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Abstract. Accurate estimates of the probability of extreme sea levels are pivotal for assessing risk and the design of coastal
defense structures. This probability is typically estimated by modelling observed sea-level records using one of a few statistical
approaches. In this study we comparatively apply the Generalized Extreme Value (GEV) distribution, based on Block Maxima
(BM) and Peaks-Over-Threshold (POT) formulations, and the recently Metastatistical Extreme Value Distribution (MEVD)
to four long time series of sea-level observations distributed along European coastlines. A cross-validation approach, dividing
available data in separate calibration and test sub-samples, is used to compare their performances in high-quantile estimation.
To address the limitations posed by the length of the observational time series, we quantify the estimation uncertainty associated
with different calibration sample sizes, from 5 to 30 years. Focusing on events with a high return period, we find that the
GEV-based approaches and MEVD perform similarly when considering short samples (5 years), while the MEVD estimates
outperform the traditional methods when longer calibration sample sizes (10-30 years) are considered. We then investigate the
influence of sea-level rise through 2100 on extreme sea-level frequencies. The projections indicate an increase in the height of

total water levels for a fixed return period that are spatially heterogeneous across the coastal locations explored.

1 Introduction

The statistical analysis of extreme values of random variables is of wide conceptual and applicative importance in science and
engineering (Coles, 2001; Beirlant et al., 2004; Castillo et al., 2005; Finkenstddt and Rootzén, 2004). Modelling extreme value
probability of occurrence is indeed an active field of theoretical and applied research in many fields, such as hydrology and
climatology (Katz et al., 2002; Cancelliere, 2017; Mekonnen et al., 2021; Miniussi and Marra, 2021), ecology (Katz et al.,
2005; Rypkema et al., 2019), ocean wave modelling (Rueda et al., 2016; Benetazzo et al., 2017; Barbariol et al., 2019), trans-
port engineering (Songchitruksa and Tarko, 2006), geophysical processes (Pisarenko et al., 2014a, b; Elvidge and Angling,
2018; Hosseini et al., 2020), biomedical data analysis (De Zea Bermudez and Mendes, 2012; Chiu et al., 2018), insurance and
financial applications (Embrechts et al., 1997; Chan et al., 2022), and many others.

In particular, the reliable estimation of the occurrence probability of coastal flooding events of large magnitude is crucial to
environmental hazard evaluation (Coles and Tawn, 2005; Hamdi et al., 2018) and to decision-making and mitigation measure
design. In fact, coastal flooding hazard has been increasing at the global scale in recent decades, a trend expected to continue as

aresult of climate change (Meehl et al., 2007; Church et al., 2013; Fortunato et al., 2016). Several studies highlight that global
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sea-level rise will continue accelerating in the 21° century as a consequence of climate change (Church and White, 2006;
Jevrejeva et al., 2008; Church and White, 2011; Haigh et al., 2014b; Hay et al., 2015). Additionally, changes in storminess may
have an important role in modifying the frequency and magnitude of water level extremes (Lowe et al., 2010; Menéndez and
Woodworth, 2010; Woodworth et al., 2011). Much of the current work on extreme coastal flooding events is based on the clas-
sical Extreme Value Theory (EVT) (Fréchet, 1927; Dalrymple, 1960; Coles, 2001; Woodworth and Blackman, 2002; Hamdi
et al., 2014, 2015, and references therein), which identifies the family of distribution functions known as Generalized Extreme
Value (GEV) distribution (Von Mises, 1936) as a general model for the distribution of maxima (or minima) extracted from fixed
time periods of equal length (“blocks”, most commonly with length of one year). The GEV, according to its original formula-
tion, arises as a limiting distribution for maxima (or minima, not considered here) of a sequence of independent and identically
distributed (i.i.d.) random variables. The Peaks-Over-Threshold (POT) formulation (Balkema and de Haan, 1974; Pickands,
1975), extends the original GEV derivation by modelling all events exceeding a high threshold, as opposed to considering just
yearly maxima as in the GEV-Block Maxima formulation (GEV-BM). The POT approach again recovers the GEV distribution
as the distribution of the annual maxima if two assumptions are valid (Davison and Smith, 1990): 1) the number of events/year
is Poisson-distributed; 2) exceedances over the threshold come from a Generalized Pareto Distribution (GPD). Under these
suitable conditions, in the following we will refer to the POT framework as POT-GPD formulation. For a brief overview of the
theory underlying EVT and the two main methods based on the GEV distribution (i.e. BM and POT approaches), the reader
can refer to the Method section or the supplementary material for more details. The POT-GPD approach is often considered to
be superior to GEV-BM in practical applications, due to its more efficient use of often scarce observations. For extreme sea-
level studies in particular, Coles and Tawn (2005) and Haigh et al. (2010) recognize two weakness in the use of the GEV-BM
analysis: 1) sea level is the combination of tide-driven (deterministic) and storm-driven (stochastic) components. The presence
of a deterministic component is suggested to violate the i.i.d. assumption required in the GEV-BM derivation; 2) sea-level data
are collected frequently (e.g., hourly), while the GEV-BM approach only studies annual maxima, with an extremely inefficient
use of the data. The POT framework exploits more of the available information with respect to the BM approach (e.g., Coles,
2001; Bernardara et al., 2014). However, the choice of a suitable threshold to retain a few above-threshold events/year is a
critical step, and the estimation uncertainty significantly depends on threshold selection (Ondz and Bayazit, 2001; Li et al.,
2012; Solari et al., 2017). The selected threshold value implies a balance between bias and estimation error variance (Coles,
2001). In fact, too low a threshold will violate the independence hypothesis of the framework, leading to bias, while too high a
threshold will retain just a few values above the threshold, leading to high error variance.

