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Reply to Reviewer #1 
 
Title: Leveraging multi-model season-ahead streamflow forecasts to trigger advanced 
flood preparedness in Peru 
 
Author(s): Colin Keating, Donghoon Lee, Juan Bazo, Paul Block 
 
MS No.: nhess-2021-25 
 
The authors thank Reviewer #1 for the constructive comments and feedback on our manuscript.    
Our specific replies are denoted in blue color and revised manuscript text is denoted by italics. 

General comments 

The paper under review addresses an important topic within the scope of the journal, is generally 
well written and structured. Figures are visually appealing (especially Fig.6 & 7). Datasets used 
are adequate for the purpose of the study. Methods are rather traditional statistics (fairly old-
fashioned), mainly a linear regression on principal components, but presumably also quite robust. 
No non-linear transformations, no unconventional predictors. The multi-model approach 
mentioned in the title is interesting. The chosen performance metrics for validation are also 
suitable. According to the authors, the developed model is an improvement to the current 
operational methods in Peru. 

I suggest adding “in Peru” to the title of the manuscript – or any other spatial restriction the authors 
consider appropriate – as the method was only tested for two rivers in this specific country, and 
includes predictors that might not be suitable in other areas of the world (e.g. sea surface 
temperature for ENSO condition). If the authors want to claim that their method is in general better 
than operational practices worldwide, this claim would have to be substantiated by additional 
model runs in different places. 

We thank the anonymous Reviewer for these comments which have led to further improvements 
in the quality of the manuscript. We agree with the Reviewer’s suggestion to amend the title of the 
manuscript to include “in Peru,” which now reads: 

 
Leveraging multi-model season-ahead streamflow forecasts to trigger advanced 
flood preparedness in Peru 

 
The authors made their code available to review via a GitLab repository, which is much 
appreciated! The provided R scripts are well readable (although not entirely in agreement with 
modern style guides, e.g. https://style.tidyverse.org/) and seem to cover all steps mentioned in the 
manuscript, from data preparation to model building and plotting. I did not try to run the code, as 
the raw data is not provided, but the scripts make the conducted research transparent. 
 
We thank the Reviewer for this comment. We note that for additional readability, we have restyled 
all scripts according to tidyverse formatting rules. 
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Specific comments 

About the manuscript, I request the following clarifications and modifications: 

1. Please clearly define the term “season-ahead prediction”. The term could be interpreted as 
predicting one season from the previous season, but I assume that the authors mean to predict one 
season from just before the start of that very season, as the 1-month-ahead streamflow appears to 
be included as predictor. Does the model only predict the maximum streamflow at some point 
during the season, or also a timing? 3 months is still quite an uncertain timeframe. 

To clarify the term “season-ahead prediction,” lines 105-108 now read: 
 

In this paper, we use the term “season-ahead prediction” to describe forecasting 
the mean streamflow for an upcoming three-month season issued at the start of that 
season. For example, a season-ahead prediction of January-February-March 
streamflow would be issued on December 31st and represents a prediction of the 
average streamflow over the upcoming three months.  
 

2. In the introduction and discussion there should be an additional paragraph putting the used 
methods in context of what is state of the art in international scientific literature – not only in Peru. 
The last two sentences of the conclusion are: “(…) because the statistical model developed here is 
optimized for performance across all years, further refinement prioritizing the detection of 
appropriate trigger levels for early action in high flow years may be warranted. Such efforts could 
involve alternative modeling frameworks (e.g. logistic regression), additional predictors, and 
evaluation of category selection applied in the prediction process.” - But that is not enough and 
should appear earlier in the paper. Also, an additional paragraph about ensemble theory / multi-
model studies would be adequate. 
 
We agree with the Reviewer and have subsequently added additional paragraphs in the 
introduction section to detail the range of current statistical modeling approaches in the literature. 
We have also added a paragraph providing background on multi-model techniques. Combined, 
lines 81-100 now read: 
 

A common traditional approach for statistical hydrologic modeling is multiple 
linear regression (MLR), which relates a predictand to the linear combination of 
several predictor variables (Moradkhani and Meier, 2010). For categorical 
streamflow forecasts, logistic regression (for two categories) or multiple logistic 
regression (for three or more categories) has been used successfully (e.g., Wei and 
Watkins, 2011). Because these methods are prone to multicollinearity due to the 
overlapping signals present in many hydroclimate variables, techniques such as 
principal component regression (PCR; a combination of principal component 
analysis and MLR) and partial least squares regression (e.g., Lala et al., 2020) are 
employed to address this challenge. More recently, machine learning techniques, 
adept at capturing nonlinear relationships between predictors and a predictand, 
have been successfully applied to hydroclimate forecasting, including artificial 
neural networks (Zealand et al., 1999), random forest classification (Ali et al., 
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2020; Lala et al., 2020) and support-vector machines (Asefa et al., 2006; Shabri 
and Suhartono, 2012). There is also increasing recognition that hybrid approaches 
combining statistical and dynamical techniques can offer greater accuracy than 
even state-of-the-art dynamical models (Cohen et al., 2019). 
 
