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Abstract. Recurrent extreme landscape fire episodes associated with drought events in Indonesia pose severe environmental,

societal and economic threats. The ability to predict severe fire episodes months in advance would enable relevant agencies

and communities more effectively initiate fire preventative measures and mitigate fire impacts. While dynamic seasonal

climate predictions are increasingly skilful at predicting fire-favourable conditions months in advance in Indonesia, there is

little evidence that such information is widely used yet by decision makers.

In this study, we move beyond forecasting fire risk based on drought predictions at seasonal timescales, and (i) develop a

probabilistic  early  fire  warning  system for  Indonesia  (ProbFire)  based  on multilayer  perceptron  model  using  ECMWF

SEAS5 dynamic climate forecasts together with forest cover, peatland extent and active fire datasets that can be operated on

a standard computer, (ii) benchmark the performance of this new system for the 2002-2019 period, and (iii) evaluate the

potential economic benefit such integrated forecasts for Indonesia.

ProbFire’s event probability predictions outperformed climatology-only based fire predictions at three2 to five4-month lead

times in south Kalimantan, south Sumatra and south Papua. In central Sumatra, an improvement was observed only at one0

month lead time, while in west Kalimantan seasonal predictions did not offer any additional benefit over climatology only-

based predictions. We (i) find that  seasonal climate forecasts  coupled with the fire probability prediction model confer

substantial benefits to a wide range of stakeholders involved in fire management in Indonesia and (ii) provide a blueprint for

future operational fire warning systems that integrate climate predictions with non-climate features.
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1 Introduction

Recurrent severe fires in Indonesia release globally significant amounts of greenhouse gases and particulate matter into the

atmosphere. Emitted toxic haze can shroud the region for several months (Marlier et al., 2013), with devastating impacts on

people’s  health  and  livelihoods  (Crippa  et  al.,  2016,  Lee  et  al.,  2017a),  whilst  also  damaging  local  ecosystems  and

biodiversity (Lee et al., 2017b). Every year, during the dry season, fire is widely used for land clearing and in agriculture

across  the  archipelago.  In  some  years,  however,  anomalously  severe  droughts  do  develop,  triggering  catastrophic

uncontrolled burning events. Two of the biggest such episodes, the 1997-98 and 2015 events each released 0.81 – 2.57 Tg

(Page et al., 2002) and 0.21 – 0.53 Tg C (Huijnen et al., 2016, Yin et al., 2016), equivalent to 12 – 40% and 2 – 5% of total

global carbon emissions for the year respectively (Boden et al., 2017). Increasingly skilful seasonal climate predictions by

dynamic forecasting systems (Doblas-Reyes et al., 2013, Johnson et al., 2019) can potentially be utilised in early warning

systems helping to prepare for, and mitigate the worst of the damaging burning events. However,  relevant non-climatic

drivers of fire occurrence have to date not been integrated with seasonal climate predictions, leaving an untapped potential

for improving early fire event prediction systems. Furthermore, evaluation of the potential value of such predictions for the

decision makers in the region has not yet been carried out to date.

In recent decades, Indonesia’s fire problem has been exacerbated by non-climatic drivers such as commodity driven loss and

degradation of primary forests (Turubanova et al., 2018), drainage of peatlands (Hooijer et al., 2012), and conversion of land

to industrial plantations and small-holder agriculture (Miettinen et al., 2012). Loss of fire-resilient closed canopy forests

(Cochrane et  al.,  1999, Nikonovas et al.,  2020) has resulted in more severe local  fire weather due to increased surface

heating and substantially warmer microclimates in the deforested landscapes (Sabajo et al., 2017). In peatlands, fire presence

was also increased by artificially lowered water table depth due to extensive drainage, which, in combination with increased

surface  heating,  has  exposed  more  peat  to  desiccation  (Jauhiainen  et  al.,  2014)  and  the  establishment  of  fire-prone

herbaceous vegetation in deforested areas  (Hoscilo et al.,  2011).  These factors,  coupled with widespread use of fire by

humans for land clearing and crop rotation (Cattau et al.,  2016) have dramatically  amplified drought sensitivity of fire

activity across the region. 

The duration and severity of the dry season in different parts of the Indonesian archipelago is modulated by interactions

between atmospheric processes associated with inter-annual irregular oscillations in sea surface temperature anomalies in the

Pacific and Indian oceans. Drier-than-normal conditions across Indonesia are generally associated with cooler-than-normal

sea surface temperatures (SSTs) which occur during strong positive El Niño-Southern Oscillation (ENSO) event (El Niño)

and/or positive phase of the Indian Ocean Dipole (IOD) cycle. Reduced precipitation in south Sumatra, south Kalimantan,

and south Papua are typically linked to El Niño events, while dry conditions in north central Sumatra tend to coincide with a

positive IOD phase (Aldrian and Susanto 2003, Field and Shen 2008, Field et al., 2016). While the most severe droughts and
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widespread burning occurring when both El Niño and IOD are in positive phases (Reid et al., 2012, Pan et al., 2018), short

droughts and associated burning events can also develop in neutral ENSO and IOD years, triggered by events such as the dry

phase of Madden-Julian Oscillation (Gaveau et al., 2014, Oozeer et al., 2020).

The chaotic nature of atmospheric circulation (Lorenz 1963) prevents reliable numerical weather prediction beyond a couple

of weeks (Bauer et  al.,  2015).  Nonetheless,  current  state-of-the-art  dynamic seasonal  forecasting  systems show skill  in

seasonal  prediction  of  2m air  temperature  and  precipitation,  especially  in  tropical  regions  (Doblas-Reyes  et  al.,  2013,

Johnson  et  al.,  2019).  The  predictability  of  these  chaotic  weather  parameters  at  monthly  timescales  is  attributable  to

increasingly realistic representation of slowly-evolving SST anomalies associated with the ENSO and IOD variability in

seasonal climate forecasting systems (Stockdale et al., 1998, Johnson et al., 2019, Fan et al., 2020, Lavaysse et al., 2020).

Global assessments of seasonal predictability of fire activity have shown that climate information from dynamic models

(Turco et al., 2018) and observed sea surface temperature anomalies (Chen et al., 2016, Chen et al., 2020) can be used to

skilfully predict  fire  occurrence  across  different  regions,  including Indonesia.  Other  studies  focused  on Indonesia have

demonstrated that  anomalous drought conditions can be predicted up to a few months in advance (Spessa et al.,  2015,

Shawki et al., 2017). However, these previous efforts did not integrate non-climate information in fire activity prediction

models, and had only aggregated regional resolution.

