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Abstract. Multivariate coastal flooding is characterized by multiple flooding pathways (i.e., high offshore water levels, stream-

flow, energetic waves, precipitation) acting concurrently. This study explores the joint risks caused by the co-occurrence of high

marine water levels and precipitation in a highly urbanized semi-arid, tidally dominated region. A novel structural function de-

veloped from the multivariate analysis is proposed to consider the implications of flood control infrastructure in multivariate

coastal flood risk assessments. Univariate statistics are analyzed for individual sites and events. Conditional and joint probabili-5

ties are developed using a range of copulas, sampling methods, and hazard scenarios. The Nelsen, BB1, BB5, and Roch-Alegre

were selected based on a Cramer-von Mises test and generally produced robust results across a range of sampling methods. The

impacts of sampling are considered using annual maximum, annual coinciding, wet season monthly maximum, and wet season

monthly coinciding sampling. Although annual maximum sampling is commonly used for characterizing multivariate events,

this work suggests annual maximum sampling may substantially underestimate marine water levels for extreme events. Water10

level and precipitation combinations from wet season monthly coinciding sampling benefit from a dramatic increase in data

pairs and provide a range of physically realistic pairs. Wet season monthly coinciding sampling may provide a more accurate

multivariate flooding risk characterization for long return periods in semi-arid regions. Univariate, conditional, and bivariate

results emphasize the importance on proper event definition as this significantly influences the associated event risks.

1 Introduction15

Coastal flooding is a significant human hazard (Leonard et al., 2014; Wahl et al., 2015) and is considered a primary health

hazard by the U.S. Global Change Research Program (Bell et al., 2016). Coastal migration and utilization continues to increase

(Nicholls et al., 2007; Nicholls, 2011). Over 600 million people populate coastal zones (Merkens et al., 2016). Climate change-

induced sea level rise will substantially increase flood risk (Church et al., 2013; Horton et al., 2014), and negatively impact

coastal populations (Bell et al., 2016). Even relatively modest sea level rise will significantly increase flood frequencies through20

the US (e.g., Tebaldi et al., 2012; Taherkhani et al., 2020). Southern California is particularly vulnerable to sea level rise.

Small changes in sea level (∼5 cm) double the odds of the 50-year flooding event (Taherkhani et al., 2020) and the 100-

year event is expected to become annual by 2050 (Tebaldi et al., 2012). Regional research has explored flood risks caused by

sea level rise and coastal forcing (e.g., Heberger et al., 2011; Hanson et al., 2011; Gallien et al., 2015). However, accurately
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characterizing future, non-stationary coastal vulnerability requires considering the joint and potentially nonlinear impacts of25

compound (marine and hydrologic) events (Gallien et al., 2018).

Compound coastal flooding considers the combined impacts of marine and hydrologic forcings, typically within a physi-

cally relevant time window, and are considered multivariate events. Typical events, such as precipitation or high water levels,

occurring simultaneously may combine to generate extreme events (Seneviratne et al., 2012). In urban coastal settings multiple

flooding pathways (i.e., high marine water levels, wave runup and overtopping, large fluvial flows, and pluvial flooding from30

precipitation) interact with infrastructure (e.g., sea walls, human-made dunes, and the storm system) potentially exacerbat-

ing hazards. Notably, multivariate events that share a common return period may produce vastly different flooding outcomes.

Traditionally, literature has focused on river discharge or storm surge dominated multivariate events (Table 1).

From a flood risk perspective there are multiple methods to characterize events. A univariate approach is often used where

a single variable (e.g., water level) is considered. For example, FEMA recommends characterizing multivariate events by35

developing univariate water level and discharge statistics and then adopting a smooth, blended result for transitional areas

(FEMA, 2011, 2016c). This can lead to underestimating flood risk because of the interplay between two flood pathways (i.e.,

a high tail water forces fluvial flooding upstream). Conditional probabilities represent an alternative where the multivariate

flood risk can be evaluated given available information on a primary variable (e.g., water level) to determine the exceedance

probability of a secondary variable (e.g., precipitation) (Shiau, 2003; Karmakar and Simonovic, 2009; Zhang and Singh, 2012;40

Li et al., 2013; Mitková and Halmová, 2014; Serinaldi, 2015, 2016; Anandalekshmi et al., 2019). A third method uses copulas

to analyze the dependence of multiple flood drivers and develop joint statistics.

Numerous studies have used a copula based approach to study floods manifested by various combinations of variables

(Table 1). Multivariate flood risks can be described and quantified from previous copula studies (Salvadori, 2004; Salvadori

and De Michele, 2004, 2007; Salvadori et al., 2011, 2013, 2016). Multivariate inland and coastal hydrology analysis have45

primarily focused on a small group of copulas: Archimedean (Clayton, Frank, and Gumbel), Student t, and Gaussian copulas.

Alternative copulas may more accurately characterize urban coastal flooding (Jane et al., 2020). Specifically, hazard scenarios

provide various perspectives on critical multivariate events (Salvadori et al., 2016). Initial studies were primarily focused on

select hazard scenarios (Table 1 in Salvadori et al. (2016)).

Data sampling methods in multivariate studies influence distribution fitting. Two primary sampling methods exist: peaks over50

threshold (Jarušková and Hanek, 2006) and block maxima (Engeland et al., 2004). Events selected using peaks over threshold

sampling are above a predetermined threshold defining an “extreme" event. Block maxima sampling uses various block sizes

(yearly, seasonal, semiannual, etc.) to separate and select the maximum event per block. Engeland et al. (2004) reports a

significantly different 1,000-year streamflow when using 12-month block sampling (160 m3s-1) compared to using a threshold

of 50 m3s-1 (120 m3s-1). Many studies utilize block maxima sampling with a yearly block size, i.e. the annual maximum55

sampling method (Baratti et al., 2012; Bezak et al., 2014; Wahl et al., 2015). This method is specifically recommended by

FEMA (2016c) for evaluating coastal hazards. Alternatively, studies identify extremes in the primary variable using annual

maximum sampling and select a secondary variable which co-occurs with the primary variable (Lian et al., 2013; Xu et al.,

2014; Tu et al., 2018), creating a “coinciding" type sampling. Multivariate applications relying upon annual maximum sampling
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generate events with severe flooding potentials which may produce unrealistic variable combinations. Coinciding sampling60

draws from physically realistic event pairs. Although, multiple studies explore sampling effects on fitted distribution parameters

and univariate return periods (Engeland et al., 2004; Jarušková and Hanek, 2006; Peng et al., 2019; Juma et al., 2020), sampling

effects for multivariate coastal flooding events is unknown.

