problem of water depth estimation. Classifier and20

regressor models use the same input GDs but require dif-
ferent target flood hazard maps. The software we use for
the training is Scikit-learn (Pedregosa et al., 2011), an open-
source library for Python 3.6 or later (Van Rossum et al.,
1995).25

2.1 Geomorphic descriptors

Topographical rasterized information contained in DEMs can
be used to extract GDs adopting several algorithms available
in the literature (e.g., Tarboton et al., 1991). These descrip-
tors vary spatially, assuming different values for different30

pixels within the domain while being constant in time. They
can be divided into two broad categories: (1) single features
if they represent simple terrain characteristics and (2) com-
posite indices if they are derived based on a combination of
other features. As input variables for the above-mentioned35

models, in our study we use the ground elevation in metres
above sea level itself (as retrieved from the DEM) together
with six GDs, the first three of which are single indices, while
the remaining three are composite:

1. local slope (sd8), estimated for each cell as the maxi-40

mum slope among the eight possible flow directions and
computed as the ratio between the vertical and the hori-
zontal differences;

2. horizontal distance from the nearest stream (D), defined
as the length of the path that hydrologically connects45

each cell to the nearest cell of the river network;

3. height above the nearest drainage (HAND), defined as
the vertical difference between a given cell and the hy-

drologically nearest cell belonging to the river network
(Rennò et al., 2008); 50

4. modified topographic index (TIm), derived from the
modification proposed by Manfreda et al. (2008) to the
index originally introduced by Kirkby (1975) and de-
fined as

TIm = ln
(

and
tan(β)

)
, (1) 55

where ad is the drained area per unit contour length,
tan(β) is the local gradient, and n is an exponent;

5. geomorphic flood index (GFI), defined as the ratio be-
tween the term hr and HAND (the numerator repre-
sents the water depth, computed in the hydrologically 60

nearest stream section with a hydraulic scale relation
hr u bAnr , where Ar is the contributing area in the con-
sidered stream section; coefficient b and exponent n
can be appropriately estimated with calibration or taken
from the literature; Nardi et al., 2006), 65

GFI= ln
(

hr

HAND

)
; (2)

6. alternative version of the GFI, hereinafter referred to as
local geomorphic flood index (LGFI), defined as

LGFI= ln
(

hl

HAND

)
, (3)

where the water depth hl is computed with reference to 70

the contributing area of the considered pixel.

The choice of the above-mentioned GDs is due to different
reasons. First, previous studies (e.g., Manfreda et al., 2015;
Samela et al., 2017) clearly showed thatD and HAND are the
most descriptive single-feature indices for flood hazard map- 75

ping, sufficiently accurate in mountainous regions but still
inadequate over predominantly flat areas, whereas, among
composite feature indices, GFI and LGFI show good per-
formance in both the geographical contexts. Also, in several
studies (e.g., Wang et al., 2015; Lee et al., 2017; Khosravi 80

et al., 2018; Janizadeh et al., 2019; Costache et al., 2020),
elevation retrieved from DEMs is shown to have a strong in-
fluence on flood occurrence. Slope appears to be the most
important index in Khosravi et al. (2018) and Costache et
al. (2020) and among the most influential ones in Arabameri 85

et al. (2019). The adoption of TIm is based on Manfreda et
al. (2008), who highlighted a strong correlation between the
index and the occurrence of inundation events.

Indeed, we believe that the selected set of GDs provides
DT models with a rather exhaustive description of the study 90

area morphology. In fact, slope and TIm may influence the
infiltration time and consequently the runoff; elevation is not
only strongly linked to the runoff but also to climatic con-
ditions; D and HAND consider the horizontal and vertical
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proximity to the river network, and GFI and LGFI combine
this information with an estimation of the water depth in the
nearest stream. Overall, for the aim of a multivariate analy-
sis, this combination should enable one to consider two com-
prehensive pieces of information by looking into the mor-5

phology (i.e., elevation, sd8, TIm) and hydrology (i.e., by ac-
counting for the river network, as is done forD, HAND, GFI,
and LGFI) of the study region.

2.2 Decision trees

Supervised ML models can be thought of as complex, param-10

eterized functions that are trained to accomplish a specific
task. In so-called supervised learning, training algorithms de-
termine the structure and parameters of the model, by ob-
serving a series of examples, i.e., input–output pairs. Deci-
sion trees (DTs) are very popular supervised ML techniques15

(Breiman, 1984; Hastie et al., 2009) as they are very effective
in solving many kinds of classification or regression prob-
lems based on an easily interpretable logic.

DTs search for a relation between input and target output
by means of a recursive splitting, which is done through a20

set of nodes organized in a tree structure. The input of a DT
being a vector of values for a fixed set of “attributes” (or
“features”), each node corresponds to a test to be performed
on a single attribute in the input vector. Depending on the
outcome of the tests on the nodes, the data are forwarded to25

one of a set of “child” nodes (see Fig. 1). Leaves are the last
nodes; they are labelled with an output value, such as a class
or a number, that represents the tree output for the given input
vector.

Training a decision tree consists of determining its struc-30

ture, the test on each node, and the labels on the leaves. Most
training algorithms operate by recursively splitting the train-
ing set, measuring the quality of each partition with object
functions that reflect the degree of uniformity of the output
values (see Sect. 4.2). Repeatedly, tests leading to the best35

partition are chosen, and child nodes are created accordingly.
When some termination criterion is reached (e.g., a set in the
partition is perfectly uniform, or a maximum depth has been
reached), the last nodes become leaves, and they are labelled
either with the most frequent class value (discrete case) or40

with the average of the output values (numeric case).