The climate-fire relationship in Indonesia is strongly regulated at finer spatial scales by human-driven rapid transformation

of land cover in Indonesia, particularly in peatland ecosystems (Miettinen et al., 2012, Turubanova et al., 2018, Nikonovas et

al.,  2020).  As  such,  land  cover  change  and  forest  fragmentation  are  critical  ingredients  for  predicting  fire  activity  in

Indonesia. No studies have assessed how well the skill of seasonal drought prediction at regional scales translates to fire

activity forecasting at fine spatial scales, which would add value to potential users of the forecasts such as fire managers,

forest conservation and peatland protection agencies. While the integration of non-climate information datasets, development

of high spatial resolution probabilistic forecasting models and long-term performance validation have been identified by the

previous studies as key requirements for building future early warning systems and increasing the usability of the seasonal

climate information in fire management (Spessa et al., 2015, Chen et al., 2016, Turco et al., 2018), these challenges have not

yet been addressed.

This study aims to (i) move beyond seasonal forecasting of fire activity solely as a function of climate variables, (ii) provide

a blueprint  for future operational  landscape-scale fire forecasting systems and (iii)  evaluate the system from a potential

user’s perspective in terms of skill and economic utility. Specifically, we developed a probabilistic early fire warning system

(ProbFire)  for  Indonesia  that  integrates  information  from ECMWF SEAS5 seasonal  climate  forecasts  and  non-climate

datasets and produces probabilistic fire event predictions at 0.25 degree spatial resolution with monthly time steps. ProbFire
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performance was assessed using MODIS active fire observations during the 2002-2019 period. To assess the added value of

SEAS5 seasonal forecasts, ERA5 climatology-based model was used as a benchmark. In addition to evaluating model skill at

predicting observed fire occurrences, we also assessed the economic value and benefits of ProbFire predictions for potential

stakeholders in Indonesia and beyond.

2 Data

2.1 Fire activity data 

As a proxy of fire activity across Indonesia this study used the Collection 6.1 active fire dataset MY(O)D14 (Giglio et al.,

2016) based on Moderate Resolution Imaging Spectroradiometer (MODIS) imagery at thermal wavelengths. The product

contains centre coordinates of MODIS pixels (~1 km at nadir, ~10 km at the extreme sensor view edge) which were flagged

as active fires by the thermal anomalies algorithm.

Figure 1: Study region showing total MODIS active fire counts for the 2002-2019 period at 0.25° resolution. Also shown are the
bounding boxes of the sub-regions used in the study.

The MY(O)D14 product has been shown to perform well in detecting large fire events and to have low false alarm rate.

Validation of the product for Equatorial Asia region indicated 8% error of commission (Giglio et al., 2016).  Low levels of

false detections were also confirmed during the 2013 burning episode in north Riau, where 96% of MODIS active fire pixels

were found to fall within the burned area extent estimated using higher resolution imagery (Gaveau et al., 2014). Omission

errors for small fires of the MODIS active fire product are inevitably high due to the relatively coarse spatial resolution of

the sensor (pixel size 500m at nadir). However, fFor fires over 0.125 km2 in size estimated omission error was 10%, while

for fires of 0.250 km2 or larger, omission error was below 5% (Giglio et al., 2016). Although low temperature smouldering

peatland fires are generally more difficult to detect using thermal anomalies algorithms (Giglio et al., 2016), however, such
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fires typically have long residence times and as a result detection probability increases with each satellite overpass. In any

case, omission of small fires in the product is not critical for early warning systems aimed at alerting the risk of unusually

high fire activity events, rather than quantify fire effects such as fire-affected area. A recent study comparing fire emission

inventories based on MODIS burned area and active fire  datasets for Indonesia showed that  active fire-based emission

models reproduce regional aerosol optical thickness more accurately when compared to area burned methods, resulting in a

smaller underestimation of fire activity in extreme burning years (Liu et al., 2020).

2.1.1 Fire occurrence patterns in Indonesia and prediction objective

The MODIS active fire detections were aggregated to 0.25° spatial grid and monthly time step. Monthly active fire counts

were used both as model training targets and for prediction validation. Most of the grid cells (~80%) did not have any active

fires for the given month. Active fire counts for the grid cells with fire detections (~20% of the dataset) The counts for the

grid cells  with active fire  pixels  were  highly skewed,  with the majority containing very few  fire  detections,  while  the

relatively low number of grid cells  with fire detections  had very high monthly fire counts (up to ~2500). Approximately

three quarters of the grid cells with active fire detections had 1-10 fire pixels, while the remaining upper quartile (5% of the

total dataset) had > 10 active fire detections per month. Importantly, while the number of grid cells having low active fire

pixel count (1-10) show a clear pattern of Indonesia’s dominant dry season (Aldrian and Susanto 2003), there are only small

differences when comparing the fire grid cell counts for different years (Fig. 2a). In contrast, the number of the top quartile

of all fire-containing grid cells varied considerably more between years. Total active fire counts depicted in Fig. 2b exhibit

even  greater  interannual  variability  indicating that  most of  the region’s  fire  impacts  can be attributed to  the grid cells

containing > 10 fire pixels.

Figure 2: MODIS active fire record for Indonesia during 2002-2019 period. a) % of total land grid cells in the study region (n =
2080) with active fire detections. The two categories shown are for grid cells with relatively low fire counts (1-10 fire pixels per
month) and higher degree of fire presence (> 10 fire pixels) in blue and red colours, respectively.  b) Total monthly MODIS active
fire counts attributable to grid cells of the two categories.
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The main objective of ProbFire is to predict the probability that the monthly active fire count will exceed a given threshold.

While we present results of predicting both monthly active fires count > 0 (20% of the dataset) and monthly active fire count

> 10 cases (5% of the dataset), our analysis focuses on predicting the latter class. While prediction of increasingly rare events

is a more challenging problem, it is also a more important one due to the greater it’s  higher impacts  that such fire events

have. and importance to fire management.

2.2 Climate variables 

This  study  used  three  climatic  variables  as  inputs  for  prediction  of  fire  activity  in  Indonesia:  total  precipitation,  air

temperature and relative humidity. These climate indicators are strongly linked to fire occurrence and as a result are widely

used as key inputs for calculating various fire danger indices (van Wagner and Forest  1987, Dowdy et  al.,  2009).  The

variables were obtained from the European Centre for Medium-Range Weather Forecasts (ECMWF) gridded reanalysis and

long-range forecasts products distributed via the Copernicus Climate Change Service. For model training, validation and for

computing  climatological  values  we  employed  the  ECMWF’s  ERA5  reanalysis  dataset,  while  for  predictions  of  fire

occurrence probability at  0one to  5six months lead times we have used ECMWF’s SEAS5 long-range forecasting model

simulations.

ERA5 is the latest version of ECMWF reanalysis products. It is based on the Centre’s Integrated Forecast Systems coupled

atmosphere-ocean model simulations constrained with many assimilated satellite-based and in-situ observational  datasets

(Hersbach  et  al.,  2020).  The ERA5 product  used  in  this  study  has  a  regular  longitude/latitude  grid  with  0.25° spatial

resolution and 1-hourly time step.  We have resampled  the ERA5 weather  parameters  to monthly values  by computing

monthly mean 2m temperature, mean monthly 2m relative humidity and total monthly precipitation. 