More generally, GEV-based approaches, by construction, discard most of the observations, and do not attempt to optimize
the use of the available information (Volpi et al., 2019). Furthermore, the traditional extreme value theory derives the GEV
distribution either as the asymptotic distribution when the number of events/block becomes very large, or through the ad-hoc
GPD-Poisson assumptions underlying the POT approach. Whether these hypotheses do apply to the case of storm surges is
a matter of discussion, but it seems beneficial to adopt methods that require the least amount of a-priori assumptions on the
properties of the event arrival process. As a contribution to overcoming the limitations of the traditional EVT, here we explore

the use of an alternative approach for modelling extreme sea levels, the Metastatistical Extreme Value Distribution (MEVD).
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This approach was introduced by Marani and Ignaccolo (2015) and has been previously applied to rainfall, flood-frequency
analysis, and hurricane intensities. The MEVD models the distribution of yearly maxima starting from the distribution of “or-
dinary values”, i.e. all the available data, in contrast to just considering annual maxima or a few values above a threshold.
Moreover, the MEVD framework (i) is a non-asymptotic extreme value distribution, which does not require the number of
events/year to be large as in the traditional theory, and (ii) makes no a-priori assumptions on the properties of the event oc-
currence process (while, e.g. POT-GPD assumes a Poisson occurrence process). In previous applications, the MEVD has been
shown to significantly reduce estimation uncertainty compared to traditional approaches, especially when considering return
periods greater than the sample size used for parameter estimation (Zorzetto et al., 2016; Marra et al., 2018; Miniussi and
Marani, 2020; Miniussi et al., 2020a, b).

Here we comparatively analyze the performance of GEV-based approaches and MEVD in high-quantile estimations with ap-
plication to extreme sea levels at different observation sites. The aim is to: 1) identify the statistical tool affording minimal
uncertainty in the estimate of extreme sea levels with assigned probability of exceedance, and 2) model and understand how
climate change will affect the extreme sea-level occurrence. To achieve these objectives, we analyze selected sea level time
series along the European coastline and evaluate extreme sea level predictive uncertainty by adopting a cross-validation ap-
proach, in which calibration and test samples are kept separate and independent. Subsequently, we use the optimized estimation
method to infer possible changes in coastal flooding hazard under IPCC climate change scenario RCP4.5 and RCPS.5.

The structure of the paper is as follows: Section 2 outlines the sea-level data and the methodology used in this application,

results are described in Section 3, while the conclusions are given in Section 4.

2 Materials and Methods
2.1 Data

The analyses were performed using daily and hourly sea-level records from four tide gauge stations (see Table 1) distributed
along European coastlines: Venice (Italy), Hornbek (Denmark), Marseille (France), and Newlyn (United Kingdom). The study
sites span a variety of geographical locations, coastal morphologies and storm regimes.

Venice sea-level data (maximum and minimum daily observations) were obtained from the “Centro Previsioni e Segnalazioni
Maree” of the Venice Municipality (https://www.comune.venezia.it/it/content/centro-previsioni-e-segnalazioni-maree) for the
Punta della Salute gauge station . The remaining water level data, all at the hourly scale, were downloaded from the University
of Hawaii Sea Level Center (UHSLC) repository (http://uhslc.soest.hawaii.edu/data/?rq#uh745a/).

All sea-level datasets span long observational periods: 148 years for Venice, 122 years for Hornbzk, 115 years for Marseille
(ca. 19 missing years) and 102 years for Newlyn.

The raw data for all stations were pre-processed to eliminate: 1) years with less than six months of water level observations,
and 2) days with less than 24 h of data (for the case of hourly data). This process yields four “cleaned up” time series that were
subsequently used in the analyses (see Table 1). Figure 1 shows daily maximum sea levels at the gauge stations explored after

pre-processing.


https://www.comune.venezia.it/it/content/centro-previsioni-e-segnalazioni-maree
http://uhslc.soest.hawaii.edu/data/?rq#uh745a/

Table 1. Information of sea-level data used in this application.

