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The authors would like to thank Reviewer #2 for the constructive comments and feedback on our 
manuscript. Our specific replies are denoted in blue color and revised manuscript text is denoted 
by italics. 
 

This paper describes evaluation of seasonal flood forecasts over Peru. The results are a key part 
of developing forecast-based early warning systems, where a robust understanding of model skill 
is crucial. The paper addresses an important question, the results are interesting and the 
manuscript is well structured and clear. 

I am happy to recommend publication, after the authors address a few comments, below. 

1. False alarm ratio (FAR) is calculated by counting #false alarms and #triggers and dividing the 
former by the latter. This is fine and is the standard method to do so. However it does mean that 
the sample is relatively low (particularly for seasonal reforecasts), leading to high uncertainty on 
the values. e.g. The sample size at Maranon is 19, but there are many fewer flood events and 
triggers than this. It is possible to partially address with uncertainty ranges on the verification 
statistics, calculated through a standard bootstrap resampling method (i.e. pick a 19 years with 
replacement from Maranon, recalculate FAR/ HR/ POD, and repeat). I would like to see this 
uncertainty added to figure 8, and its implications discussed. 

We thank the Reviewer for bringing up this important issue regarding the uncertainty associated 
with a small sample size. We appreciate this suggestion to add uncertainty ranges to Figure 8 and 
have revised the figure accordingly (reproduced below). Additionally, we have discussed the 
implications of this uncertainty in section 5.2. Lines 471-496 have been revised to: 

Skill in detecting events is highly dependent on the threshold probability required 
to trigger early action. In general, a lower threshold for action will result in 
instances of worthy action but also more actions in vain. Conversely, a higher 
threshold for action will prevent false positives yet will reduce the likelihood that 
early actions will be taken when needed. This tolerance for false positives when 
implementing early action is an open question for decision makers and may 
depend on numerous technical, institutional and political factors outside the 
scope of this study. Here, the trigger mechanism for early action, which requires 
a 75% probability of streamflow above the 80th percentile, suggests a tolerance 
for a FAR of 0.25 for an unbiased forecast. Crucially, the small number of events 
when each forecast triggers early action (4 for San Regis and 7 for Puente 



Sánchez Cerro), creates significant uncertainty in the POD, FAR, and TS values 
calculated for the hindcast period (Figure 8). However, notwithstanding sources 
of model-related uncertainty, achieving an acceptably low FAR at the 75% 
probability level with 95% confidence is possible for Piura with the GloFAS and 
multi-model forecasts (Figure 8d), although no forecast achieves this for 
Marañón (Figure 8c). Importantly, uncertainty in these metrics is generally 
reduced in the statistical and multi-model forecasts compared to GloFAS (e.g., 
Figure 8a from 30% to 65% probability). The confidence intervals for the 
statistical and multi-model forecasts also tend to be offset in the more skillful 
direction compared to GloFAS This is particularly the case for Threat Score (TS), 
a validation metric that describes the degree to which observed events correspond 
to forecast events, and is useful for evaluating the benefits of additional true 
positives against the costs of additional false positives when true positives are 
relatively rare (Figure 8e and 8f). However, there are notable exceptions to this 
trend, such as the large uncertainty in FAR for the statistical model at Piura 
above a 55% probability. While these results do not highlight an optimal 
probability threshold for decision makers, the statistical and multi-model 
forecasts generally appear more skillful across most probability levels. In 
addition, false positives incurred by reducing the trigger probability may also be 
offset by a stopping mechanism in which action is halted if the forecast is not 
confirmed 30 days later (IFRC, 2019). 

 



 
Figure 8: Probability of detection (POD), false alarm ratio (FAR) and threat score (TS) as a function of the threshold probability 
required to trigger early action for each location and forecast approach. Ribbons represent sample size-associated uncertainty at 
the 95% level, as calculated via bootstrap resampling of the hindcast period (n=1000). 