3 Study area and data

The study area includes most of northern Italy and a little
part of Switzerland, with a total extent of about 105 km2.
Many different geographical subsystems can be found within45

this surface: the Alps, located in the north, occupy about
5× 104 km2, with an average elevation of 2500 m a.s.l. and
mainly rocky soil. This mountain range also hosts several
big lakes, such as Lake Garda, Lake Maggiore, and Lake
Iseo. The Apennines, in the southern portion, have lower50

Figure 1. Example structure of a decision tree for a given dataset
with N samples and M features, having seven nodes in total: one
root node, two decision nodes, and four leaves, resulting in an over-
all depth of three (i.e., longest path from roots to leaves).

altitudes than the Alps and more permeable soils. The Po
Valley, the largest floodplain in Italy, stretches from west to
east, covering an area of about 4.6×104 km2, going from the
Alps and the Apennines to the Adriatic Sea (see Fig. 2). The
study area is mostly occupied by the Po river basin, which 55

is the largest in Italy. Moreover, other important rivers are
the Adige, Brenta, Reno, and Bacchiglione. For this large
and predominantly flat region, floods represent a major is-
sue, also considering its high population density and pres-
ence of strategic industrial and agricultural assets (ISPRA, 60

2018; Persiano et al., 2020).
The DEM used to represent the study area is the freely

available Multi-Error-Remover Improved-Terrain model
(MERIT; see Yamazaki et al., 2017). This choice was made
for two reasons. First, MERIT should be quite reliable for hy- 65

drological applications as it is the product of several process-
ing operations and corrections on previously available DEMs
(i.e., NASA SRTM3 and JAXA AW3D), some of which
specifically address hydrological consistency (e.g., agree-
ment between modelled and real stream network). The sec- 70

ond reason is that its resolution is 3 arcsec, which corre-
sponds to ∼ 90 m at the Equator. These characteristics en-
abled us to perform an accurate computation of geomorphic
indices while reducing the computational costs.

Two different freely available reference flood hazard maps 75

have been used to train the ML models. The first, used for the
classification problem (i.e., delineation of flood extent), has
been produced by the Italian Institute for Environmental Pro-
tection and Research (ISPRA) to fulfil the Floods Directive
of the European Parliament (2007/60/EC). This map (here- 80

inafter referred to as PGRA P1) refers to a return period of
about 500 years and comes from the merge of different haz-
ard maps produced by local authorities, which explains its
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Figure 2. MERIT DEM for the study area, with major rivers and lakes marked in black (left); study area in the European context (right; map
from © OpenStreetMap contributors, 2017, distributed under the Open Data Commons Open Database License (ODbL), v1.0).

heterogeneity. Detailed flood hazard mapping characterizes
some areas (e.g., see the north-western portion of the study
area in Fig. 3), while lacking information affects other zones
(e.g., see the north-eastern portion of the study area in Fig. 3).
In the reminder of this study we term exhaustiveness the de-5

gree of detail to which flood hazard is defined and captured
for minor streams. The second map (see Fig. 4), used for the
regression problem (i.e., estimation of water depth), is made
available by the study from the Joint Research Centre (JRC)
of the European Commission and refers to a return period of10

100 years; it is referred to as JRC 100 in the remainder of
the study. Differently from PGRA P1, JRC 100 provides in-
formation in terms of water depth and is uniform throughout
the study area, yet evenly incomplete and less accurate for
minor streams as it comes from the merger of several numer-15

ical simulations which considered only river catchments with
drainage area higher than 500 km2 (see Dottori et al., 2016).

4 Framework of the analysis

This section provides an overview of the four macro-phases
of the present study.20

1. Data selection and preparation:

a. selection of the DEM and computation of geomor-
phic indices with terrain analysis

b. selection of the flood hazard target map

2. Preliminary analyses:25

a. definition and preparation of the calibration area

b. selection of performance metrics and objective
functions

Figure 3. Binary flood hazard target map with return period
∼ 500 years, made available by ISPRA and termed PGRA P1 in
this study.

3. Implementation of the univariate approach (benchmark
approach): set-up of GFI optimal threshold in randomly 30

selected 85 % of calibration area

4. Testing multivariate approach with two different modes
(a and b):

a. geographical interpolation – the training set con-
sisting of randomly selected 85 % of calibration 35

area, the testing set consisting of randomly selected
15 % of calibration area

b. geographical extrapolation – the training set con-
sisting of a geographical subregion of the calibra-
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6 A. Magnini et al.: Multivariate geomorphic flood hazard modelling

Figure 4. Water depth for the target 100-year flood hazard map ob-
tained by Dottori et al. (2016), termed JRC 100 in this study (colour
classes in the legend are used for data visualization only).

tion area, the testing set consisting of the geograph-
ical remainder of the calibration area

Macro-phase 1 of the study consists of the preparation of
input data, which is a fundamental step for the success of
machine-learning algorithms; specific criteria are used to se-5

lect the GDs (Sect. 2.1), the accuracy and horizontal res-
olution of the DEM, and the target flood hazard datasets
(Sect. 3). Phase 2 (i.e., preliminary analyses) is necessary for
defining some important aspects for the successful set-up of
DEM-based models: the calibration area (Sect. 4.1), the ob-10

jective functions, and the performance metrics for evaluating
the results (Sect. 4.2). Phase 3 identifies the benchmarking
approach, i.e., a univariate DEM-based model for classifica-
tion of flood-susceptible areas to be used as comparison for
the successive analysis. This model is built up according to15

the indications reported in the literature and considers the
GFI descriptor alone as it is found to be the most versatile
and accurate by many authors (e.g., Samela et al., 2017).