Location (degree, min. fogi
Site name  Country (deg ) Period Missing Deleted Number
Lat. Long. years (%) years of years
Venice Italy 45°25.0'N  12°20.0°E  1872-2019 - - 148
Hornbzk  Denmark 56°06.0'N  12°28.0’E  1891-2012 - 1985 121
1897; 1918;
. 1919; 1928;
Marseille  France 43°16.’N  5°21.2’E  1885-2018 14.2 1937: 1940: 106
1998; 2009;
2010
United
Newlyn . 50°06.I'N  5°32.5°W  1915-2016 - 1984; 2010 100
Kingdom
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Figure 1. Daily maximum sea levels at different gauge stations explored after pre-processing: Venice (IT), Hornbzk (DK), Marseille (FR),

and Newlyn (UK).
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2.2 Methods
2.2.1 Mean sea level removal

The sea-level sequence is highly correlated and is generated by a non-stationary process due to long term trends in mean sea
level, the deterministic tidal component, surge seasonality, and interactions between the tide and surge (Dixon and Tawn, 1999).
Tide-surge interactions may change amplitude and phase of the surges, mostly in shallow estuarine areas (Johns and Ali, 1980;
Bernier and Thompson, 2007; Zhang et al., 2010). However, this effect needs to be taken into account when separating the
surge and tide components. Here, we do not attempt to separate these contributions, but we only analyze the sum given by the
combination of the water level setup, induced by meteorological forcing, and the astronomical tide. Hence, we simply study
such sum as the final result of the non-linear interactions between individual components. Under this premise, for a given site
and at any instant of time ¢, the observed sea level z(t) (after averaging out waves), can be split into three components (Pugh

and Vassie, 1979): mean sea level, msi(t), astronomically induced tidal level, 2:(¢), and meteorologically induced surge level,
y(t):
z(t) = msl(t) + z(t) + y(t) (1

msl(t) represents the long-term variations of water levels and of the elevation datum (i.e. possible land subsidence or up-
lift). Local msl(t) does not change uniformly over time and its calculation is affected by many factors, such as tidal phases,
long-term wind and atmospheric pressure patterns, vertical land motion (subsidence or uplift). The tidal contribution to the
instantaneous sea level, z(t), caused by the gravitational forces exerted by the moon and the sun is deterministic in nature, and
can be predicted with a good degree of accuracy. This tidal variability occurs with characteristic periodicities between 12 hours
and 18.61 years (Eliot, 2010; Haigh et al., 2011; Pugh and Woodworth, 2014; Peng et al., 2019; Valle-Levinson et al., 2021).
This latter longest tidal periodicity corresponds to the precession of the lunar nodal cycle. The storm-surge contribution, y(t),
is the meteorologically-induced change in the water level generated by a combination of factors, such as the magnitude and
direction of the wind, spatial gradients in atmospheric pressure, storm size, fetch, bathymetry, storm duration, etc (Hall and
Sobel, 2013).

Two classes of methods are widely used to estimate the probability of occurrence of extreme sea levels: direct and indirect
methods. Indirect methods model separately the deterministic and the stochastic components of z(¢) then recombined by con-
volution. Examples are the joint probability method (Pugh and Vassie, 1979, 1980), the revised joint probability method (Tawn
and Vassie, 1989), the exceedance probability method (Middleton and Thompson, 1986; Hamon and Middleton, 1989), and
the empirical simulation technique (Scheffner et al., 1996; Goring et al., 2011). Direct methods, such as the one adopted here,
analyze observed values compounding the astronomical and stochastic storm-surge component. Direct methods mostly differ
based on the analysis approach adopted, such as the annual maxima method (Jenkinson, 1955; Gumbel, 1958), the peaks-
over-threshold method (Davison and Smith, 1990), or the r-largest method (Smith, 1986; Tawn, 1988). Here, we study the

distribution of the sum, h(t), of the contributions from the deterministic tide and the stochastic surge:

h(t) = z(t) — msl(t) 2
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From a statistical point of view, this choice is justified by the fact that the random arrival of storms adds a stochastic surge
contribution at unpredictable times, thereby causing h(t) to be values from a random variable, even though it contains a
deterministic component. The presence of a deterministic component of course does imply a strong auto-correlation in the
observed signal, which will be subsequently filtered out by suitable signal processing described below.

msl(t), is here computed as the yearly average of daily levels. The yearly average is chosen, rather than the customary 19-year
average that eliminates all tidal periodicities, however small in amplitude, to better capture the surge contribution that causes
the water level to deviate during a storm with respect to the "current", yearly, value of msi(t). Once h(t) is computed by
removing msl(t) from recorded levels, all local maxima of h(t), or water level peaks, are identified and their values constitute
the basis for subsequent analyses.

In the following discussion, we will use the terms "total water level" and "coastal water level” when referring to the quantities

z(t) and h(t) respectively.
2.2.2 Extreme Value Theory

As highlighted by Serinaldi and Kilsby (2014), the EVT deals with the asymptotic distributional behaviour of two types of
data modeled with two well-known approaches, namely the so-called Block Maxima (BM) and Peaks-Over-Threshold (POT).
The first type models the maximum values extracted from blocks of fixed length, whereas the second one models all the
exceedances of high threshold. The cornerstones of the EVT are two theorems: the Fisher-Tippett-Gnedenko theorem (also
known as the three types theorem, Fisher and Tippett (1928); Gnedenko (1943); Gumbel (1958)) and the Pickands-Balkema-de
Haan theorem (also known as the second theorem of EVT, Balkema and de Haan (1974); Pickands (1975)).