SEAS5 is the fifth generation ECMWF’s seasonal forecasting system and has been operational since 2017 (Johnson et al.,

2019). The system consists of 51 ensemble members which are initialized on the first day of every month and simulate the

state of the atmosphere for a seven-month period. The individual ensemble members are initialized using perturbed initial

conditions and atmospheric model parameters  to represent  uncertainties associated with the initial  state and missing or

misrepresented model processes. While the system consists of 51 ensemble members when operated in forecasting mode

(since 2017), for the years prior to 2017 SEAS5 system was initialized using only 25 members producing climate hindcasts

(alternatively termed reforecasts) for the period covering 1981-2016. In this study, we used the same subset of 25 SEAS5

members which were available for the whole of the study period covering 2002 through 2019, and we also used term

forecasts in describing SEAS5 data from both hindcast and forecast periods. The spatial resolution of the SEAS5 product

was one-degree, while the temporal step was one month.
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While mean 2m temperature was readily available and total monthly precipitation was simply calculated from precipitation

rates given in the respective ERA5 and SEAS5 products, relative humidity was derived from 2m temperature and 2m dew

point temperature using August-Roche-Magnus approximation (Alduchov and Eskridge 1996):

Rh=100
exp( 17.625td

243.04+td )
exp ( 17.625 t

243.04+t )
(1)

where  Rh is relative humidity,  td is 2m dew point temperature and  t is 2m temperature. In total, we used eight climate

features as inputs into ProbFire: total monthly precipitation, total monthly precipitation for the five preceding months (t-1 to

t-5), mean monthly temperature and mean monthly relative humidity. Precipitation for the 5 months preceding the month of

interest was included to characterise long term build-up of drought conditions, and the number of months was determined

empirically during the model optimization stage. 

2.2.1 SEAS5 bias and variance adjustment

Raw  SEAS5 model  ensemble  forecasts,  like  any  other  long-range  climate  modelling  system  outputs,  are  affected  by

systematic model biases and drift and as a result, forecast climatology (for example long-term mean and variance) is often

significantly  different  from  the  observed  climatology  (Doblas-Reyes  et  al.,  2013,  Johnson  et  al.,  2019).  Furthermore,

publicly  available  SEAS5  forecasts  have  a  spatial  resolution  of  one  degree  and  consequently  cannot  represent  local

conditions well, particularly in coastal and mountainous areas (Fig. 3).
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Figure  3.  Illustration of  mean and variance adjustment  applied  to raw SEAS5 ensemble  member  forecasts.  A) Raw SEAS5
member = 1 temperature at 2 metres (t2m) for October 2015 with lead time = 23 months. B) October 2015 mean and variance
adjusted 2 metre temperature t2m of the same SEAS5 member based on calibration against overlapping 1993-2019 series between
ERA5 reanalysis and SEAS5 forecasts. C) SEAS5 ensemble member raw and bias adjusted t2m and ERA5 2 metre temperature
t2m at 115E, 2S location for the 1993-2019 period (bias corrected SEAS5 is only shown for the study period 2002-2019). D) Mean
SEAS5 member t2m 2 metre temperature for all October months in the record for different lead times, showing ensemble mean
drift (warming in this case) and increasing spread.

To address SEAS5 biases and to downscale of SEAS5 hindcasts to match the spatial resolution of ERA5 reanalysis (0.25

degree), we performed a mean and variance adjustment (MVA) of the raw SEAS5 outputs. The method has been extensively

applied in seasonal forecasting (Barnston, 1994, Doblas-Reyes et al., 2005) and has been shown to have similar performance

when compared to more complex and computationally intensive methods (Manzanas et al., 2019).

The MVA was applied in two steps. First, the raw SEAS5 forecast data at one-degree resolution were re-gridded to match

the 0.25 degree resolution of the ERA5 reanalysis data using nearest-neighbour interpolation. Second, the mean and variance

of monthly hindcasts for each SEAS5 ensemble member were transformed to match those ERA5 values of the 1993-2019

period for that grid cell following Eq. (2):

fcorm, t= (frawm, t − y t )
σ o

σ f

+ot (2),

where fcorm, tand frawm,t are the mean and variance adjusted and raw SEAS5 hindcast ensemble member m for month t,

y t is SEAS5 ensemble mean of all times t, o t is ERA5 mean for the month t, σ odenotes ERA5 standard deviation and σ f is

SEAS5 ensemble standard deviation for the calibration period (Fig. 3). The calibration period was 1993–2019, as determined

by the availability  of  both  SEAS5 hindcasts  and  ERA5 reanalysis  on  the Copernicus  Climate  Change Service  system

(https://cds.climate.copernicus.eu).
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2.3 Non-climate variables

In addition to the climate variables, we used environmental features which are closely associated with fire occurrence in the

region. These datasets were: per-grid cell peatland extent, past fire activity, primary forest cover extent, primary forest loss

in previous year and secondary forest loss in previous year (described in detail in the following paragraphs). In contrast to

climate features which had a monthly time step, all the environmental features had annual time resolution except for peatland

extent which was fixed for the whole study period. While numerous other sources of potential feature data exist, they were

not selected because they did not cover the whole of Indonesia for the full study period, and/or did not have at least an

annual  time  step.  This  last  criterion  was  particularly  important  for  determining  selection  of  datasets  because  the  fire

prediction model was built to form the basis for an operational early fire warning system. 

2.3.1 Past fire activity

In many parts of the region, in deforested and unmanaged peatlands in particular, the fire return interval is short due to

frequent repeated anthropogenic burning (Cattau et al.,  2016). Frequent fires prevent forest regrowth, and the landscape

becomes dominated by flammable grasses (Hoscilo et al., 2011). The positive feedback between fire and vegetation means

that areas which did experience burning in the past are more likely to burn again. To represent fire occurrence in previous

years as a model input, the maximum monthly active fire detection count for each 0.25° grid cell in the years preceding the

prediction year was used.

We used two different active fire products to cover past fire observations for all years in the study period (2002-2019).