Coastal flooding studies primarily focus on locations defined by storm surge dominated oceanographic conditions with

warm, humid (Wahl et al., 2012; Lian et al., 2013; Xu et al., 2014; Masina et al., 2015; Wahl et al., 2015; Mazas and Hamm,65

2017; Paprotny et al., 2018; Tu et al., 2018; Bevacqua et al., 2019; Didier et al., 2019; Xu et al., 2019; Yang et al., 2020),

and monsoonal (Jane et al., 2020) climatic conditions (i.e. Köppen-Geiger system, Beck et al., 2018). In contrast, along the

southern California coast typical tidal variability is 1.7 to 2.2 m (Flick, 2016) and storm surge rarely exceeds ∼20 cm (Flick,

1998). Notably, during the wet season (October to March), when precipitation typically occurs, spring tide ranges are relatively

large (∼ 2.6 m). Critically, few studies consider areas where coastal flooding events are dominated by large tides and either70

precipitation or wave events (Masina et al., 2015; Mazas and Hamm, 2017; Didier et al., 2019; Jane et al., 2020). This study

explores univariate and multivariate flooding events in a semi-arid, tidally dominated, highly urbanized region. Here, the

dependency between observed water levels and precipitation, impacts of sampling methods and distribution fitting, and the

resulting flood values are explored.

2 Site description & data75

This study considers observed water level and precipitation influences for coastal multivariate events at Santa Monica (SM),

Sunset Beach (S), and LA Jolla (SD) areas in Los Angeles, Huntington Beach, and San Diego, California (Fig. 1); three

semi-arid, tidally dominated sites in the United States. All are low-lying estuarine or bay-backed highly urbanized beach

communities requiring extensive coastal management to mitigate flooding events. For example, sea walls and artificial berms

in Sunset Beach protect infrastructure from high embayment water levels, wave runup, and overtopping along the open coast.80

The storm drain network is managed to prevent back flooding during high tides. Notably, Gallien et al. (2014) suggested when

tide valves are closed, the storm drain network cannot reduce pluvial flooding caused by alternative flooding pathways (e.g.,

precipitation or wave overtopping). Pacific Coast Highway (PCH) is heavily utilized and is a primary transportation corridor

along the southern California coastline. All locations are densely urbanized and highly impacted by flooding.

Observed water levels from the Los Angeles (Station ID: 9410660), La Jolla (Station ID: 9410230), and Santa Monica85

(Station ID: 9410840) tide gauges are available on NOAA’s Tides and Currents for daily high-low, hourly, or six minute

intervals (NOAA, Accessed 2021d). Verified hourly water levels (m NAVD88) had the longest record length at all three stations

and provided an additional 31-years of observations overlapping precipitation data for Los Angeles and La Jolla, and 6-years

for Santa Monica. The resulting observations windows are November 22, 1973 to December 19, 2013 for Santa Monica, July

1, 1948 to December 1, 2012 for Sunset and July 1, 1948 to December 19, 2013 for San Diego (Table 2). It is worth noting,90

that within the body of multivariate flooding literature, the terms tide and water level may be interchanged (e.g., Lian et al.,

2013; Xu et al., 2014; Tu et al., 2018; Xu et al., 2019; Yang et al., 2020). This is a key distinction since compound event
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Table 1. A non-exhaustive list of multivariate studies which utilized copulas to study the associated variables

Variable Pairs References

Waves and water level
Masina et al. (2015); Mazas and Hamm (2017);

Didier et al. (2019)

Waves and storm duration
De Michele et al. (2007); Salvadori et al.

(2014, 2015)

Waves and storm surge Wahl et al. (2012); Paprotny et al. (2018)

River discharge and water level
White (2007); Bray and McCuen (2014); Sadegh

et al. (2018); Ganguli and Merz (2019a, b)

River discharge and storm surge Paprotny et al. (2018); Ganguli et al. (2020)

River discharge and volume

Yue (2001a, b); Shiau (2003); Favre et al. (2004);

De Michele et al. (2005); Poulin et al. (2007); Li

et al. (2013); Salvadori et al. (2013); Requena et al.

(2013); Aghakouchak (2014)

River discharge, rainfall, and water

level
Bray and McCuen (2014); Jeong et al. (2014)

Multiple river discharges Salvadori and De Michele (2010)

Rainfall and tide

Lian et al. (2013)*, Xu et al. (2014)*, Tu et al.

(2018)*, Xu et al. (2019)*, Bevacqua et al. (2020),

Yang et al. (2020)*

Rainfall and water levels Jane et al. (2020)

Rainfall and storm surge
Wahl et al. (2015); Paprotny et al. (2018); Bevac-

qua et al. (2019)

Rainfall intensity and depth
Yue (2000a, b, 2002); De Michele and Salvadori

(2003)

Rainfall and groundwater Anandalekshmi et al. (2019)

Rainfall and runoff Zhang and Singh (2012); Hao and Singh (2020)

Rainfall and river discharge Zhong et al. (2020)

Rainfall and temperature Zhang et al. (2017)

Rainfall and duration Salvadori and De Michele (2007)

Combinations of rainfall intensity,

depth, and duration
Zheng et al. (2014)

Combinations of river discharge, vol-

ume, and duration

Karmakar and Simonovic (2009); Reddy and Gan-

guli (2012); Ganguli and Reddy (2013); Gräler

et al. (2013); Mitková and Halmová (2014)
*Note these studies use the term tide measurement but actually represent observed water level measurements. Please refer Section 2 for clarification.
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dependencies may change depending on water level selection. Recent efforts have been made to standardize language where

tide represents only the astronomical changes in water levels and storm surge specifically excludes astronomical variability and

consists only of the inverse barometric effects along with wind and wave setup (Gregory et al., 2019). In this study, the term95

observed water level (OWL) is adopted. OWL is the water level measured at the NOAA tide gauges which includes all tidal,

storm, and climatic effects.

The U.S. Hourly Precipitation Data dataset provided by NOAA’s National Centers for Environmental Information (NOAA,

Accessed 2021c) at the Signal Hill (COOP:048230), Los Angeles International Airport (COOP:045114), and San Diego In-

ternational Airport (COOP:047740) stations is used as the precipitation inputs. Observations do not contain trace amounts100

(< 0.25 mm) and are provided as cumulative precipitation (mm) per event. Precipitation measurements were converted to a

mm/hr rate by dividing the total event precipitation by the event duration to match the hourly OWL measurements. The final

precipitation input is a 24-hour cumulative precipitation record made from the hourly observations. All data was transformed

to UTC for analysis.

