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Abstract. Multivariate coastal flooding is characterized by multiple flooding pathways (i.e., high offshore water levels, stream-
flow, energetic waves, precipitation) acting concurrently. This study explores the joint risks caused by the co-occurrence of high
marine water levels and precipitation in a highly urbanized semi-arid, tidally dominated region. A novel structural function de-
veloped from the multivariate analysis is proposed to consider the implications of flood control infrastructure in multivariate
coastal flood risk assessments. Univariate statistics are analyzed for individual sites and events. Conditional and joint probabili-
ties are developed using a range of copulas, sampling methods, and hazard scenarios. The Nelsen, BB1, BBS, and Roch-Alegre
were selected based on a Cramer-von Mises test and generally produced robust results across a range of sampling methods. The
impacts of sampling are considered using annual maximum, annual coinciding, wet season monthly maximum, and wet season
monthly coinciding sampling. Although annual maximum sampling is commonly used for characterizing multivariate events,
this work suggests annual maximum sampling may substantially underestimate marine water levels for extreme events. Water
level and precipitation combinations from wet season monthly coinciding sampling benefit from a dramatic increase in data
pairs and provide a range of physically realistic pairs. Wet season monthly coinciding sampling may provide a more accurate
multivariate flooding risk characterization for long return periods in semi-arid regions. Univariate, conditional, and bivariate

results emphasize the importance on proper event definition as this significantly influences the associated event risks.

1 Introduction

Coastal flooding is a significant human hazard (Leonard et al., 2014; Wahl et al., 2015) and is considered a primary health
hazard by the U.S. Global Change Research Program (Bell et al., 2016). Coastal migration and utilization continues to increase
(Nicholls et al., 2007; Nicholls, 2011). Over 600 million people populate coastal zones (Merkens et al., 2016). Climate change-
induced sea level rise will substantially increase flood risk (Church et al., 2013; Horton et al., 2014), and negatively impact
coastal populations (Bell et al., 2016). Even relatively modest sea level rise will significantly increase flood frequencies through
the US (e.g., Tebaldi et al., 2012; Taherkhani et al., 2020). Southern California is particularly vulnerable to sea level rise.
Small changes in sea level (~5 cm) double the odds of the 50-year flooding event (Taherkhani et al., 2020) and the 100-
year event is expected to become annual by 2050 (Tebaldi et al., 2012). Regional research has explored flood risks caused by

sea level rise and coastal forcing (e.g., Heberger et al., 2011; Hanson et al., 2011; Gallien et al., 2015). However, accurately
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characterizing future, non-stationary coastal vulnerability requires considering the joint and potentially nonlinear impacts of
compound (marine and hydrologic) events (Gallien et al., 2018).

Compound coastal flooding considers the combined impacts of marine and hydrologic forcings, typically within a physi-
cally relevant time window, and are considered multivariate events. Typical events, such as precipitation or high water levels,
occurring simultaneously may combine to generate extreme events (Seneviratne et al., 2012). In urban coastal settings multiple
flooding pathways (i.e., high marine water levels, wave runup and overtopping, large fluvial flows, and pluvial flooding from
precipitation) interact with infrastructure (e.g., sea walls, human-made dunes, and the storm system) potentially exacerbat-
ing hazards. Notably, multivariate events that share a common return period may produce vastly different flooding outcomes.
Traditionally, literature has focused on river discharge or storm surge dominated multivariate events (Table 1).

From a flood risk perspective there are multiple methods to characterize events. A univariate approach is often used where
a single variable (e.g., water level) is considered. For example, FEMA recommends characterizing multivariate events by
developing univariate water level and discharge statistics and then adopting a smooth, blended result for transitional areas
(FEMA, 2011, 2016c). This can lead to underestimating flood risk because of the interplay between two flood pathways (i.e.,
a high tail water forces fluvial flooding upstream). Conditional probabilities represent an alternative where the multivariate
flood risk can be evaluated given available information on a primary variable (e.g., water level) to determine the exceedance
probability of a secondary variable (e.g., precipitation) (Shiau, 2003; Karmakar and Simonovic, 2009; Zhang and Singh, 2012;
Li et al., 2013; Mitkova and Halmov4, 2014; Serinaldi, 2015, 2016; Anandalekshmi et al., 2019). A third method uses copulas
to analyze the dependence of multiple flood drivers and develop joint statistics.

Numerous studies have used a copula based approach to study floods manifested by various combinations of variables
(Table 1). Multivariate flood risks can be described and quantified from previous copula studies (Salvadori, 2004; Salvadori
and De Michele, 2004, 2007; Salvadori et al., 2011, 2013, 2016). Multivariate inland and coastal hydrology analysis have
primarily focused on a small group of copulas: Archimedean (Clayton, Frank, and Gumbel), Student t, and Gaussian copulas.
Alternative copulas may more accurately characterize urban coastal flooding (Jane et al., 2020). Specifically, hazard scenarios
provide various perspectives on critical multivariate events (Salvadori et al., 2016). Initial studies were primarily focused on
select hazard scenarios (Table 1 in Salvadori et al. (2016)).

Data sampling methods in multivariate studies influence distribution fitting. Two primary sampling methods exist: peaks over
threshold (Jaruskova and Hanek, 2006) and block maxima (Engeland et al., 2004). Events selected using peaks over threshold
sampling are above a predetermined threshold defining an “extreme" event. Block maxima sampling uses various block sizes
(yearly, seasonal, semiannual, etc.) to separate and select the maximum event per block. Engeland et al. (2004) reports a
significantly different 1,000-year streamflow when using 12-month block sampling (160 m®s') compared to using a threshold
of 50 m3s™! (120 m®s!). Many studies utilize block maxima sampling with a yearly block size, i.e. the annual maximum
sampling method (Baratti et al., 2012; Bezak et al., 2014; Wahl et al., 2015). This method is specifically recommended by
FEMA (2016c¢) for evaluating coastal hazards. Alternatively, studies identify extremes in the primary variable using annual
maximum sampling and select a secondary variable which co-occurs with the primary variable (Lian et al., 2013; Xu et al.,

2014; Tu et al., 2018), creating a “coinciding" type sampling. Multivariate applications relying upon annual maximum sampling
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generate events with severe flooding potentials which may produce unrealistic variable combinations. Coinciding sampling
draws from physically realistic event pairs. Although, multiple studies explore sampling effects on fitted distribution parameters
and univariate return periods (Engeland et al., 2004; Jaruskova and Hanek, 2006; Peng et al., 2019; Juma et al., 2020), sampling
effects for multivariate coastal flooding events is unknown.