MODIS active fire record was extended beyond 2002 with Along Track Scanning Radiometer (ATSR) World Fire Atlas

(WFA) night-time fire monthly counts for the 1997–2001 period. This was done to reduce the impact of the lack of past fire

observations for first few years in the study period on the model performance. The ATSR WFA night-time fire product

contains several times fewer active fire detections when compared to the MODIS product due to lack of day-time retrievals

(Arino et al., 2012), and as a result, pre-2002 maximum monthly counts are underestimated when compared the MODIS

estimates. However, this step was important to identify areas affected by the 1997-1998 El Niño event and the associated fire

episode which was one of most severe in Indonesia’s history (Page et al., 2002) 

2.3.2 Forest cover features

Loss  and  degradation  of  primary  forest  cover  in  recent  decades  has  been  closely  associated  with  an  increase  in  fire

occurrence  in  the region (Langner  et  al  2009, Field et  al.,  2016).  Undisturbed humid primary  forests  in  Indonesia are

extremely  fire-resilient  (Cochrane  et  al.,  1999,  Nikonovas  et  al.,  2020)  and  can  resist  ignition  even  during  prolonged

droughts. By contrast, industrial plantations and agricultural land, which are replacing primary forests, have substantially

higher fire activity rates (Nikonovas et al., 2020). We used two high resolution Landsat data-based tree cover datasets used
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to represent changes in forest cover during the study period at 0.25° spatial resolution and at an annual time step. A co-

located analysis of primary forest cover extent in the year 2000 (Morgano et al., 2014) and version 1.6 of the global annual

forest cover loss dataset (Hansen et al., 2013), which covers 2001 to 2018, was performed to determine annual primary forest

cover fraction, primary forest loss and secondary forest loss. Pixels classed as primary forest in the year 2000 were matched

with the annual forest loss pixels for years 2001-2018. Firstly, we determined if the estimated forest loss had occurred in

primary or secondary forest areas. Secondly, primary forest cover loss for each year was derived by subtracting cumulative

primary forest loss from the year 2000 primary forest extent estimate. Following these two steps, the annual primary forest

cover, primary forest loss and secondary forest cover loss estimates at Landsat pixel level were aggregated to the study’s

0.25° resolution.

Definitions of forest cover and primary forests in this study follow the definitions given in the global forest cover loss and

primary forest extent of the year 2000 products. Both datasets considered all Landsat pixels with tree height of > 5 m and

canopy cover of > 30% as forest cover. Primary forest was defined as a contiguous block of > 5 ha of natural forest which

has not been cleared in recent decades. Note that the definition of primary forest includes both intact and degraded primary

forest  types  (Morgano  et  al.,  2014).  Forest  cover  loss  in  the  annual  forest  cover  loss  dataset  was  defined  as  a  stand

replacement disturbance. Both Landsat-based forest cover datasets were found to agree well with alternative estimates. The

primary forest extent of the year 2000 dataset showed approximately 90% agreement when compared to the primary forest

map of the year 2000 issued by the Ministry of Forestry of Indonesia (Morgano et al., 2014), while validation of tree cover

loss suggested that forest loss was correctly flagged in more than 80% of the cases (producer’s accuracy 83.1%) in tropical

regions (Hansen et al., 2013).

2.3.3 Peatland fraction

Deforestation and drainage of the region’s carbon-rich peatlands in recent decades has rendered large amounts of near-

surface peat vulnerable to frequent repeated burning (Hoscilo et al., 2011). Intentional fires in peatlands that are ignited to

clear land and prevent vegetation regrowth often develop into uncontrolled sub-surface peat combustion events which may

last weeks or even months (Widyastuti et al., 2020). As a result, the region’s peatlands experience fire occurrence rates up to

several times higher when compared to non-peatlands (Vetrita and Cochrane 2020, Nikonovas et al., 2020). To represent

elevated fire activity in peatland areas we estimated peatland fraction in the 0.25° grid cells using the high-resolution vector

maps of peatland distribution and carbon content by Wahyunto and Suparto (2004). The vector maps were rasterized to 0.01°

grid. Any cells whose centroid was inside the peatlands polygons were considered as peat areas. Following the rasterization

step, peatland’s fraction at  0.25° resolution was determined from the number of 0.01° cells classed as peatlands falling

within the lower resolution cells.
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2.3.4 Sub-region identifier features

Drivers of fire activity vary across different parts of the archipelago have different fire activity rates even when experiencing

comparable drought conditions (Aldrian and Susanto 2003, Field and Shen 2008, Field et al., 2016). To enable the model to

represent regional differences in drought sensitivity across Indonesia, we used additional five features representing binary

identifiers for each of five sub-regions within Indonesia (Fig. 1).

3 Model description and experimental setup

3.1 The model

To predict  fire  occurrence probability we used a multilayer  perceptron  (MLP) classifier  (i.e.  a shallow artificial  neural

network) (Hastie et al.,  2009). The main reason for choosing a MLP model was the fact  that  MLP’s do produce well-

calibrated probabilities, while at  the same time being able to approximate more complex non-linear relationships when

compared to simpler probabilistic prediction models such as logistic regression (Niculescu-Mizil and Caruana 2005, Guo et

al., 2017). 

The model consisted of three fully connected layers; a layer with 18 inputs (see fig. S3), one hidden layer with 15 nodes and

an output layer with two nodes. For the hidden layer rectified linear unit (ReLU) activations were used, while  sigmoid

activation  was  applied  to  the  output  layer  nodes  to  obtain  class  (active  fire  counts  below  or  above  the  threshold)

probabilities. The model weights were optimized employing LBFSG solver with learning rate value of 0.001 and cross

entropy loss function using L2 regularization alpha parameter value of 1. The input features (climate parameters and land

cover information) were scaled to zero mean and unit variance. The model architecture and optimal parameter setup were

determined  performing  grid  search  cross-validation  empirically and  evaluating  based  on the  model’s  performance  on

validation data. The model (github.com/ToFEWSI/ProbFire) was implemented in the Python 3 programming language using

the scikit-learn machine learning library (Pedregosa et al., 2011).

3.2 Model validation design

To  evaluate  ProbFire  performance,  we  employed  a  leave-one-year  out  training  and  validationtesting dataset  splitting

strategy. This approach provides a more realistic representation of the potential of the model to forecast fire occurrence

probabilities for future fire seasons. The whole 17-year record was used (2002-2019), and the MLP model was iteratively

trained using 16 years worth of ERA5 reanalysis climate and land cover data, and predicting fire probabilities for the left-out

year. For example, fire occurrence probabilities for year x2006 were predicted and evaluated using data from all years except

year x2006 for model training. This resulted in 17 different realizations of the model  (one for each year in the record)  all
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having different weights and biases, due to different subsets of the dataset being used for training. Pretrained models with

weights and biases are available at https://zenodo.org/record/5206278.

3.3 ERA5-based predictions

The first set of model predictions was made using ERA5 reanalysis monthly climate values employing the leave-one-year

out  strategy.  This  set  of  predictions  represents  the  base  model  and  the  best-case  scenario  of  this  study’s  fire  activity

prediction results.