Multivariate flood probabilities are determined with combinations of sampling methods: Annual Maximum (AM), Annual105

Coinciding (AC), Wet Season Monthly Maximum (WMM), and Wet Season Monthly Coinciding (WMC). AM sampling

pairs the single largest precipitation and OWL observations within a given year (without regard to co-occurrence), where AC

sampling pairs the single largest precipitation observation within a given year to the largest OWL observation within its 24-

hour accumulation period. Each sampling method samples from a unique probability space and therefore will provide varying

perspectives for a return period. A summary of each sites’ associated gauges, observation windows, and number of pairs is110

provided in Table 2. Southern California’s wet season is defined between October to March and provides a majority of the

total annual rainfall (Cayan and Roads, 1984; Conil and Hall, 2006). It is likely for extreme multivariate events to occur during

this period. Maximum sampling pairs the single largest precipitation and OWL observations within each year or wet season

month. A multivariate event created with the largest observed precipitation and OWL within a year or wet season month can

result in an event with severe flooding potential. Although strictly speaking maximum parings (annual or wet season) do not115

technically represent an observed multivariate event, they would represent a severe event and are consistent with the blended

approach recommended by FEMA (2016c). Coinciding sampling pairs the single largest precipitation observation within each

year or wet season month to the largest OWL observation within its 24-hour accumulation period, providing more realistic

pairs compared to maximum sampling.

Distributions are fit with existing precipitation observations greater than zero consistent with previous studies (Swift Jr and120

Schreuder, 1981; Hanson and Vogel, 2008). Months with no OWL measurements were excluded. In the case of coinciding

sampling, pairs that had three or more OWL measurements missing within the 24-hour window were manually reviewed and

removed if their tidal peak was clearly missing. Specifically for WMM sampling, months with more than half their observations

missing were also reviewed and removed if the tidal peak was missing. The resulting data pairs are shown in Fig. 2.
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Figure 1. Map displaying (a) Santa Monica, (b) Sunset, and (c) San Diego sites along with locations of tide gauges (triangle) and precipitation

stations (circle). The road drain (square) and boundary (yellow) at Sunset (∼2 km2) is for the Structural scenario. Aerial imagery from NOAA

(Accessed 2021a).

Figure 2. Data pairs for each sampling method. annual maximum (AM, x), annual coinciding (AC, + ), wet season monthly maximum

(WMM, ·), and wet season monthly coinciding (WMC,4) at (a) Santa Monica, (b) Sunset, and (c) San Diego
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Table 2. Water level and precipitation observations at Santa Monica (SM), Sunset (S), and San Diego (SD) using annual maximum (AM),

annual coinciding (AC), wet season monthly maximum (WMM), and wet season monthly coinciding (WMC) samplings

Site
Tide Precip. Observation AM AC WMM WMC

Gauge Gauge Window Pairs Pairs Pairs Pairs

SM 9410840 045114 November 22, 1973 to December 19, 2013 40 38 193 191

S 9410660 048230 July 1, 1948 to December 1, 2012 63 63 257 258

SD 9410230 047740 July 1, 1948 to December, 19 2013 65 60 328 329

3 Methods125

3.1 Univariate, bivariate, & conditonal distributions

Potential flooding events are determined with three different probability definitions: univariate, conditional, and bivariate. As-

suming X and Y are random variables, x and y are observations of these variables, and FX and FY represent the variables’ re-

spective cumulative distribution functions (CDF). Formulations for univariate (FX(x),FY (y)) and bivariate joint (FXY (x,y))

CDFs follow DeGroot and Schervish (2014) (Eq. (1) and (2)). Conditionals (FX|Y≥y(x|Y ≥ y), FX|Y≤y(x|Y ≤ y), and130

FX|Y =y(x|Y = y)) are developed from Shiau (2003) (Eq. (3)) and Serinaldi (2015) (Eq. (4) and (5)). Conditionals 1 (C1),

2 (C2), and 3 (C3) represent Eq. (3), (4), and (5) going forward. Univariate statistics are developed using the appropriate

continuous random variable distribution while conditional and bivariate CDFs are determined using copulas.

Copulas are functions that associate random variables’ univariate CDFs to their joint CDF (e.g., FX and FY to FX,Y (x,y))

according to Sklar’s theorem (Sklar, 1959; Salvadori, 2004). There is no requirement for the univariate distributions to be135

the same. This is particularly advantageous since the optimal univariate distributions may be used for each variable. Bivariate

probabilities for different hazard scenarios, which represent various multivariate events, and conditional probabilities can be

calculated using fitted copula functions.

FX(x) = Pr(X ≤ x) (1)

FX,Y (x,y) = Pr(X ≤ x and Y ≤ y) (2)140

FX|Y≥y(x|Y ≥ y) = Pr(X > x|Y ≥ y) =
FX(x)−FXY (xy)

1−FY (y)
(3)

FX|Y≤y(x|Y ≤ y) = Pr(X > x|Y ≤ y) = 1− FX,Y (x,y)

FY (y)
(4)

7



FX|Y =y(x|Y = y) = Pr(X > x|Y = y) = 1− ∂FXY (xy)

∂y
(5)

3.2 Hazard scenarios

Notation and definitions from Salvadori et al. (2016), unless otherwise stated, are used to define the upper set (S) and scenario145

types. Salvadori et al. (2016) and Serinaldi (2015) present figures of each scenario’s probability space. Further discussion of

hazard scenarios and copulas assume a bivariate situation.

3.2.1 “OR"

“OR" scenario events have one or both random variables exceed a specified threshold. That is, what is the probability of a water

level or precipitation event exceeding a given value? Standard univariate CDFs make up the associated copula.150

α∨x = P(X ∈ S∨x ) = 1−C(F1(x1), ...,Fd(xd)) (6)

3.2.2 “AND"

“AND" scenario events have both random varibles exceed a specified threshold. In this case the fundamental question is “what

is the probability of a particular water level and precipitation rate exceeding specified values?". The survival copula (Ĉ(u,v))

is comprised of univariate survival CDFs (F̄(x) = 1−F(x)) and the provided equation can be found in Serinaldi (2015) and155

Salvadori and De Michele (2004).

α∧x = P(X ∈ S∧x ) = Ĉ(F̄1(x1), ..., F̄d(xd)) (7)

Ĉ(u,v) = 1−u− v+C(u,v) (8)

3.2.3 “Kendall"

The “Kendall" (K) scenario highlights an infinite set of OR events that separate the subcritical (i.e, “safe") and supercritical160

(i.e.,“dangerous") statistical regions. In the OR scenario, events along an isoline (t) share a common probability, but define

separate regions. Events along a Kendall t represent the same super critical region (Serinaldi, 2015) and provide a “safety

lower bound" (Salvadori et al., 2011). Essentially the Kendall scenario considers the minimum OR events of concern. K(t) is

estimated by a method outlined in Salvadori et al. (2011).