According to the three type theorem, there are three possible non-degenerate distribution functions which can arise as limiting
distributions of extremes of random sample: (i) the Gumbel distribution or type I, (ii) the Fréchet distribution or type II, and
(iii) the reverse-Weibull distribution or type III. The above three limiting distribution laws can be combined into a single family

of three-parameter distribution known as the Generalized Extreme Value (GEV) distribution given by:

§ _
G (x5 p1,,€) =ewp{—[1+$(fc—u)]} Ve 3)
defined on the region for which {z: 1+ % (z—p) >0} In Eq. 3 p € (—00,+00) is a location parameter, ¢ > 0 is a scale
parameter, and £ € (—o0,+00) is a shape parameter which controls the nature of the tail distribution (Frechét type for £ > 0,
Gumbel type for £ = 0, and reverse-Weibull type for £ < 0).
The second theorem of EVT defines a method to model the tail of distribution above a threshold value (Davison and Smith,
1990). In particular, the theorem states that for a large enough threshold value, u, the distribution of exceedances of some high
threshold (y = X — u, where X is a sequence of i.i.d. random variables), is described by a Generalized Pareto Distribution
(GPD), which has the following cumulative distribution function:

Gy, €) =1~ (14 2 g)7 /% @

u
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defined on {y : y >0 and (1 + Ui -y > 0)}, where o, and ¢ are the shape and scale parameters respectively.

There is a link between these two distributions according to which if block maxima have approximate distribution GEV, then
threshold excesses have corresponding approximate distribution within the generalized Pareto family and vice versa, GEV
can be obtained from GPD under two appropriate conditions (i.e., the occurrences are Poisson-distributed and excesses over
threshold come from a GPD). The duality between Eq. 3 and Eq. 4 means that the GPD parameters of the excesses are
uniquely determined by those of the associated GEV distribution of block maxima (see e.g, Coles (2001)). In particular, the
shape parameter, £, is equal to that of the corresponding GEV distribution and the scale parameters of the two distributions are
related by o0, =0+ & - (u—y).

The interested reader can refers to Coles (2001) for a detailed description of statistical methods for extremes in hydrology or

Papalexiou and Koutsoyiannis (2013) for a recent overview of the history of the EVT.
2.2.3 The Metastatistical Extreme Value Distribution

The typical EVT derivation starts from the premise that the maximum value among n realizations of a random variable ()M,,) is
distributed according to the cumulative distribution function P(M,, < z) = G(z) = F(x; 7)" (where, as customary, a capital
letter indicates the random variable and a small cap letter indicates a value of the random variable). This approach assumes
that the n values of the random variable of interest are generated by the same distribution, the “ordinary value” distribution
F(x; 7), and are thus independent and identically distributed. n is the number of events in a block, such that G(z) is the cumu-
lative distribution of the block maxima. The classical EVT assumes that either the number of events/block is large (asymptotic
hypothesis, leading to the GEV-BM formulation) or that the number of events/block above a high threshold is distributed ac-
cording to a Poisson distribution (POT-GPD formulation). The recently-proposed Metastatistical Extreme Value Distribution
(Marani and Ignaccolo, 2015) is a doubly stochastic approach (Dubey, 1968; Beck and Cohen, 2003) that relaxes these hy-
potheses by considering both the parameters (7) of the ordinary value probability distribution and the number of events/block
to be random variables. Hence, the MEVD cumulative distribution of block maxima (estimated using a much greater sample

than just yearly maxima used in the BM approach) is then defined as the compound probability:

+oo
Ga)=Y" [ F(a:¥)g(n, 6)d 6 5)

%
where g(n, 6 ) is the joint probability distribution of the number of events in a block and of the parameters vector (discrete in
_>
N and continuous in ©), Qg is the population of all possible parameter values.
For practical applications, the MEVD can be approximated by substituting ensemble average in Eq. 5 with the sample average

computed over all the blocks in the time series, obtaining:
| M
G(z) = MZF(x;Gj)”j (6)
j=1

where M is the number of blocks in the historical record, F'(z;6;) is the cumulative distribution of ordinary values in the j*

block, and n; is the number of events in the j th block. A common choice for the block length is 1 year. Note that the values of
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the parameters 9_; may be estimated on Estimation Windows (EW) with length that is different from block length. For example,
if the block length is 1 year, it may be advantageous to estimate parameter values on longer time slices to ensure, depending on
the rate of event occurrence, that a reliable estimation of the parameters is possible. Miniussi and Marani (2020) in applications
to daily rainfall extremes find that, when the number of events per year is less than 20-25 events/years, then the optimal EW
length may be greater than one year.

It is interesting to note that the POT approach, briefly described above, can be thought of as a particular case of MEVD. In fact,
Zorzetto et al. (2016) highlight that if one assumes (i) « to be the excess over a high threshold, (ii) F'(x; 9_;) to be a Generalized
Pareto Distribution (with fixed, deterministic parameters), and (iii) n to be generated by a Poisson distribution, then the GEV
distribution is recovered as a particular case of the MEVD by means of the POT approach.

MEVD has been applied in several earth-science contexts. In rainfall extremes estimates, the ordinary value distribution is
assumed to be Weibull when applied to point daily rainfall (Marani and Ignaccolo, 2015; Zorzetto et al., 2016; Schellander
et al., 2019; Miniussi and Marani, 2020; Miniussi et al., 2020b), point sub-daily rainfall (Marra et al., 2018), and satellite rain-
fall estimates (Zorzetto and Marani, 2019, 2020). For flood across the United States, Miniussi et al. (2020a) propose to adopt
a Gamma distribution for F'(x; 9_;) Hosseini et al. (2020) describe Atlantic hurricane intensities using a Generalized Pareto
ordinary value distribution. In all cases the appropriate form for the underlying ordinary value distribution was identified by
minimizing the estimation uncertainty within a cross-validation approach, which is also followed here. In this particular appli-
cation to extreme coastal water levels, three candidate probability distributions for F(x; 9_;) in Eq. 6 are tested, i.e. the Gamma,
Weibull and Generalized Pareto distributions. Based on the comparative evaluation of the performance of these distributions,
the Generalized Pareto distribution emerged as the best model for the “ordinary” coastal water level values.

