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Abstract. Disaster planning has historically allocated minimal effort and finances toward advanced preparedness, however 10 

evidence supports reduced vulnerability to flood events, saving lives and money, through appropriate early actions. Among 

other requirements, effective early action systems necessitate the availability of high-quality forecasts to inform decision 

making. In this study, we evaluate the ability of statistical and physically based season-ahead prediction models to 

appropriately trigger flood early preparedness actions based on a 75% or greater probability of surpassing the 80th percentile 

of historical seasonal streamflow for the flood-prone Marañón River and Piura River in Peru. The statistical prediction 15 

model, developed in this work, leverages the asymmetric relationship between seasonal streamflow and the ENSO 

phenomenon. Additionally, a multi-model (least squares combination) is also evaluated against current operational practices. 

The statistical and multi-model predictions demonstrate superior performance compared to the physically based model for 

the Marañón River by correctly triggering preparedness actions in all four historical occasions. For the Piura River, the 

statistical model proves superior to all other approaches, and even achieves an 86% hit rate when the required threshold 20 

exceedance probability is reduced to 50%, with only one false alarm. Continued efforts should focus on applying this season-

ahead prediction framework to additional flood-prone locations where early actions may be warranted and current forecast 

capacity is limited. 

1 Introduction and motivation 

Globally, flood catastrophes lead all natural hazards in terms of mortality and cause billions of dollars in damages annually 25 

(Doocy et al., 2013; IFRC, 2020; Lee et al., 2018; Munich RE, 2012, 2018). Government agencies and relief organizations 

have historically prioritized disaster relief, allocating the majority of financial resources to response efforts in a reactionary 

mode, in lieu of pre-disaster preparedness (Perez et al., 2016). However, forecast based early action (FbA) initiatives are 

now recognized as a critical component of disaster risk reduction (World Disasters Report 2009: Focus on early warning, 

early action, 2009). While no strict definition for FbA exists, the term generally refers to initiatives that provide assistance 30 
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and allocation of resources to prepare in advance of disasters based on hydro-climate forecasts (Wilkinson et al., 2018).  

Empirical evidence demonstrates that actions taken in advance of a disaster can reduce loss of life and result in cost savings 

for relief organizations (Aguirre et al., 2019; Braman et al., 2013; Golnaraghi, 2012; Gros et al., 2019). 

 

Forecast performance, uncertainty and hazard type contribute to the range and extent of potential early actions available. In 35 

2013, a near-certain forecast prompted the evacuation of approximately 400,000 people in advance of Cyclone Phailin in 

India given a lead time of just four days (Harriman, 2014). While longer lead times allow for a greater range of potential 

early actions (Bazo et al., 2019), this must be balanced against corresponding increases in forecast uncertainty. To address 

this tradeoff, disaster managers seek low-regret actions, potentially in combination with a mechanism to halt early actions if 

the threat of a disaster sufficiently drops, and thus avoid unnecessary costs (Wilkinson et al., 2018). While FbA was initially 40 

applied to acute and slowly evolving threats like tropical cyclones and droughts, more recent efforts have targeted 

hydrological threats including extreme rainfall and flooding (e.g., Gros et al., 2019). For example, in West Africa in 2008, 

preparatory actions, including prepositioning relief supplies and volunteer training, initiated based on a season-ahead 

forecast of above-average rainfall and high likelihood of floods, resulted in fewer deaths and lower response costs compared 

to previous flood events when no early action was taken (Braman et al., 2013). 45 

 

The question of when to initiate FbA requires integrating a hazard forecast with vulnerability and exposure information to 

estimate the impact of an extreme event. One commonly used method to trigger early action is to define a forecast threshold 

above which impacts are likely to occur based on historical data (Wilkinson et al., 2018). In London, actions to reduce 

vulnerability for high-risk groups, such as ensuring indoor temperatures are below 26°C, are triggered when temperatures are 50 

forecast to be at least 32°C during the day and at least 18°C at night (Public Health London, 2018). This method accounts for 

the probabilistic nature of forecasts by requiring a predetermined level of forecast confidence; in London, a 60% probability 

of reaching the temperature thresholds is required. 

 
Table 1: Contingency table demonstrating potential outcomes of forecast based action. 55 

 Extreme Event No Extreme Event 

Early Action Worthy action Action in vain 

No Early Action Failure to act Worthy inaction 

 

When linking early action based on probabilistic forecasts to the occurrence of extreme events, four scenarios are possible 

(Table 1) where worthy action and worthy inaction are preferred. The risk of acting in vain, when early action is initiated but 

an extreme event fails to materialize (Lopez et al., 2019), is often viewed as a major barrier to scaling up FbA (Tanner et al., 

2019). However, studies have found that, when compared to a late response, early action is almost invariably cheaper: a late 60 

response can be two to six times more costly than actions in vain (Cabot Venton et al., 2012). Additionally, financial based 
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actions such as unconditional cash disbursements targeting vulnerable households can yield a benefit regardless of whether 

or not the event occurs (Wilkinson et al., 2018). Forecast models that proficiently predict extreme events at lead times 

permitting early action are critical for minimizing false positives and false negatives. In addition to short term weather 

forecasts which are commonly viewed as skillful, medium to long range climate forecasts have also been demonstrated to 65 

improve preparedness protocols, resulting in reduced mortality, morbidity, and resource demands (Braman et al., 2013), yet 

their applications have been limited predominantly as a result of moderate forecast performance and significant uncertainty. 