3.4 SEAS5-based predictions

ProbFire  prediction  of  fire  probability  at  lead  times  of  01-56 months  was  based  on  SEAS5 climate  forecasts  for  the

corresponding lead times. Total precipitation for the previous months (t-1 through t-5) was also based on SEAS5 values for

the months within the lead time window, while ERA5 precipitation for the previous months was used if those months were

outside the lead time period. For example, prediction for October 2015 at 23 months lead time was based on SEAS5 hindcast

issued in August 2015. Precipitation for the preceding months t-1 and t-2 was also based on the SEAS5 hindcasts issued in

August, meanwhile total precipitation for the months t-3 through t-5 was derived from ERA5 precipitation rates for July-

May 2015. This approach enabled us to utilize all the observational information available at the time when forecasts were

issued. 

3.5 Climatology model

Potential skill and value of long-range fire predictions based on SEAS5 seasonal climate forecasts was benchmarked against

climatology-based model predictions. The climatology model had the same input features, except that SEAS5 forecasts were

substituted  with  ERA5 mean  values  for  the  1993-2019  period  for  a  given  month.  Like  the  forecasting  feature  setup,

climatological values of total precipitation for the preceding months were used for the months within the forecasting time

window, otherwise ERA5 total precipitation was used. For example, climatology-based prediction for October 2015 at lead

time  of 23 months was constructed using mean climate values for October 1993-2019 and climatological values of total

precipitation for September and August (t-1 and t-2), but ERA5-based values were used for total precipitation at months t-3

to t-5.  

3.6 Model performance evaluation

3.6.1 Skill scores

To assess model performance, we used reliability diagrams (Murphey et al., 1992), probability of detection and false alarm

rate  analysis  (receiver  operating characteristic)  (Mason 1982) and the Brier  score (Murphy 1973).  Reliability diagrams

inform how well predicted event occurrence probabilities correspond to the actual observed event frequency. For example,

12

310

315

320

325

330

335

https://zenodo.org/record/5206278


we would have a reliable forecast if taking all cases when 70% event probability was issued, the event would have occurred

in close to 70% of those cases. The reliability diagrams were calculated by splitting predicted probabilities into 10 equally

spaced bins in a range of [0, 1] and with a step of 0.1, and determining fire event occurrence frequency for each of the bins.

To  compliment  the  reliability  diagrams,  we  also  constructed  prediction  histograms,  which  indicate  forecast  sharpness.

Sharpness is a measure of the ability of a forecast to issue a range of probabilities. It is a desirable property of a forecasting

system, because forecasts that issue low or high event probabilities are potentially more useful. In contrast, while a forecast

that often gives probabilities close to event climatological frequency may be reliable, it lacks sharpness and hence is of little

use for decision-makers.

The probability of detection expresses the fraction of all events that were correctly classified, while false alarm rate indicates

the fraction of predicted events which did not occur:

pod=
true positives

(true positives+ falsenegatives )
(3)

and 

far=
false positives

(true positives+false positives )
(4)

here  pod refers to probability of detection,  far refers to false alarm rate, TP refers to true positiveshits which  equals the

number of events that have been correctly classified as events and FP refers to, missesfalse negatives is the number of events

that were not predicted and false alarmspositives is the number of predicted events which did not occur. The probability of

detection is sensitive to  hitstrue positives, but ignores false  positivesalarms, while false detection rate is sensitive to false

alarms but ignores missesfalse negatives. Both scores may be artificially inflated, by increasing and reducing the number of

event forecasts in the case of probability of detection and false alarm rate, respectively. While both scores can indicate if the

forecasts are potentially useful,  they are calculated at a particular probability threshold. In reality, different users might

benefit from choosing different probability thresholds at which they decide to act. Receiver operating characteristic (ROC)

curve addresses  this by showing both probability of detection and false alarm rate at  a  range of increasing probability

thresholds. The metric indicates the ability of the forecasting system to discriminate between events and non-events. The

area under the receiver characteristic curve is a single number summary score which is used in this study to compare receiver

characteristic curves obtained by different models.

The Brier score is a metric that is widely used to evaluate probabilistic predictions (Murphy  1973, Gneiting and Raftery

2004). Conceptually it is similar to mean squared error, but rather than measuring difference between observed and predicted

real values, Brier score evaluates difference between predicted probability in the range [0, 1] and event occurrence: 
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Brierscore=
1
n
∑
t=1

n

( f t − ot )
❑2

(6)

where f t is the probability of t t h forecast, and o tis 0 if the event didn’t occur and 1 if it did. The score takes values between

0 and 1,  with smaller  values  indicating better  skill.  The Brier  score  is  sensitive both to discrimination and calibration

(reliability), and it is strictly a ‘proper’ score. The latter property forces forecasters to issue a probability which is equal to

their true expectation (Gneiting and Raftery 2004). In contrast  to proper scores,  ‘improper’  scores can be improved by

‘hedging’, i.e. issuing probabilities which are different from the true expected probability. The Brier score is sensitive to

class prevalence and suffers from becoming vanishingly small for extremely rare events. As a result, it only makes sense to

compare the scores of different forecasts for the same sample.

3.6.2 Relative value of the forecasts

The scores  discussed  above are  useful  in  assessing  forecast  skill  and  for  comparing  performance  of  different  models,

however, they do not explicitly reveal if the decision-makers would benefit from using the proposed forecasting system.

Indeed, it is possible for forecasts to be simultaneously skilful but not useful. The cost-loss ratio analysis (Murphy 1985,

Richardson 2000) addresses the usefulness question directly by providing an assessment of potential economic value of the

forecasts. This model, while simplistic and of limited applicability when accounting for non-economic impacts, nonetheless

allows us to quantify the value of forecasts for a range of users with a range of specific cost-loss ratios. 

For example, if the event is a ‘peatland fire’, and the action is ‘fire preventative measures’, then loss would equal the total

economic loss caused by the fire event and cost would be the total economic cost of the preventative measures. Each time a

decision maker takes no action and fire event occurs, it results in a loss. Alternatively, every time the decision maker acts it

incurs a specific cost. Every time action is taken and the predicted fire event occurs, the difference between the reduced loss

and invested costs constitutes the total amount saved.  In Indonesia, a range of different  fire preventative actions could be

utilized depending on the lead time of forecasts. Early warning (lead times of several month) would allow forecasters and

relevant authorities to inform the communities in fire-prone areas, legislate to prevent agricultural fire use for the season and

increase preparedness and train fire service personal. Forecasts issued at less than 1 month lead times could be utilised to

implement local  bans of specific  fire  uses (e.g.  agricultural  waste burning),  and to deploy monitoring and fire  fighting

resources to the high-risk areas. A reliable forecasting system, therefore, can inform the decision maker when (and where) to

act to minimize total expenditure. As a result, such a forecasting system has a potential economic benefit, and the cost-loss

analysis indicates this potential economic gain, or in other words, the relative value of the forecasts.

