
AUTHORS’ REPLY TO THE COMMENTS 

 

Dear Dr.s Lili Yang, Caterina Samela, Zhejun Huang, Shuang-Hua Yang and Heidi Kreibich, 

We would like to thank you all very much. We are grateful for your editing, comments and suggestions. 

Your help is strongly appreciated, and we believe it will significantly contribute to the improvement of 

our manuscript.  

In the following points, we report our reply to your major comments and our actions to address them: 

1. Reviewer 1 (CS): Terminology: “flood hazard” maps is a terminology more appropriate to maps 

derived by hydrologic/hydraulic simulations. Topography-based (hydrogeomorphic) maps are 

generally termed in literature as flood-susceptibility maps, or flood-prone areas map or 

floodplain maps (see e.g. indersson, S., Brandimarte, L., Mård, J., and Di Baldassarre, G.: Global 

riverine flood risk – how do hydrogeomorphic floodplain maps compare to flood hazard maps?, 

Nat. Hazards Earth Syst. Sci., 21, 2921–2948, https://doi.org/10.5194/nhess-21-2921-2021, 

2021.) 

 

Authors: Thank you for pointing out our misleading terminology. We will revise our manuscript 

thoroughly according to your useful suggestion. 

 

Actions: We have adjusted the terminology used when referring to the produced maps, 

changing them with the term “susceptibility maps”. 

 

2. Reviewer 1 (CS):  One of the most important issues addressed in this work is the estimate of the 

water depth, a parameter of fundamental importance especially for estimating expected flood 

damage. Compared to the large number of published studies on the delineation of the areal 

extent of flood hazard areas, in the literature there are fewer studies concerning the estimation 

of water inundation depth with simplified methods. This is an added value of this work. However, 

since DEM-based methods find their primary purpose in applications in data-scarce 

environments (although not exclusively), it is perhaps worth because while reference data to 

calibrate the classification problem are often available also in these contexts, on the opposite 

flood hazard map providing water depth values (to use for calibrating the regression problem) 

are more difficult to find. In addition, this data should be characterized by good accuracy to train 

a simpler but reliable model based on it. I think a consideration on this aspect can find a place in 

the manuscript. 

 

Authors: This observation focuses on a particularly important aspect of our work that we did not 

address in detail. Indeed, predicting the expected maximum water depth is more complex than 

delineating flood-prone areas, and this requires more accurate data to effectively train machine 

learning algorithms. A possible solution to the application of our approach to data-scarce 

environments is to use the outcome of continental/global studies, when they are available (see 

e.g. the dataset provided by the Joint Research Centre at 25 m resolution at global scale; this 

dataset, that is the one we used to train our models, should be sufficiently reliable to train and 

https://doi.org/10.5194/nhess-21-2921-2021


validate machine learning algorithms, even if it does not consider –as in our case study- 

watersheds with lower extension than 500 km2), or the outcomes of detailed hydraulic studies in 

specific portions of the study region, again, where and when available. As suggested by the 

reviewer, we will include some considerations on this truly relevant issue, by revising the 

introduction and discussion sections. 

 

Actions: We added a comment on this part at lines 402-404.  

  

3. Reviewer 1 (CS): I wonder about the choice of identifying the calibration area by setting a 

constant-radius buffer. In this study, testing the performance outside of calibration areas is part 

of the application, so it was possible for authors to perform a sensitivity analysis on the accuracy 

obtained with different buffers. However, readers who want to apply the methodology with no 

possibility to validate the results (e.g. in poor data environments) are left without guidance on 

how to set this constant buffer. Here, in the same work for the same study area, two different 

buffer values are considered the best for the two reference maps (2 km for the 500-years PGRA 

flood hazard map, and 5 km for the JRC 100-years flood map). Instead, a topographical-

hydrological criterion (e.g. the one used by Degiorgis et al., 2012) offers the possibility of being 

adopted and re-applied in any context, responding at the same time to the characteristics of the 

study area and of the available reference map. This consideration does not influence the 

relevance of the investigation and the interesting results obtained, but is made thinking about 

how to replicate the study in different case studies. 