Coastal flooding studies primarily focus on locations defined by storm surge dominated oceanographic conditions with
warm, humid (Wahl et al., 2012; Lian et al., 2013; Xu et al., 2014; Masina et al., 2015; Wahl et al., 2015; Mazas and Hamm,
2017; Paprotny et al., 2018; Tu et al., 2018; Bevacqua et al., 2019; Didier et al., 2019; Xu et al., 2019; Yang et al., 2020),
and monsoonal (Jane et al., 2020) climatic conditions (i.e. Koppen-Geiger system, Beck et al., 2018). In contrast, along the
southern California coast typical tidal variability is 1.7 to 2.2 m (Flick, 2016) and storm surge rarely exceeds ~20 cm (Flick,
1998). Notably, during the wet season (October to March), when precipitation typically occurs, spring tide ranges are relatively
large (~ 2.6 m). Critically, few studies consider areas where coastal flooding events are dominated by large tides and either
precipitation or wave events (Masina et al., 2015; Mazas and Hamm, 2017; Didier et al., 2019; Jane et al., 2020). This study
explores univariate and multivariate flooding events in a semi-arid, tidally dominated, highly urbanized region. Here, the
dependency between observed water levels and precipitation, impacts of sampling methods and distribution fitting, and the

resulting flood values are explored.

2 Site description & data

This study considers observed water level and precipitation influences for coastal multivariate events at Santa Monica (SM),
Sunset Beach (S), and LA Jolla (SD) areas in Los Angeles, Huntington Beach, and San Diego, California (Fig. 1); three
semi-arid, tidally dominated sites in the United States. All are low-lying estuarine or bay-backed highly urbanized beach
communities requiring extensive coastal management to mitigate flooding events. For example, sea walls and artificial berms
in Sunset Beach protect infrastructure from high embayment water levels, wave runup, and overtopping along the open coast.
The storm drain network is managed to prevent back flooding during high tides. Notably, Gallien et al. (2014) suggested when
tide valves are closed, the storm drain network cannot reduce pluvial flooding caused by alternative flooding pathways (e.g.,
precipitation or wave overtopping). Pacific Coast Highway (PCH) is heavily utilized and is a primary transportation corridor
along the southern California coastline. All locations are densely urbanized and highly impacted by flooding.

Observed water levels from the Los Angeles (Station ID: 9410660), La Jolla (Station ID: 9410230), and Santa Monica
(Station ID: 9410840) tide gauges are available on NOAA’s Tides and Currents for daily high-low, hourly, or six minute
intervals (NOAA, Accessed 2021d). Verified hourly water levels (m NAVDS88) had the longest record length at all three stations
and provided an additional 31-years of observations overlapping precipitation data for Los Angeles and La Jolla, and 6-years
for Santa Monica. The resulting observations windows are November 22, 1973 to December 19, 2013 for Santa Monica, July
1, 1948 to December 1, 2012 for Sunset and July 1, 1948 to December 19, 2013 for San Diego (Table 2). It is worth noting,
that within the body of multivariate flooding literature, the terms tide and water level may be interchanged (e.g., Lian et al.,

2013; Xu et al., 2014; Tu et al., 2018; Xu et al., 2019; Yang et al., 2020). This is a key distinction since compound event



Table 1. A non-exhaustive list of multivariate studies which utilized copulas to study the associated variables

Variable Pairs

References

Waves and water level

Waves and storm duration
Waves and storm surge
River discharge and water level

River discharge and storm surge

River discharge and volume

River discharge, rainfall, and water
level

Multiple river discharges

Rainfall and tide

Rainfall and water levels

Rainfall and storm surge

Rainfall intensity and depth

Rainfall and groundwater

Rainfall and runoff

Rainfall and river discharge

Rainfall and temperature

Rainfall and duration

Combinations of rainfall intensity,

depth, and duration

Combinations of river discharge, vol-

ume, and duration

Masina et al. (2015); Mazas and Hamm (2017);
Didier et al. (2019)

De Michele et al. (2007); Salvadori et al.
(2014, 2015)

Wahl et al. (2012); Paprotny et al. (2018)

White (2007); Bray and McCuen (2014); Sadegh
et al. (2018); Ganguli and Merz (2019a, b)
Paprotny et al. (2018); Ganguli et al. (2020)

Yue (2001a, b); Shiau (2003); Favre et al. (2004);
De Michele et al. (2005); Poulin et al. (2007); Li
etal. (2013); Salvadori et al. (2013); Requena et al.
(2013); Aghakouchak (2014)

Bray and McCuen (2014); Jeong et al. (2014)

Salvadori and De Michele (2010)

Lian et al. (2013)", Xu et al. (2014)", Tu et al.
(2018)", Xu et al. (2019)", Bevacqua et al. (2020),
Yang et al. (2020)"

Jane et al. (2020)

Wahl et al. (2015); Paprotny et al. (2018); Bevac-
qua et al. (2019)

Yue (2000a, b, 2002); De Michele and Salvadori
(2003)

Anandalekshmi et al. (2019)

Zhang and Singh (2012); Hao and Singh (2020)
Zhong et al. (2020)

Zhang et al. (2017)

Salvadori and De Michele (2007)

Zheng et al. (2014)

Karmakar and Simonovic (2009); Reddy and Gan-
guli (2012); Ganguli and Reddy (2013); Griler
et al. (2013); Mitkova and Halmové (2014)

*Note these studies use the term tide measurement but actually represent observed water level measurements. Please refer Section 2 for clarification.
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dependencies may change depending on water level selection. Recent efforts have been made to standardize language where
tide represents only the astronomical changes in water levels and storm surge specifically excludes astronomical variability and
consists only of the inverse barometric effects along with wind and wave setup (Gregory et al., 2019). In this study, the term
observed water level (OWL) is adopted. OWL is the water level measured at the NOAA tide gauges which includes all tidal,
storm, and climatic effects.

The U.S. Hourly Precipitation Data dataset provided by NOAA’s National Centers for Environmental Information (NOAA,
Accessed 2021c) at the Signal Hill (COOP:048230), Los Angeles International Airport (COOP:045114), and San Diego In-
ternational Airport (COOP:047740) stations is used as the precipitation inputs. Observations do not contain trace amounts
(< 0.25 mm) and are provided as cumulative precipitation (mm) per event. Precipitation measurements were converted to a
mm /hr rate by dividing the total event precipitation by the event duration to match the hourly OWL measurements. The final
precipitation input is a 24-hour cumulative precipitation record made from the hourly observations. All data was transformed
to UTC for analysis.