 

   



2. In addition to point 1 above. The sample size means there is an inevitable an aspect of forecast 
behaviour which is not captured in the reforecast - and bootstrap resampling across years is 
unable to quantify this. To explain with an example: in 2013 the statistical model predicts 94% 
probability of exceedence, which is observed. In the evaluation this year will always turn up as a 
'hit' for any threshold less than 94%. However if we take the probability as a reliable 
representation of likelihood, there is still a chance that it would have been a false alarm (i.e. 6%). 
Similarly, there is a chance that every probability which resulted in a trigger was a false alarm 
(as long as that probability wasn't 100%). This is an unavoidable result of small sample size  - 
and one which bootstrapping will not quantify - so I am not suggesting any change. However I 
suggest the authors reconsider their conclusion "L483 Detection of additional high flow events is 
possible by lowering the forecast probability ... while maintaining a low false alarm ratio". This 
is only true for this particular realisation of the reforecast. If you lower the probability threshold, 
there will always be more chance of false alarms when you trigger, by definition. You might get 
lucky, but then again you might not. It is important to be clear about this otherwise misleading 
conclusions may be reached, e.g. L427 suggests a lowering of the trigger to 50% may capture 
many more events, "without additional false positives". This is highly contingent on the 
particular realisation of the reforecast. A decision-maker may read this paper and decide to take 
action when the forecast probability is 50%, as they understand that this has an FAR of 0%. But, 
the chance that action on a forecast of exactly 50% will be in vain is ... 50% (assuming the 
probability is reliable). So there is a good chance they may be in for a nasty shock! I suggest the 
authors rethink their advice on lowering the trigger without consequence. 

We thank the Reviewer for this comment and in consideration of this have removed the 
conclusion on line 483. We have also revised lines 461-465 to the following: 
 

A modified trigger mechanism captures some lower-magnitude events at San 
Regis; if early action is triggered based on just a 50% probability of exceeding 
the 80th percentile, the statistical model also triggers in 2009 and the multi-model 
triggers in 2009 and 2013 (thus each capturing all four observed events). 
However, caution is advised when reducing this threshold probability in practice 
as it will likely result in additional false positives. 

3. The statistical model uses antecedent SST as a predictor (capturing ENSO activity). It also 
uses a precipitation forecast from the NMME. But what about using the SST forecast from the 
NMME? If ENSO state is a strong forcing of rainfall/streamflow, then I would imagine that the 
FMA SST is more strongly related to streamflow than DJF SST? Possibly the precipitation 
forecast may capture some of this future signal - although precipitation errors are well known. I 
hope that the authors might consider adding this, as it may increase the skill even further and 
lead to a better early warning. 

We thank the Reviewer for this suggestion on how we might further improve forecast skill. We 
had initially explored the use of NMME forecasts of SST as potential predictors but found that 
this yielded no improvement in skill (in terms of correlation and RPSS) for predicting Piura 
streamflow. Specifically, we created a predictor from the average of the two NMME models 
identified in this paper (GEOSS2S and CFSv2), over the Niño1+2 region (80-90W; 0-10S) over 
the FMA season, issued Feb 1st. We selected SSTs in the Niño 1+2 region because correlation 



between observed FMA Niño 1+2 anomaly and Piura streamflow is very strong (0.82, compared 
with the correlation between observed FMA average SST anomaly in the Niño 3.4 region and 
Piura streamflow, at 0.30). However, correlation between Piura streamflow and predicted Niño 
1+2 SSTs (from the two NMME models) is 0.74, less than the correlation between Piura 
streamflow and predicted NMME precipitation (0.84).  

Additionally, we do not observe any significant improvements in prediction skill for years 
critical for flood preparedness. Given this result, we have chosen to retain our original inclusion 
of NMME precipitation predictions here, although we acknowledge that the NMME SST 
forecast performs almost equally well for Piura. 

4. Can you show the weightings for the statistical model? The results are shown from cross-
validation leave-one-out (which is appropriate). But if you built the model again using all years, 
this would be useful to show the relative importance of each predictor. 

We appreciate the Reviewer’s interest in the statistical model weightings. During principal 
component regression, the set of predictors are transformed by PCA and a subset of the resulting 
principal components are retained for a multiple linear regression. Thus, the model coefficients 
are based upon the PCs (which contain information from multiple predictors) rather than the 
predictors themselves, which are highly correlated. One way to extract the relative importance of 
predictors is through assessing their individual correlation with streamflow, as presented in Table 
2, reproduced below. From this perspective, it appears that pre-season SSTs and precipitation are 
most important for Piura, closely followed by antecedent streamflow, NMME precipitation 
forecast, and SLPs. For Marañón, pre-season SSTs, antecedent streamflow, and SLPs are 
relatively more critical, followed by soil moisture and precipitation. 