The main results of the study are obtained in phase 4 as
the DEM-based multivariate approach is tested in two dif-20

ferent ways. First, two DTs are set up (i.e., one classifier
DT and one regressor DT) using training and test sets with
the same statistical distribution of input features. This repre-
sents an ideal case (here termed geographical interpolation
mode), in which the training and test sets have very similar25

morphoclimatic characteristics. Second, four sub-portions of
the study area are selected based on specific morphoclimatic
conditions, and then, eight more DTs are trained on these
areas (i.e., one classifier DT and one regressor DT for each
training area) and tested on the complement to the study re-30

gion (see Sect. 4.3). This represents a data-scarce case (here

termed geographical extrapolation mode), in which morpho-
climatic characteristics of training and test sets may be rather
different.

4.1 Calibration area 35

Previous studies (e.g., Tavares da Costa et al., 2019) have
highlighted that the DEM-based classification of regions into
flood-prone and flood-free zones is more effective if the cal-
ibration is done on meaningful areas. This is due to the dif-
ferent importance of far-from-river and close-to-river pixels 40

in the computation of the objective function. In the present
study, training and testing of the models have been performed
referring to a portion of the entire study area, which we term
calibration area. Different methods to define this area have
been tested during the preliminary analyses of phase 2, find- 45

ing that the most effective way, representing a good trade-off
between the calibration efficiency and the ease of identifica-
tion, is to refer to a constant-radius buffer around the target
flood hazard map. In particular, based on sensitivity analyses
that clearly showed that the radius value has a non-negligible 50

impact on the accuracy of the trained model, a 2 km radius
has been selected for the PGRA P1 target map and a 5 km ra-
dius for the JRC 100 map (see Fig. 5). During our analyses,
all the pixels falling outside the 2 and 5 km calibration buffer
areas are neglected when fitting the models and evaluating 55

the results for all classification and regression problems, re-
spectively.

4.2 Objective functions and performance metrics

Specific objective functions are used to train the DTs for clas-
sification and regression, while other performance metrics 60

are computed to evaluate their predictions during the vali-
dation. With regards to the classification problem, the ob-
jective function, used during the training of the DTs to as-
sess the quality of each split, is the Gini impurity (IG(p)),
which varies between 0 (the optimal value) and 1 (Hastie et 65

al., 2009). At each step, the Gini impurity measures how of-
ten a randomly chosen element from the set would be incor-
rectly labelled if it was randomly labelled according to the
distribution in the subset. Given the number of target classes
J and the fraction of items labelled with class i in the set pi , 70

the Gini impurity is defined as follows:

IG(p)=

J∑
i=1

pi × (1−pi). (4)

To perform implementation of the univariate approach, pa-
rameterize the multivariate classifier DTs, and evaluate the
results, we use the true skill statistic (TSS; Youden, 1950; 75

Everitt et al., 2002), which is based on the contingency ma-
trix and varies between 0 and 1 (optimal value):

TSS=
TP

TP+FN
+

TN
TN+FP

− 1, (5)

Nat. Hazards Earth Syst. Sci., 22, 1–18, 2022 https://doi.org/10.5194/nhess-22-1-2022
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Figure 5. Calibration areas: 2 km buffer (green) and PGRA P1 flood-prone areas (blue) used for the classification problem (a); 5 km buffer
(orange) and JRC 100 flood-prone areas (red) used for the regression problem (b).

where TP, TN, FP, and FN are true positive, true negative,
false positive, and false negative predictions of the model, re-
spectively. TSS has been successfully used by several authors
in different applications (Bartholmes et al., 2009; Alfieri et
al., 2012; Tavares da Costa et al., 2019). During preliminary5

analyses of phase 2, some experiments suggested preferring
this metric to accuracy (ACC; see below), which was shown
to be less sensitive to model modifications (i.e., different cal-
ibration areas, input information, tree depth) and goodness
(lower extension of FP and FN areas).10

Other metrics used for analysing the results are accuracy
(ACC), precision (or positive predictive value, PPV), and re-
call (or true positive ratio, TPR). All three are very common
in evaluating the performance of a classifier (e.g., Manfreda
et al., 2015; Samela et al., 2017). They all vary between 015

and 1 (optimal value) and are defined as follows:

ACC=
TP+TN

TP+TN+FP+FN
(6)

PPV=
TP

TP+FP
(7)

TPR=
TP

TP+FN
. (8)

With regards to the regression problem, the objective func-20

tion to minimize during the training is the well-established
mean square error (MSE). Using n, ŷi , and yi to indicate the
number of samples and the predicted and target value, re-
spectively, MSE can be written as

MSE=
1
n

n∑
i=1

(
yi − ŷi

)2
. (9)25

The metric mainly used to evaluate the results and param-
eterize the multivariate regressor DTs is the determination
coefficient R2, which varies between−∞ and 1 (the optimal
value). It measures the improvement of the predicted values

relative to the mean of the input samples (y), defined as 30

R2
= 1−

∑n
i=1

(
yi − ŷi

)2∑n
i=1 (yi − y)

2 . (10)

The last considered metric is the mean absolute error (MAE),
defined as

MAE=
1
n

n∑
i=1
|yi − ŷi |. (11)

Lastly, we use the Gini importance (GI) to measure the 35

importance of each factor (i.e., each GD) in the trained mod-
els (both classifier and regressor DTs), which is defined for
the jth factor as the total decrease in node impurity (IGi ),
weighted by the fraction of samples reaching that node (ni).
Although this measure is largely used for its speed of com- 40

putation, it has the drawback of neglecting the weakest factor
when two related factors are used, which has to be taken into
account when discussing the results.

GIj =
Nj∑
i=1

(
IGi − IGi−1

)
ni

, (12)

where Nj is the number of nodes where a condition on the 45

jth factor is used as splitting rule.