Multivariate flood probabilities are determined with combinations of sampling methods: Annual Maximum (AM), Annual
Coinciding (AC), Wet Season Monthly Maximum (WMM), and Wet Season Monthly Coinciding (WMC). AM sampling
pairs the single largest precipitation and OWL observations within a given year (without regard to co-occurrence), where AC
sampling pairs the single largest precipitation observation within a given year to the largest OWL observation within its 24-
hour accumulation period. Each sampling method samples from a unique probability space and therefore will provide varying
perspectives for a return period. A summary of each sites’ associated gauges, observation windows, and number of pairs is
provided in Table 2. Southern California’s wet season is defined between October to March and provides a majority of the
total annual rainfall (Cayan and Roads, 1984; Conil and Hall, 2006). It is likely for extreme multivariate events to occur during
this period. Maximum sampling pairs the single largest precipitation and OWL observations within each year or wet season
month. A multivariate event created with the largest observed precipitation and OWL within a year or wet season month can
result in an event with severe flooding potential. Although strictly speaking maximum parings (annual or wet season) do not
technically represent an observed multivariate event, they would represent a severe event and are consistent with the blended
approach recommended by FEMA (2016c¢). Coinciding sampling pairs the single largest precipitation observation within each
year or wet season month to the largest OWL observation within its 24-hour accumulation period, providing more realistic
pairs compared to maximum sampling.

Distributions are fit with existing precipitation observations greater than zero consistent with previous studies (Swift Jr and
Schreuder, 1981; Hanson and Vogel, 2008). Months with no OWL measurements were excluded. In the case of coinciding
sampling, pairs that had three or more OWL measurements missing within the 24-hour window were manually reviewed and
removed if their tidal peak was clearly missing. Specifically for WMM sampling, months with more than half their observations

missing were also reviewed and removed if the tidal peak was missing. The resulting data pairs are shown in Fig. 2.
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Figure 1. Map displaying (a) Santa Monica, (b) Sunset, and (c) San Diego sites along with locations of tide gauges (triangle) and precipitation
stations (circle). The road drain (square) and boundary (yellow) at Sunset (~2 km?) is for the Structural scenario. Aerial imagery from NOAA

(Accessed 2021a).
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Figure 2. Data pairs for each sampling method. annual maximum (AM, x), annual coinciding (AC, + ), wet season monthly maximum

(WM, -), and wet season monthly coinciding (WMC, A) at (a) Santa Monica, (b) Sunset, and (c) San Diego
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Table 2. Water level and precipitation observations at Santa Monica (SM), Sunset (S), and San Diego (SD) using annual maximum (AM),

annual coinciding (AC), wet season monthly maximum (WMM), and wet season monthly coinciding (WMC) samplings

) Tide Precip. Observation AM AC WMM WMC
Site Gauge Gauge Window Pairs  Pairs  Pairs Pairs
SM 9410840 045114 November 22, 1973 to December 19,2013 40 38 193 191
S 9410660 048230 July 1, 1948 to December 1, 2012 63 63 257 258
SD 9410230 047740 July 1, 1948 to December, 19 2013 65 60 328 329
3 Methods

3.1 Univariate, bivariate, & conditonal distributions

Potential flooding events are determined with three different probability definitions: univariate, conditional, and bivariate. As-
suming X and Y are random variables, x and y are observations of these variables, and F'x and Fy represent the variables’ re-
spective cumulative distribution functions (CDF). Formulations for univariate (F'x (x), Fy (y)) and bivariate joint (Fxy (z,y))
CDFs follow DeGroot and Schervish (2014) (Eq. (1) and (2)). Conditionals (Fx|y >, (z|Y >y), Fx|y<y(z[Y <), and
FX|y:y(x\Y =y)) are developed from Shiau (2003) (Eq. (3)) and Serinaldi (2015) (Eq. (4) and (5)). Conditionals 1 (C1),
2 (C2), and 3 (C3) represent Eq. (3), (4), and (5) going forward. Univariate statistics are developed using the appropriate
continuous random variable distribution while conditional and bivariate CDFs are determined using copulas.

Copulas are functions that associate random variables’ univariate CDFs to their joint CDF (e.g., Fiy and Fy to Fx y (z,y))
according to Sklar’s theorem (Sklar, 1959; Salvadori, 2004). There is no requirement for the univariate distributions to be
the same. This is particularly advantageous since the optimal univariate distributions may be used for each variable. Bivariate
probabilities for different hazard scenarios, which represent various multivariate events, and conditional probabilities can be

calculated using fitted copula functions.

Fx(x)=Pr(X <z) (1)

Fxy(z,y)=Pr(X <zandY <y) )

FX (1’) — ny(l'y)

Fxpyzy@lY 2y) = PriX >alY 2 y) = =70 v
B - _q_Fxx(y)
xly<y(@]Y <y) = PrX >zlY <y)=1 Fy (y) N
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3.2 Hazard scenarios

Notation and definitions from Salvadori et al. (2016), unless otherwise stated, are used to define the upper set (5) and scenario
types. Salvadori et al. (2016) and Serinaldi (2015) present figures of each scenario’s probability space. Further discussion of

hazard scenarios and copulas assume a bivariate situation.

321 “OR"

“OR" scenario events have one or both random variables exceed a specified threshold. That is, what is the probability of a water
level or precipitation event exceeding a given value? Standard univariate CDFs make up the associated copula.

a;/ :P(XES;/):1—C(F1($1),...,Fd(.’)§d)) (6)
3.2.2 “AND"

“AND" scenario events have both random varibles exceed a specified threshold. In this case the fundamental question is “what
is the probability of a particular water level and precipitation rate exceeding specified values?". The survival copula (C(u, v))

is comprised of univariate survival CDFs (F(x) = 1 —F(x)) and the provided equation can be found in Serinaldi (2015) and

Salvadori and De Michele (2004).

al =P(X € S))=C(Fi(x1),....,Fq(xq)) @)
Clu,v) =1—u—v+C(u,v) (8)
3.2.3 “Kendall"

The “Kendall" (K) scenario highlights an infinite set of OR events that separate the subcritical (i.e, “safe") and supercritical
(i.e.,“dangerous") statistical regions. In the OR scenario, events along an isoline (t) share a common probability, but define
separate regions. Events along a Kendall ¢ represent the same super critical region (Serinaldi, 2015) and provide a “safety

lower bound" (Salvadori et al., 2011). Essentially the Kendall scenario considers the minimum OR events of concern. K(t) is

estimated by a method outlined in Salvadori et al. (2011).