Potential 
Predictor 

Abbreviation Spatial Region Time Frame            Pearson Correlation with Streamflow 
  Piura Marañón Piura Marañón 

Streamflow SF - J F 0.84* 0.84* 

Precipitation P Basin-Avg J JF 0.88* 0.68* 

Soil 
Moisture SM 1st PC of statistically significant (p < 0.05) regions within  

12N to 23S, 35W to 81.5W J F 0.69* 0.74* 

Air 
Temperature T Basin-Avg J F 0.26 0.11 

GCM 
Precipitation 
Forecast 

P(GCM) 4.5S to 5.5S, 79.5W to 80.5W FMA - 0.84* - 

  El Niño Neutral La Niña El Niño La Niña 

Sea Surface 
Temperature SST 1st PC of NIPA-identified regions NDJ DJF -0.79* -0.90* 0.85* -0.93* -0.80* 

Sea Level 
Pressure SLP 1st PC of NIPA-identified regions J F -0.82* -0.74* 0.79* 0.90* -0.72* 

Another way to indirectly assess the significance of each predictor would be to test the 
correlation strength between each predictor and the first PC of all predictors. Through some 
additional analysis outside this paper, we note that, for Piura, this first PC correlates most 
strongly with soil moisture in the negative phase (La Niña years) and precipitation in the neutral 



and positive phases (neutral and El Niño years). For Marañón, the first PC is most highly 
correlated with SLP in the negative phase and precipitation in the positive phase. 

5. The GloFAS seasonal forecasts are publicly available on the 10th of every month - not the 
first, as is stated in L274 (see https://www.globalfloods.eu/technical-information/glofas-seasonal/ 
- NB they are initialised on the 1st but there is a lag until they are available, which may be where 
the confusion arises). Does this change the potential for early action, as the first month is almost 
half over before the GloFAS forecast is available? There are a few possibilities: 
 
- if the action is strictly constrained to the start of the month, the GloFAS run from the previous 
month is the only available run, so this should be used instead in the comparison 
 
- if it is OK that no forecast is available until the 10th, then the statistical model could (in theory) 
include additional information on the streamflow/SST/precip in the first few days. 
 
The authors may want to follow either (or neither) of these ideas. But at least please comment on 
this issue of forecast timeliness in the text. 

Thank you for bringing this point to our attention. In an operational setting, according to the 
Peruvian Red Cross flood early action protocol, forecasts are issued on a rolling basis, with early 
actions taken any time streamflow forecasts are above the threshold. While for simplicity we 
issue our forecasts at a fixed date annually, it would be acceptable to issue the forecast on the 
10th of the month (when GloFAS seasonal forecasts become available). We therefore opt to 
modify our statistical and multi-model forecast issue date accordingly. We have revised lines 
105-110 to reflect this: 

In this paper, we use the term “season-ahead prediction” to describe forecasting 
the mean streamflow for an upcoming three-month season issued at the start of 
that season. Ideally, a season-ahead prediction of January-February-March 
streamflow would be issued on December 31st and represents a prediction of the 
average streamflow over the upcoming three months. In practice, due to lags in 
data availability and for purposes of direct comparison with a physically-based 
model, forecasts developed in this paper are issued on the 10th day into the three-
month season. 

We have also revised lines 196-199 to reflect this change: 

Predictions of seasonal (three month) average streamflow (m3/s) are issued on the 
10th day into the three-month high flow season identified in Sect. 2, leveraging 
predictors based on values in the preceding months. Practically, issuing the 
forecast ten days into the forecast season allows time for large-scale climate data 
to be made available online, while also fostering a more direct comparison with 
GloFAS as described in Sect. 3.4. 

Lastly we have also revised lines 301-302 accordingly: 



GloFAS forecasts are initialized on the first day of every month and become 
publicly available on the 10th day of the month. 

We note that this revision has the additional advantage of allowing a buffer window for other 
large-scale climate data sources to be made available online, and thus may be a more realistic 
issue date from an operational standpoint. We also acknowledge that additional predictor data 
from the first few days of the month could in theory be used, which may provide some additional 
forecast skill. We opt not to pursue this path because we expect any additional skill to be 
marginal due to the length of the forecast season and the slowly evolving nature of SSTs – a key 
predictor. This choice allows a more direct comparison with GloFAS seasonal because it is also 
initialized on the 1st of the month.  