 

Authors: The point highlighted in this comment is truly relevant, and we are pleased to have the 

occasion to elaborate further on it, while revising our manuscript. During our research, several 

experiments have been performed trying different calibration areas, that can be divided into 

two groups: the first consists of the merger of all the elementary basins (i.e. hydrological units 

that drain directly into an elementary stretch of the river-network) that are entirely or partially 

included in the target flood-prone areas; the second consists of the areas within a fixed buffer 

around the target flood-prone areas. Testing these alternatives, i.e. training our classification 

models on these two alternative calibration areas, we observed the same performances of the 

trained models, as opposed to an enormous difference in terms of computational effort for 

defining the calibration areas associated with the two techniques (i.e., buffering the target map 

is computationally more effective). For this reason, further analysis has been conducted with a 

fixed buffer calibration area.  

The same approach to define a specific area to calibrate the models has been proposed and 

used by Tavares Da Costa et al. (2019), who used a fixed buffer of about 1 km around the flood-

prone areas of the target map, and named this as “classification area”. The approach by 

Degiorgis et al. (2012) is remarkably similar, as they considered for the training just the pixels 

within flood-prone target areas and their conterminous.  

During our research, we observed that the choice of the radius for the calibration buffer has 

some influence on the results, and, it needs to be large enough to enable the model to 

recognize non-flood-susceptible pixels. Also, as stated in the manuscript, different radius can 

perform differently depending on the target map being considered. 

Our manuscript does not provide the interested reader with enough detail on the choice of the 



right buffer radius for the calibration area, which requires some sensitivity analysis. We will 

better detail this part and suggest to resort to Tavares da Costa et al. (2019) or Degiorgis et al. 

(2012) when a sensitivity analysis is not viable (i.e. possibility to validate the model). 

 

Actions: we inserted a comment about this topic in lines 400-402. 

 

4. Reviewer 1 (CS): The analyses are made up of a series of steps and sub-steps (and further sub-

steps), not always easy to follow along, that are listed in the first lines of Section 4 “Framework 

of the analysis”. Then, subsections 4.x do not follow any of the previous subdivision. Did you 

consider that the methodology would be easier to read, follow and reproduce if a subsection is 

dedicated to each of the major 4 steps? 

 

Authors: We appreciate this suggestion, as it highlights a key section of the manuscript that can 

be significantly improved. We agree with this comment, and we think that the structure of 

Section 4 should be redesigned to be more linear and representative of our methodology.  

 

Actions: as we totally agree about the difficult interpretation of the first version of Framework 

Section in our manuscript, we totally redesigned it. It has now a different and clearer structure, 

no framework figure and no cross-validation figure. We hope that now our work is easier to 

understand and read (see Section 4, Framework of the analysis). 

 

5. Reviewer 1 (CS): In tables 1, 2, 3 can be unclear the difference among the results of the first two 

rows and the other rows. Section 4.2 reports that the models have been applied a first time using 

the entire domain of the calibration areas, and then the models were applied again four other 

times after selecting four subdomains of the calibration area (to test extrapolation 

performances). I believe this should be better clarified and the section 4.2, in general, could be 

reorganized. For example, it first describes what happens in phase (3), then in phase (4), and 

toward the end of the section is nominated phase (2). Is there a possibility to simplify and re-

order this description? 

  

Authors: Many thanks, the difference of what we did in phase (3) and phase (4) is a 

fundamental aspect of our study. In phase (3) all the pixels in the calibration area were 

randomly divided into two groups: 85% for to train the models, and 15% for the validation. As 

the split was random, the datasets for the training and the validation have the same statistical 

distribution of the different values for the seven input indexes and for the target values. In 

phase (4), the pixels in the calibration area have been divided into training and validation sets 

with a geographical meaning. This leads to applications of the same approach to real world 

applications, where the input dataset has some hydrological and morphological characteristics 

depending on its morphological and hydrological features, and the validation set has different 

characteristics.  We are extremely glad that this has been pointed out; we will rewrite Section 4 

in a more effective and clear way.   