K(t) =P(F(X1,...,Xq) <t) =P(C(Fi(X1),..., Fa(Xa)) < 1) ©)

af =P(Xe SK)=1-K() (10)
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3.2.4 “Survival Kendall"

“Survival Kendall" (SK) scenario highlights an infinite set of AND events which also separate safe and dangerous statistical
spaces. AND events along a ¢ also share a common probability, but define separate regions. Events along an SK ¢ represent
the same super critical region, but provide an “(upper) bounded safe region" (Salvadori et al., 2013). The Survival Kendall

specifically considers the largest AND events of concern and is estimated by the method outlined in Salvadori et al. (2013).

K(t) = P(F(X1,..., Xg) <t) =P(C(Fi(X1), ..., Fa(Xa)) <1) (11)

oK =P(XesK)=1-K(t)=K() (12)
3.2.5 “Structural"

The “Structural" scenario considers the probability of an output from a structural function, ¥(X), exceeding a design load
or capacity (z) (Salvadori et al., 2016). For example, De Michele et al. (2005) and Volpi and Fiori (2014) used a structural
function to evaluate a dam spillway while Salvadori et al. (2015) considers the preliminary design of rubble mound breakwater.
In this work, the structural failure function focuses on the question “what is the probability of a water level forcing tide valve

closure and subsequent flooding during a precipitation event?".
af =P(Xe S =P(¥(X)>2) (13)
3.3 MvCAT

The Multivariate Copula Analysis Toolbox (MvCAT) developed by Sadegh et al. (2017) is a publicly available MATLAB
toolbox that fits 25 different copula functions to user data of two random variables. Copula parameters are optimized through
a local optimization or with Markov Chain Monte Carlo methods (details in Sadegh et al. (2017)). The MvCAT framework is
expanded to determine all scenarios and conditionals in this study. While all copulas have functional CDFs, the Cuadras-Auge,
Raftery, Shih-Louis, Linear-Spearman, Fischer-Hinzmann, Husler-Reiss, Cube, and Marshal-Olkin copulas do not have a PDF
function. A PDF is required to determine the most likely value along an isoline, therefore it was decided to remove those
copulas from the study. Copulas must also be computationally simple to derive or integrate to calculate Conditional 3 (Eq.(5)).
Gaussian and Student t copulas’ partial derivatives cannot be explicitly calculated, and estimates induce unrealistic errors (i.e.,

produce negative probabilities). Seventeen different copulas remain after eliminating those discussed above.
3.4 Return periods

Hydrologic events are commonly cast in the context of return periods (e.g., De Michele et al., 2005, 2007; FEMA, 2011; Wahl
et al., 2012; USACE, 2013; Salvadori et al., 2014; Wahl et al., 2015; Salvadori et al., 2015). Return periods (7") provide a
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metric describing the severity of an event and is the inverse of an event’s probability of exceedance presented as F' in Eq. (14)
(Tu et al., 2018). In Eq. (15), N is the data’s time window, n is the number of considered events within N, and N, is the
average number of events per unit of time (monthly, yearly, etc.). Therefore, N. = 1 when considering singular events within
a year (Tu et al., 2018).

T=1/(N.xF) (14)

N.=n/N (15)
3.5 Goodness of fit metrics

Multiple goodness of fit metrics and correlations serve to quantify the quality of distribution fits and dependencies between
variables. Marginal fits are selected by Bayesian Information Criterion (BIC; Eq. (19)) and must pass the Chi-square goodness-
of-fit test at standard significance levels (a = 0.05), unless otherwise stated. Copulas are selected by BIC and must pass
the Cramer-von Mises test (Genest et al., 2009; Couasnon et al., 2018; Sadegh et al., 2018; Ward et al., 2018). Likelihood
(L € ]0,00)) measures how well a distribution’s estimated parameters fit the sample data with larger values suggesting a better
fit. Log-likelihood (¢ € (—o0,00)) is the log transformation of Eq. (16) used to calculate BIC. BIC (BIC € (—00,0)) is
similar to the likelihood, but penalizes for the number of estimated parameters (D) and the data’s sample size (n). Smaller BIC
values represent a better fit. Equations and definitions can be found in Sadegh et al. (2017). Correlation measurements include

Pearson’s linear correlation, Kendall’s tau, and Spearman’s rho coefficients.

201%) =1 Jsennl 5 ~v@)F) (16)

s Siali = (0)? )
n

0oY) = —g In(27) — gln&Q - %52 il[y — ()2 (18)

BIC = Din(n) — 20 (19)

10
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and seventeen different copulas. Two marginal distributions do not pass the chi square test at the standard 0.05 level of sig-
nificance (San Diego AM OWL and Santa Monica WMM OWL). These distributions pass at reduced significance levels of
0.01. Four copulas almost always passed (Nelsen, BB1, BBS5, and Roch-Alegre) the Cramer-von Mises test and are used for
analysis. It is noted the Roch-Alegre (Roch.) did not pass at Sunset for WMM sampling, and the BB1 and BB5 did not pass
at San Diego for WMC sampling. Additionally, Santa Monica’s AM data is slightly negatively correlated (> —0.06). Copula
and sampling effects differ significantly at low (i.e., low return period) and high (i.e., severe return period) probabilities of
non-exceedance. In the case of annual sampling, non-exceedance (exceedance) probabilities are 0.9 (0.1) and 0.99 (0.01) for
the 10- and 100-year events, respectively. In wet season sampling, return period exceedance probabilities vary depending on
sampling type and location due to the average number of event observations per year (N, from Eq. (15)). For example, San
Diego WMC sampling has 329 observations within the 65 year record (i.e., [N, = 5.06). Therefore, the exceedance probabili-
ties (F' in Eq. (14)) associated to a 10- and 100-year event are 0.0198 and 0.0020 (non-exceedance probabilities at 0.9802 and
0.9980), respectively. Table 3 presents wet season (WMM and WMC) exceedance probabilities for all sites.

Table 3. Santa Monica, Sunset, and San Diego exceedance probabilities at the 10- and 100-year return periods for wet season monthly

maximum (WMM) and wet season monthly coinciding (WMC) samplings.