This relative value is expressed as a fraction of value of a perfect (theoretical) forecast and indicates improvement over a

scenario when the only information available to the user is climatological event occurrence frequency. The relative value of
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a forecast depends on the user-specific cost and loss and is positive over a limited range of cost-loss ratios. If cost is larger

than loss, not acting is always better, and vice-versa, if cost is very low in relation to the potential loss, always acting is the

best option. Both these scenarios negate the need for a forecasting system. The potential value of the forecasts is highest at

the cost-loss ratio value which is equal to the event climatological frequency. Benefits vary for different users with different

cost-loss ratios, and, assuming reliable probabilistic forecasts, an optimum probability decision threshold is equal to user

cost-loss ratio (Richardson 2000). As a result, users with high cost-loss ratios would benefit most from choosing to act at

higher event probability thresholds and vice versa. In this study, relative value was calculated for a range of cost-loss ratios

[0.001, 1] following the Eqs. (7) and (8):

relative value=

c
l

(true positives+ false positives −1 )+ falsenegatives

c
l

(Pclim− 1 )

if
c
l
<Pclim; (7)

Relative value=

c
l

(true positives+ false positives )+ falsenegatives− Pclim

c
l

(Pclim− 1 )

if
c
l

≥ Pclim; (8)

where 
c
l

 is cost to loss ratio and Pclim is the climatological probability of occurrence of the fire event  (i.e. active fires >

10) for the sub-region of interest. Note that relative value (same as probability of detection and false alarm rate), is calculated

at a particular probability threshold, in effect transforming the continuous probabilistic forecasts to binary fire event vs no

fire event predictions to derive hits true positives, false alarmspositives and missesfalse negatives. As a result, relative values

are derived for a range of probability thresholds indicating potential benefits for users with different cost-loss ratios.

3.6.3 Mean SEAS5 ensemble probability

In  contrast  to  the  traditional  ensemble  evaluation  methods  that  derive  probabilistic  forecasts  from  distribution  of

deterministic  predictions  of  the  individual  ensemble  members,  the  modelling  method employed  by  this  study  predicts

probabilities of fire counts exceeding a given threshold for all 25 members of SEAS5 ensemble. For deriving ensemble mean

skill scores we combined the estimates based in individual members into a single probability estimate by computing simple

equally weighted average probability.
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4 Results and discussion 

4.1 Reliability of probability prediction

ProbFire forecasts of active fire counts > 0 in any given grid cell in any particular month generally exhibited good degree of

reliability (Fig. 4). Reliability diagrams of ERA5-based prediction for the study years indicate, with a few exceptions, that

for most years reliability curves were close to the perfect diagonal line (Fig 4a). For low fire activity years, the predictions

were generally overconfident (i.e. probabilities higher than the observed fire event frequency). Predictions were less reliable

only for two of the relatively high fire activity years, 2002 and 2019. Predictions for 2002 were underconfident, meaning that

the model generally underestimated fire event occurrence frequency for that year. Active fires were more frequently detected

in grid cells for which the model issued low probabilities. This underestimation may be because 2002 was the first year in

the record which had no prior MODIS active fire observations and also only a limited primary forest loss record. Although

we tried to extend back the MODIS observations beyond 2002 with the ATSR WFA night-time active fire dataset, the later

product has much lower fire counts and could not provide sufficient record of fire activity prior to 2002. 
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Figure 4: Reliability diagrams of active fire counts > 0 case occurrence probability predictions. Inset axes show ERA5-based
probability prediction frequency histograms. a) ERA5-based prediction for all of Indonesia reliability curves for each year in the
record. The colour of the lines corresponds to active fire > 0 cases count for the year.  (b-f) Mean reliability curves for the sub-
regions (Fig. 1), showing ERA5 (red) and SEAS5-based ensemble mean prediction reliability curves at different lead times (shades
of grey, bottom legend). Dotted lines indicate perfect reliability (1:1 fit).

By contrast, predictions issued for the year 2019 were too high across the whole range of probabilities. This overestimation

could be due to several factors. Firstly, the 2019 drought was driven by positive IOD, while ENSO was neutral. Secondly,

since the 2015 burning episode, the Indonesian government has implemented further policies aimed at reducing deforestation

and fire occurrence (Hergoualc'h et al., 2018, Carmenta et al., 2020), which may have contributed to lower than expected fire

detections in 2019.

ERA5 and SEAS5-based prediction probabilities for active fires > 0 pooled for all years, but split into different sub-regions,

generally  indicate good reliability (Fig.  1b-f).  However,  there are some notable differences when comparing the spatial

domains. Notably, all predictions for south Kalimantan and south Papua indicate overconfidence, while forecast (SEAS5-

based) probabilities for west Kalimantan were underconfident. SEAS5-based predictions performed o generally well for all
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regions and all lead times, exhibiting only a gradual degradation in reliability of high probability predictions with increasing

lead time. There were noteworthy differences when comparing the ERA5-based probability histograms for different sub-

regions. Predictions for central Sumatra and west Kalimantan lack sharpness, a property which is manifested by a relatively

low number of very high probabilities issued for those regions. In contrast, the model was able to discriminate between no

fire  and active fire  count > 0 cases  more easily in south Sumatra,  south Kalimantan and south Papua. This difference

coincides with the fact that drought severity in the latter group of sub-regions is influenced by El Niño, while in central

Sumatra and west Kalimantan, a positive IOD is the most important driver of droughts (Field et al., 2016, Pan et al., 2018).

 Figure 5: Same as Fig. 43. but for prediction of probability for active fire > 10 cases.

ProbFire Prediction of active fire count > 10 class occurrence probability was generally less reliable and substantially less

confident (Fig. 5) when contrasted with the model reliability performance for active fire > 0 cases seen in Fig. 4. Reliability

of ERA5-based predictions for different years (Fig. 5a) exhibited much more variability. The large spread is partially 
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Figure 6: Model prediction of active fires > 10 cases probability and observed active fire counts. Shown are SEAS5-based (left 
column) and climatology-based (right column) probability predictions at lead time of 2 months and observed monthly active fire 
counts (middle row) for October in six example years (rows).

attributable to the fact that low fire activity years did not have enough active fires > 10 grid cells needed to determine

reliability of probability prediction. Reliability of ERA5-based predictions for different sub-regions (Figs. 5b-f) was also

slightly  worse  when compared  to  the  active  fires  > 0  prediction  diagrams,  in  particular  for  central  Sumatra  and  west
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Kalimantan . Probability estimates were noticeably underconfident for west Kalimantan (Figs. 5e and 5fd) at low probability

values. The biggest difference in reliability of predictions between the two fire occurrence classes was observed for SEAS5-

based issued probabilities. Reliability of high probability predictions of active fires > 10 occurrences deteriorated rapidly

with lead time. Notably, low numbers of high confidence predictions limited the reliability estimation for central Sumatra

and west  Kalimantan sub-regions,  which had very small  numbers  of high confidence  predictions (low sharpness).  This

highlights that reliable and confident prediction of active fires count > 10 cases is more difficult compared to predicting

active fire count > 0 cases. Low prediction confidence could be in part attributable to dataset imbalance as low number of

active fires > 10 grid cells which comprise only (~5%) of the training data set. However, the most important factor here is

perhaps an intrinsic difficulty of discrimination between grid cells which do contain a few active fires (0 > active fires <11)

and those in which the count exceeded 10 active fires. Fire occurrence and severity in Indonesia, besides the climatic drivers,

is influenced by interplay of many location-specific factors including land management practices, policy decisions and fire

suppression efforts (Page and Hooijer 2016, Tacconi 2016), none of which could be realistically represented in a region-wide

fire prediction model. Despite this difficulty, our results indicated that prediction of the active fires count > 10 category (Fig.