Minor comments 
 
L41 Was FbA originally applied to droughts? As far as I am aware it is only now being 
developed for drought/food insecurity. Please clarify. 
 
We thank the Reviewer for this comment and would like to clarify that to the best of our 
knowledge FbA has only been applied to droughts more recently. Our prior confusion likely 
stemmed from a report by Cabot Venton et al. (2012) which modeled the costs of early response 
versus late response for drought in Kenya and Ethiopia but did not involve the implementation of 
a forecast based early action schema. We have updated lines 40-42:  
 

While FbA was initially applied to acute and slowly evolving threats like tropical 
cyclones, more recent efforts have targeted hydrological threats including 
extreme rainfall and flooding (e.g., Gros et al., 2019). 
 
 

L69 There is a bit of a logical jump from the previous paragraph, consider adding a linking 
sentence. 
 
Thank you for bringing this to our attention, we have revised lines 69-72 to: 
 

Improvement in the skill of hydrologic models over the last several decades has 
aided the development of FbA systems for flooding. Among hydrologic models, 
those that are physically based (or dynamical) simulate physical processes such 
as infiltration and runoff to produce streamflow predictions and are often forced 
with climate predictions downscaled from general circulations models (GCMs) or 
numerical weather models. 

 
L111 Slightly long sentence, could be split for readability. 
 
We have revised this sentence (now lines 138-139) to: 



In the Amazon basin, the influence of climate variables on flood risk remains 
understudied (Towner et al., 2020) as a result of the nonlinear relationship 
between precipitation and streamflow (Stephens et al., 2015). 

 
L160 What do the colours represent in Figure 1? Satellite image, topography? If the latter then it 
needs a colorbar. 

The coloring in Figure 1 represents idealized land cover. (This map layer was obtained from 
https://www.naturalearthdata.com/downloads/10m-raster-data/10m-natural-earth-2/.) We have 
updated the Figure 1 caption on lines 165-166 to clarify this: 

 
Case study locations with catchment boundaries delimited in red. Shading 
represents idealized land cover. Made with Natural Earth 
(naturalearthdata.com). 
 

L200 Table 2: Piura has correlation of 0.84 between J streamflow and FMA streamflow. 
However in L148 it states that there is no significant monthly autocorrelation in Piura 
streamflow. This seems to be inconsistent. 
 
We thank the Reviewer for this comment and would like to clarify that there is significant 
monthly autocorrelation in Piura streamflow. 174-177 in the revised manuscript now read: 
 

Monthly mean streamflow at Marañón exhibits a sinusoidal autocorrelation 
structure, with statistically significant autocorrelation at one- and two-month lags 
as well as at interannual timescales. In contrast, streamflow at Piura exhibits 
significant autocorrelation at up to a three month lag yet minimal autocorrelation 
at interannual timescales, indicating a greater degree of variability in successive 
years. 

 
L200 Table 2: Maranon GCM precipitation forecast is not included as a predictor, presumably 
because the correlation with MAM streamflow is not sufficiently high. I wonder: is this because 
(a) there is low correlation between seasonal rainfall and seasonal streamflow at Maranon or (b) 
the GCM precipitation forecast at Maranon is not particularly good? It would be good to include 
this information. If the answer is (b), then see point 3 above: it may be that SST is a more 
valuable predictor to take from the GCM forecast. 
 
Our initial goal for the statistical model was to forecast streamflow using three main classes of 
observed, pre-season variables: large-scale climate, precipitation, and (antecedent) streamflow. 
We deviated from this approach by including the NMME forecast for in-season precipitation for 
Piura, largely motivated by the relatively small basin size; this characteristic results in flashy-
type floods and relatively limited watershed memory as streamflow moves quickly through the 
basin. On the other hand, the Marañón watershed, at 362,000 km2, is significantly larger and 
preseason precipitation, particularly in the upper parts of the basin, correlates well with 
streamflow (0.68), due to travel times on the order of weeks to months. While including an 
NMME precipitation of prediction did not improve model skill, we agree with the Reviewer that 



including an SST forecast from NMME may further improve the skill of the statistical model.  
This would require further analysis, complicated by the fact that significant SST regions differ 
by phase as shown in Figure 3b). We suggest that these additions should for now remain an 
avenue for future work and stress that this paper’s goal is to provide an illustration of how 
statistical forecasts may complement operational physical models for improved preparedness, 
which we believe the Marañón case achieves at present. 
 