In the present context, we define as ordinary values any storm-surge water elevation (i.e. the maximum water level reached
during a storm event) greater than a site-specific threshold value. This threshold is chosen to be as small as possible (differently
from the POT approach), to retain as much of the observational information as possible, and will be dependent on the magnitude
of the local tidal range (sea level difference between high and low water level over a tidal cycle) and of storm contributions.
Additionally, the threshold is set to be large enough to filter out coastal water level peaks that are likely fully determined by
tidal fluctuation, in the absence of any storm contribution. Given the above constraints, we also choose the threshold value that
minimizes the estimation error under the MEVD framework.

As suggested by several rainfall applications, ordinary distribution parameters are here estimated using the Probability
Weighted Moments (PWMs) method in non-overlapping estimation windows of 5 years. In the present application, the op-
timal estimation window length was set to 5 years to obtain a more robust parameters estimation, especially when few values
in each year are available. PWM estimation, introduced by Greenwood et al. (1979), is widely applied because of its good
performance, particularly in the presence of small sample sizes, its reduced estimation bias and sensitivity to the presence of

outliers in the data (Hosking et al., 1985; Hosking and Wallis, 1987; Hosking, 1990).
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2.2.4 Selection of independent events

The GEV-based approaches are fit on either annual peak maxima (GEV-BM) or on a few water level peaks over a high threshold
(POT-GPD), which can be assumed to be realizations of independent stochastic variables. The MEVD requires that all ordinary
values (coastal water level peaks in this case) within one block may be assumed to be realizations from independent random
variables. This hypothesis, in turn, requires that observed peaks are filtered to only retain events that may be considered to
be independent, through a de-clustering process (Coles, 2001; Ferro and Segers, 2003; Beirlant et al., 2004; Bommier, 2014;
Marra et al., 2018). Several criteria have been developed for such processing of the data. A common criterion sets the minimal
time separation, or lag (7), for two events to be considered independent. Intuitively, high water-level events separated by a
sufficiently long time period are reasonably caused by distinct storm events. However, when analyzing the water level with
respect to current mean sea level, a quantity that contains the deterministic tidal contribution, dependence may be expected to
be present also for large lags. In theory, some dependence is present for lags up to the longest periodicity in the tidal signal
(18.61 years). In practice, as the dependence in the tidal signal decreases for increasing lag, one expects that a much shorter
threshold time lag will be sufficient to make sure that only independent events are considered. The analysis of the correlograms
of selected coastal water level peaks shows that some correlation persists also for long time lags and also in the de-clustered
time series. Even though the strength of this correlation is relatively small (the autocorrelation function, ACF, is always less than
0.3), it could impact the ability of the MEVD, which assumes independence, to capture observed extreme behaviour. The de-
clustering process does significantly decrease correlation, as may be seen by comparing Figure S1 (ACF prior to de-clustering)
and Figure S2 (after de-clustering). Interestingly, it is seen that the tidal contribution (that generates periodicities in the ACF)
is strongly visible in Venice and Newlyn, while it is quite small in Hornbak and Marseille. The underlying tidally-induced
correlation becomes more clearly visible after de-clustering also in Hornb&k and Marseille. We note that the existing literature
implementing de-clustering approaches to coastal level signals normally focuses on studying the storm-surge component only.
As result, it uses threshold time lag values that are smaller than those adopted here because characteristic correlation times
of the surge component are significantly smaller than those associated with the sum given by the combination of surge and
tidal components. For example, the independence between two consecutive storm surge events in southern Europe has been
found to be achieved with a threshold lag of 3 days (Cid et al., 2015). A threshold separation of one day between consecutive
events is imposed by Tebaldi et al. (2012) in their analysis of storm surges along the US coast. Haigh et al. (2010) adopt
a threshold lag of 30 h in the English Channel, while Bernardara et al. (2011) assume a 72 h independence criterion. After
exploring values between 24 h and several days, we adopt a threshold lag of 30 days, which yielded the minimum estimation
error under the MEVD approach, and is consistent with the main lunar periodicity. The result of this de-clustering process is a
set of independent events with magnitudes hj, whose number n; in year - or block - j is a realization of a random variable as

illustrated in Eq.s 5 and 6.
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2.2.5 Cross-validation procedure

Statistical modelling aims to use sample information to infer the probability distribution of the population from which the
data are extracted. This inference is uncertain due to imperfect parameter estimates and to the possible inability of the chosen
distribution to capture the statistical properties of the underlying population. Although these sources of uncertainty are inherent
in any statistical model, their impact can be minimized by a careful choice of the model and by an effective use of all sources of
information (Coles, 2001). In many applications uncertainty is estimated by means of goodness-of-fit measures, which quantify
how well the distribution compares to the sample on which it was fitted. However, this procedure does not provide a measure
of the predictive uncertainty encountered when trying to estimate the probability of occurrence of the “next”, yet unobserved
value. In this study, we evaluate the performance in high-quantile estimation associated with the use of the MEVD and the
GEV distribution, by means of a cross-validation (CV) procedure, in which model predictions of the probability of occurrence
are compared to frequencies from data that were not used in the estimation of model parameters. This is possible by dividing
observations into two sets of independent data: the estimation set is the sample from which model parameters are estimated
and the test set is the sample with which model predictions are compared.