 

Actions: as we described in the previous point, the structure of Section 4 has been redesigned, 

and we hope this makes the overall manuscript more intelligible. 



6. Reviewer 2 (ZH): In the present study, an approach that blends several geomorphic descriptors 

together using the Decision tree method is proposed and is compared with a univariate 

approach, Geomorphic Flood Index (GFI). Only DEM-based geomorphic descriptors from pre-

existing flood hazard maps were used. The decision tree method was employed to establish two 

types of models: one for classifying flood-prone areas and one for predicting water depth. Seven 

distinct geomorphic descriptors (GDs) were considered and blended in the multivariate 

approach. They demonstrated that the performance of the proposed multivariate approach was 

better than the univariate approach using GFI only.  

The article is well written and easy to read. However, tables need to be improved to be more 

readable.  

 

Authors: we thankfully acknowledge the overall positive evaluation of our manuscript, and take 

advantage of this further opportunity to thank the Reviewer for his useful comments. We will 

improve the readability of all tables. 

 

Actions: Tables in the new version of the manuscript have been changed. Lines in tables 1 and 2 

have alternate gray/white colors. Notable metrics have been reported in bold and italic, and 

legends have been improved in all the tables (see Tables 1, 2, 3). 

 

7. Reviewer 2 (ZH): In the present study, a new approach that blends several GDs together is 

proposed. This work indeed fills some gaps in the field of flood hazard assessment, the 

techniques and methods are feasible. I consider this work a contribution in this field and this 

manuscript can be accepted for publication after revisions. Only one univariate using the 

geomorphic descriptor GFI is used as the comparison method. Is the performance of the 

univariate approach using GFI better than the other ones using the other six GDs? 

 

Authors: Thank you for focusing on this point, that is very important for the evaluation of the 

results. We compared the multivariate approach with the GFI-univariate only based on: (1) 

several contributes in the literature indicating GFI as one of the most informative morphometric 

indexes for floodplain delineations (e.g., Samela et al., 2017, 

https://doi.org/10.1016/j.advwatres.2017.01.007), and (2) our preliminary analyses, all showing 

that GFI has better performances than any other index considered in our study. We will explain 

with more detail this point in the next version of the manuscript.  

 

Actions: a clarification of this point has been added in the new Section 4, in lines 197-198. 

 

8. Reviewer 2 (ZH):  Does the proposed approach have advantages over the existing multivariate 

approaches? I would suggest comparing the proposed multivariate approach with one or two 

existing multivariate approaches to make this study more comprehensive and convincing. 

 

Authors: The point highlighted in this comment is relevant, and we are pleased to have the 

occasion to elaborate further on it, while revising our manuscript. Our study does not aim 

specifically to propose a more accurate multivariate approach. We focused on an alternative 

way to approach multivariate DEM-based flood hazard assessment that differs significantly from 

other multivariate approaches presented in the literature (see e.g., Janizadeh et al, 2019, 

https://doi.org/10.1016/j.advwatres.2017.01.007


https://doi.org/10.3390/su11195426; Costache et al., 2020, https://doi.org/ 

10.1016/j.jenvman.2020.110485); we tried to summarize the innovative aspects in the 

introduction (mostly) and conclusion sections of the manuscript, and we will revise these 

sections to make our message as clear as possible.  

Our approach is associated with two main advantages relative to existing methods. The first 

advantage is the feasibility and repeatability, as we only used descriptors that can be easily 

retrieved from DEM processing, while other studies exploited additional information (e.g., about 

geology, soil type, precipitation) that needs more extensive research and could be in some cases 

unavailable or unreliable. The second main advantage is the reliability, as our study does not use 

as target information records of historical events, instead, our model is trained and tested 

against previously published flood hazard maps, which consist of ensembles of hydraulic model 

output and represent scenarios with a certain return period.  