K(t) = P(F(X1, ...,Xd)≤ t) = P(C(F1(X1), ...,Fd(Xd))≤ t) (9)165

αK
t = P(X ∈ SK

t ) = 1−K(t) (10)

8



3.2.4 “Survival Kendall"

“Survival Kendall" (SK) scenario highlights an infinite set of AND events which also separate safe and dangerous statistical

spaces. AND events along a t also share a common probability, but define separate regions. Events along an SK t represent

the same super critical region, but provide an “(upper) bounded safe region" (Salvadori et al., 2013). The Survival Kendall170

specifically considers the largest AND events of concern and is estimated by the method outlined in Salvadori et al. (2013).

K̂(t) = P(F(X1, ...,Xd)≤ t) = P(Ĉ(F̄1(X1), ..., F̄d(Xd))≤ t) (11)

αǨ
t = P(X ∈ SǨ

t ) = 1− Ǩ(t) = K̂(t) (12)

3.2.5 “Structural"

The “Structural" scenario considers the probability of an output from a structural function, Ψ(X), exceeding a design load175

or capacity (z) (Salvadori et al., 2016). For example, De Michele et al. (2005) and Volpi and Fiori (2014) used a structural

function to evaluate a dam spillway while Salvadori et al. (2015) considers the preliminary design of rubble mound breakwater.

In this work, the structural failure function focuses on the question “what is the probability of a water level forcing tide valve

closure and subsequent flooding during a precipitation event?".

αΨ
z = P(X ∈ SΨ

z ) = P(Ψ(X)> z) (13)180

3.3 MvCAT

The Multivariate Copula Analysis Toolbox (MvCAT) developed by Sadegh et al. (2017) is a publicly available MATLAB

toolbox that fits 25 different copula functions to user data of two random variables. Copula parameters are optimized through

a local optimization or with Markov Chain Monte Carlo methods (details in Sadegh et al. (2017)). The MvCAT framework is

expanded to determine all scenarios and conditionals in this study. While all copulas have functional CDFs, the Cuadras-Auge,185

Raftery, Shih-Louis, Linear-Spearman, Fischer-Hinzmann, Husler-Reiss, Cube, and Marshal-Olkin copulas do not have a PDF

function. A PDF is required to determine the most likely value along an isoline, therefore it was decided to remove those

copulas from the study. Copulas must also be computationally simple to derive or integrate to calculate Conditional 3 (Eq.(5)).

Gaussian and Student t copulas’ partial derivatives cannot be explicitly calculated, and estimates induce unrealistic errors (i.e.,

produce negative probabilities). Seventeen different copulas remain after eliminating those discussed above.190

3.4 Return periods

Hydrologic events are commonly cast in the context of return periods (e.g., De Michele et al., 2005, 2007; FEMA, 2011; Wahl

et al., 2012; USACE, 2013; Salvadori et al., 2014; Wahl et al., 2015; Salvadori et al., 2015). Return periods (T ) provide a
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metric describing the severity of an event and is the inverse of an event’s probability of exceedance presented as F in Eq. (14)

(Tu et al., 2018). In Eq. (15), N is the data’s time window, n is the number of considered events within N , and Ne is the195

average number of events per unit of time (monthly, yearly, etc.). Therefore, Ne = 1 when considering singular events within

a year (Tu et al., 2018).

T = 1/(Ne ∗F ) (14)

Ne = n/N (15)

3.5 Goodness of fit metrics200

Multiple goodness of fit metrics and correlations serve to quantify the quality of distribution fits and dependencies between

variables. Marginal fits are selected by Bayesian Information Criterion (BIC; Eq. (19)) and must pass the Chi-square goodness-

of-fit test at standard significance levels (α = 0.05), unless otherwise stated. Copulas are selected by BIC and must pass

the Cramer-von Mises test (Genest et al., 2009; Couasnon et al., 2018; Sadegh et al., 2018; Ward et al., 2018). Likelihood

(L ∈ [0,∞)) measures how well a distribution’s estimated parameters fit the sample data with larger values suggesting a better205

fit. Log-likelihood (` ∈ (−∞,∞)) is the log transformation of Eq. (16) used to calculate BIC. BIC (BIC ∈ (−∞,∞)) is

similar to the likelihood, but penalizes for the number of estimated parameters (D) and the data’s sample size (n). Smaller BIC

values represent a better fit. Equations and definitions can be found in Sadegh et al. (2017). Correlation measurements include

Pearson’s linear correlation, Kendall’s tau, and Spearman’s rho coefficients.

L(θ|Ỹ) =

n∏
i=1

1√
2πσ̃2

exp{−1

2
σ̃2[ỹi− yi(θ)]2} (16)210

σ̃2 =

∑n
i=1[ỹi− yi(θ)]2

n
(17)

`(θ|Ỹ) =−n
2

ln(2π)− n

2
ln σ̃2− 1

2
σ̃2

n∑
i=1

[ỹi− yi(θ)]2 (18)

BIC =Dln(n)− 2` (19)
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4 Results

Univariate, conditional, and bivariate probabilities were developed using four sampling methods (AM, AC, WMM, and WMC)215

and seventeen different copulas. Two marginal distributions do not pass the chi square test at the standard 0.05 level of sig-

nificance (San Diego AM OWL and Santa Monica WMM OWL). These distributions pass at reduced significance levels of

0.01. Four copulas almost always passed (Nelsen, BB1, BB5, and Roch-Alegre) the Cramer-von Mises test and are used for

analysis. It is noted the Roch-Alegre (Roch.) did not pass at Sunset for WMM sampling, and the BB1 and BB5 did not pass

at San Diego for WMC sampling. Additionally, Santa Monica’s AM data is slightly negatively correlated (>−0.06). Copula220

and sampling effects differ significantly at low (i.e., low return period) and high (i.e., severe return period) probabilities of

non-exceedance. In the case of annual sampling, non-exceedance (exceedance) probabilities are 0.9 (0.1) and 0.99 (0.01) for

the 10- and 100-year events, respectively. In wet season sampling, return period exceedance probabilities vary depending on

sampling type and location due to the average number of event observations per year (Ne from Eq. (15)). For example, San

Diego WMC sampling has 329 observations within the 65 year record (i.e., Ne = 5.06). Therefore, the exceedance probabili-225

ties (F in Eq. (14)) associated to a 10- and 100-year event are 0.0198 and 0.0020 (non-exceedance probabilities at 0.9802 and

0.9980), respectively. Table 3 presents wet season (WMM and WMC) exceedance probabilities for all sites.

Table 3. Santa Monica, Sunset, and San Diego exceedance probabilities at the 10- and 100-year return periods for wet season monthly

maximum (WMM) and wet season monthly coinciding (WMC) samplings.