Santa Monica Sunset San Diego
10-year 100-year 10-year 100-year 10-year 100-year
WMM  0.0207 0.0021 0.0245 0.0025 0.0198 0.0020
WMC  0.0209 0.0021 0.0244 0.0024 0.0198 0.0020

4.1 Marginals

The selected marginal distributions (Fig. 3, Table 4) were tested and/or suggested fits in previous studies. Rainfall has been
widely fit with an Exponential distribution (refer to Table 2 in Salvadori and De Michele (2007)), but more recently been fit
using a variety of distributions including Gamma (Husak et al., 2007), Rayleigh (Pakoksung and Takagi, 2017; Esberto, 2018),
Generalized Pareto or Birnbaum-Saunders (Ayantobo et al., 2021). In the case of annual precipitation (coinciding or maximum
sampling) Santa Monica was well described by a Birnbaum-Sanders, Rayleigh best described Sunset data, and a Gamma was
the best fit for San Diego data. Similarly, wet season precipitation data (maximum or coinciding sampling) was best described
by the Exponential distribution for Santa Monica and Sunset while the Generalized Pareto best represented San Diego.
Historically, water levels have been described using a number of distributions including Normal (Hawkes et al., 2002),
Generalized Pareto (Mazas and Hamm, 2017), Log Logistic and Nakagami (Sadegh et al., 2018), Birnbaum-Saunders (Sadegh
et al., 2018; Didier et al., 2019; Jane et al., 2020), along with Gamma, Weibull, and Inverse Gaussian (Jane et al., 2020).

Observed water levels did not exhibit site specific patterns and were described by a range of distributions (Table 4).

11
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Figure 3. (a) OWL and (b) precipitation marginals for Santa Monica (SM, solid lines), Sunset (S, dashed lines), and San Diego (SD, dotted

lines) using annual maximum (AM, blue), annual coinciding (AC, green), wet season monthly maximum (WMM, black), and wet season
monthly coinciding (WMC, red) samplings.
Table 4. Best fitting univariate distributions for each location and sampling method (annual maximum (AM), annual coinciding (AC), wet

season monthly maximum (WMM), wet season monthly coinciding (WMC)).

Dataset Variable  Santa Monica  Sunset San Diego

OWL L BS GP
AM

Precip BS R G

OWL N GP NA
AC

Precip BS R G

OWL N w GEV
WMM

Precip E E GP

OWL G 1G 1G
WMC

Precip E E GP

BS - Birnbaum-Saunders; GP - Generalized Pareto; E - Exponential
R - Rayleigh; N - Normal; L - Log logistic; G - Gamma
W - Weibull; IG - Inverse Gaussian; NA - Nakagami

12



240

245

250

255

4.2 Copulas

San Diego wet season monthly coinciding conditional CDFs display individual copulas effects (Fig. 4). The Nelsen, Roch.,
and BB1 copulas consistently suggest similar OWL (Fig. 4a, e) and precipitation values (Fig. 4b, f) while, in this example, the
BBS5 suggests higher OWL and precipitation values (solid black line, Fig. 4a, b, e, f). C1’s 100-year pair in Table 6 displays
an example of the BB5’s conservative nature. Copula choice has nearly no effect on the Conditional 2 scenario (Fig. 4c, d).
Most probable OWL and precipitation values in Tables 5 and 6 further display the aforementioned behaviors. These conditional
patterns generally persist at all locations with an additional note that the Nelsen can suggest lower OWL values and the BBS
can provide similar results to the Roch. and BB1 copulas.

Figures 5 and 6 show the 10- and 100-year return periods, respectively, for the four focused copulas using wet season monthly
coinciding sampling at San Diego. Clearly the BBS5 presents conservative results suggesting higher OWL and precipitation pairs
in the AND and SK scenarios (Fig. 5a, ¢ and 6a, c), while the BB1, Nelsen, and Roch-Alegre copulas present similar OWL and
precipitation values. The OR and Kendall scenarios suggest quite similar isolines between copulas, suggesting similar values,
but the BB5 suggests less severe OWL and larger precipitation values according to the densest location along its isoline (Fig.
5b, d, and 6b, d). Tables 5 and 6 further display the bivariate patterns. Again, these bivariate patterns generally persist at all
locations with the additional notes: the Nelsen may suggest lower OWL values in the AND and SK scenarios, the BB5 typically
has similar results to the Roch. and BB1 copulas in the AND and SK scenarios, and the BBS typically agreed with the other

copula results outside of San Diego for the OR and K scenarios.

Table 5. San Diego 10-year marginal (M), conditional (C), and bivariate OWL (m) and precipitation (mmday~') values using wet season

monthly coinciding sampling. Conditionals are conditioned on a 25-year event occurring.

Nelsen Roch. BB1 BBS
OWL  Precip OWL Precip OWL Precip OWL Precip
M 2.11 33.64  2.11 33.64 211 3364 221 33.64

C1 2.19 3679 218 3627 216 3541 2.62  48.65
Cc2 2.11 3361 211 3361 211 33.62 2.09 33.02
C3 219 3676 218  36.24 215 3537 246 4492
AND 1.85 2249 1.85  22.15 1.84  21.65 191 2499
OR 220 37.06 217 3829 220 37.06 212 4347
K 222 37.67 222 37.67 205 3252 214 4411
SK 215 3513 215 3511 2.15 3504 221 37.88

4.3 Sampling

San Diego conditional CDFs using the BB1 copula clearly present sampling effects (i.e. maximum versus coinciding and

annual versus wet season months). It should be noted, that each sampling method represents a unique probability space and

13



1 1
(a) (b)
0.8+ 1 0.8+
’A% 0.6 . 0.6
> Nelsen
x
T 04t ] 0.4 Roch
BB1
0.2+ 0.2+ BBS
0 0 .
0.5 3 0 10 20 30 40 50 60
1 1 T T T
(c) (d)
0.8+ 0.8+
>067 1 06
>
x
T04¢ 1 04+
0.2+ 1 0.2+
0 0 -
0.5 3 0 10 20 30 40 50 60
1 1 T T T
(e) (f)
0.8} 0.8}
=06 . 06F
>
x
T 04¢ 04+
0.2+ J 02}
0 0 ' ' - ' '
0.5 3 0 10 20 30 40 50 60
OWL [m] Precipitation [mm day™]

Figure 4. San Diego wet season monthly coinciding OWL (left column) and precipitation (right column) (a), (b) Cl1, (c¢), (d) C2, and (e),
(f) C3 CDFs using the Nelsen (blue), Roch-Alegre (Roch), BB1 (green), and BB5 (black) copulas. OWL/ Precipitation conditionals are

conditioned on the occurrence of a 25-year precipitation/ OWL event.
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(Roch), BB1, and BBS 10-year isolines. Copula labels point to the mostly likely value on their respective isolines.
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Table 6. San Diego 100-year marginal (M), conditional (C), and bivariate OWL (m) and precipitation (mmday 1) values using wet season

monthly coinciding sampling. Conditionals are conditioned on a 25-year event occurring.