4.3 Training and testing strategy

All models considered in this study are trained and tested
in different sub-domains of their calibration area based on
two different strategies. For the univariate model and the in- 50

terpolation DTs, the pixels of the calibration area have been
randomly split, with 85 % going to the training and 15 % to
the test set, based on the established proportion adopted for
machine-learning algorithms (Mosavi et al., 2018). This pro-
duces two datasets with millions of pixels, both with very 55
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diverse ranges of input and target information. During the
extrapolation analyses, training is performed in turn on four
different portions of the overall calibration area. To avoid di-
viding any catchment into a part for training and one for test-
ing, the delineation of these areas follows catchment bound-5

aries as well as precise geographical and hydrological criteria
(see Fig. 6):

– Area A includes the Alpine catchments and the north-
ern portion of the Po river floodplain. The complemen-
tary test area includes all the Apennines, a lower moun-10

tain range, and the southern part of the Po plain, where
smaller river catchments are located.

– Area B includes catchments in the upstream sector of
the Po river basin, representing part of the Alps and of
the Apennines. The complementary test area includes15

most of the Po plain and part of the Alps and Apennines.

– Area C is complementary to area B and consists of the
downstream portion of the Po river basin.

– Area D includes the Apennines, western and central
Alps, and the entire Po streamline. Its complementary20

test area contains a rather small part of the Po plain; the
western Alps; and the flood plain of the Adige, Brenta,
and Bacchiglione rivers.

Before training DTs, k-fold cross-validation (CV) is per-
formed to optimize models’ hyper-parameters, namely the25

maximum tree depth and the minimum number of records
in any leaf node; k-fold CV is a widely used method for
model parameterization and selection (Hastie et al., 2009)
and consists of dividing the training set into k folds and then
performing two consecutive operations: (1) training of the30

model using k−1 folds and (2) validation of the model using
the remaining fold. These two steps are repeated k times for
all the combinations of the k folds of the training data.

5 Results

The reliability of the predictions of the models is assessed35

by performance metrics that refer to (a) the training set and
(b) the test set. While the metrics computed for the training
set assess the reliability in reproducing the observed target
map, the ones regarding the test set measure the ability of the
model when applied to a different sample than the one used40

in training (i.e., validation of the model). In order to find out
the relevance of each input GD in the DTs’ structure, the
Gini importance (see Sect. 4.2) for each model is reported in
Table 3 and is discussed in more detail in Sect. 6.

5.1 Delineation of flood-prone areas in interpolation45

mode

Figure 7 represents the flood susceptibility map obtained
with the classifier DT model trained within the random 85 %

of the 2 km buffer calibration area (i.e., multivariate flood
susceptibility map). To understand the quality of the pro- 50

posed approach and profitably discuss the results, Fig. 8 il-
lustrates the map produced with the univariate benchmark
approach set up in the same area. Relevant performance met-
rics for multivariate and univariate models are reported in
rows 1 and 2 of Table 1, respectively. 55

Figure 7 and Table 1 highlight that the DT flood sus-
ceptibility map is strongly consistent with the target map
PGRA P1. Also, the model produces a rather detailed map-
ping across floodplains of minor streams (i.e., exhaustive-
ness, as defined in Sect. 3); in particular, it can be observed 60

in Fig. 7 that the zones where the target map has high ex-
haustiveness (e.g., north-western portion of the study area)
are mapped with slightly lower exhaustiveness by the DT
model, while the DT output is more detailed in the flood-
plain of minor streams than the target map, where the latter 65

is lacking exhaustiveness (e.g., north-eastern part).
Figure 7 shows that GFI uniformly and exhaustively esti-

mates flood susceptibility along all minor streams in moun-
tain areas but tends to severely overestimate the size of flood-
prone areas in predominantly flat regions. 70

The first line of Table 3 reports the Gini importance for the
classifier DT: HAND scores about 65 %, followed by eleva-
tion (16.5 %) and GFI (10.5 %).

5.2 Prediction of flood hazard intensity in interpolation
mode 75

Figure 9 illustrates expected maximum inundation water
depths as predicted through the regressor DT trained within
the random 85 % of the 5 km buffer calibration area; rele-
vant performance metrics can be found in the first row of
Table 2. Figure 9 and Table 2 show good performance of the 80

DT model for the regression problem. It is worth noting here
that the exhaustiveness of the DT water depth map is consid-
erably higher than that of the reference map (i.e., JRC 100).
This result was expected due to the focus of JRC 100 on
larger catchments. 85

The data density plot in Fig. 10 depicts the relationship
between target and predicted water depths for the test set fo-
cusing on true positives (i.e., both target and predicted water
depths are higher than 0.0 m) and neglecting water depths
higher than 3.5 m (neglected pairs, beyond axes’ limits, are 90

4.2 % of the total).
The second row of Table 3 shows that the most informa-

tive GD is GFI (63.7 %), followed by elevation (20.7 %) and
slope (5.4 %).

5.3 Multivariate flood hazard modelling in 95

extrapolation mode

Tables 1 (rows 3–6) and 2 (rows 2–5) report performance
metrics for the geographical extrapolation experiments for
the classification and regression problems, respectively,
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Figure 6. Training areas (bold contour) used for the geographical extrapolation experiments performed in phase 4, with major rivers and
lakes highlighted in black.

Table 1. Classification problem: performance metrics for the multivariate (classifier DTs) and univariate (classifier GFI) flood susceptibility
maps; target flood hazard map for both approaches: PGRA P1. The reported values have been converted from the interval 0− 1 to the
percentage notation. The best testing metric values are reported in bold, the worst ones in italic (the first line should be compared with the
second one; the last four lines should be compared to each other).

Model Training performance Test performance

TSS ACC PPV TPR TSS ACC PPV TPR

Classifier DT – interpolation 80 % 93 % 89 % 84 % 78 % 92 % 88 % 83 %
Classifier GFI – benchmark 69 % 84 % 66 % 87 % 69 % 84 % 66 % 87 %

Classifier DT trained in A 75 % 92 % 86 % 78 % 56 % 83 % 88 % 61 %
Classifier DT trained in B 61 % 93 % 82 % 64 % 65 % 85 % 80 % 75 %
Classifier DT trained in C 82 % 92 % 89 % 88 % 33 % 88 % 71 % 35 %
Classifier DT trained in D 80 % 94 % 91 % 93 % 63 % 79 % 53 % 87 %

while Figs. 11 and 12 depict the corresponding DT output
maps.