The procedure can be summarized as follows: a) we randomly reshuffle the observational years on record while keeping all
the water level independent peaks in their original year to 1) preserve both the ordinary value frequency distribution in each
year and the distribution of the number of events/year, and 2) remove possible non-stationarity and correlation in the time
series; b) we divide the observational sample into two independent sub-samples obtained by randomly selecting .S years from
the original time series of length M : this sub-sample (in the following “calibration sample”) is used for parameter estimation,
while data in the remaining V' = M — S years are used for testing (in the following "validation - or test - sample"); ¢) as usual
in frequency analysis, we associate to each observed yearly maximum, z;, an empirical frequency value given by Weibull’s
estimator F; =i/(V 4 1) where i is the rank of x; in the list of yearly maxima sorted in ascending order, and V =M — S
is the sample size in the validation sub-sample. The return period T'r associated with each yearly maximum is then simply
Tr; =1/(1 — F};); d) we estimate the GEV and MEVD quantiles using the parameter values estimated in step b) from the
calibration sub-sample; e) focusing on the validation sub-sample, in every realization (for p = 1,..., Nr; Nr = 1000 here) and
for a fixed mean recurrence time (7'r), we compute the Non Dimensional Error between the estimated and observed quantiles
as follows: NDE,(S,Tr) = [h(est,p) (S, T7) = R(obs,p) (S, T7)] / Mobs,p) (S, T'r); f) we repeat the CV scheme above N times.
This procedure is performed for different calibration sample sizes (S = 5, 10, 20, and 30 years) to evaluate how estimation

uncertainty varies with return period and calibration sample size.
2.2.6 Future total water level projections

Future increases in the frequency of extreme total water levels (i.e. the variable previously referred as z(t)) due to climate
change will have serious impacts on coastal regions. These impacts will vary temporally and regionally, depending on (i)
the local relative mean sea-level rise (including possible subsidence or uplift), (ii) current storm-surge intensity probability

distributions, and (iii) changes in the dominant meteorological dynamics. In this particular application to extreme coastal water

10



285

290

295

300

305

310

levels (i.e. the sum given by the combination of the water level setup, induced by meteorological forcing, and the astronomical
tide), only the first two factors are considered.

It is very likely that sea-level rise will continue to accelerate over time, thereby increasing the frequency of extreme sea level
events, leading to severe flooding in many low-lying coastal cities and small islands (Oppenheimer et al., 2019). Various
techniques have been used to study possible changes in coastal flooding hazard (e.g., Mclnnes et al., 2013; Vousdoukas et al.,
2016). Several authors have found that past variations in the frequency of occurrence of extreme sea levels have been primarily
determined by changes in mean sea level (e.g., Zhang et al., 2000; Woodworth and Blackman, 2004; Lowe et al., 2010;
Menéndez and Woodworth, 2010; Haigh et al., 2014b; Wahl et al., 2017). This implies that effects of variations in storminess
(e.g., magnitude, trajectories and frequency) have been small in the observational record, compared to the dominant effects
of mean sea-level changes (Haigh et al., 2014a). This notion is also confirmed by our trend analyses of maximum yearly
departures from the average sea level (see §3.1)), which fail to detect trends in the maximum difference between total sea level
and concurrent mean sea level except at one of the sites (Venice), where it is smaller (0.7 mm/yr) than past and projected rates
of sea-level rise (respectively ~3.0 mm/yr and ~8.0 mm/yr at the end of the century, according to the RCP8.5 IPCC scenario).
Based on these elements, here we estimate the probability of future total water levels along European coastlines by assuming
that changes in the tidal and storm-surge components are negligible with respect to changes in mean sea-level, an assumption
common to previous approaches (Aradjo and Pugh, 2008; Haigh et al., 2010; Tebaldi et al., 2012).

To assess how the exceedance probabilities of extreme total water levels might change in the future, the projections of sea-level
rise through 2100 from the IPCC’s Fifth Assessment Report (ARS) are used. In particular, we explore an intermediate (RCP4.5)
and an extreme scenario (RCP8.5), using CMIP5 model outputs from the “Integrated Climate Data Center” (ICDC) database
(University of Hamburg: https://icdc.cen.uni-hamburg.de/en/ar5-slr.html).