Multi-model techniques have been developed based on the assumption that errors 
present in individual models may cancel out, thus providing a multi-model average 
with greater skill than any individual model, and to bound forecast uncertainty 
based on the spread of model predictions. Several methods of combining models 
include equal weighting, linear regression and Bayesian methods that assign 
weights according to the probability that the model in question has the highest skill 
(e.g., Gneiting and Raftery, 2005). In some cases, multi-model ensembles have been 
shown to significantly increase forecast skill over the best performing individual 
model (e.g., Regonda et al., 2006), while not in other cases. For example, Bohn et 
al. (2010) note only modest improvement when using a least-squares weighted 
multi-model. 

 
 
3. Data: The authors should make very clear for the reader which data was used to fit the statistical 
models, i.e. how many observations, where does the target variable (y) come from and how certain 
is it, what exactly are the explanatory variables and how have they been treated (scaling etc.). Most 
of that information is somewhere in the manuscript, but it is not as clear as it should be on first 
reading. Table 3 could be a good place to collect this information. 
 
We thank the Reviewer for pointing our attention to this. Regarding the target variable and its 
certainty, we obtained this dataset from the Peruvian Meteorological Agency, El Servicio Nacional 
de Meteorología e Hidrología del Perú (SENAMHI), and they have conducted appropriate quality 
assurance. Lines 170-172 have been revised to: 
 

Daily streamflow data for each location (1999-2017 at San Regis, 1971-2017 at 
Puente Sánchez Cerro) was provided by the Peruvian Meteorological Agency, El 
Servicio Nacional de Meteorología e Hidrología del Perú (SENAMHI), who 
performed appropriate quality assurance. 
 

We have also clarified where the target variable comes from and the treatment of explanatory 
variables (scaling to have unit variance but no transformations) at the beginning of Section 3.3. 
Lines 265-277 have been revised to:  
 

A principal component regression (PCR; coupled principal component analysis 
and multiple linear regression) framework is adopted to predict seasonal (3-month) 
average seasonal streamflow derived from daily streamflow observations obtained 
from SENAMHI as described in Sect. 2.5. The forecast for each location is 
composed of sub-models (multiple linear regression) composed of years in a 
particular climate state, as represented by the preseason (3-month average) value 
of MEI. This produces two sub-models for the Marañón River at San Regis and 
three for the Piura River at Puente Sánchez Cerro. A hindcast assessment is 
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conducted by evaluating each year in the historical record using the appropriate 
sub-model to predict seasonal streamflow. For example, in 1998, the preseason 
(NDJ) average MEI value is 2.43, thus the positive phase sub-model is selected to 
predict Piura River FMA streamflow. Predictor variable types listed in Table 2 may 
be included in some sub-models and not others, subject to their correlation with 
streamflow in that phase (Table 3). To be included, the predictor in question must 
be both significantly correlated with streamflow across all years and significantly 
correlated with streamflow in the subset of phase-specific years. A principal 
component analysis is conducted on eligible predictors which are first scaled to 
have a unit variance. A subset of PCs is retained according to North’s Rule-of-
Thumb (North et al., 1982) for input into the multiple linear regression. 
 

We have also revised Table 3 (reproduced below) to include the number of observations (years) 
for each sub-model and the subset of predictors retained for each sub-model. 
 
Table 3: Final predictors included in each sub-model. 
 