6) was potentially more useful for decision-makers. 

4.2 Prediction skill scores

The model prediction metrics for active fires count > 10 cases (Fig. 76) exhibited patterns which generally followed those of

the reliability diagrams. All of the scores were better for the El Niño dominated sub-regions (i.e. south Kalimantan, south

Sumatra and south Papua). By contrast, west Kalimantan and in particular central Sumatra had lower AUC, higher Brier

score and substantially lower probability of detection. Importantly, not only were the climatology and SEAS5-based forecast

scores worse, but also the ERA5-based predictions yielded lower validation values. This result indicates that the model was

not able to optimize the classification problem as well for the latter sub-regions given the predictors used in this study.

Consequently, even in the case of perfect seasonal forecasts, fire activity prediction performance would be worse in central

Sumatra and west Kalimantan when compared to the other sub-regions. Lower model skill is likely to be attributable to

different dry season patterns coupled with a stronger influence of human drivers. West Kalimantan and central Sumatra in

particular, do experience early season drought (in February-March) as well as the main dry season (July-September) which is

common across all subregions. In contrast to El Niño dominated regions, high fire activity episodes in central Sumatra and

west Kalimantan are typically shorter and do occur outside the times of the two dry seasons (Gaveau et al., 2014) (Fig. 87).

As a result, the monthly time step used by the modelling system of this study may be insufficient for resolving this rapid

climatic variability.
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Figure  7:  Skill  scores  for  prediction  of  active  fires  >  10  cases.  Shown  are  mean  values  of  area  under  receiver  operating
characteristic curve (AUC), Brier score, probability of detection and false alarm rate (figure rows) for the different sub-regions
(figure columns). ROC curves are shown in Figure S2 (Supplementary figures). The values for ERA5-based model predictions are
shown as red bars, climatology-based predictions are depicted as blue bars, while boxplots indicate SEAS5 ensemble member
prediction values at different lead times. For boxplots, shown are the median value (grey bar), interquartile range (boxplot body)
and the full range (boxplot whiskers) of the SEAS5 ensemble member predictions at a given lead time.

SEAS5-based prediction skill scores gradually degraded with increasing lead time in all sub-regions. The performance of

seasonal forecasts was substantially better in the El Niño dominated sub-regions. Notably, in south Papua SEA5 ensemble

predictions had both AUC and Brier scores better when compared to climatology predictions at  lead times up to  4five

months. Skill scores of SEAS5 ensemble predictions in south Kalimantan and south Sumatra indicated potential gains when

compared to climatology-based model predictions at lead times of up to 2three months. By contrast, AUC and Brier scores

of SEAS5-based predictions in central Sumatra outperformed climatology-based model predictions only at 0one month lead.

In west Kalimantan there was no benefit of using SEAS5 ensemble forecasts at any lead times.
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Figure 87: Difference in mean monthly Brier scores between climatology-based and SEAS5-based model predictions of active fires
> 10 case occurrence predictions at lead times of  01–56 months and mean monthly active fire count for the study’s subregions.
Positive  Brier  score difference values  (red shades)  indicate smaller  Brier values  for  SEAS5-based predictions (better),  while
negative Brier difference values (blue shades) indicate that climatology-based predictions performed better for that month and
lead time. Note different colour scales for different subregions.
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These results demonstrate that ProbFire driven by SEAS5 ensemble forecasts has a relatively high potential value for the

development of early warning systems in south Kalimantan, south Sumatra and south Papua. Skilful and reliable prediction

of elevated fire activity 2five to 4three months in advance allows for ample time to act on the predictions. This result may be

attributable to increasingly realistic representation of ENSO-driven SST variability in seasonal forecasting models (Johnson

et al., 2019).  Skill of SEAS5-based fire occurrence forecasts at 0one month lead in central Sumatra indicated some potential

value, however, utilization of such forecasts in the early warning systems is challenging because warnings could be issued at

most a few weeks before onset of a potentially elevated fire activity phase.

ProbFire predictions of monthly active fires > 10 events derived using seasonal forecasts had substantially higher probability

of detection (Fig. 7) when compared to climatology-based predictions in all sub-regions. This was true for all lead times,

although there was a consistent decrease in probability of detection with increasing lead time. At the same time, SEAS5-

based predictions had slightly higher false alarm rates which were also increasing with lead time. Such a pattern was an

expected  result  and  is  a  manifestation  of  differences  in  forecasted  probability  sharpness.  Climatology-based  prediction

lacked sharpness and therefore had low probability of detection and low false alarm rates. Meanwhile, SEAS5 forecasts

enabled the model to issue more confident probabilities (Fig. S1) which consequently had higher probability of detection

rates but also somewhat higher false alarm rates. 

4.3 Relative value of the forecasts

The  cost-loss  analysis  of  ProbFire  fire  activity  forecasts  demonstrated  potential  economic  benefit  of  the  system’s  fire

occurrence predictions when compared to forecasts based only on fire event climatological occurrence frequency (Figs. 8

and 9). While at least some forecasts users in all study sub-regions would have benefited to some degree,  the potential

maximum value and range of user cost-loss ratios that would have gained from using the system varied considerably across

Indonesia. This analysis also revealed that there was a greater benefit from using forecasted probabilities of relatively rare,

elevated fire activity grid cells (monthly active fire count > 10), rather than all fire-containing grid cells (active fires > 0)

(Fig. S1 vs 9).