For each tide gauge, our approach can be summarized as follows: 1) we infer the probability distribution of extreme coastal
water levels (annual maxima) from observed independent events whose intensity (maximum coastal water level attained, hy)
is defined with respect to the concurrent mean sea level computed on a yearly basis; 2) we estimate the future probability of
extreme total water levels by translating extreme level quantile estimates upward according to the projected mean sea level at

each location (thereby implicitly assuming subsidence/uplift to be negligible).
2.2.7 Return period

One of the main objectives of frequency analysis is to calculate the average recurrence interval or return period. It is a widely
used concept in hydrological and geophysical risk analysis. If a process is stationary, the return period (7'r) of an event
magnitude is defined as the average time elapsing between two consecutive exceedances of this magnitude. Alternatively, it
may be said that a magnitude value is expected to be exceeded, on average, in each return period. If the yearly-maximum

magnitude & is exceeded on average once in T'r-years, then its exceedance probability, F(h) = 1 — G(h), in a given year is:

E(h)=P[H > h] =

Tr(h)
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Therefore, the return period of the level value h is the inverse of the probability of exceedance and can be expressed as a

function of the cumulative distribution, G(h), of annual maxima, e.g. through the MEVD (Eq. 6):

1 1

Trh) = 5oy = 1=am

)

Because for a fixed value of mean sea level there is a one-to-one relation between the value of the sum of the astronomical and
the storm surge contribution, 4, and the total water level, z = h+msl, one can write G, (h) = P[H > h] = P[H > z—msl] =
P[Z —msl > z—msl] = P[Z > z] = G,(h), such that Eq. 7 can be used, once the cumulative distribution is known and for

each (time-dependent) value of msl, to determine the return period of the total water level (at the time when msl is evaluated):

1 1 1

Tr(z)= 1-G.(h) = 1—Gi(h) - 1—G(z—msl)

®)

Based on the hypothesis introduced in §2.2.6 that mean sea-level rise is the dominant effect in future coastal flooding, we
assume that the characteristics of the extremes (i.e. the parameters of the GPDs defining the MEVD) remain valid in future
scenarios. Eq. 8 clarifies that the return period of a fixed value z decreases as msl increases, basically because for higher values
of msl a smaller value of y is needed to achieve the same total water level z. This decrease is non-linear, due to the nonlinear

form of the right-hand side in Eq. 8.

3 Results and discussion
3.1 Mann-Kendall trend analysis

We start by computing mean sea level on yearly basis and by subtracting it from observed total water level. The first question
that we want explore is the presence of log-term trends, unrelated to sea-level rise and associated to other factors (e.g., human-
induced factors, morphological variations, etc.), in the "cleaned up" signal, i.e. the observed measurements without mean sea
level. To answer this question, in this work we focus on the deviation of yearly maxima from yearly mean sea level and test for
the presence of trend by the two-tail Mann-Kendall test (Mann, 1945). Figure 2 summarizes results for each location explored.
From a first visual inspection of Figure 2, the Venice (1872-2019) and Hornbzk (1891-2012) time series appear to show an
increasing trend in the deviations of yearly maxima from yearly mean sea level (blue line) of different magnitudes. On the
contrary, Marseille sea level observations (1985-2018) seem to be characterized by a decreasing trend. Finally, the Newlyn
historical record (1915-2016) displays a fairly constant signal with no noticeable variations. The application of the Mann-
Kendall test reveals a partly different story. The test rejects the hypothesis of the absence of trend at the 95% confidence level,
only for the Venice site (p-value"e"® = 0.014). This result suggests that the increase of the yearly maximum deviations from
yearly mean sea level may be a direct results of the local morphological variations of lagoon channels where the tidal wave
propagates (whereby dissipation of the wave is reduced), and/or land subsidence. On the contrary, at the remaining locations,
the null hypothesis of no trend cannot be rejected (p-value"°mbek = 0.352, p-valueMaseille = (0,110, and p-value™e*" = 0.997).

The results obtained from these analyses support the validity of the hypothesis that mean sea-level rise is the dominant factor
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in determining the future frequency of coastal flooding (see §2.2.6). For the tests performed here to compare different extreme-
value statistical models, the possible presence of trends (e.g. in Venice) is irrelevant, since such tests are performed by first

reshuffling observed values, thereby eliminating any existing trend, albeit small.

VENICE HORNBAEK

180

180

Deviation of yearly maxima
from 1-yr mean sea-level l

160 160

m—19-yr running mean

N
o

140

IN)
=]

120

IS)
S

100

®
=]

80

@
S

N2}
=]

60 1880 1900 1920 1940 1960 1980 2000 2020 860 1880 1900 1920 1940 1960 1980 2000 2020
MARSEILLE NEWLYN

®

o
=]

Coastal water level difference (cm)
@
o

@
=]

40t

20 . . 260
1860 1880 1900 1920 1940 1960 1980 2000 2020 1860 1880 1900 1920 1940 1960 1980 2000 2020
Year

Figure 2. Deviation of yearly maxima from yearly mean sea level (blue line) and 19-yr running mean (black line) calculated for Venice (IT),

Hornbak (DK), Marseille (FR), and Newlyn (UK).

3.2 Extreme value analysis

The MEVD formulation requires the choice of an optimal distribution of ordinary values that can represent the characteristics
of the natural phenomenon under analysis. Different candidate distributions for the F'(z; 9_;) in Eq. 6 are evaluated and the
most suitable distribution is selected on the basis of the CV procedure comparing the MEVD-estimated quantiles with the ob-
served ones. As previously introduced in §2.2.3, according to different tests, the appropriate distribution to model the ordinary
sea-level values is the Generalized Pareto Distribution (GPD). We highlight that the GPD used in the MEVD framework is
obtained by imposing a small threshold (differently from the high threshold adopted in the POT-GPD approach) to capture the
distribution of the main body of the probability distribution of the ordinary events and does require the event arrival process to
be Poisson (Marani and Zorzetto, 2019).