 

Hydrologic models are essential components of flood early warning systems and can be typically divided into two 

categories. Physically based (or dynamical) models simulate physical processes such as infiltration and runoff to produce 70 

streamflow predictions and are often forced with climate predictions downscaled from general circulations models (GCMs) 

or numerical weather models. Statistical (also called empirical or data-driven) models forgo the parameterization of complex 

physical processes in favor of understanding the lagged relationships between precipitation or streamflow and antecedent 

land, atmosphere and ocean conditions. Statistical and physical models have been successfully applied to seasonal prediction 

of hydrologic variables including precipitation and streamflow (e.g. Badr, et al., 2013; Block & Rajagopalan, 2009). Both 75 

frameworks have their own set of advantages and disadvantages with prediction skill varying according to season and 

location (Infanti & Kirtman, 2014). While statistical models are not intended to provide a complete understanding of the 

hydro-climate system, they offer an appealing complement to physically based models by focusing solely on the prediction 

variable of interest (Zimmerman et al., 2016).  

 80 

This study evaluates multiple season-ahead forecast approaches, namely locally tailored statistical and existing global-scale 

physical models, to individually and collectively inform advanced flood preparedness actions, using Peru as a case study. 

Typically, only physically based forecast approaches are used operationally, however augmenting with a locally tailored 

statistical forecast may considerably improve forecast performance and opportunities for preparedness. 

2 Case study in Peru 85 

2.1 Flood impacts in Peru 

Peru experiences catastrophic flooding with relative frequency, resulting in significant adverse economic and health impacts.  

In northwest Peru, flooding caused by extreme rainfall during El Niño events in 1982-83, 1997-98 and the 2017 “coastal El 

Niño” each incurred damages exceeding USD$5 billion (in 2020 dollars) and collectively resulted in over 1000 deaths 

(French & Mechler, 2017; Venkateswaran et al., 2017). Flooding in the Peruvian Amazon basin affected over 300,000 90 

people in 2012 (IFRC, 2012) and over 100,000 people in 2015 (IFRC, 2015). Floods prevent access to safe drinking water, 

disrupt livelihoods centered around farming and fishing, and can force residents to relocate from low-lying areas (IFRC, 
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2019). Health impacts of extreme flooding include increased incidence of acute diarrheal disease, arboviral diseases, malaria, 

and water-borne diseases (Caviedes, 1984; IFRC, 2019).   

2.2 Hydroclimatology of Peru 95 

While floods are common throughout many regions of Peru, climate and hydrology vary dramatically. The hydroclimatology 

of Peru is broadly characterized by a disruption of tropospheric flow caused by the Andes cordillera, which maintains an arid 

climate along the Pacific coast and wet conditions in the Amazon basin to the east (Garreaud et al., 2009). Particularly along 

coastal Peru, a major source of interannual variability in precipitation and temperature is controlled by the El Niño Southern 

Oscillation (ENSO) phenomenon, a system of ocean-atmosphere feedbacks in the tropical Pacific (Garreaud et al., 2009). In 100 

the southern coastal region, the warm, positive phase of ENSO (El Niño) is associated with below average precipitation (Wu 

et al., 2018). In northwest Peru, strong El Niño years are often associated with above average precipitation, most notably 

during the 1982-83 and 1997-98 El Niño events which coincided with extreme rainfall and flooding (Bayer et al., 2014). 

However, the impacts of similarly intense El Niño events are variable. Despite very strong El Niño conditions in 2015-2016, 

rainfall and flood impacts in Peru were minimal (French & Mechler, 2017; Ramirez & Briones, 2017; Venkateswaran et al., 105 

2017). El Niño events can span the equatorial Pacific region (e.g. 1982-83, 1997-98) or they can be confined to the coast of 

northern Peru and Ecuador (Ramirez & Briones, 2017). The latter type is known as a “coastal El Niño” or “El Niño costero” 

and occurred in 1925 and 2017, in both cases resulting in extreme rainfall and flooding (Ramirez & Briones, 2017; 

Takahashi & Martínez, 2017). While El Niño conditions are associated with extreme events along the coast, La Niña (cool, 

negative phase of ENSO) conditions can also produce slightly higher than average streamflow (see Figure 2b). 110 

 

In the Amazon basin, while the literature has described relationships between climate patterns and hydrometeorological 

variables, the way in which climate variables influence flood risk remains understudied (Towner et al., 2020) as a result of 

the nonlinear relationship between precipitation and streamflow (Stephens, Day, Pappenberger, & Cloke, 2015). 

Hydrometeorological regimes in the Amazon basin are diverse and are driven by seasonal warming of the northern and 115 

southern hemispheres and the migration of the Intertropical Convergence Zone (Espinoza Villar et al., 2009). Precipitation in 

the Peruvian austral summer (DJFM) is dominated by the South American Monsoon season which enhances the north 

Atlantic trade wind (Zhou & Lau, 1998) as well as by deep convection that recycles moisture over Amazonia (Garreaud et 

al., 2009). El Niño conditions and above-average sea surface temperatures (SST) in the tropical north Atlantic, south 

Atlantic, and Indian Oceans are associated with decreased rainfall in the northern portion of the basin and increased rainfall 120 

in the south (Marengo, 2004). La Niña conditions are weakly associated with increased precipitation in the western Amazon 

basin (Garreaud et al., 2009). 
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2.3 Flood early action plan 

In October 2019, the International Federation of Red Cross and Red Crescent Societies (IFRC) approved an Early Action 

Plan (EAP) submitted by the Peruvian Red Cross for flooding in the Peruvian Amazon. The plan is based in part on an 125 

extension of the Global Flood Awareness System (GloFAS) called GloFAS-seasonal, a global streamflow forecast model 

developed by the European Centre for Medium-Range Weather Forecasts (ECMWF) that couples seasonal climate forecasts 

from GCMs to a physically based hydrology model (Emerton et al., 2018). Early actions, which involve the prepositioning of 

supplies and release of funds, are triggered when 75% of GloFAS ensemble members forecast streamflow above the 80th 

percentile (IFRC, 2019) at a 45-day lead time. Because GloFAS exhibits only modest forecast skill in Peru when detecting 130 

floods at short lead times (Bischiniotis et al., 2019), there is an opportunity to leverage complementary prediction 

frameworks to improve forecast performance. Similarly, an EAP is in development for the Piura basin in coastal northwest 

Peru to address extreme precipitation and flooding. 