Nelsen Roch. BB1 BBS5
OWL  Precip OWL Precip OWL Precip OWL Precip
M 240 4334 240 4334 240 4334 240 4334

C1 247 4526 246 4495 244 4448 289 5272
Cc2 240 4332 240 4332 240 4334 235 4211
C3 247 4526 246 4492 244 4442 2,68  49.72
AND 204 3077 203 30.45 202 2993 220 3742
OR 247 4553 248 4539 247 4553 240  49.17
K 222 3179 222 3179 217  40.13 2.14  38.59
SK 231 4097 233 4153 232 4126 246 4525

accordingly results in alternative realizations of a given return period. Coinciding samplings exhibit similar OWL CDFs (green
and red lines, Fig. 7a, c, e), whereas wet season samplings exhibit similar precipitation CDFs (red and black lines Fig. 7b, d,
f). OWL values can be larger for maximum samplings at lower non-exceedance probabilities (i.e lower return periods) (Fig.
7a, c, e blue and black lines, Table 7). However, the extended tail from WMC sampling produces larger OWL at higher return
periods (red line Fig. 7a, c, e; Table 8). Annual coinciding sampling displays significantly lower OWL values at low (Table 7)
and high (Table 8) return periods. Only minimal differences between annual and wet season precipitation exist at the 10- and

! respectively; Tables 7 and 8). Annual (wet season)

100-year return periods (maximum difference of 1.06 and 4.56 mmday ™~
precipitation CDFs appear similar as OWL measurements are chosen subsequent to precipitation observations (Fig. 7b, d, f).

Figures 8 and 9 present the 10- and 100-year return periods using the BB1 copula for all samplings (AM, AC, WMM, and
WMCO). For the AND and K scenarios, AM sampling results in the largest OWL compared to the other sampling methods (Fig.
8a, d and 9a, d, Tables 7 and 8). Additionally for the AND and K scenarios (Fig. 8a, d and 9a, d), maximum samplings (AM
and WMM) provide more conservative OWLs compared to WMC OWL values (Tables 7 and 8). When comparing maximum
samplings (AM and WMM) to WMC sampling in the OR and SK scenarios, maximum samplings generally provide larger
OWL values at lower return periods (Fig. 8b, c; Table 7), but smaller or similar OWL at larger return periods (Fig. 9b, c;
Table 8). AC sampling generally results in the smallest OWL levels at all hazard scenarios. These behaviors persist across all
locations. Given wet season monthly coinciding sampling results in larger OWL values for the marginal, conditional, OR, and
Kendall scenarios, this suggests maximum type sampling may not accurately reflect OWL at extreme return periods.

Table 7 and 8 shows the most probable 10- and 100-year marginal and multivariate event values. AM OWL exceed AC OWL
across all probability types and sites, which is expected given the (nonphysical) paring of the two largest individual OWL and
precipitation events without regard to co-occurrence. For example, in the 10-year return period annual maximum OWLs are at
least 30 cm higher than AC (Table 7). In the 100-year return period annual maximum OWLs exceed annual coinciding OWLs

by at least 17 cm (Table 8). Precipitation is generally consistent across sampling types with only minor variations observed.
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Figure 7. San Diego OWL (left column) and precipitation (right column) (a), (b) C1, (c), (d) C2, and (e), (f) C3 CDFs for annual maximum
(AM, blue), annual coinciding (AC, green), wet season monthly maximum (WMM, black), and wet season monthly coinciding (WMC, red)

samplings using the BB1 copula. OWL/ Precipitation conditionals are conditioned on the occurrence of a 25-year precipitation/ OWL event.

18



50

N
[&)]

N
o

w
[8)]

N N w
o [6)] o

[6)]

Precipitation [mm day'1]

o
o

N
o

N
o

Precipitation [mm day'1]

OWL [m]  OWL[m]
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AM and WMM sampling generally produced similar OWL results at both the 10- and 100-year return periods with maximum

difference of 6 cm across all conditionals and copulas.
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Figure 9. San Diego (a) AND, (b) OR, (c) SK, and (d) K hazard scenarios for annual maximum (AM, cross), annual coinciding (AC, plus),
wet season monthly maximum (WMM, dot), wet season monthly coinciding (WMC, triangle) data and 100-year isolines using the BB1

copula. Sampling labels point to the mostly likely value on their respective isolines.

4.4 Structural failure

A structural scenario is presented to consider flood severity along the Pacific Coast Highway (PCH) in Sunset Beach. PCH

road elevation ranges from 1.7-2.4 m NAVDS8S (Fig. 10), below typical spring tide (~2.13 m) and more extreme (~2.3 m)
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Table 7. San Diego 10-year marginal (M), conditional (C), and bivariate OWL (m) and precipitation (mmday 1) values using the BB1
with annual maximum (AM), annual coinciding (AC), wet season monthly maximum (WMM), and wet season monthly coinciding (WMC)

samplings. Conditionals are conditioned on a 25-year event occurring.

AM AC WMM WMC
OWL  Precip OWL Precip OWL Precip OWL Precip
M 222 3338 1.83 3376 220 3361 211 33.64

C1 224 3520 1.86 3503 221 3439 216 3541
Cc2 222 3331 1.83 3370 220  33.60 211 33.62
C3 2.23 34.50 1.86 3499 221 34.31 2.15 35.37
AND 2.14  26.13 1.66 2679 209  20.89 1.84  21.65
OR 2.25 37.03 191 37.71 222 3848 220 37.06
K 224 36.02 1.89 3644 218 32.10  2.05 32.52
SK 2.25 38.45 1.94 3870 221 3506 2.15  35.04

Table 8. San Diego 100-year marginal (M), conditional (C), and bivariate OWL (m) and precipitation (mmday 1) values using the BB1
with annual maximum (AM), annual coinciding (AC), wet season monthly maximum (WMM), and wet season monthly coinciding (WMC)

samplings. Conditionals are conditioned on a 25-year event occurring.