Due to the second point, it is quite difficult to compare performance metrics of our model with 

the ones of other studies due to the intrinsic differences among them; also, our performance 

metrics are computed pixel-based on a continuous domain, while other multivariate flood 

hazard assessments simply refer to sparse geographical locations that were inundated or not by 

specific historical flood events.  

Undoubtfully, the comparison between our approach and other multivariate models is very 

interesting. Nevertheless, our aim is not to improve the accuracy of multivariate DEM-based 

approaches, instead, we want to evaluate the benefits derived from the combination of 

different DEM-based descriptors compared to a univariate approach. Indeed, the Reviewer’s 

suggestion is a good topic for further studies.  

 

Actions: A new suggestion for further studies has been added about this point in the Conclusion 

(lines 496-498). 

  

9. Reviewer 2 (ZH): How to determine the ratio of training and testing set and why? The authors 

should clarify it since the ratio is quite crucial for the learning model and thus affects the 

performance of the approaches. Usually, the performance in the test set is accepted rather than 

that in the training set. However, the manuscript used the results in the training area in the 

abstract (as shown in Table 1). 

 

Authors: We sincerely appreciate this comment, as it allows us to give more details about some 

important aspects of the study. The ratio between training and testing followed two different 

rules during two consecutive phases of the study. First, we divided the entire dataset (i.e., the 

calibration area, consisting of the floodable zone close to rivers with buffer) into 85% for 

training and 15% for testing, based on established proportion adopted for machine learning 

algorithms. This produces two datasets that contain millions of pixels, enough to compute 

reliable metrics. Second, during the extrapolation experiments, we divided the study area as 

showed in figure 7; training and test datasets amount to millions of pixels in this case as well. 

We reported performance metrics for both training area and test area to show the readers that 

our models are not overfitting on the training set, which is a frequent problem of machine 

learning algorithms. 

Indeed, use of the training metrics instead of the test ones in the abstract results is a mistake 

https://doi.org/10.3390/su11195426


and we will correct it. 

 

Actions: Useful reference for the ratio between the training and test sets has been inserted in 

Section 4 (lines 263-265), and the mistake in the abstract has been corrected (line 10). 

 

10. Reviewer 2 (ZH): Tables 1, 2, and 3 are not very clear. I would suggest bolding the important 

values in these tables. 

Authors: This suggestion is appreciated, we will make more readable the tables of the 

manuscript.  

 

Actions: As it is explained in point number 6, we improved metrics representation in the Tables. 

 

11. Reviewer: The investigated area was divided into four parts: A, B, C, and D. It seems that B and C 

divided the area into left and right parts. However, the choice of A and D is not very clear, and 

most areas of A and D overlap. 

 

Authors: Exactly as stated in the point raised by the Reviewer, B and C divide the area into left 

and right parts, to examine model performance if the training considers just the upstream (area 

B for training, C for testing) or the downstream (area C for training, B for testing) portions of the 

Po river basin. Area A entirely encompasses the Alps and the streamline of the Po river, and part 

of the Po Plain; after training the models in A, we test them in the resting portion of the study 

area, which contains lower mountain range (the Apennines) and smaller river catchments. In 

this way, we check if our approach is sensitive to these hydrological conditions. Area D 

comprehends most of the Alps and the Po Plain, and entirely the Apennines and the streamline 

of the Po river. After using B for the training, we test the model over the resting part of the Alps 

and Po valley, checking if the approach is capable to estimate flood hazard in rivers with similar 

hydrological conditions to the ones of the training. We will improve the descriptions of these 

regions and why we selected them in our study.  

 

Actions: The description of the training and testing areas for extrapolation experiments have 

been improved in Section 4 (lines 269-277).  

 

12. Reviewer 2 (ZH): The authors used Gini importance (GI) to measure the importance of each 

factor. Is that possible to use the information to give different weights to the GDs to build up 

learning models? 