The relative value of SEAS5-based forecasts was substantially higher than ERA5 climatology forecasts, but only for active

fires > 10 case predictions (Fig. 9). By contrast, climatology-based predictions were very close to or equal in their potential

economic benefits at all lead times when compared to those derived from SEAS5-based predictions for the active fires > 0

cases (Fig. S1). This was an expected result given that the number of low fire activity grid cells did not exhibit the same level

of interannual variability as numbers of high fire activity grid cells did during the study period (Fig. 2). This result indicates

that skilful prediction of widespread annually occurring burning can be achieved by model based on ERA5 climatology and

non-climate information. However, ProbFire predictions based on seasonal hindcasts had higher potential economic benefits

when predicting highly variable occurrence of elevated fire activity (grid cells with monthly active fires > 10).
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Figure 9: Relative value of active fires > 10 cases prediction for users with different cost-loss ratios. Shown are relative value of
ERA5-based predictions and SEAS-based (solid lines) and climatology-based (dashed lines) predictions at different lead times
(columns) for different sub- regions (rows).  Line shading (legend) indicates different fire prediction probability thresholds at
which the relative value curves are calculated. 
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Overall, the forecasts had the highest potential economic value for the widest range of cost-loss ratios in south Kalimantan,

south Papua and south Sumatra. In these sub-regions, where the dry season severity is primarily influenced by El Niño,

predictions of active fires > 10 probabilities indicate a potential gain of over 60% of the benefit from a perfect forecasting

system at cost-loss ratios close to the fire event occurrence frequency ratios (Fig. 9). SAES5-based predictions had relative

values higher when compared to the climatology model at all lead times (01-56 months) and all probability thresholds. The

potential economic gain over the climatology model predictions was increasingly higher for larger cost-loss ratios. This

indicates that users with larger cost-loss ratios would have benefited the most from the SEAS5-based forecasts using high

probability thresholds for decision making. This was particularly true for south Kalimantan, where forecasts of active fires >

10 probabilities also indicated the highest sharpness (Fig. 4). At the same time, for cost-loss ratios over 0.5, climatology-

based predictions offered little in terms of potential economic benefit.

By contrast, ProbFire forecasts for central Sumatra and west Kalimantan indicated potential benefit for narrower range of

cost-loss ratios and lower total relative values of less than 60% of perfect forecast performance (Fig. 9). While SEAS5-based

predictions had modestly higher relative value when compared to the climatology model, this was true only at lead time of

01 month. In addition, the potential economic benefit at 01 month lead was present for lower cost-loss ratios. This result is a

manifestation of low sharpness and reliability of SEAS5-based forecasts in these regions (Fig. 4), at longer lead times.

5 Conclusions 

Predicting  highly  variable  landscape  fire  activity  is  an  inherently  difficult  problem  due  to  the  complexity  of  factors

influencing fire dynamics at different time and space scales, and the large uncertainties associated with datasets used to

characterise  these  fire  drivers.  Previous studies  have  shown that  climate information from current  state-of-art  seasonal

forecasting systems can be utilized for seasonal fire prediction in parts of the globe (Turco et al., 2018), including Indonesia

(Spessa et al., 2015, Shawki et al., 2017). While climate is clearly an important driver of fire activity, these climate-fire

relationships are modified by human activity across a range of spatial scales, especially in regions undergoing rapid land

cover changes such as Indonesia. To reflect this additional source of variability, early fire warning systems in the region

need to utilise non-climate information for fire prediction.

In this study we have developed and tested ProbFire, a new probabilistic early fire warning modelling system for Indonesia

which provides  a  blueprint  for  future operational  warning  systems in the region and beyond.  Compared  with previous

regression-based fire forecasting studies focused on climate-fire relationships (Spessa et al., 2015, Chen et al., 2016, Turco et

al., 2018, Chen et al., 2020), ProbFire integrates ECMWF ERA5 reanalysis and SEAS5 seasonal climate predictions with

non-climate features and employs multilayer perceptron classification model for probabilistic fire event prediction at 0.25
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degree spatial resolution. The probabilistic approach adopted by this study is better suited for predicting rare and/or newly

occurring fire events and allows the forecasts to be evaluated from a user perspective using the cost-loss model.

Validation  of  ProbFire  performance  for  the  2002-2019 period  showed that  SEAS5-based  fire  event  probabilities  were

generally  well  calibrated,  although as  expected,  the  reliability  of  high confidence  predictions gradually  decreased  with

increasing lead times. SEAS5-based fire predictions outperformed the climatology-based model at lead times of  2three to

4five months in south Kalimantan, south Sumatra and south Papua, where drought severity is strongly influenced by El

Niño. By contrast, SEAS5-based forecasts for central Sumatra had higher skill scores only at 0one month lead times, while

in west  Kalimantan  they showed no improvement  at  all  when compared  to  climatology-based predictions.  Analysis  of

potential economic benefits of the forecasts indicated that forecast users with a wide range of cost-loss ratios would have

benefited from using the SEAS5-based predictions in decision making in the El Niño dominated regions of Indonesia. This

demonstrates  that  early  fire  warning  systems  based  on  ECMWF  SEAS5  seasonal  climate  forecasts  and  non-climate

information can support the work of various stakeholders involved in fire prevention and management including Indonesian

government agencies, local communities and commercial entities.

ProbFire has limitations and further research is needed to improve the skill of the predictions, especially in parts of Indonesia

that lie outside the El Niño zone of influence. Lack of predictability in central Sumatra and west Kalimantan at lead times

beyond currentone month indicates the generally low skill of SEAS5 climate predictions in these IOD-dominated parts of

Indonesia, and could potentially be improved by integration of seasonal forecasts from different modelling centres. 

However, even the ERA5-based model had lower predictability in those areas, which indicates that different input data may

be needed. In addition, in central Sumatra severe burning episodes can be triggered by short term droughts (Gaveau et al.,

2014) which cannot be represented at the monthly temporal resolution of this system.  Furthermore, the non-climate datasets

used in this study cannot represent the full range of environmental and anthropogenic factors which modulate fire occurrence

across Indonesia. Consequently, the system uses primitive identifier features for the five sub-regions as none of the used

datasets could reflect the full range of differences in fire-climate sensitivity between the sub-regions. In addition, past and

future changes in national  and local  policies  and fire  suppression efforts  are currently not included in ProbFire.  These

changes could affect the future performance of the system if they reduce the region’s fire sensitivity to the climatic and

biogeographic  features  used  to  drive  ProbFire.  To  address  these  issues,  the  development  of  long-term,  consistent  and

regularly-updated datasets on vegetation, land management status and socio-economic drivers of fire activity is needed.

6. Code availability

ProbFire source code can be found at https://github.com/ToFEWSI/ProbFire
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7. Data availability

All  datasets  used  in  the  study  are  publicly  available.  Primary  forest  cover  in  year  2000  is  available  at:

https://glad.umd.edu/dataset/primary-forest-cover-loss-indonesia-2000-2012.  The annual  forest  loss  data  available  on-line

from:  http://earthenginepartners.appspot.com/science-2013-global-forest.  Active  fire  data  can  be  downloaded  from:

https://firms.modaps.eosdis.nasa.gov/download.  Peatland  extent  maps  are  available  at:

http://data.globalforestwatch.org/datasets.  ERA5  reanalysis  and  SEAS5  hindcasts  can  be  downloaded  from:

https://climate.copernicus.eu.  ProbFire  input  datasets  aggregated  to  0.25  resolution  can  be  accessed  at

https://zenodo.org/record/5206278.
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