2.4 Case study locations 

Study locations prone to riverine flooding were identified by collaborators at the Red Cross Climate Center in Lima, Peru, 135 

and the EAPs, namely the Marañón River at San Regis and the Piura River at Puente Sánchez Cerro (Figure 1). The 

Marañón is a tributary to the Amazon River, east of the Andes, with a basin covering approximately one-half (362,000 km2) 

of the Peruvian Amazon River basin. Here, tropical lowland forest (below 600 m elevation) is the dominant ecozone 

followed by tropical montane forest (above 600 m elevation) (Kvist & Nebel, 2001). The Piura River basin above Puente 

Sánchez Cerro is significantly smaller in size (7,435 km2) consisting of tropical shrubland and tropical mountain systems and 140 

is generally classified as arid with precipitation averaging less than 50 mm/year for elevations below 500 m (FAO 2001; 

Rodriguez et al., 2005). Throughout this paper, the names of the monitoring stations will be used to describe the stations and 

the basins they delimit. 

2.5 Streamflow variability 

Daily streamflow data for each location (1999-2017 at San Regis, 1971-2017 at Puente Sánchez Cerro) was provided by the 145 

Peruvian Meteorological Agency, El Servicio Nacional de Meteorología e Hidrología del Perú (SENAMHI). Monthly mean 

streamflow at Marañón exhibits a statistically significant autocorrelation at one- and two-month lags, however monthly 

streamflow at Piura exhibits no significant autocorrelation. This is predominantly an effect of catchment size and watershed 

memory, and an important feature for streamflow prediction. 

 150 

The high flow season during which floods are likely to occur is computed using an approach modified from Lee et al. 

(2015). This season is defined as the three consecutive months with the largest combined number of days having streamflow 

values in the top 1% of all days in the historical record. For Marañón, this high flow season is March, April and May 
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(MAM); for Piura, it is February, March and April (FMA). Testing this approach with a slightly lower threshold to define 

high flow days (3% and 5%) returns the same high flow season, further validating the seasons selected. The high flow season 155 

for Marañón identified via this methodology is similar to the IFRC’s characterization of flood season in the Amazon basin as 

running from December to April (IFRC, 2019). At Marañón, all daily observations in the top 1% occurred in MAM and the 

annual maximum occurred in MAM in 17 out of 19 years; at Piura, 87% of daily observations in the top 1% occurred in 

 
Figure 1: Case study locations with catchment boundaries delimited in red. Made with Natural Earth (naturalearthdata.com). 160 

FMA while the annual maximum discharge occurred in FMA in 40 out of 47 years. Clearly, high flow conditions occur 

outside these seasons, however in this study these will not be captured as the focus is on the likelihood of high flow 

conditions within the target season only. 

3 Statistical approach to season-ahead streamflow prediction 

3.1 Potential local-scale predictor variables 165 

Ocean-land-atmospheric variables representative of slowly evolving hydro-climatic conditions offer prospects for predicting 

streamflow from a season-ahead lead. This includes considering pre-season large-scale ocean-atmosphere teleconnections 
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and basin-scale hydrologic processes such as observed streamflow, precipitation, soil moisture, and temperature (Table 2).  

Predictions of seasonal average streamflow are issued on the first day of the three-month high flow season identified in Sect. 

2, leveraging predictors based on values in the preceding months. Potential predictors must be statistically significantly 170 

correlated with streamflow (p < 0.1) to be retained. 

 

Precipitation data used in this study leverages the Peruvian Interpolation data of SENAMHI’s Climatological and 

hydrological Observations (PISCO) v2.1 dataset (Aybar et al., 2020), provided by SENAMHI and accessed via the 

International Research Institute for Climate and Society (IRI; http://iridl.ldeo.columbia.edu). PISCO contains monthly and 175 

daily precipitation at a 0.1 degree grid resolution from 1981 to 2017, and is based on the Climate Hazards group InfraRed 

Precipitation with Stations (CHIRPS; Funk et al., 2015) quasi-global precipitation product calibrated with SENAHMI station 

data. Basin-averaged precipitation over January-February is included as a potential predictor for the Marañón at San Regis 

(Table 2). January and February precipitation each also correlate significantly, though less so compared to the January-

February average; to maintain model parsimony we included only the latter as a potential predictor. The Piura catchment is 180 

approximately 2% the size of the Marañón and only basin-averaged precipitation in January significantly correlates with 

streamflow (Table 2).   

 

Soil moisture data (0.5°, monthly) is provided by the National Oceanic and Atmospheric Administration (NOAA) Climate 

Prediction Center (Fan & van den Dool, 2004). Atmospheric moisture transport can occur over long distances and across 185 

catchment boundaries; to capture potential signals of soil moisture on streamflow variability, a principal component analysis 

is conducted on one-month ahead gridded soil moisture across northern South America, and the first principal component 

(PC) is retained as a potential predictor. Basin-averaged mean air temperature in the month prior to the forecast, provided by 

the NOAA (https://psl.noaa.gov/) is also considered (Table 2).  