AM AC WMM WMC
OWL  Precip OWL Precip OWL Precip OWL Precip
M 227 4507 208 4565 226 4332 240 4334

Cl 227 4854 210 4676 227 4398 244 4448
Cc2 227 4490 208 4560 226 4330 240 4334
C3 227 4635 210 46.69 227 4379 244 4442
AND 223 34.01 1.85 3439 217 2929 202 2993
OR 227 4815 214 4883 227 4552 247 4553
K 226 4281 2.02 4245 222 39.68 217 40.13
SK 227 4620 2.08  45.65 225 4090 232  41.26

water levels (NOAA, Accessed 2021b), requiring tide valves along PCH for flood prevention. Tide valve closures prevent
back-flooding from high bay water levels coming up through subsurface storm drains that (normally) discharge to the bay.
Additionally, closed tide valves enable precipitation pooling since water cannot be drained to the bay. Severe pooling may

290 result in a critical highway closure, which can further damage property and inhibit emergency service operations.
Areal precipitation flooding extent and depth can be estimated for water levels exceeding tide valve closure elevation. A
water level equal to or greater than 1.68 m NAVDS88 forces valve closures and frames the structural failure as a Conditional 1

type event. The local watershed is convex and drains an area of 94,897 m?. Water pools in the low elevation areas along PCH
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Figure 10. Elevations within the Pacific Coast Highway boundary ranging from low (purple) to high (blue). Background imagery from
NOAA (Accessed 2021a).

(Fig. 10). When pluvial water levels exceed the sea wall elevation, water overflows the sea wall and exits to the harbor. The
maximum pool storage is 11,342 m>. The percent of flooding is then calculated with Eq. (20) as the structural function.
Structural scenario precipitation and percent flooding (W) values utilizing the Nelsen, Roch-Alegre, and BB1 copulas are
shown in Table 9. Rows and columns separate the utilized sampling methods and return periods of interest, respectively. Fig. 11
shows W as a function of precipitation for the Nelsen, Roch-Alegre, and BB1 copulas along with the 5- (square), 10- (circle),
and 100-year (diamond) return periods. All copulas display similar values across sampling methods (Fig. 11, Table 9). For
example, the 10-year precipitation with wet season monthly coinciding sampling is 82.49, 81.95, and 81.09 for the Nelsen,

Roch-Alegre, and BB1 copulas, respectively. Again, AC sampling severely underestimates precipitation and flooding.

recipitation X area
% flooding = precip

x 100 (20)
volume

5 Discussion

Previous multivariate studies typically use a small, popular group of copulas (e.g., Clayton, Frank, Gumbel, Student t, and
Gaussian). Gaussian and Student t copulas were excluded from this study due to their lack of a computationally simple deriva-
tive or integral while the Clayton, Frank, and Gumbel failed to pass the Cramer-con Mises test. Nelsen, BB1, BBS, and
Roch-Alegre copulas generally present similar values with the BB5 occasionally presenting more conservative pairs (Fig. 6).
Well fit copulas concentrate probabilities around more centralized OWL and precipitation values for multivariate events. This

is most pronounced at higher (i.e., 100-year) return periods (Fig. 6). Given that the resulting copulas exhibit agreement between
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Figure 11. Structural scenario 5- (square), 10- (circle), and 100-year (diamond) return periods for annual maximum (AM, blue), annual
coinciding (AC, green), wet season monthly maximum (WMM, black), and wet season monthly (WMC, red) data using the (a) Nelsen, (b)
Roch-Alegre, and (c) BB1 copulas.

values (for a given sampling) suggests that choosing a reasonable copula may be sufficient to provide a robust characterization
of considered multivariate flooding events.

The choice in sampling imparts a significant influence on event risk interpretation. When maximum versus coinciding
sampling is considered, maximum samplings (AM and WMM) tend to provide the largest OWL at low return periods (Fig.
7a, c, e, Fig. 8, and Table 7). At larger return periods, wet season monthly coinciding then provides significantly larger OWLs
(Fig. 7a, c, e, Fig. 9, and Table 8). This is observed in the conditionals and bivariates (minus the AND and K hazard scenarios
which maximum samplings display the largest OWLs) at all sites. From a logical perspective, coinciding sampling provides a
more realistic view of multivariate events (by definition these are pairs that have co-occurred to produce a multivariate flooding
event). At long return periods annual coinciding sampling may require a long data record, which is often unavailable. Notably,
in this study annual coinciding produced OWL samplings that were substantially lower than any of the other samplings. For
example when comparing 100-year OWLs with annual and wet season monthly coinciding samplings, the marginal was 32 cm
lower and the AND scenario was 17 cm lower (Table 8). Given that sea wall protected urban coastal areas are highly sensitive to
even minor elevations differences (e.g., Gallien et al., 2011), this suggests with limited data records annual coinciding sampling

should be avoided.
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Table 9. Precipitation and percent flooding (V) associated to the 5-, 10-, and 100-year return periods (7") using the Nelsen, Roch-Alegre, and
BB1 copulas to determine C1 values with annual maximum (AM), annual coinciding (AC), wet season monthly maximum (WMM), and wet
season monthly coinciding (WMC) samplings. Precipitation values are in mmday ! and U is a percentage. Values are based off a OWL of

> 1.68 m which forces tide valve closure.

T 5-yr. 10-yr. 100-yr.
Precip v Precip ' Precip v
Nelsen
AM 63.51 53.14 7597 6356 107.44  89.89
AC 3445 2882 4741 39.66 89.39 74.79

WMM 6451 5397 79.27 66.32 12826 100.00
WMC  67.71 56.65 8249 69.02 131.44 100.00
Roch-Alegre
AM 63.51 53.14 7597 6356 107.44  89.89
AC 3370 2819 46,57 3897 8850  74.05
WMM  64.57 54.02 79.34 66.38 128.44 100.00
WMC  67.17 5620 8195 68.56 130.92 100.00

BBI1
AM 63.51 53.14 7597 6356 107.44  89.89
AC 3330 27.86 4641 38.83 89.44 74.83

WMM  64.60 54.05 79.38 6642 128.44 100.00
WMC 6634 5550 81.09 67.84 130.03 100.00

An important note is each probability type appropriately describes a unique event, characterized by OWL and precipitation.
Serinaldi (2015) suggests inter-comparing univariate, multivariate, and conditional probabilities and return periods is mislead-
ing as each probability type describes its associated event. Events where only extreme OWL or precipitation is of concern,
should simply utilize marginal statistics and follow current FEMA guidelines. Multivariate event analysis may utilize a variety
of scenarios. Conditional type distributions become useful when future information on one variable is known (ex., predicted
OWL levels). AND scenarios may be applied when both variables exceeding given limits is of concern. The Survival Kendall
scenario is an alternative to the AND scenario using a more conservative approach to develop events of concern (Salvadori
et al., 2013). An OR scenario should be applied when either multivariate variable exceeding a limit is of concern, whereas the
Kendall scenario provides minimum OR events of concern (Salvadori et al., 2011). The benefit of the Kendall and Survival
Kendall is all the events along their isolines describe a similar probability space versus the AND and OR isolines describe
events with similar probabilities of non-exceedance. It is critical for practitioners and future studies to define concerning flood
events within a region since the associated probability will result in varying event risk estimates as seen within this work.