As mentioned above (§2.2.4), the independence between two consecutive coastal water level events is guaranteed by imposing

a minimum time lag. Firstly, we select daily maxima sea levels from the original record; secondly, define as independent events
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those that are separated by at least 30 days. Subsequently, the samples used for statistical inference are built as follows: 1)
GEV-BM: the yearly maxima are selected; 2) POT-GPD: as proposed by Coles (2001), the optimal threshold (u) is determined
by studying the stability of the GPD shape (£) and modified scale (o* = 0,, — {u) parameters estimated using a wide range
of values of u. Using this method, the following threshold values were identified: 65 cm (Venice), 50 cm (Hornbzk), 35 cm
(Marseille) and 260 cm (Newlyn); 3) MEVD: all the independent coastal water level events above a low threshold are used to fit
the probability distributions of ordinary values. The optimal threshold to apply to all the independent events for extrapolating
the ordinary values sample, is chosen by testing different threshold values and evaluating the goodness-of-fit of the distribution
using diagnostic graphical plots. According to the selection criteria described in §2.2.3, the low thresholds adopted at the four
study sites are 59 cm for Venice, 40 cm for Hornbak, 25 cm for Marseille, and 250 cm for Newlyn. For every observed site,
Table 2 and Figure S3 display the gradual increase in the number of independent events (i.e. annual maxima, exceedances
over the threshold, and ordinary values) used to infer the distributions when moving from GEV-BM, POT-GPD to MEVD
approaches.

Considering the above threshold values, the observed and estimated distributions of coastal water level are compared by plot-
ting their quantiles against each other. By comparing measures of in-sample and out-of sample test predictive accuracy, the
results are presented by means of quantile-quantile (QQ) plots. The reader can refer to Figure 3 (or supplementary Figures S4,
S5, S6, S7 and S8) to compare the results obtained with the MEVD framework (or the GEV-based approaches - GEV-BM and
POT-GPD - vs. the MEVD formulation) for the four sites analyzed. QQ-plots are obtained as a result of the CV procedure
with 1,000 random realizations and sample size: a) S = 30 years (in-sample-test on the left column); b) V = M — S years
(out-of-sample test on the right column). The colours in figures represent the density of points around the 45° line (i.e. the
line of equality). This highlights how the estimated quantiles are closely comparable with the observed ones for all the three
approaches tested and for both the sample size explored (S and V). In particular, if the reader looks the supplementary Figures
from S4 to S8 and if out-of-sample performance is considered, it is difficult to quantify which distribution is the best due to a
large variability in the estimates. Overall, if only the MEVD performance is investigated, the reader can look the right column
(out-of-sample test) in Figure 3, where the results display that the MEVD formulation performs similarly for all sites analyzed.
In particular, it proves to be a good model for lower/intermediate quantiles but shows variability in the estimates for higher
quantiles.

We now focus on evaluating the performance of the three approaches (GEV-BM, POT-GPD and MEVD) in high-quantile
estimation. We explore the predictive performance of the MEVD and GEV distribution as a function of the NDE (§2.2.5)
computed for the maximum return period, 77y, = M — S + 1, associated with the maximum value in each test sub-samples
that we randomly extract in the CV approach. The use of NDE metric allows to easily characterize and compare models
estimation uncertainty associated with fixed return time of interest and the variation of the calibration sample size (from 5 to 30
years). The results are summarized by means of box-plots (Figure 4) and kernel density estimates computed for a calibration
sample size of 30 years (Figure 5). Table 3 summarizes the main results underlying the chosen evaluation metric. When we
focus on the case of a short sample (5 years), different sites display variable results: I) the GEV and MEVD approaches

perform similarly for Venice (Figure 4(a)) and Hornbaek (Figure 4(b)) with similar interquartile ranges and underestimations of
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Figure 3. QQ-plots of extreme coastal water level quantiles, computed with the MEVD framework, for the (a) Venice (IT), (b) Hornbaek
(DK), (c-d) Marseille (FR), and (e) Newlyn (UK) sites. The MEVD parameters estimations are based on non-overlapping sub-samples of
fixed size (5 years), while subplots indicated with the letter ’d’ display the QQ-plots obtained with MEVD parameters estimations based
on data from the whole calibration sample size. The plots are obtained as a result of the cross validation method used to test the global
performance of the models and are estimated for 1,000 random realizations and for sample size: a) S = 30 years (in-sample-test on the left

column); b) V = M-S years (out-of-sample test on the right column). The colours represent the points density around the 45° line (black

dashed line) corresponding to the best fit.
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Table 2. Total number of independent events and average number of events/year calculated for all observation sites.

Independent events

Site name
BM POT MEVD

. Total 148 605 775
Venice N. events/year 1 4.08 5.23
Total 121 595 736
Hombzek N events/year 1 491 6.08
ol 106 275 489
Marseille N events/year 1 257 461
Total 100 399 520

Newlyn N.events/lyear 1 399 520