 190 

Given that the Piura basin is relatively small and within-season precipitation is an important contributor to seasonal 

streamflow, FMA precipitation (mm/day) predictions derived from the mean of two GCM members (NASA GEOSS2S and 

NCEP CFSv2) of the North American Multi-Model Ensemble (NMME) (Kirtman et al., 2014) are also evaluated. The two 

models have exhibited superior performance in terms of RMSE, temporal correlation, and Heidke Skill Score in northwest 

Peru compared to other NMME models when simulating January, February and March precipitation across lead times of one 195 

to six months (Wang & Vavrus, 2020). Individually, each model’s FMA precipitation prediction correlates with streamflow 

at 0.76; when averaged, correlation increases to 0.84 (Table 2). 
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Table 2: The suite of potential predictor variables and their Pearson correlation coefficient with FMA streamflow at Piura at Puente 200 
Sánchez Cerro and MAM streamflow at Marañón at San Regis; * indicates statistically significant correlations (p < 0.05). SST and SLP 

predictor locations are determined by NIPA and correlations are presented by phase. 

Potential 

Predictor 
Spatial Region 

Time Frame Pearson Correlation with Streamflow 

Piura Marañón Piura Marañón 

Streamflow - J F 0.84* 0.84* 

Precipitation Basin-Avg J JF 0.88* 0.68* 

Soil Moisture 

1st PC of statistically significant 

(p < 0.05) regions within  

12N to 23S, 35W to 81.5W 

J F 0.69* 0.74* 

Air 

Temperature 
Basin-Avg J F 0.26 0.11 

GCM 

Precipitation 

Forecast 

4.5S to 5.5S, 79.5W to 80.5W FMA - 0.84* - 

 El Niño Neutral La Niña El Niño 
La 

Niña 

Sea Surface 

Temperature 

1st PC of NIPA-identified 

regions 
NDJ DJF -0.79* -0.90* 0.85* -0.93* -0.80* 

Sea Level 

Pressure 

1st PC of NIPA-identified 

regions 
J F -0.82* -0.74* 0.79* 0.90* -0.72* 

 

3.2 Potential large-scale predictor variables 

A common approach for identifying SST regions for use as predictors is to search for stable correlations between the 205 

predictand (streamflow in this case) and SSTs over a moving window of historical data (Gámiz-Fortis et al., 2010; Ionita et 

al., 2015). However, the state of ENSO can influence the mean state of the atmospheric-oceanic system, which in turn affects 

the relevant teleconnections between SSTs and precipitation or streamflow (Zimmerman et al., 2016). This asymmetric 

relationship between ENSO and streamflow may prove challenging from a traditional modeling perspective. At our study 

sites, the distributions of seasonal streamflow shift and change shape according to the state of ENSO, though significant 210 

variability within each phase exists (Figure 2). A Nino Index Phase Analysis (NIPA; Giuliani et al., 2019; Zimmerman et al., 

2016) approach is advantageous in such cases, capturing the variance and signals within each phase separately, and thus 

addressing the overall asymmetric challenges. 
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Figure 2: Violin plots of seasonal streamflow by ENSO phase. For the Marañón River at San Regis (n=19), twelve historical years are 215 
classified as La Niña conditions (MEI ≤ 0) and seven are classified as El Niño conditions (MEI > 0). For the Piura River at Puente Sánchez 

Cerro (n=36), eleven years are classified as La Niña (MEI ≤ -0.5), eleven as neutral (-0.5 < MEI < 0.5), and fourteen as El Niño conditions 

(MEI ≥ 0.5). 

The approach proposed by Zimmerman et al. (2016) is adopted to select global SST and Sea Level Pressure (SLP) regions 

exhibiting strong teleconnections with streamflow at our study sites. The selection of these regions is conditioned on the 220 

preseason state of ENSO (NDJ for Piura and DJF for Marañón) as represented by the average Multivariate ENSO Index 

(MEI) value (Wolter & Timlin, 2011). Historical years are categorized according to the preseason average value of MEI. For 

this analysis, three categories are selected for Piura and two for Marañón (Figure 2). While including more bins may 

potentially provide additional unique streamflow information by further distinguishing climate system states, this needs to be 

balanced against available observational data. For Piura, the three categories are generally representative of El Niño, La Niña 225 

or neutral conditions, per NOAA’s definition (“Equatorial Pacific Sea Surface Temperatures,” n.d.). The short historical 

dataset at Marañón at San Regis limits categorizing into two phases delineated as positive and negative MEI values. (A two-

phase model for Piura was also tested but did not materially change model performance.) For years classified within each 

phase, observed target season streamflow is correlated with global pre-season SSTs from the NOAA Extended 

Reconstructed Sea Surface Temperature V3b dataset (Smith et al., 2008), a global gridded dataset of monthly mean SSTs at 230 

a two-degree resolution from 1854 to present accessed via the IRI data library. Of the SST regions statistically significantly 
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correlated with streamflow (Figure 3), the first and second PC is extracted as a potential predictor in the statistical model. 

For Piura (Marañón) the first and second PCs explain 83% and 7% (84% and 6%) of the variance respectively and only the 

first PC significantly correlates with streamflow. Selecting SST regions based on the preseason state of the Niño 1+2 

anomaly index instead of MEI did not materially change results at Piura. 235 

 

Given that SLP evolves more quickly than SSTs, only the single month values prior to the target season are evaluated, 

otherwise the process mirrors SST selection. SLP data is from the NCEP/NCAR Climate Data Assimilation System I 

(Kalnay et al., 1996) and accessed via the IRI data library. 

 240 
Figure 3: Correlation maps of seasonal streamflow at a) Piura (FMA) and b) Marañón (MAM) with pre-season SSTs by ENSO phase.  

Only regions statistically significantly correlated at p<0.05 are included. 