Site Sub-model Number of 
observations 

Predictors retained from 
Table 2 

PCs 
retained 

PC1 % variance 
explained 

PC2 % variance 
explained 

Marañón Negative Phase 12 SST, SLP, SF, SM 
 

1 61 22 

 Positive Phase 7 SST, SLP, SF, SM, P 1 87 9 

Piura Negative Phase 11 SST, SLP, SM, P(GCM) 1 74 15 

 Positive Phase 14 SST, SLP, SF, SM, P, 
P(GCM) 

1 78 13 

 Neutral Phase 11 SST, SLP, SM, P, P(GCM) 1 68 15 

 
 
 
4. “There are numerous methods for selecting the appropriate number of PCs to retain; here, the 
first two PCs are retained unless the model has two or fewer predictors, and then only the first PC 
is retained.” (254-256). How is the selection of only 2 PCs motivated? Contributions may differ 
during the seasons or per region, but at least some sort of check should be presented, e.g. by 
plotting the cumulative explained variance for El Niño and La Niña (or any other method the 
authors prefer to make this point that 2 PCs are sufficient). According to Table 3, only in one case 
have there been 2 PCs used – in all other cases only 1, so it is only linear regression with 1 
predictor? Or 1 PC plus the streamflow before the start of the season? 
 
Thank you for this comment; we have revised the method by which we retain PCs in our model 
and have revised Table 3 (reproduced above) to include the percent variance explained by the first 
and second PC. The revised process by which PCs are retained for each phase’s sub-model are 
described on lines 275-281 as follows: 

 
A principal component analysis is conducted on eligible predictors which are first 
scaled to have a unit variance. A subset of PCs is retained according to North’s 
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Rule-of-Thumb (North et al., 1982) for input into the multiple linear regression, 
given as: 
 
𝑦! 	= 	𝛽" + 𝛽#𝑥#,! +⋯+ 𝛽%𝑥%,! + 𝑒 ,            (1) 
 
where yt is observed seasonal streamflow in year t, 𝛽" is a constant, 𝛽#… 𝛽% are 
regression coefficients, 𝑥#,!	. . . 𝑥%,!	are the PCs retained, and e is the residual or 
error. If North’s Rule-of-Thumb indicates that no PCs are non-overlapping then 
only the first PC is retained.  

 
5. A critical point, acknowledged by the authors, is the selection of a threshold to issue an 
emergency. In my opinion this problem could be communicated better to the decision makers if a 
full probability distribution of expected streamflow were predicted, rather than a point estimate. 
Bayesian regression would be the adequate tool, then. As the statistical model presented by the 
authors appears to be very simple (linear regression with 1 or 2 predictors), implementing this in 
a Bayesian framework should be feasible. In that case, also Bayesian decision theory could be 
applied for the threshold selection. Apparently the authors create an error distribution by sampling 
the model residuals 1000x with replacement, which might end up in similar estimates, although 
with slightly different interpretation. At least the authors should discuss the probabilistic output in 
more detail, and also discuss how this probabilistic output can be used in risk communication and 
decision making for the problem at hand. 
 
We thank the Reviewer for this comment and acknowledge the potential value of alternative 
modeling approaches (e.g. Bayesian regression/inference), especially for threshold selection. We 
emphasize that this study illustrates the potential for tailored statistical approaches to complement 
operational physical forecasts, and acknowledge that a range of alternative statistical approaches 
may offer enhanced skill. We agree these alternative approaches warrant consideration in future 
work, especially for developing specified guidance for stakeholders.   
 
As mentioned by the Reviewer, we undertake a simplified ensemble generation process to create 
a probabilistic forecast distribution.  Again, alternative approaches are available, however we are 
not focused on selecting the ‘best’ approach, particularly since that clearly differs by case study, 
disaster, region, etc.   However the Reviewer’s point regarding the need to better emphasize the 
importance of the probabilistic output in our methods is well received.  We have revised lines 281-
282 as follows: 

 
The creation of probabilistic forecasts are essential as early action decisions are 
conditioned on the forecast likelihood of an extreme event exceeding the 80th 
percentile. 

 
We have also added more detail about the probabilistic output to lines 421-432 which now read: 

 
The primary focus of this study is to predict the occurrence of high flow conditions 
to initiate flood preparedness actions, based on a sufficient percentage of the 
probabilistic prediction surpassing a pre-defined threshold. The probabilistic 
statistical forecast model at each location effectively captures interannual 
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variability and extremes (Figs. 4 and 5). For the two most extreme years in the 
observed record (2012 and 2015 for Marañón; 1983 and 1998 for Piura), the full 
distribution of predicted streamflow falls above the 80th percentile of observed 
streamflow (black dashed line). In these years, decision-makers are highly certain 
of an impending extreme event. However, for the majority of years, some smaller 
fraction of the forecast distribution falls above the 80th percentile threshold, 
presenting a greater challenge (less certainty) in decision making. 