Santa Monica Sunset San Diego

10-year 100-year 10-year 100-year 10-year 100-year

WMM 0.0207 0.0021 0.0245 0.0025 0.0198 0.0020

WMC 0.0209 0.0021 0.0244 0.0024 0.0198 0.0020

4.1 Marginals

The selected marginal distributions (Fig. 3, Table 4) were tested and/or suggested fits in previous studies. Rainfall has been

widely fit with an Exponential distribution (refer to Table 2 in Salvadori and De Michele (2007)), but more recently been fit230

using a variety of distributions including Gamma (Husak et al., 2007), Rayleigh (Pakoksung and Takagi, 2017; Esberto, 2018),

Generalized Pareto or Birnbaum-Saunders (Ayantobo et al., 2021). In the case of annual precipitation (coinciding or maximum

sampling) Santa Monica was well described by a Birnbaum-Sanders, Rayleigh best described Sunset data, and a Gamma was

the best fit for San Diego data. Similarly, wet season precipitation data (maximum or coinciding sampling) was best described

by the Exponential distribution for Santa Monica and Sunset while the Generalized Pareto best represented San Diego.235

Historically, water levels have been described using a number of distributions including Normal (Hawkes et al., 2002),

Generalized Pareto (Mazas and Hamm, 2017), Log Logistic and Nakagami (Sadegh et al., 2018), Birnbaum-Saunders (Sadegh

et al., 2018; Didier et al., 2019; Jane et al., 2020), along with Gamma, Weibull, and Inverse Gaussian (Jane et al., 2020).

Observed water levels did not exhibit site specific patterns and were described by a range of distributions (Table 4).

11



Figure 3. (a) OWL and (b) precipitation marginals for Santa Monica (SM, solid lines), Sunset (S, dashed lines), and San Diego (SD, dotted

lines) using annual maximum (AM, blue), annual coinciding (AC, green), wet season monthly maximum (WMM, black), and wet season

monthly coinciding (WMC, red) samplings.

Table 4. Best fitting univariate distributions for each location and sampling method (annual maximum (AM), annual coinciding (AC), wet

season monthly maximum (WMM), wet season monthly coinciding (WMC)).

Dataset Variable Santa Monica Sunset San Diego

AM
OWL L BS GP

Precip BS R G

AC
OWL N GP NA

Precip BS R G

WMM
OWL N W GEV

Precip E E GP

WMC
OWL G IG IG

Precip E E GP

BS - Birnbaum-Saunders; GP - Generalized Pareto; E - Exponential

R - Rayleigh; N - Normal; L - Log logistic; G - Gamma

W - Weibull; IG - Inverse Gaussian; NA - Nakagami
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4.2 Copulas240

San Diego wet season monthly coinciding conditional CDFs display individual copulas effects (Fig. 4). The Nelsen, Roch.,

and BB1 copulas consistently suggest similar OWL (Fig. 4a, e) and precipitation values (Fig. 4b, f) while, in this example, the

BB5 suggests higher OWL and precipitation values (solid black line, Fig. 4a, b, e, f). C1’s 100-year pair in Table 6 displays

an example of the BB5’s conservative nature. Copula choice has nearly no effect on the Conditional 2 scenario (Fig. 4c, d).

Most probable OWL and precipitation values in Tables 5 and 6 further display the aforementioned behaviors. These conditional245

patterns generally persist at all locations with an additional note that the Nelsen can suggest lower OWL values and the BB5

can provide similar results to the Roch. and BB1 copulas.

Figures 5 and 6 show the 10- and 100-year return periods, respectively, for the four focused copulas using wet season monthly

coinciding sampling at San Diego. Clearly the BB5 presents conservative results suggesting higher OWL and precipitation pairs

in the AND and SK scenarios (Fig. 5a, c and 6a, c), while the BB1, Nelsen, and Roch-Alegre copulas present similar OWL and250

precipitation values. The OR and Kendall scenarios suggest quite similar isolines between copulas, suggesting similar values,

but the BB5 suggests less severe OWL and larger precipitation values according to the densest location along its isoline (Fig.

5b, d, and 6b, d). Tables 5 and 6 further display the bivariate patterns. Again, these bivariate patterns generally persist at all

locations with the additional notes: the Nelsen may suggest lower OWL values in the AND and SK scenarios, the BB5 typically

has similar results to the Roch. and BB1 copulas in the AND and SK scenarios, and the BB5 typically agreed with the other255

copula results outside of San Diego for the OR and K scenarios.

Table 5. San Diego 10-year marginal (M), conditional (C), and bivariate OWL (m) and precipitation (mmday−1) values using wet season

monthly coinciding sampling. Conditionals are conditioned on a 25-year event occurring.

Nelsen Roch. BB1 BB5

OWL Precip OWL Precip OWL Precip OWL Precip

M 2.11 33.64 2.11 33.64 2.11 33.64 2.21 33.64

C1 2.19 36.79 2.18 36.27 2.16 35.41 2.62 48.65

C2 2.11 33.61 2.11 33.61 2.11 33.62 2.09 33.02

C3 2.19 36.76 2.18 36.24 2.15 35.37 2.46 44.92

AND 1.85 22.49 1.85 22.15 1.84 21.65 1.91 24.99

OR 2.20 37.06 2.17 38.29 2.20 37.06 2.12 43.47

K 2.22 37.67 2.22 37.67 2.05 32.52 2.14 44.11

SK 2.15 35.13 2.15 35.11 2.15 35.04 2.21 37.88

4.3 Sampling

San Diego conditional CDFs using the BB1 copula clearly present sampling effects (i.e. maximum versus coinciding and

annual versus wet season months). It should be noted, that each sampling method represents a unique probability space and
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Figure 4. San Diego wet season monthly coinciding OWL (left column) and precipitation (right column) (a), (b) C1, (c), (d) C2, and (e),

(f) C3 CDFs using the Nelsen (blue), Roch-Alegre (Roch), BB1 (green), and BB5 (black) copulas. OWL/ Precipitation conditionals are

conditioned on the occurrence of a 25-year precipitation/ OWL event.
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Figure 5. San Diego wet season monthly coinciding (a) AND, (b) OR, (c) SK, and (d) K hazard scenarios with the Nelsen, Roch-Alegre

(Roch), BB1, and BB5 10-year isolines. Copula labels point to the mostly likely value on their respective isolines.
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Figure 6. San Diego wet season monthly coinciding (a) AND, (b) OR, (c) SK, and (d) K hazard scenarios with the Nelsen, Roch-Alegre

(Roch), BB1, and BB5 100-year isolines. Copula labels point to the mostly likely value on their respective isolines.
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Table 6. San Diego 100-year marginal (M), conditional (C), and bivariate OWL (m) and precipitation (mmday−1) values using wet season

monthly coinciding sampling. Conditionals are conditioned on a 25-year event occurring.