 

Authors: Many thanks for raising this point on Gini Importance, which is a fundamental part of 

the description of our study outcome. We believe that GI is an extremely useful metric for 

guiding future studies on multivariate DEM-based flood hazard mapping.  One might use in 

principle the GI values we obtained in our study to set initial values of weights for the input 

descriptors for training multivariate models in other study regions. Nevertheless, this represents 

a critical aspect as GI values resulted to be overly sensitive to the training area being used. We 

will include this comment in the revised manuscript.  

 



Actions: A consideration about this issue is now present in the Discussion Section (lines 369-

370). 

13. Reviewer 3 (S-HY): The presentation of this manuscript is very clear. The authors provide six 

geomorphic descriptors to build decision tree model for classification and regression. By nature 

the DT is designed for calssification rather than regression. The authors need to give more details 

to describe how the DT can be used for regression. 

 

Authors: we are very pleased to receive this overall positive evaluation of our manuscript, as 

well as to answer to this very important point. DTs are commonly used to address both 

classification and regression problems (see Hastie et al., 2009, https://doi.org/10.1007/978-0-

387-84858-7), but indeed, their output always consists of a classification of the input data. This 

means that even if regression is performed, the continuous range of output values is binned into 

classes, and so the output of a regressor DT is a discrete estimation of the output variable. The 

number and distribution of the output classes for the predicted water depth depends on the 

tree structure (i.e., on the number of nodes and on the configuration), and it is automatically 

handled by the considered algorithm (i.e., function from software scikit-learn, see the manual 

on the official website https://scikit-learn.org/0.21/_downloads/scikit-learn-docs.pdf) once the 

tree parameters are decided by the user (maximum depth, minimum samples per leaf).  

In our case, the discretization of the output variable (i.e., water depth) is not a problem. In fact, 

as we use continuous flood hazard maps as target data and we have millions of observations 

(i.e., pixels), we can train very complex DTs, with many output classes for water depth. To give 

an idea of the grade of approximation, the regressor DT that produces the output map of figure 

11 has about 104 output classes. 

We will address these comments and make our description clearer in our revised manuscript.  

 

Actions: The use of decision trees for regression problems is now stated in Section 2 of the 

manuscript (line 137), while the good approximation of DTs for the regression problem is briefly 

commented in the Discussion (lines 387-388). We decided not to explain this with more detail in 

order to keep our work as straightforward as possible, but we provide some useful bibliography 

for interested readers (Breiman, 1984; Hastie et al., 2009). 

  

14. Reviewer 3 (S-HY):  Figure 4 illustrates the water depth has been classifed into different groups 

<0.5, 0.5-1.0, 1.0-1.5 ...,>7. The reviewer guesses the regression was based on these grouping 

categories. More information is required 

 

Authors: Thank you for pointing out this issue, which can lead to a misunderstanding of our 

results. As we stated in our reply to the Reviewer’s previous comment, the classification of our 

regressor DTs is based on thousands of classes. The legend in Figure 4 (which is the same of 

figures 11 and 14) explains a classification of the raster values that has been chosen for an 

effective representation of the maps. We will clarify this aspect in the revised manuscript.  

 

Actions: A The legend of Figure 4 has been improved to specify that the showed colors solely 

refer to map visualization. 

 

https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/978-0-387-84858-7
https://scikit-learn.org/0.21/_downloads/scikit-learn-docs.pdf


 

Moreover, we thankfully acknowledged your minor revisions, and changed our manuscript accordingly. 

Modifications on minor aspects are resembled in the following points: 

• Typing errors have been corrected 

• Figure 1 has been improved 

Finally, we want to state again that we are very grateful for your appreciated help. We hope that the 

second version of our manuscript successfully addresses all your points. 

Kind regards 

Andrea Magnini, Michele Lombardi, Simone Persiano, Antonio Tirri, Francesco Lo Conti, Attilio 

Castellarin  

 