With regards to the classification problem (Table 1), the
performance metrics highlight a generalized good agreement
with the target map. Figure 11 and the “Training perfor-5

mance” column of Table 1 show that all models can accu-
rately reproduce the target map in the training area, but they
are quite inaccurate in the test area as the difference between
the two is evident. In fact, concerning the test area, Table 1
shows that according to the true skill score (TSS), the best10

prediction in the test area is obtained using B as the train-

ing area (TSS = 65 %), followed by D (TSS = 63 %) and A
(TSS = 56 %), respectively. The same table section shows
that the best results are obtained when training on area C
if one focuses on accuracy (ACC = 88 %), followed by B 15

(ACC = 85 %) and A (ACC = 83 %). According to preci-
sion (PPV), the best result is obtained by training the model
on area A (PPV = 88 %), while it is D according to recall
(TPR = 87 %).

Concerning the regression problem, worse predictive skill 20

in geographical extrapolation is observed in Table 2. Differ-
ently from the classification, performance metrics for the re-
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Table 2. Regression problem: performance metrics for the multivariate water depth output maps obtained with the regressor DTs (target flood
hazard map: JRC 100); the best testing metrics values are reported in bold, the worst ones in italics.

Model Training performance Test performance

R2 MSE MAE R2 MSE MAE

Regressor DT – interpolation 0.726 0.227 0.393 0.692 0.242 0.439

Regressor DT trained in A 0.709 0.240 0.443 −0.029 1.100 0.547
Regressor DT trained in B 0.606 0.145 0.284 −2.110 5.208 1.283
Regressor DT trained in C 0.711 0.281 0.467 0.333 0.623 0.264
Regressor DT trained in D 0.741 0.251 0.380 0.175 1.109 0.417

Figure 7. Multivariate 500-year flood susceptibility map for the
study area (red), target flood hazard map (PGRA P1; blue). Purple
indicates overlaying areas.

gression problem are in good agreement among each other,
showing that area C has the better results, while area B is the
worst. On the other hand, Fig. 12 suggests that water depth
estimation in the test area is quite reliable in all the cases,
with the exception of the DT trained in area B.5

Focusing on Gini importance, Table 3 clearly shows that
regressor DTs (rows 7–10) are characterized by similar struc-
tures regardless of the training areas: GFI is always ranked
first in terms of relevance, followed by elevation and slope.
This is not true for the classification problem (rows 3–6): in10

this case, classifier DTs identified four different training ar-
eas that have different structures, in which the most informa-
tive geomorphic descriptor can alternatively be GFI, HAND,
or the elevation; the latter is always ranked second.

Figure 8. Binary flood susceptibility map resulting from a univari-
ate analysis (morphometric index: GFI; light green), target flood
hazard map (PGRA P1; blue). Dark green indicates overlaying ar-
eas.

6 Discussion 15

6.1 Can we profit from a blend of various geomorphic
descriptors for flood hazard assessment and
mapping?

The first goal of the present research is the evaluation of the
improvement which can be obtained by applying a machine- 20

learning-aided, multivariate, DEM-based flood hazard as-
sessment relative to a univariate DEM-based approach. First,
regarding the classification problem (i.e., differentiation be-
tween flood-prone and flood-free areas), the outcomes re-
ported in Figs. 7–8 and Table 1 (rows 1–2) suggest that the 25

combination of multiple geomorphic descriptors (GDs) in-
creases the comprehensiveness of the morphological descrip-
tion of the study area, and the resulting multivariate data-
driven model can reproduce the reference flood hazard map
in a significantly enhanced way relative to a univariate ap- 30

proach adopting a single GD. This is particularly visible from
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Table 3. Gini importance of the selected input features computed for the DTs trained in phase 4; the highest value for each DT is highlighted
in bold, the lowest in italic.

Model Elevation sd8 D HAND GFI LGFI TIm

Classifier DT – interpolation 16.5 % 3.5 % 2.8 % 65.6 % 10.5 % 0.6 % 0.4 %
Regressor DT – interpolation 20.7 % 5.4 % 2.0 % 4.8 % 63.7 % 1.8 % 1.6 %

Classifier DT trained in A 10.2 % 6.8 % 2.2 % 8.0 % 71.6 % 0.3 % 0.8 %
Classifier DT trained in B 9.8 % 9.8 % 3.8 % 60.0 % 11.8 % 4.2 % 0.4 %
Classifier DT trained in C 74.3 % 2.3 % 1.7 % 9.7 % 11.1 % 0.6 % 0.1 %
Classifier DT trained in D 18.5 % 2.8 % 1.4 % 69.5 % 7.1 % 0.4 % 0.3 %

Regressor DT trained in A 14.3 % 3.6 % 1.8 % 3.5 % 73.2 % 2.3 % 1.3 %
Regressor DT trained in B 18.9 % 3.8 % 2.6 % 4.2 % 66.7 % 2.0 % 1.9 %
Regressor DT trained in C 17.8 % 3.1 % 1.9 % 4.3 % 69.2 % 2.5 % 1.2 %
Regressor DT trained in D 14.3 % 3.9 % 1.3 % 4.0 % 74.7 % 0.9 % 0.9 %

Figure 9. Multivariate water depth hazard map obtained with
regressor DT in interpolation mode (target flood hazard map:
JRC 100).

the lower extension of wrongly predicted areas (i.e., false
positive, or FP, and false negative, or FN) in the classifier
DT output map (light-red and blue areas in Fig. 7) relative to
the GFI output map (light-green and blue areas in Fig. 8).