Nelsen Roch. BB1 BB5

OWL Precip OWL Precip OWL Precip OWL Precip

M 2.40 43.34 2.40 43.34 2.40 43.34 2.40 43.34

C1 2.47 45.26 2.46 44.95 2.44 44.48 2.89 52.72

C2 2.40 43.32 2.40 43.32 2.40 43.34 2.35 42.11

C3 2.47 45.26 2.46 44.92 2.44 44.42 2.68 49.72

AND 2.04 30.77 2.03 30.45 2.02 29.93 2.20 37.42

OR 2.47 45.53 2.48 45.39 2.47 45.53 2.40 49.17

K 2.22 31.79 2.22 31.79 2.17 40.13 2.14 38.59

SK 2.31 40.97 2.33 41.53 2.32 41.26 2.46 45.25

accordingly results in alternative realizations of a given return period. Coinciding samplings exhibit similar OWL CDFs (green260

and red lines, Fig. 7a, c, e), whereas wet season samplings exhibit similar precipitation CDFs (red and black lines Fig. 7b, d,

f). OWL values can be larger for maximum samplings at lower non-exceedance probabilities (i.e lower return periods) (Fig.

7a, c, e blue and black lines, Table 7). However, the extended tail from WMC sampling produces larger OWL at higher return

periods (red line Fig. 7a, c, e; Table 8). Annual coinciding sampling displays significantly lower OWL values at low (Table 7)

and high (Table 8) return periods. Only minimal differences between annual and wet season precipitation exist at the 10- and265

100-year return periods (maximum difference of 1.06 and 4.56 mmday−1 respectively; Tables 7 and 8). Annual (wet season)

precipitation CDFs appear similar as OWL measurements are chosen subsequent to precipitation observations (Fig. 7b, d, f).

Figures 8 and 9 present the 10- and 100-year return periods using the BB1 copula for all samplings (AM, AC, WMM, and

WMC). For the AND and K scenarios, AM sampling results in the largest OWL compared to the other sampling methods (Fig.

8a, d and 9a, d, Tables 7 and 8). Additionally for the AND and K scenarios (Fig. 8a, d and 9a, d), maximum samplings (AM270

and WMM) provide more conservative OWLs compared to WMC OWL values (Tables 7 and 8). When comparing maximum

samplings (AM and WMM) to WMC sampling in the OR and SK scenarios, maximum samplings generally provide larger

OWL values at lower return periods (Fig. 8b, c; Table 7), but smaller or similar OWL at larger return periods (Fig. 9b, c;

Table 8). AC sampling generally results in the smallest OWL levels at all hazard scenarios. These behaviors persist across all

locations. Given wet season monthly coinciding sampling results in larger OWL values for the marginal, conditional, OR, and275

Kendall scenarios, this suggests maximum type sampling may not accurately reflect OWL at extreme return periods.

Table 7 and 8 shows the most probable 10- and 100-year marginal and multivariate event values. AM OWL exceed AC OWL

across all probability types and sites, which is expected given the (nonphysical) paring of the two largest individual OWL and

precipitation events without regard to co-occurrence. For example, in the 10-year return period annual maximum OWLs are at

least 30 cm higher than AC (Table 7). In the 100-year return period annual maximum OWLs exceed annual coinciding OWLs280

by at least 17 cm (Table 8). Precipitation is generally consistent across sampling types with only minor variations observed.
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Figure 7. San Diego OWL (left column) and precipitation (right column) (a), (b) C1, (c), (d) C2, and (e), (f) C3 CDFs for annual maximum

(AM, blue), annual coinciding (AC, green), wet season monthly maximum (WMM, black), and wet season monthly coinciding (WMC, red)

samplings using the BB1 copula. OWL/ Precipitation conditionals are conditioned on the occurrence of a 25-year precipitation/ OWL event.
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Figure 8. San Diego (a) AND, (b) OR, (c) SK, and (d) K hazard scenarios for annual maximum (AM, cross), annual coinciding (AC, plus),

wet season monthly maximum (WMM, dot), wet season monthly coinciding (WMC, triangle) data and 10-year isolines using the BB1

copula. Sampling labels point to the mostly likely value on their respective isolines.

AM and WMM sampling generally produced similar OWL results at both the 10- and 100-year return periods with maximum

difference of 6 cm across all conditionals and copulas.
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Figure 9. San Diego (a) AND, (b) OR, (c) SK, and (d) K hazard scenarios for annual maximum (AM, cross), annual coinciding (AC, plus),

wet season monthly maximum (WMM, dot), wet season monthly coinciding (WMC, triangle) data and 100-year isolines using the BB1

copula. Sampling labels point to the mostly likely value on their respective isolines.

4.4 Structural failure

A structural scenario is presented to consider flood severity along the Pacific Coast Highway (PCH) in Sunset Beach. PCH285

road elevation ranges from 1.7-2.4 m NAVD88 (Fig. 10), below typical spring tide (∼2.13 m) and more extreme (∼2.3 m)
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Table 7. San Diego 10-year marginal (M), conditional (C), and bivariate OWL (m) and precipitation (mmday−1) values using the BB1

with annual maximum (AM), annual coinciding (AC), wet season monthly maximum (WMM), and wet season monthly coinciding (WMC)

samplings. Conditionals are conditioned on a 25-year event occurring.

AM AC WMM WMC

OWL Precip OWL Precip OWL Precip OWL Precip

M 2.22 33.38 1.83 33.76 2.20 33.61 2.11 33.64

C1 2.24 35.20 1.86 35.03 2.21 34.39 2.16 35.41

C2 2.22 33.31 1.83 33.70 2.20 33.60 2.11 33.62

C3 2.23 34.50 1.86 34.99 2.21 34.31 2.15 35.37

AND 2.14 26.13 1.66 26.79 2.09 20.89 1.84 21.65

OR 2.25 37.03 1.91 37.71 2.22 38.48 2.20 37.06

K 2.24 36.02 1.89 36.44 2.18 32.10 2.05 32.52

SK 2.25 38.45 1.94 38.70 2.21 35.06 2.15 35.04

Table 8. San Diego 100-year marginal (M), conditional (C), and bivariate OWL (m) and precipitation (mmday−1) values using the BB1

with annual maximum (AM), annual coinciding (AC), wet season monthly maximum (WMM), and wet season monthly coinciding (WMC)

samplings. Conditionals are conditioned on a 25-year event occurring.