L226 I am unsure what " n.d." means in this context. 
 
We have updated this citation to: 
 

(NOAA, 2020) 
 

L228 A 3-phase ENSO model is used at Piura, although a 2-phase model does not affect material 
performance. Given the favouring of parsimonious models (L257), why do you retain the 3-
phase model? 
 
We appreciate the Reviewer’s question here. Aggregate model performance does not differ 
drastically, though is slightly improved in the 3-phase version (RPSS of 0.43 vs 0.39; correlation 
of 0.91 vs 0.88). One key reason for selecting the 3-phase model was its improved performance 
in key years for flood preparedness. For example, the two-phase version underpredicts 2017 
streamflow by 35% compared to 12% in the 3-phase. Additionally, the 3-phase version reduces 
the spread of model residuals: on average, the standard deviation of residuals in the 2-phase 
model is 94.6 while the 3-phase lowers this to 79.8. We have thus rephrased lines 254-255 to 
better reflect our rationale for choosing the 3-phase model: 
  

(While a two-phase model for Piura was also tested, the 3-phase model improves 
performance, including in years critical for disaster preparedness.) 

 
L272 Requires some more info on GloFAS: what is the reforecast period, which model version 
used, has the model been calibrated for these basins (where streamflow data has been shared with 
the GloFAS team, the model has been calibrated). 
 
We have updated lines 299-301 to incorporate information on the reforecast period, model 
version and calibration: 
 

Monthly hindcasts over the period 1981-2017 from the physically based GloFAS 
Seasonal model (version 2.0) for the two study locations are available from 
ECMWF (https://www.globalfloods.eu/general-information/data-and-services/). 
Both study locations were used for model calibration (E. Zsoter, personal 
communication, May 6, 2021). 

 
L315 It would be useful to explicitly note how many upper tercile events are present for each 
site. 
 
We have included this suggestion by amending lines 342-344 to: 



 
As previously stated, the extreme category is classified as seasonal streamflow 
values in the top 20% (80th percentile) of observations – four events for Marañón 
and seven events for Piura. 

 
L399 What is meant by 'observed trigger'? From the context I think it should read 'event'? 
'Trigger' only applies in context of the forecast, not the observations (similarly used in L448). 
 
We agree with this suggestion and have updated “observed trigger” to “event” on L399 and 
L448. 
 

 
L450 I am not sure what is meant by "TS is maximised". 
 
We have revised this section (see Comment 1) and have eliminated this phrasing. 
 
 
L463 Another thing to consider with these close-to-threshold events is that the difference in 
streamflow between may very well be within the margin of observational error - particularly if 
the seasonal average is based on daily data (i.e. an accumulation of systematic/random errors 
over 90 days). 
 
We agree and have revised line 495 to reflect this possibility: 
 

It is also possible that observational error in streamflow measurements exceeds 
these differences. 

 
L468  "two events of similar magnitude...are likely to produce similar impacts with early 
actions likely to yield similar benefits". I am not sure it is reasonable to say this. Two 
seasons with similar average seasonal streamflow may have highly different subseasonal 
variability. For instance season A: all season just below the overtopping level without 
breaching, season B: a little way below season A average for the first month, but then 
increasing and  repeatedly flooding in the next two months. A & B may have very similar 
average streamflow - but very different impacts. 
 
We agree with the Reviewer’s logic here and clarify that our intent was to illustrate the likely 
impacts due to instantaneous streamflow values. Therefore, we have revised lines 495-502 to the 
following: 
 

From an operational standpoint, such edge cases beg the question: should some 
amount of early action still occur? An observed seasonal mean near the early 
action threshold, especially at the more variable Piura River, may contain much 
larger instantaneous discharge values and thus true flood risk may be obscured. 
Operationally, a trigger mechanism for early action at the Piura River should 
account for increased with-season variability of flows, perhaps by lowering the 
action threshold. Aside from these issues, a sharply defined threshold allows a 



potentially improper distinction between “worthy actions” and “actions in vain.” 
In practice, absent a physical basis underpinning the action threshold, the 
difference in benefits resultant from early action may be negligible for 
instantaneous discharge just above and below the threshold.   