Second, concerning the regression problem (i.e., predic-5

tion of the flood intensity, such as the expected maximum wa-
ter depth associated with a given probability of occurrence)
the regressor DT considered for interpolation shows high ac-
curacy in reproducing the target map. Also, it is worth high-
lighting that regressor DTs provide a direct estimate of this10

variable relative to the traditional univariate DEM-based ap-
proaches, which usually require the prior delineation of flood
extent to compute water depth, as the elevation difference be-
tween the flood-extent border and each pixel (see Manfreda
and Samela, 2019). Figure 10 highlights that the correlation15

between the predicted and target water depths can be im-

Figure 10. Data density plot (%) for target vs. predicted expected
maximum water depth (target values: empirical JRC 100; predicted
values: regressor DT applied to the test set).

proved, yet it also clearly shows that predictions for the test
set are unbiased. It is worth mentioning here that the diagram
neglects the true negatives (i.e., target and predicted water
depths are equal to 0.0 m; 49.78 % of the cases), false pos- 20

itives (i.e., only predicted water depths are equal to 0.0 m;
22.37 % of the cases), and false negatives (i.e., only target
water depths are equal to 0.0 m; 0.08 % of the cases). While
the occurrence of the most concerning cases (false negatives)
is very limited, predictions show significant margins for im- 25

provement as far as the false positives are concerned. Nev-
ertheless, it should also be recalled here that the target map
by its own very nature neglects smaller streams (contribut-
ing area has to be higher than 500 km2), whereas the deci-
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Figure 11. Geographical extrapolation for the classification problem: multivariate flood susceptibility maps obtained from classifier DTs
(red), target flood hazard map (PGRA P1; blue). Purple indicates overlaying areas.

Figure 12. Geographical extrapolation for the regression problem: multivariate flood susceptibility maps obtained from regressor DTs (see
also Fig. 4; target flood hazard map: JRC 100).
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sion tree regressor looks at morphology only and provides
water depth predictions also for smaller streams (i.e., higher
exhaustiveness; see Fig. 9).

One of the most interesting aspects is the relevance that
each GD assumes in the regressor DTs (see Table 3). It can5

be observed that all models rely mainly on one single GD,
with Gini importance always in excess of 60 %, but still, the
multivariate analysis leads to significantly better results rel-
ative to the univariate one. Also, it is important to highlight
that10

– while regressor DTs tend to depend mainly on the GFI,
classifier DTs depend on HAND;

– while the input GDs have quite a similar Gini impor-
tance hierarchy in regressor DTs, classifier DTs assume
different hierarchical structures depending on the con-15

sidered training area;

– all models agree on giving low Gini importance to LGFI
and TIm, probably due to redundant information relative
to the GFI;

– elevation is very often ranked second and always asso-20

ciated with significant importance.

Overall, this suggests that regressor DTs tend to operate by
correcting a baseline estimate that mostly relies on the GFI
value. On the other hand, classifier DTs obtain their results
by following different rules depending on the training data25

and often prefer using lower-level features relative to more
complex indicators such as the GFI. This sensitivity to the
training area makes it difficult to set a priori weights to the
GDs when building up the models. It should be kept in mind,
however, that different Gini importance values do not neces-30

sarily imply radically different classification rules due to the
existing correlations between the input features. Ideally, ded-
icated feature selection and importance analysis algorithms
should be used to obtain deeper insight on how the different
models come to their conclusions; we plan to investigate this35

line as part of future work.

6.2 Can we use simple ML techniques for effectively
blending multiple GDs?

The second research question of the present study is whether
it is possible to obtain a good estimation of flood hazard40

by combining multiple GDs with low-complexity machine-
learning models. Differently from several other contributions
in the literature, we do not focus on model complexity nor on
the comparison of different models (Wang et al., 2015; Khos-
ravi et al., 2018; Mosavi et al., 2018; Arabameri et al., 2019;45

Costache et al., 2020). Instead, we prefer to select one sim-
ple model type (i.e., decision trees, DTs) and focus on the
combination of the five innovative elements listed in the “In-
troduction” section; in this way, we can analyse the influence
on the multivariate DEM-based approach of the preliminary50

steps, consisting of data pre-processing (i.e., selection and
manipulation of input features, target maps, training set, and
test set). This is highly important because machine-learning
models do not reproduce the dynamics of the water; as such,
their performance is strictly linked to the data used for the 55

training, which need to be handled very carefully.
As is highlighted in Sect. 6.1, the outcomes of the study

(Figs. 8–9, Tables 1–2) clearly show that DTs can effectively
reproduce the target information (Figs. 3–4) with high accu-
racy for both classification and regression problems, even if 60

the resolution of the MERIT DEM (Yamazaki et al., 2017),
from which the input GDs have been retrieved, is not very
high. Indeed, even if regressor DTs necessarily implicate dis-
cretization of the output variable, in the present study large
datasets and appropriate tree depth allow us to obtain wide 65

ranges of different water depth values. Moreover, it is worth
mentioning that the trained DTs estimate flood hazard as-
sociated with different minor streams that are neglected in
the target maps (see red areas in Fig. 7; compare Fig. 9 with
Fig. 4): due to the absence of information in these areas, it 70

is not possible to assess the goodness of the models’ output,
but this tendency of completing target information could be a
key aspect for future applications in data-scarce regions, and
thus, it could be considered to be a promising characteristic
of the models. 75