3.3 Statistical prediction model 

For each location, a principal component regression (PCR; coupled principal component analysis and multiple linear 

regression) framework is adopted to predict seasonal streamflow by ENSO phase. This results in two PCR “submodels” for 245 

the Marañón River at San Regis and three for the Piura River at Puente Sánchez Cerro where the submodel used for 

prediction in a given year is selected based on preseason MEI. For example, in 1998 the preseason (NDJ) average MEI value 

is 2.43 so the positive phase submodel is selected to predict Piura River FMA streamflow. In each submodel, relevant 

predictors by ENSO phase are included; predictor variable types may be included in some submodels and not others, 

depending on their correlation with streamflow in that phase. A subset of PCs is retained for input into the multiple linear 250 

regression, given as: 

𝑦! 	= 	𝛽" + 𝛽#𝑥#,! +⋯+ 𝛽%𝑥%,! + 𝑒 ,         (1) 
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where yt is observed seasonal streamflow in year t, 𝛽" is a constant, 𝛽#… 𝛽% are regression coefficients, 𝑥#,!	. . . 𝑥%,!	are the 

PCs retained, and e is the residual or error. There are numerous methods for selecting the appropriate number of PCs to 

retain; here, the first two PCs are retained unless the model has two or fewer predictors, and then only the first PC is 255 

retained.  

 

To favor parsimonious models, the optimal subset of predictors is selected according to the generalized cross-validation 

(GCV) score function (P. Block & Rajagopalan, 2007), given as: 

𝐺𝐶𝑉 =	
∑ !"

#

$
$
"%&

(#)'$*
#,            (2) 260 

where et is the model error, or difference between observed and predicted values, m is the number of predictors, and N is the 

number of data points (time steps). GCV penalizes the use of additional predictors; lower scores indicate optimal tradeoff 

between minimizing prediction errors and the number of predictors included. 

 

To evaluate the performance of each submodel, a drop-one-year cross validation hindcast is constructed, refitting the 265 

regression coefficients each year, to produce a deterministic seasonal streamflow prediction. When model residuals are 

normally distributed, according to the Shapiro-Wilk test with alpha=0.05, an error distribution is created by taking 1000 

random samples. Otherwise, an error distribution is derived by directly sampling the model residuals with replacement 1000 

times. The resulting error distribution is then added to the cross-validated deterministic prediction to create a probabilistic 

streamflow prediction. This process is repeated for each year to create a probabilistic hindcast for all years in the submodel. 270 

Hindcasts from each submodel are subsequently joined to create a full observational period hindcast. 

3.4 GloFAS and multi-model predictions 

Predictions from the physically based GloFAS model for the two study locations are available from ECMWF 

(https://www.globalfloods.eu/general-information/data-and-services/). GloFAS forecasts are issued on the first day of every 

month and consist of 25 ensemble members predicting mean weekly streamflow 17 weeks out from the issue date; only 275 

predictions for weeks 1-13 (approximately three months) are retained. A mean bias correction is applied to the GloFAS 

ensemble mean according to the difference between mean observed and predicted seasonal streamflow across all years. A 

quantile mapping approach, relating the cumulative distributions functions of observed and predicted streamflow, was also 

tested (Hashino et al., 2006); however, forecast skill did not substantially differ from the mean bias correction approach. In 

addition to evaluating the statistical model and GloFAS independently, a multi-model forecast is also constructed utilizing a 280 

least squares linear regression to assign weights according to the relative Pearson correlation strength between observed 

streamflow and each model’s predictions (P. J. Block et al., 2009). 
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3.5 Forecast verification and performance measures 

Forecast performance for the three models (statistical, GloFAS, and multi-model) is evaluated at both locations by Pearson 

correlation coefficient, Rank Probability Skill Score (RPSS), Probability of Detection (POD), False Alarm Ratio (FAR) and 285 

Threat Score (TS). 

 

RPSS is an extension of the rank probability score (RPS), which measures the categorical accuracy of a forecast (Wilks, 

2011). Here, two categories are selected to represent high flow and non-high flow conditions, with the 80th percentile of 

observed seasonal streamflow representing the threshold. The RPS is the sum of the squared differences between the forecast 290 

and observed categorical probabilities, and is given as:  

RPS = 	 #
+)#

∑ 	+
,-# 12∑ 𝑝.,

.-# 4 − 2∑ 𝑜.,
.-# 47/,         (3) 

where J is the number of categories, yj is the forecast probability in the jth category, and oj is 1 if the event is observed in that 

category, otherwise 0.  RPS scores range from 0 to 1. RPSS indicates the relative skill of the forecast compared to a 

reference forecast and takes the form: 295 

RPSS = 1 −	 012
012(!)!(!*+!

	.           (4) 

RPSS can vary from -∞ to 1; values above 0 are considered skillful compared to the reference forecast, and a value equal to 

1 indicates a perfect categorical forecast. Mean RPSS values across all hindcast years are presented; the reference forecast is 

based on historical averages (i.e. climatology). 

 300 

POD, or “hit rate,” describes the fraction of observed extreme (e.g. high flow) events that are correctly predicted and is 

calculated as: 

POD = 34!5
34!56,45575

,           (5) 

where a perfect score is 1 (Wilks, 2011). Because POD can be artificially improved by issuing more extreme predictions, it 

must be evaluated in combination with FAR. FAR describes the fraction of predicted extreme events that did not occur, or 305 

“false alarms”, calculated as: 

FAR = 89:57	9:9;,5
34!5	689:57	9:9;,5

,           (6) 

where a perfect score is 0 (Wilks, 2011). 

 

TS, also called the “critical success index,” is the number of predicted extreme events divided by the total number of times 310 

that an extreme event is either predicted or observed, calculated as: 
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TS = 34!5
34!56,45575689:57	9:9;,5

,          (7) 

where a perfect score is 1 (Wilks, 2011). TS is preferred over accuracy (the sum of true positives and true negatives divided 

by the total number of events) for situations where the extreme category is rarely observed. As previously stated, the extreme 

category is classified as seasonal streamflow values in the top 20% (80th percentile) of observations. 315 

4 Results 

4.1 Large-scale predictor regions 

The locations of SST regions that correlate significantly with streamflow vary according to the phase of ENSO (Figure 3). 