AM AC WMM WMC

OWL Precip OWL Precip OWL Precip OWL Precip

M 2.27 45.07 2.08 45.65 2.26 43.32 2.40 43.34

C1 2.27 48.54 2.10 46.76 2.27 43.98 2.44 44.48

C2 2.27 44.90 2.08 45.60 2.26 43.30 2.40 43.34

C3 2.27 46.35 2.10 46.69 2.27 43.79 2.44 44.42

AND 2.23 34.01 1.85 34.39 2.17 29.29 2.02 29.93

OR 2.27 48.15 2.14 48.83 2.27 45.52 2.47 45.53

K 2.26 42.81 2.02 42.45 2.22 39.68 2.17 40.13

SK 2.27 46.20 2.08 45.65 2.25 40.90 2.32 41.26

water levels (NOAA, Accessed 2021b), requiring tide valves along PCH for flood prevention. Tide valve closures prevent

back-flooding from high bay water levels coming up through subsurface storm drains that (normally) discharge to the bay.

Additionally, closed tide valves enable precipitation pooling since water cannot be drained to the bay. Severe pooling may

result in a critical highway closure, which can further damage property and inhibit emergency service operations.290

Areal precipitation flooding extent and depth can be estimated for water levels exceeding tide valve closure elevation. A

water level equal to or greater than 1.68 m NAVD88 forces valve closures and frames the structural failure as a Conditional 1

type event. The local watershed is convex and drains an area of 94,897 m2. Water pools in the low elevation areas along PCH
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Figure 10. Elevations within the Pacific Coast Highway boundary ranging from low (purple) to high (blue). Background imagery from

NOAA (Accessed 2021a).

(Fig. 10). When pluvial water levels exceed the sea wall elevation, water overflows the sea wall and exits to the harbor. The

maximum pool storage is 11,342 m3. The percent of flooding is then calculated with Eq. (20) as the structural function.295

Structural scenario precipitation and percent flooding (Ψ) values utilizing the Nelsen, Roch-Alegre, and BB1 copulas are

shown in Table 9. Rows and columns separate the utilized sampling methods and return periods of interest, respectively. Fig. 11

shows Ψ as a function of precipitation for the Nelsen, Roch-Alegre, and BB1 copulas along with the 5- (square), 10- (circle),

and 100-year (diamond) return periods. All copulas display similar values across sampling methods (Fig. 11, Table 9). For

example, the 10-year precipitation with wet season monthly coinciding sampling is 82.49, 81.95, and 81.09 for the Nelsen,300

Roch-Alegre, and BB1 copulas, respectively. Again, AC sampling severely underestimates precipitation and flooding.

% flooding =
precipitation× area

volume
× 100 (20)

5 Discussion

Previous multivariate studies typically use a small, popular group of copulas (e.g., Clayton, Frank, Gumbel, Student t, and

Gaussian). Gaussian and Student t copulas were excluded from this study due to their lack of a computationally simple deriva-305

tive or integral while the Clayton, Frank, and Gumbel failed to pass the Cramer-con Mises test. Nelsen, BB1, BB5, and

Roch-Alegre copulas generally present similar values with the BB5 occasionally presenting more conservative pairs (Fig. 6).

Well fit copulas concentrate probabilities around more centralized OWL and precipitation values for multivariate events. This

is most pronounced at higher (i.e., 100-year) return periods (Fig. 6). Given that the resulting copulas exhibit agreement between
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Figure 11. Structural scenario 5- (square), 10- (circle), and 100-year (diamond) return periods for annual maximum (AM, blue), annual

coinciding (AC, green), wet season monthly maximum (WMM, black), and wet season monthly (WMC, red) data using the (a) Nelsen, (b)

Roch-Alegre, and (c) BB1 copulas.

values (for a given sampling) suggests that choosing a reasonable copula may be sufficient to provide a robust characterization310

of considered multivariate flooding events.

The choice in sampling imparts a significant influence on event risk interpretation. When maximum versus coinciding

sampling is considered, maximum samplings (AM and WMM) tend to provide the largest OWL at low return periods (Fig.

7a, c, e, Fig. 8, and Table 7). At larger return periods, wet season monthly coinciding then provides significantly larger OWLs

(Fig. 7a, c, e, Fig. 9, and Table 8). This is observed in the conditionals and bivariates (minus the AND and K hazard scenarios315

which maximum samplings display the largest OWLs) at all sites. From a logical perspective, coinciding sampling provides a

more realistic view of multivariate events (by definition these are pairs that have co-occurred to produce a multivariate flooding

event). At long return periods annual coinciding sampling may require a long data record, which is often unavailable. Notably,

in this study annual coinciding produced OWL samplings that were substantially lower than any of the other samplings. For

example when comparing 100-year OWLs with annual and wet season monthly coinciding samplings, the marginal was 32 cm320

lower and the AND scenario was 17 cm lower (Table 8). Given that sea wall protected urban coastal areas are highly sensitive to

even minor elevations differences (e.g., Gallien et al., 2011), this suggests with limited data records annual coinciding sampling

should be avoided.
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Table 9. Precipitation and percent flooding (Ψ) associated to the 5-, 10-, and 100-year return periods (T ) using the Nelsen, Roch-Alegre, and

BB1 copulas to determine C1 values with annual maximum (AM), annual coinciding (AC), wet season monthly maximum (WMM), and wet

season monthly coinciding (WMC) samplings. Precipitation values are in mmday−1 and Ψ is a percentage. Values are based off a OWL of

≥ 1.68 m which forces tide valve closure.

T
5-yr. 10-yr. 100-yr.

Precip Ψ Precip Ψ Precip Ψ

Nelsen

AM 63.51 53.14 75.97 63.56 107.44 89.89

AC 34.45 28.82 47.41 39.66 89.39 74.79

WMM 64.51 53.97 79.27 66.32 128.26 100.00

WMC 67.71 56.65 82.49 69.02 131.44 100.00

Roch-Alegre

AM 63.51 53.14 75.97 63.56 107.44 89.89

AC 33.70 28.19 46.57 38.97 88.50 74.05

WMM 64.57 54.02 79.34 66.38 128.44 100.00

WMC 67.17 56.20 81.95 68.56 130.92 100.00

BB1

AM 63.51 53.14 75.97 63.56 107.44 89.89

AC 33.30 27.86 46.41 38.83 89.44 74.83

WMM 64.60 54.05 79.38 66.42 128.44 100.00

WMC 66.34 55.50 81.09 67.84 130.03 100.00

An important note is each probability type appropriately describes a unique event, characterized by OWL and precipitation.