 
We agree with the Reviewer that utilizing probabilistic outputs is important in risk communication 
and decision making.  We specifically address these issues in Sections 5.1 and 5.2, however we 
also acknowledge that there is room for improvement with respect to integrating probabilistic 
forecast output into decision making.  This may include optimizing trigger thresholds, the 
probability required to surpass this trigger to initiate action, and exploration of the tradeoff in 
forecast skill and increased lead time for actions available at a range of lead times, all in the context 
of stakeholder tolerance for false positives and expected benefits. Indeed this is an active line of 
research in our group, however moves beyond the scope of this paper. 
 
 
6. The multi-model seems to be dominated by the linear regression model. If this is the case, the 
authors could discuss which other models might be suitable to include in future multi-model 
ensembles. 
 
We agree with the Reviewer’s observation that the multi-model is dominated by the statistical 
model (we note that this is now the case for only one site in our revised analysis with an updated 
PC retention and predictor selection method). Ideally, members of a multi-model should each 
contribute skillfully such that errors in any single model are balanced by the other models. In our 
case, the global physical model (GloFAS; currently used for early warning decision-making) lacks 
sufficient skill at our study sites (for the lead time evaluated) to improve upon the statistical model 
or counter-act its errors. A calibrated basin-scale physical model may be better suited and more 
skillful than the bias-corrected GloFAS forecast when coupled to one or more GCMs with 
demonstrated predictive skill in the region (e.g. NCEP CFSv2 and NASA GEOS-S2S for coastal 
northern Peru, according to the work of our colleagues in atmospheric science). However, given 
that our statistical model at Piura is already forced using GCM precipitation predictions, it is not 
clear that additional skill would be realized in a multi-model. A challenge of modeling at our 
present study sites is data scarcity; however, machine learning techniques that leverage remotely 
sensed data (e.g. detecting antecedent soil moisture conditions or the state or direction of the 
atmospheric-oceanic system) could potentially offer avenues for improvement. To that end, we 
have added the following text to our conclusion (lines 569-571): 
 

Future work could also consider machine learning techniques with the goal of 
leveraging remotely sensed data to detect antecedent conditions at a subbasin scale 
and the state of the climate system. 

 
We also note that the relative skill of the statistical and physical models (and thus weighting in the 
multi-model) may also be dependent on lead time, seasonality, and antecedent conditions. For 
example, the global dynamical model may be relatively more skillful at shorter lead times due to 



 7 

its ability to include the effects of recent precipitation. At our study site, skill at shorter lead times 
may inform early actions relevant to the disaster event. 
 
In conversations with our colleagues in the social sciences, we have learned that stakeholder buy-
in – a critical step for creating forecasts that add value – may be easier to achieve with a simple 
model compared to a model that is more opaque or complicated. Further, the simple statistical 
model presented here performs quite well overall, and while a more complex model may perform 
marginally better, the overall gains are likely minimal compared to efforts placed on proper 
forecast dissemination, communication or training of stakeholders, etc.   
 
Technical corrections 
 
1. All tables would benefit from some formatting. 
 
We have re-formatted all tables to improve clarity and readability. 
 
2. In Table 2, the letters J and F are used without explanation. I assume it is January and February, 
respectively, as the authors write in the text that the high streamflow seasons in the basins are FMA 
and MAM, respectively. January and February would therefore correspond to a 1-month-ahead 
value. However, that should be stated explicitly in the text and above the table – or more clear 
abbreviations like “Jan” and “Feb” should be used. 
 
We have added the following clarifying text to the Table 2 caption: 
 

“J (F) indicates January (February).” 
 
3. Especially the very important “predictors” column in Table 3 consists of abbreviations with 
distracting line breaks. As the columns of that table are repeated, consider arranging the “negative 
phase” “positive phase” and “neutral phase” in rows rather than columns, and use the free space 
to add more columns giving detailed information on the models, like the number of observations, 
PC2 explained variance, maybe even the cross-validation score. Consider removing the bold 
rectangle and make the font of the column/row names bold instead. 
 
We thank the Reviewer for these helpful suggestions. We have revised Table 3 (reproduced above), 
switching rows and columns and adding two additional columns for PC2 variance explained and 
number of observations.  
 
 
4. There is a LICENSE file included in the GitLab repository, but no README and CITATION 
files. I would like to encourage the authors to add these two missing components, although it is 
not a criterion for acceptance of the manuscript. 
 
We thank the Reviewer for this suggestion and have added README and CITATION files to the 
GitLab repository. 