Piura streamflow in El Niño years is positively associated with equatorial Pacific SSTs, encompassing the Niño 1+2 and 

Niño 3 regions (Figure 3a). This finding aligns with previous work demonstrating that above-average precipitation in 320 

northwest Peru is driven primarily by ENSO (e.g., Lagos et al., 2008). Strong El Niño years (e.g. 1983, 1998) have a 

tendency to lead to extreme flooding in northwest Peru, though floods have also affected the region in other ENSO phases, 

for example, in 2008, a moderate La Niña (“Emergency Events Database (EM-DAT),” 1988). Piura streamflow variability in 

neutral and La Niña years is associated with SSTs in the northwest Pacific, north Atlantic, and tropical Indian Oceans 

(Figure 3a).  This is similar to the findings of Bazo et al. (2013) who show an influence of SST anomalies in the tropical 325 

Indian and Atlantic Oceans (in addition to the tropical Pacific) on precipitation in northwest Peru. 

 

Marañón streamflow during El Niño years is positively (negatively) associated with northeast Pacific (northwest Atlantic) 

SSTs (Figure 3b). In La Niña years, when average Marañón streamflow is greater and hydrologic disasters are more common 

in Amazonian Peru (Rodríguez-Morata et al., 2018), streamflow is associated with SST regions in the tropical Atlantic and 330 

Indian Oceans. While El Niño episodes have been linked to below-average precipitation in the Amazon basin (Garreaud et 

al., 2009; Marengo, 2004), significant teleconnections between equatorial Pacific SSTs and Marañón streamflow are not 

identified here (Figure 3b). 

4.2 Final predictor selection 

Of the potential predictors listed in Table 2, a subset is selected for each statistical forecast submodel based on correlation 335 

significance and model parsimony as described in Section 3 (Table 3). This results in the first PC of statistically significant 

pre-season SST regions being included in all submodels for both locations. Pre-season streamflow is included in both 

submodels for Marañón, in line with its greater temporal autocorrelation, while it is included in only the positive phase 

submodel for Piura. No pre-season precipitation observations are included for Marañón; for Piura the GCM precipitation 

forecast is included in the negative phase submodel and pre-season observed precipitation is included in the positive and 340 

neutral phase submodels. 
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Table 3: Final predictors included in each submodel.  SST PC1 is the first PC of SST regions; F (J) SF is average observed F (J) 

streamflow (m3/s); Obs Precip is the mean observed JF (J only for Piura) basin-averaged observed precipitation (mm/month); GCM Precip 

is the FMA precipitation prediction from two NMME members. 

 Negative Phase Model Positive Phase Model Neutral Phase Model 

Site Predictors PCs 

retained 

PC1 % 

variance 

explained 

Predictors PCs 

retained 

PC1 % 

variance 

explained 

Predictors PCs 

retained 

PC1 % 

variance 

explained 

Marañón SST PC1, F 

SF 

1 61 SST PC1, F 

SF 

1 86 - - - 

Piura SST PC1, 

GCM Precip 

1 74 SST PC1, J 

SF, Obs 

Precip 

2 92 SST PC1, 

Obs Precip 

1 88 

 345 

4.3 Statistical model forecasts 

The primary focus of this study is to predict occurrence of high flow conditions to initiate flood preparedness actions. The 

probabilistic statistical forecast model at each location effectively captures interannual variability and extremes (Figs. 4 

 
Figure 4: Marañón River at San Regis MAM streamflow hindcast using the statistical prediction model. The black solid line illustrates 350 
observed MAM streamflow; the black dotted line indicates the 80th percentile of MAM observed streamflow.  Red (blue) boxes represent 

years with pre-season El Niño (La Niña) conditions. 

https://doi.org/10.5194/nhess-2021-25
Preprint. Discussion started: 9 February 2021
c© Author(s) 2021. CC BY 4.0 License.



15 
 

and 5). When evaluated categorically, the Marañón forecast model identifies all four high flow years while the forecast for 

Piura identifies six out of eight (Table 4). El Niño years are associated with lower forecast uncertainty for Marañón; the 

average standard deviation of error distributions is 42% smaller than in La Niña years. For Piura, La Niña conditions result 355 

in lower forecast uncertainty; the average standard deviation of error distributions is 73% larger for years in the neutral phase 

 
Figure 5: Piura River at Puente Sánchez Cerro FMA streamflow hindcast using the statistical prediction model. The black solid line 

illustrates observed FMA streamflow; the black dotted line indicates the 80th percentile of FMA observed streamflow. Red (blue) boxes 

represent years with pre-season El Niño (La Niña) conditions. 360 

Table 4: Contingency table for statistical, GloFAS, and multi-model predictions of high flow (top 20%) and low flow (bottom 80%) 

MAM (FMA) streamflow for the Marañón (Piura) River. 

 

 

Observed Conditions 

Statistical GloFAS Multi-model 

 Low High Low High Low High 

Predicted 

Conditions 

Marañón 
Low 14 0 13 2 15 0 

High 1 4 2 2 0 4 

Piura 
Low 27 2 27 5 28 4 

High 1 6 1 3 0 4 
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and 17% larger in El Niño years. Despite low streamflow in many years, the forecast model for Piura captured the 365 

approximate magnitude of the top three extremes in 1983, 1998 and 2017 (Figure 5). An analysis of flood reports from news 

media and global disaster databases including EM-DAT and the Dartmouth Flood Observatory indicate that flooding along 

the Piura River occurred in each of these years, though not necessarily at the station itself. 