The selected probability type will have significant influence on flood risk studies and modeling efforts. A majority of previous

24



340

345

350

355

360

365

studies focus on specific probability types and do not consider multiple flooding pathways. Only a single study explores all the
probabilities associated to different extreme events (Serinaldi, 2016).

From a regulatory perspective, FEMA recommends individual (univariate) analysis to develop return periods for multivariate
coastal flooding applications (FEMA, 2011, 2016c¢, 2020), and blending the two hazard mapping results. Fundamentally, this
type of approach assumes (event) independence and may underestimate multivariate flood hazards (e.g., Moftakhari et al., 2019;
Muiioz et al., 2020). FEMA provides guidelines for coastal-riverine (FEMA, 2020), tide, surge, tide-surge (FEMA, 2016a),
surge-riverine (FEMA, 2016c¢), and tropical storm (or hurricane) type flooding events (FEMA, 2016b). Currently, FEMA does
not provide specific guidance for considering high marine water levels and precipitation. However, this work suggests, at high
return periods the sampling method is critical to characterizing both univariate and joint probabilities.

Structural scenarios provide a quantitative context to frame flood vulnerability. In the structural failure context, annual
coinciding sampling significantly underestimates flooding at all return periods, and annual maximum sampling underestimates
severe (i.e., 100-year) events, echoing previous annual maximum and coinciding sampling issues. Similar values between most
copulas support the suggestion that choosing a reasonable copula will provide robust results in these types of applications.
Precipitation events in the Structural scenario (Table 9) range between 33.30 mmday ! and 131.44 mmday !, resulting
between 27.86 % and complete (100 %) backshore flooding. This significant flooding at all return periods suggests severe
flood vulnerability, which is validated by frequent closures of PCH. This structural function provides a quick and simple
alternative to poorly performing bathtub flood models (e.g., Bernatchez et al., 2011; Gallien et al., 2011, 2014; Gallien, 2016)
to quantitatively explore flood severity while accounting for infrastructure and joint probabilities.

The maximum OWL and precipitation observations within the record are 2.33 m and 118.93 mmday ! for Sunset, 2.27
m and 42.11 mmday~! for San Diego, and 2.45 m and 76.83 mmday ' for Santa Monica. Most likely precipitation and
OWL pairs in high return periods often exceed the current data record’s maximums (e.g. Table 8). This study is limited to the
available data records and sea level rise clearly imparts a non-stationary trend. Current water level values restricted to today’s
distribution tails, will become more frequent in the next century (Taherkhani et al., 2020). For example, Wahl et al. (2015)
suggests a previously 100-year event in New York is now a 42-year event based on the increasing correlation between extreme

precipitation and storm surge events. Similarly, our results suggest increasing precipitation and, particularly, OWL levels.

6 Conclusions

Univariate and multivariate event risks from OWL and/or precipitation were explored at three sites in a tidally dominated,
semi-arid region. Seventeen copulas were considered. Previous studies typically relied upon a small number of copulas (e.g.
Clayton, Frank, Gumbel, Student t, and Gaussian) for multivariate flood assessments. In this case, the Nelsen, BB1, BBS,
and Roch-Alegre copulas passed the Cramer-von Misses test and produced similar, quality fits across all sampling methods.
Although, in some cases, the BB5 produced conservative results. Copulas exhibit similar most probable pairs (e.g., Fig. 5, 6)
suggesting a number of potential copulas may provide a robust multivariate analysis. The impact of sampling and distribution

choice on uni- and multivariate return period values are presented, however uncertainties deserve further characterization. This
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work focused solely on exploring conditional and joint probabilities of OWL and precipitation in a tidally and wave dominated
semi-arid region and would not be applicable to regions experiencing multiple flooding seasons (e.g., Couasnon et al., 2022).
Although wave impacts were not included in this assessment, they are fundamental to coastal flooding, particularly in regions
subjected to long period swell. Joint probability methods explicitly including wave contributions to multivariate event risk
characterizations are needed for future work.

The annual maximum method is widely recognized for hazard assessments (FEMA, 2011, 2016c¢), and is common practice
in flood risk analysis (e.g., Baratti et al., 2012; Bezak et al., 2014; Wahl et al., 2015). Concerningly, this work suggests that
annual maximum sampling does not characterize severe flooding potential for extreme events. Water levels are substantially
underestimated as annual sampling neglects a large portion of observations (Table 8). Generally, maximum samplings produced
larger values at minor return periods but significantly underestimated water levels at longer return periods than wet season
monthly coinciding sampling. Similarly, annual coinciding type sampling (Tables 7, 8) grossly underestimate OWLs. Wet
season sampling quadruples data pairs (Table 2), providing additional historical joint event information. Further investigation
into monthly coinciding and, where appropriate, water year coinciding are needed to develop optimal sampling strategies for

given regional conditions.

Data availability. NOAA precipitation data is available for download at https://www.ncei.noaa.gov/metadata/geoportal/rest/metadata/item/

gov.noaa.ncdc:C00313/html#. Tidal data is available for download on NOAA’s Tides & Currents wetbsite (https:/tidesandcurrents.noaa.gov)

Appendix A: Additional BICs
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Figure Al. Marginal OWL BIC values per fitted copula for Santa Monica (left column), Sunset (middle column), and San Diego (right

column) using annual maximum ((a), (b), (c)), annual coinciding ((d), (e), (f)), wet season monthly maximum ((g), (h), (i)), and wet season

monthly coinciding ((j), (k), (1)). The Y-axis is orientated to display best BIC (top) to worse BIC (bottom).
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Figure A2. Marginal precipitation BIC values per fitted copula for Santa Monica (left column), Sunset (middle column), and San Diego
(right column) using annual maximum ((a), (b), (c)), annual coinciding ((d), (e), (f)), wet season monthly maximum ((g), (h), (i)), and wet

season monthly coinciding ((j), (k), (1)). The Y-axis is orientated to display best BIC (top) to worse BIC (bottom).
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