Overall, it is possible to observe that DTs are effective
tools to combine GDs and estimate flood hazard. This indi-
cates that proper data handling has a strong influence on the
accuracy of the final estimation, which is comparable to the
choice of a given machine-learning technique. In particular, 80

we want to underline two elements of the presented approach
that have great importance on the predictive skill. First, the
utilization of flood hazard maps as a target results in a large
number of pixels for the training and test set and therefore
a very broad spectrum of hydrological and morphological 85

characteristics, which represent a much more informative
dataset relative to isolated points used by other authors for
training more complex models (Lee et al., 2017; Khosravi
et al., 2018; Arabameri et al., 2019; Janizadeh et al., 2019).
Second, a sensible identification of a calibration area is very 90

important for successful training as it allows irrelevant pixels
to be neglected. To this aim, a preliminary sensitivity analy-
sis might be very useful for identifying the optimal buffering
radius around the target map (see Sect. 4.1), even if differ-
ent approaches are proposed in the literature (e.g., Degiorgis 95

et al., 2012). Indeed, in the case of the application of DEM-
based methods in data-scarce areas, where local flood hazard
modelling datasets may not be available, global or continen-
tal flood hazard maps produced by the European Joint Re-
search Centre (Dottori et al., 2016, 2021) can be used as a 100

target, as done in this study.
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6.3 Are these techniques capable of providing a
reliable assessment of flood hazard over large areas
in extrapolation?

The evaluation of prediction accuracy for geographical ex-
trapolation (i.e., applying the models in geographical areas5

or watersheds that have not been considered for parameteri-
zation and training) is a key and characteristic aspect of our
study. On the one hand, performing predictions with new in-
put data is a major problem for machine-learning models; on
the other hand, reaching good predictive skills in extrapola-10

tion is needed for future practical applications in data-scarce
environments. What is more interesting about this part is to
understand the link between training and test performances:
if the relationship between input and target values, learnt by
the model during the training, is also valid for the extrapola-15

tion region, accurate test predictions are obtained, but this de-
pends strongly on the choice of input and target datasets for
the training, which can be very difficult. Before addressing
this very issue, a careful discussion of the resulting metrics
and maps is required as their interpretation is not straightfor-20

ward.
With reference to the classification problem, each metric

suggests a different training area as the best case, and this
highlights how difficult it is to choose a single metric for
describing the goodness of a model for a binary classifica-25

tion. Figure 11 and TSS values in rows 4–5 of Table 2 could
suggest that area B (test TSS = 65 %) has better extrapola-
tion performance than area C (test TSS = 33 %). In contrast,
ACC is similar for the two cases and higher for area C (ACC
= 88 %) than for area B (ACC = 85 %), suggesting that TSS30

is a more informative metric than ACC in representing the
model performance. On the other hand, precision and recall
appear to be quite unbalanced metrics as areas A and D lead
to test prediction with considerable overextension of FN and
FP values, respectively (see Fig. 11). Differently, regression35

metrics agree on pointing at the DT trained in B as the best
case (Table 3). However, the absolute values ofR2, which de-
picts low-accuracy test predictions, do not reflect other met-
rics (MSE and MAE) and the output maps (Fig. 12).

As expected, the choice of the training area has great in-40

fluence on prediction accuracy. This is particularly visible for
the classification problem: in Fig. 11, the difference between
metrics for the training and test sets is striking. Nevertheless,
this difference becomes less clear for the regression prob-
lem (Fig. 12). The same observations are confirmed by Ta-45

ble 3, where evidence is given of different structures for the
classifier DTs, while the regressor DTs are all very similar.
More in detail, the obtained results show that the extent of the
training area has less importance than the quality of the in-
put data that it contains. Perfect examples of this remark are50

classifier DTs trained in A and D: even if both A and D are
very wide, prediction over the test area is affected by con-
siderable errors. This happens because A does not include
any part of the Apennines, while D ignores a large flat area

on the eastern coast, meaning that any geographical system 55

corresponds to a specific relationship between input GDs and
flood susceptibility, and thus it cannot be fully represented by
a model trained with very different datasets. The comparison
between area B and C is also meaningful: while the training
in B leads to good test predictions for the classification, it is 60

the worst case for the regression (the opposite is valid for C).
This is probably due to the fact that area B contains useful in-
formation to delineate flood-prone areas as it represents the
upstream section of the Po river but cannot adequately train
a regressor DT as it lacks high target values (i.e., high in- 65

undation water depths). To sum up, the combination of GDs
with DTs is capable of providing quite a reliable estimation
of flood hazard (i.e., flood-prone areas and maximum wa-
ter depth) in extrapolation mode, but a careful choice of the
training area is needed, where the target and input dataset is 70

complete and representative of the test area.

7 Conclusions and further steps

Our study analyses and compares data-driven and resource-
efficient methods for assessing and mapping riverine flood
hazard across large geographical areas. It illustrates the po- 75

tential and limitations of combining different geomorphic de-
scriptors by means of decision trees for delineating flood-
prone areas and for predicting the expected maximum water
depths for a given return period. We focus on a large study
area in northern Italy (size ∼ 105 km2) containing western, 80

central, and part of the eastern Italian Alps; part of the north-
ern Apennines; and the floodplains of a complex river system
including the main rivers Po, Adige, Brenta, Bacchiglione,
and Reno. The morphology of the study area is described by
the Multi-Error-Remover Improved-Terrain model (MERIT 85

DEM; Yamazaki et al., 2017), with an approximately 90 m
resolution. Decision trees are trained using as input features
the geomorphic descriptors retrieved from the MERIT DEM
and as target maps two different datasets: one representing
flood extent with a reference return period of 500 years and 90

one representing expected maximum water depth for a 100-
year return period scenario.