4.4 Multi-model forecasts 

For the multi-model forecast, least squares weighting results in a significantly higher weight (83% and 72% for the Marañón 370 

and Piura, respectively) assigned to the statistical model and therefore multi-model Pearson correlation and RPSS values are 

similar to the independent statistical forecast model (Table 5). The Marañón multi-model detects all four true positives in the 

upper category – two more than GloFAS and the same as the statistical model. The Piura multi-model detects four true 

positives, two fewer than the statistical model and one more than GloFAS. For both Piura and Marañón, the multi-model 

forecast improves POD, FAR and TS compared to GloFAS (Table 6). 375 

 
Table 5: Mean RPSS and Pearson correlation coefficients for each location and forecast approach. 

Site Predictand 

Statistical GloFAS Multi-model 

RPSS 
Pearson 

Correlation 
RPSS 

Pearson 

Correlation 
RPSS 

Pearson 

Correlation 

Marañón 
MAM 

streamflow 
0.84 0.97 0.25 0.84 0.83 0.98 

Piura 
FMA 

streamflow 
0.61 0.95 0.18 0.91 0.57 0.95 

 

Table 6: Same as Table 5, but for POD, FAR and TS. 

Site Predictand 
Statistical GloFAS Multi-model 

POD FAR TS POD FAR TS POD FAR TS 

Marañón 
MAM 

streamflow 
1 0.2 0.8 0.5 0.5 0.33 1 0 1 

Piura 
FMA 

streamflow 
0.75 0.14 0.67 0.38 0.25 0.33 0.5 0 0.5 

 380 
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5 Discussion 

5.1 Triggering early action 

While verification metrics offer useful ways to evaluate forecast performance, a forecast’s true value is determined by the 

end user (Hartmann et al., 2002). Because floods are the main hydro-meteorological threat in the Peruvian Amazon (IFRC, 

2019) and Piura basins, correctly predicting the years with high seasonal streamflow are of outsized importance compared to 385 

predicting low-flow years. The Peruvian Red Cross early action protocol steps for flooding are triggered when a forecast 

predicts a 75% chance (probability) of streamflow above the 80th percentile (threshold). This criterion is applied to the three 

forecasts (statistical model, GloFAS, and multi-model) to understand when actions would be triggered based on each 

forecast at San Regis on the Marañón River and at Puente Sánchez Cerro on the Piura River. 

 390 

Based on this criteria, four years in the historical record qualify for early action at San Regis (2009, 2012, 2013, 2015). Out 

of these four, the statistical model predicts action in all four years and GloFAS in two (2009 and 2012) (Figure 6). While an 

 
Figure 6: Marañón River at San Regis early actions triggered (>75% probability of exceeding threshold) based on observed data (black) 

and season-ahead predictions from: statistical model (orange), GloFAS (green), and multi-model (blue). Dark colors represent a ≥75% 395 
probability of threshold exceedance; light colors represent a 50-75% probability of threshold exceedance; grey represents a <50% 

probability of threshold exceedance. Open circles represent false positives. Circle sizes are scaled to probability of threshold exceedance. 

Black (grey) bars indicate relative magnitude of streamflow compared to 80th percentile in m3/s. 
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observed trigger does not necessitate observed flooding or flood impacts, the Centre for Research on the Epidemiology of 

Disasters (CRED) Emergency Events Database (EM-DAT) provides evidence of flooding in the western Amazon (Loreto 400 

region), though not necessarily on the Marañón, in 2012, 2013 and 2015 (the three highest seasonal averages on record) 

suggesting that early actions in these years could be warranted. In 2012 and 2015, when Marañón observed streamflow 

exceeds the threshold required for early action (26,671 m3/s) by over 3500 m3/s, the statistical model triggers with a 100% 

probability of threshold exceedance in both cases. In 2013, when observed streamflow is just 37 m3/s above the threshold, 

the statistical model predicts a 94.3% probability of threshold exceedance while the following year, when streamflow is 25 405 

m3/s below the threshold, the statistical model predicts a 37.9% probability. GloFAS correctly triggers early action in 2009 

and 2012 with 100% and 92% probabilities of threshold exceedance respectively while missing in 2013 and 2015 with 

predictions of 28% and 40% exceedance. In two out of the four years with observed triggers, the statistical model and 

GloFAS threshold exceedance probabilities differ by at least 60 percentage points (Figure 6). Additionally, in 2017, when 

streamflow misses the threshold for early action by only 242 m3/s, the two models differ in their predicted probability of 410 

threshold exceedance by 81 points. Collectively, these differences suggest that the two models capture distinct signals in 

years critical for disaster preparedness. However, the multi-model least-squares ensemble forecast, weighted heavily toward 

the statistical model, mirrors the latter’s predictions (Figure 6). 

 

At Puente Sánchez Cerro, all models trigger early actions during the three largest events in 1983, 1998 and 2017 – each of 415 

which resulted in significant impacts in the Piura River basin, collectively killing over 1000 people and affecting another 3.6  

 

 
Figure 7: Same as Figure 6 for Piura River at Puente Sánchez Cerro. 
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million (Caviedes, 1984; “Emergency Events Database (EM-DAT),” 1988; Peru - Floods Fact Sheet #1, Fiscal Year (FY) 420 

1998, 1998; “Peru floods: Four killed as Piura bursts its banks,” 2017; French & Mechler, 2017) (Figure 7). The statistical 

model included one false positive in 2000 with an 81.3% predicted probability of exceedance (observed streamflow was at 

the 74th percentile). Additional historical years (2001, 2002, 2008 and 2012) also meet the criteria for early action with 

evidence of flooding in the Piura province, collectively resulting in 60 deaths and affecting 508,000 people (“Emergency 

Events Database (EM-DAT),” 1988), although streamflow magnitudes were substantially lower. Of these the statistical 425 

model captured one (2012) while GloFAS failed to capture any. A modified trigger mechanism enables capturing some of 

these lower-magnitude events without additional false positives; if early action is triggered based on just a 50% probability 

of exceeding the 80th percentile, the statistical model also triggers in 2001 and 2008 (thus capturing 6 of the 7 observed 

events). However, this study forgoes any systematic attempt to assess when early actions may or may not be warranted (e.g. 

determining an optimal threshold) in favor of illustrating that additional skill in detecting observed early action triggers is 430 

possible with the use of tailored statistical and multi-model forecasts. Further refinement of effective trigger levels also 

requires understanding regionally specific flood impacts and expected benefits of early action.  