Serinaldi (2015) suggests inter-comparing univariate, multivariate, and conditional probabilities and return periods is mislead-325

ing as each probability type describes its associated event. Events where only extreme OWL or precipitation is of concern,

should simply utilize marginal statistics and follow current FEMA guidelines. Multivariate event analysis may utilize a variety

of scenarios. Conditional type distributions become useful when future information on one variable is known (ex., predicted

OWL levels). AND scenarios may be applied when both variables exceeding given limits is of concern. The Survival Kendall

scenario is an alternative to the AND scenario using a more conservative approach to develop events of concern (Salvadori330

et al., 2013). An OR scenario should be applied when either multivariate variable exceeding a limit is of concern, whereas the

Kendall scenario provides minimum OR events of concern (Salvadori et al., 2011). The benefit of the Kendall and Survival

Kendall is all the events along their isolines describe a similar probability space versus the AND and OR isolines describe

events with similar probabilities of non-exceedance. It is critical for practitioners and future studies to define concerning flood

events within a region since the associated probability will result in varying event risk estimates as seen within this work.335

The selected probability type will have significant influence on flood risk studies and modeling efforts. A majority of previous
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studies focus on specific probability types and do not consider multiple flooding pathways. Only a single study explores all the

probabilities associated to different extreme events (Serinaldi, 2016).

From a regulatory perspective, FEMA recommends individual (univariate) analysis to develop return periods for multivariate

coastal flooding applications (FEMA, 2011, 2016c, 2020), and blending the two hazard mapping results. Fundamentally, this340

type of approach assumes (event) independence and may underestimate multivariate flood hazards (e.g., Moftakhari et al., 2019;

Muñoz et al., 2020). FEMA provides guidelines for coastal-riverine (FEMA, 2020), tide, surge, tide-surge (FEMA, 2016a),

surge-riverine (FEMA, 2016c), and tropical storm (or hurricane) type flooding events (FEMA, 2016b). Currently, FEMA does

not provide specific guidance for considering high marine water levels and precipitation. However, this work suggests, at high

return periods the sampling method is critical to characterizing both univariate and joint probabilities.345

Structural scenarios provide a quantitative context to frame flood vulnerability. In the structural failure context, annual

coinciding sampling significantly underestimates flooding at all return periods, and annual maximum sampling underestimates

severe (i.e., 100-year) events, echoing previous annual maximum and coinciding sampling issues. Similar values between most

copulas support the suggestion that choosing a reasonable copula will provide robust results in these types of applications.

Precipitation events in the Structural scenario (Table 9) range between 33.30 mmday−1 and 131.44 mmday−1, resulting350

between 27.86 % and complete (100 %) backshore flooding. This significant flooding at all return periods suggests severe

flood vulnerability, which is validated by frequent closures of PCH. This structural function provides a quick and simple

alternative to poorly performing bathtub flood models (e.g., Bernatchez et al., 2011; Gallien et al., 2011, 2014; Gallien, 2016)

to quantitatively explore flood severity while accounting for infrastructure and joint probabilities.

The maximum OWL and precipitation observations within the record are 2.33 m and 118.93 mmday−1 for Sunset, 2.27355

m and 42.11 mmday−1 for San Diego, and 2.45 m and 76.83 mmday−1 for Santa Monica. Most likely precipitation and

OWL pairs in high return periods often exceed the current data record’s maximums (e.g. Table 8). This study is limited to the

available data records and sea level rise clearly imparts a non-stationary trend. Current water level values restricted to today’s

distribution tails, will become more frequent in the next century (Taherkhani et al., 2020). For example, Wahl et al. (2015)

suggests a previously 100-year event in New York is now a 42-year event based on the increasing correlation between extreme360

precipitation and storm surge events. Similarly, our results suggest increasing precipitation and, particularly, OWL levels.

6 Conclusions

Univariate and multivariate event risks from OWL and/or precipitation were explored at three sites in a tidally dominated,

semi-arid region. Seventeen copulas were considered. Previous studies typically relied upon a small number of copulas (e.g.

Clayton, Frank, Gumbel, Student t, and Gaussian) for multivariate flood assessments. In this case, the Nelsen, BB1, BB5,365

and Roch-Alegre copulas passed the Cramer-von Misses test and produced similar, quality fits across all sampling methods.

Although, in some cases, the BB5 produced conservative results. Copulas exhibit similar most probable pairs (e.g., Fig. 5, 6)

suggesting a number of potential copulas may provide a robust multivariate analysis. The impact of sampling and distribution

choice on uni- and multivariate return period values are presented, however uncertainties deserve further characterization. This
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work focused solely on exploring conditional and joint probabilities of OWL and precipitation in a tidally and wave dominated370

semi-arid region and would not be applicable to regions experiencing multiple flooding seasons (e.g., Couasnon et al., 2022).

Although wave impacts were not included in this assessment, they are fundamental to coastal flooding, particularly in regions

subjected to long period swell. Joint probability methods explicitly including wave contributions to multivariate event risk

characterizations are needed for future work.

The annual maximum method is widely recognized for hazard assessments (FEMA, 2011, 2016c), and is common practice375

in flood risk analysis (e.g., Baratti et al., 2012; Bezak et al., 2014; Wahl et al., 2015). Concerningly, this work suggests that

annual maximum sampling does not characterize severe flooding potential for extreme events. Water levels are substantially

underestimated as annual sampling neglects a large portion of observations (Table 8). Generally, maximum samplings produced

larger values at minor return periods but significantly underestimated water levels at longer return periods than wet season

monthly coinciding sampling. Similarly, annual coinciding type sampling (Tables 7, 8) grossly underestimate OWLs. Wet380

season sampling quadruples data pairs (Table 2), providing additional historical joint event information. Further investigation

into monthly coinciding and, where appropriate, water year coinciding are needed to develop optimal sampling strategies for

given regional conditions.

Data availability. NOAA precipitation data is available for download at https://www.ncei.noaa.gov/metadata/geoportal/rest/metadata/item/

gov.noaa.ncdc:C00313/html#. Tidal data is available for download on NOAA’s Tides & Currents wetbsite (https://tidesandcurrents.noaa.gov)385

.

Appendix A: Additional BICs
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Figure A1. Marginal OWL BIC values per fitted copula for Santa Monica (left column), Sunset (middle column), and San Diego (right

column) using annual maximum ((a), (b), (c)), annual coinciding ((d), (e), (f)), wet season monthly maximum ((g), (h), (i)), and wet season

monthly coinciding ((j), (k), (l)). The Y-axis is orientated to display best BIC (top) to worse BIC (bottom).
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Figure A2. Marginal precipitation BIC values per fitted copula for Santa Monica (left column), Sunset (middle column), and San Diego

(right column) using annual maximum ((a), (b), (c)), annual coinciding ((d), (e), (f)), wet season monthly maximum ((g), (h), (i)), and wet

season monthly coinciding ((j), (k), (l)). The Y-axis is orientated to display best BIC (top) to worse BIC (bottom).
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