Relative to previous studies focusing on morphometric
floodplain delineation and flood hazard mapping (see, e.g.,
Dodov and Foufoula-Georgiou, 2006; Nardi et al., 2006; 95

Manfreda et al., 2011, 2014, 2015; Samela et al., 2017; and
De Risi et al., 2018) and machine-learning-aided multivari-
ate flood hazard mapping (see, e.g., Gnecco et al., 2017;
Arabameri et al., 2019; Janizadeh et al., 2019; and Costache
et al., 2020), our study is the first one of its kind that si- 100

multaneously combines the following five elements: (a) only
strictly DEM-based morphometric data and indices are used
for predicting flood hazard; (b) morphological characteriza-
tion of flood hazard associated with a given probability of
occurrence is studied separately as a classification problem 105

(i.e., generation of binary flood hazard maps) and as a regres-
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sion problem (i.e., prediction of expected maximum inunda-
tion water depth); (c) machine-learning models (i.e., decision
trees) are trained using pre-existing flood hazard maps as tar-
get information; (d) univariate geomorphological assessment
of flood hazard (i.e., one geomorphic descriptor used as a5

predictor) is thoroughly compared with a multivariate assess-
ment, in which several DEM-based geomorphic descriptors
are blended together by means of decision trees; (e) poten-
tial and accuracy of DEM-based flood hazard prediction are
assessed in geographical extrapolation by applying models10

trained on specific geographical areas to different areas with
diverse morphologic and/or hydrological features.

In particular, we address three main science questions:
(1) whether we can profit from a blend of geomorphic de-
scriptors to perform flood hazard mapping with respect to a15

univariate DEM-based approach, (2) whether decision trees
are a valid tool for combining multiple geomorphic descrip-
tors, and (3) whether this approach is capable of predicting
flood hazard over large areas in geographical extrapolation.
With reference to the first and second questions, delineation20

of flood-prone areas (i.e., binary flood susceptibility map-
ping) is derived with two methods: a univariate approach,
consisting of the calibration of a threshold value for a given
DEM-based morphometric index (i.e., geomorphic flood in-
dex, GFI; see e.g., Samela et al., 2017), and the proposed de-25

cision tree for multivariate DEM-based classification. Also,
prediction of the maximum inundation water depth associ-
ated with a 100-year return period has been carried out. As
done in other studies (Tavares da Costa et al., 2019), buffer
areas around the target flood-prone areas are defined in or-30

der to discard pixels far from the main river network: the
models are trained and tested with different sets, respectively
consisting of 85 % and 15 % of the pixels, which were ran-
domly selected, contained in the buffer. The results obtained
for the classification problem show high performance met-35

rics in validation (overall true skill statistic (TSS) ∼ 80 %,
overall accuracy (ACC) ∼ 92 %) relative to the univariate
approach (overall TSS: 69 %; overall ACC: 83 %). In par-
ticular, the combination of DEM-based descriptors leads to
much more accurate results in the delineation of flood-prone40

areas over predominantly flat regions. Concerning the regres-
sion problem, good performances are confirmed in valida-
tion as well (i.e., overall determination coefficient R2

∼ 0.7,
overall mean absolute error MAE∼ 0.4 m). Also, with ref-
erence to the third question, we test the proposed approach45

in a second mode, which we termed geographical extrapo-
lation. We delineate four different subregions of the study
area to train classifier and regressor decision trees by select-
ing four areas belonging to four different hydrologically co-
herent geographical systems. When tested on the remainders50

of the study area, the four different models show different
extrapolation performances depending on the morphological
features (e.g., Apennines vs. Alps) and the broadness of the
hydrological conditions included in the training subregions.
In particular, concerning the classification problem, models55

trained in areas containing headwater catchments of the main
rivers can extrapolate better over the downstream portions of
the basins than vice versa. Concerning the regression prob-
lem, the selection of the training area must rely not only
on these morphological and hydrological features, but also 60

on the availability of a sufficiently wide range of values for
the target variable (i.e., maximum water depth in our case)
within this area in order to adequately train the model. This
means that training in headwater catchment areas performs
very poorly for extrapolating maximum water depth across 65

downstream floodplains.
In general, we observe that multivariate DEM-based

analysis by means of decision trees is very effective in esti-
mating flood hazard relative to the univariate approach and
that these techniques have good potential in extrapolation 70

mode as well. Moreover, output of multivariate DEM-based
flood hazard assessment studies may represent a very use-
ful complement to existing large-scale flood hazard maps for
two reasons: (1) they homogenize mapping when the exist-
ing maps have different levels of detail in different regions 75

(e.g., in situations in which the large-scale map consists of
the merger of maps from different local authorities which
applied different flood hazard assessment criteria and meth-
ods); (2) they contribute to assessing the hazard level also
in areas not included in the original mapping (e.g., when 80

smaller river catchments have been neglected).
Different elements of this work can be further examined

in future studies in order to deepen the collective knowl-
edge and understanding of the DEM-based multivariate tech-
niques. First, classifier and regressor decision trees could be 85

compared with other multivariate approaches whose train-
ing is based on different target maps (e.g., inundation maps
derived from satellite products). Second, finer-resolution
DEMs could be used in order to increase the accuracy of
the morphological description of the study area. Third, to 90

further enhance the input information, soil and climate data
(e.g., permeability and precipitation) could be added beside
geomorphic descriptors. Finally, more complex machine-
learning models should be tested for better characterizing the
impact of selecting a given technique on the accuracy of flood 95

hazard assessment.

Data availability. MERIT DEM is publicly accessible at the
following website: http://hydro.iis.u-tokyo.ac.jp/~yamadai/
MERIT_DEM/ (Yamazaki et al., 2017; Yamazaki Lab, 2018).
PGRA P1 is publicly accessible at the following website: 100

http://www.sinanet.isprambiente.it/it/sia-ispra/download-mais/
mosaicature-nazionali-ispra-pericolosita-frane-alluvioni (ISPRA,
2018, 2022). JRC 100 is publicly accessible at the following
website: https://data.jrc.ec.europa.eu/collection/id-0054 (European
Commission, 2022; Alfieri et al., 2014). 105
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