5.2 Varying the probability required to trigger action 

The trigger mechanism for early action, which requires a 75% probability of streamflow above the 80th percentile, suggests a 

tolerance for a FAR of 0.25 for an unbiased forecast. Indeed, the tolerance for false positives when implementing early 435 

action is an open question for decision makers and may depend on numerous technical, institutional and political factors.  In 

both locations, the probability of exceeding this threshold can be reduced significantly below 75% while remaining at or 

below an acceptable FAR, thereby enabling the forecasts to capture additional high-flow events. At Puente Sánchez Cerro, 

lowering the probability can lead to the capture of six out of seven events by the statistical and multi-model forecasts 

(improving from 4 and 3 events at the 75% probability, respectively) while still maintaining a low FAR (Figure 8b and 8d). 440 

At San Regis the statistical and multi-model approaches both detect all four triggers at 75% probability, but no additional 

false positives are introduced by either forecast until the required trigger probability is reduced to approximately 50% 

(Figure 8c). For GloFAS, the benefit of additional events captured is not realized until the required trigger probability is well 

below 50% (Figure 8a and 8b), at which point the FAR is above 0.25 (Figure 8c and 8d). False positives incurred by 

reducing the trigger probability may also be offset by a stopping mechanism in which action is halted if the forecast is not 445 

confirmed 30 days later (IFRC, 2019). 

 

Threat Score (TS), a validation metric that describes the degree to which triggering of observed events corresponds to 

triggering of events based on forecasts, is one method to evaluate the benefits of additional true positives against the costs of 

additional false positives when true positives are relatively rare. TS is maximized from 53% to 84% (36% to 61%) and 44% 450 

to 83% (27% to 44%) respectively for the statistical and multi-model approaches for Marañón (Piura) (Figure 8e and 8f). By 

comparison, TS for GloFAS is nearly always lower and generally less variable, reaching its maximum of 0.57 (0.44) from  
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Figure 8: Probability of detection (POD), false alarm ratio (FAR) and threat score (TS) as a function of the threshold probability required 

to trigger early action for each location and forecast approach. 455 
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25% to 28% (21% to 24%) for Marañón (Piura). Thus, a 75% required trigger probability tends to be a relatively strict level, 

as it often significantly surpasses the required trigger probability yielding the highest TS.   

5.3 Implications of binary trigger mechanism 

The binary nature of the trigger mechanism is vulnerable to situations where similar observed conditions result in early 

action in one instance but not in another. Marañón River streamflow, which averages 24,600 m3/s during the MAM season, 460 

exceeded the 80th percentile by substantial margins in 2012 and 2015 (3,571 m3/s and 4,319 m3/s respectively), while in 2009 

and 2013 it exceeded the 80th percentile by just 899 m3/s and 37 m3/s, respectively (Figs. 4 and 6). On the other hand, in 

2014, streamflow averaged just 25 m3/s (0.09%) below the 80th percentile – warranting no early action based on the trigger 

criteria. Similar effects are visible in Figs. 5 and 7 for the Piura River: in 1999, streamflow was exactly equal to the 80th 

percentile and so did not count as an observed trigger (the stated mechanism requires that streamflow exceed the 80th 465 

percentile). From an operational standpoint, such edge cases beg the question: should some amount of early action still 

occur? Absent a direct physical basis underpinning the streamflow magnitude required to trigger early action (e.g. setting a 

threshold based on when a levee begins to overtop), two events of similar magnitude – one slightly above and one below the 

threshold – are likely to produce similar impacts with early actions likely to yield similar benefits. Moreover, early action in 

response to two such events may suggest that the action taken “in vain” yields fewer or no benefits compared to actions 470 

initiated in response to a true positive. For example, when GloFAS triggers early action for the Marañón River in 2017 

(Figure 6), this is considered a false positive despite observed conditions falling less than 1% below the threshold, 

illustrating a potential weakness of both the trigger mechanism and categorical evaluation of forecasts in general. This 

reinforces the need to also evaluate forecasts with complementary performance measures paired with local contextual 

knowledge. A modified trigger approach could incorporate multiple tiers of early actions triggered by increasing levels of 475 

forecast confidence. Likewise, if forecast confidence later decreases, a tiered stopping mechanism could halt actions in 

reverse order.  

6 Conclusion 

This paper describes a method by which locally-tailored season-ahead statistical forecasts can improve the detection of 

trigger-based early actions and is illustrated with a case study for two sites in Peru. The statistical forecast developed in this 480 

study – as well as a multi-model ensemble forecast composed of the statistical and an operational physically-based model – 

consistently outperform the aforementioned physically-based model for both study locations. Detection of additional high-

flow events is possible by lowering the forecast probability required to trigger actions while maintaining a low false alarm 

ratio. 

 485 
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While higher seasonal average streamflow values typically imply a greater probability of both flooding and the need for 

early action, lower seasonal average streamflow values may obscure high daily peaks that nonetheless result in flood 

impacts. Thus, even a perfect seasonal forecast may not reflect all instances where early action is justified. Additionally, 

because the statistical model developed here is optimized for performance across all years, further refinement prioritizing the 

detection of appropriate trigger levels for early action in high flow years may be warranted. Such efforts could involve 490 

alternative modeling frameworks (e.g. logistic regression), additional predictors, and evaluation of category selection applied 

in the prediction process. 
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