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Abstract. Droughts form a large part of climate/weather-related disasters reported globally. In Africa, pastoralists living in

the Arid and Semi-Arid Lands (ASALs) are the worse affected. Prolonged dry spells that cause vegetation stress in these

regions have resulted in the loss of income and livelihoods. To curb this, global initiatives like the Paris Agreement and the

United Nations recognised the need to establish Early Warning Systems (EWS) to save lives and livelihoods. Existing EWS

use a combination of Satellite Earth Observation (EO) based biophysical indicators like the Vegetation Condition Index (VCI)5

and socio-economic factors to measure and monitor droughts. Most of these EWS rely on expert knowledge in estimating

upcoming drought conditions without using forecast models. Recent research has shown that the use of robust algorithms

like Auto-Regression, Gaussian Processes and Artificial Neural Networks can provide very skilled models for forecasting

vegetation condition at short to medium range lead times. However, to enable preparedness for early action, forecasts with

a longer lead time are needed. The objective of this research work is to develop models that forecast vegetation conditions10

at longer lead times on the premise that vegetation condition is controlled by factors like precipitation and soil moisture. To

achieve this, we used a Bayesian Auto-Regressive Distributed Lag (BARDL) modelling approach which enabled us to factor

in lagged information from Precipitation and Soil moisture levels into our VCI forecast model. The results showed a∼ 2-week

gain in the forecast range compared to the univariate AR model used as a baseline. The R2 scores for the Bayesian ARDL

model were 0.94, 0.85 and 0.74, compared to the AR model’s R2 of 0.88, 0.77 and 0.65 for 6, 8 and 10 weeks lead time15

respectively.

1 Introduction

Drought events are amongst the most prevalent natural disasters reported globally and affect some 10 million people annually

(Deleersnyder, 2018). In Africa, the devastating effects of droughts are mostly seen in the Arid and Semi-Arid Lands (ASALs),

where people’s lives and livelihoods mostly depend on agro-pastoral activities (Gebremeskel et al., 2019). Pastoralism in these20

regions contributes immensely to food security and local economies (Vatter, 2019). However, the ASALs grass- and shrublands,

which serve as the main source of fodder for the livestock are among the first to be hit by low rains and extreme temperature
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(FAO, 2018). These dry spells, when prolonged, adversely impact the food markets, income, and eventually leads to the loss of

livelihoods (FAO, 2018). As a consequence, several drought early warning systems (EWS) have been developed to avert and

minimise the impacts of these hazards.25

Global initiatives, such as the 2015 Paris Agreement and the United Nation’s Sustainable Development Goals (SDGs) recog-

nise the importance of establishing robust EWS to save lives and livelihoods (UNFCCC, 2015). Existing EWS combine data

on biophysical indicators that measure hazard risk with a series of socio-economic factors to account for vulnerability and

exposure for early action. Satellite Earth Observation (EO) rainfall estimates and vegetation health are some of the datasets

commonly used to monitor these drought conditions. The USAID’s Famine Early Warning Systems Network (FEWS NET)30

utilises household livelihood information, rainfall estimates and the Normalized Difference Vegetation Index (NDVI) to mon-

itor drought and its impact on food security (FEWSNET, 2019). In Kenya, the National Drought Management Authority

(NDMA) monitors EO based biophysical indicators in combination with forage, livestock conditions and socio-economic data

to monitor and anticipate future drought scenarios for early finance and early action (Klisch and Atzberger, 2016; FAO, 2017).

Recent research has highlighted robust methods for forecasting biophysical indicators used to measure vegetation condition.35

AghaKouchak (2014) harnessed the persistence property in soil moisture with the ensemble streamflow prediction (ESP) to

provide skilful forecasts of the standardized soil moisture index for up to two months ahead. Barrett et al. (2020) forecasted the

Vegetation Condition Index (VCI) with Auto-Regression (AR) and Gaussian Process (GP) models using historical values of

the same indicator. Both models performed well for lead times up to 6 weeks. Adede et al. (2019) used a multivariate approach

that considered the effects of exogenous variables on VCI. The model was based on an Artificial Neural Network (ANN) and40

provided precise forecasts for one month lead time. While these models showed good accuracies for short-range forecasts,

forecasts with longer lead times beyond six weeks will provide disaster risk managers ample time to prepare and implement

relief measures.

This paper aims to build on existing forecast initiatives and develop models that accurately forecast VCI at longer lead times.

More specifically, our approach will include the interaction between the lagged information from indicators and variables like45

precipitation, soil moisture, and vegetation condition in an Auto-regressive distributed lag (ARDL) model (Gujarati, 2003;

Pesaran and Shin, 1999). ARDL models are useful in situations where variable Yt at a time t is influenced by other variables

Xt at time t and the same variables at previous time steps Xt−i.

Parameter estimation with ARDL models has traditionally been carried out with a maximum likelihood approach which

produces point estimates and often results in over-fitting leading to imprecise predictions (Martin, 2018). To address this,50

the ARDL model used in this work was implemented within a Bayesian framework which allows the incorporation of prior

knowledge of the model parameters. This approach generates a posterior probability distribution for the model parameters

which enables more accurate quantification of prediction uncertainties and allows for more robust risk analysis (Lambert,

2018).
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2 Study Area and Data55

2.1 Study Area

This research was conducted in selected counties in the ASAL regions (see figure 2) of Kenya where the predominant activities

are pastoralism and wildlife conservation. The farmers in these regions rely heavily on pastures and grasslands as the main

source of feed for their animals (Sibanda et al., 2017). However, the erratic weather patterns in the eastern African region

makes Kenya prone to frequent drought events (Gebremeskel et al., 2019). This poses a threat to food security and the countries60

economy as a whole. During the 2008-2011 droughts the Kenyan economy lost a total of 21.1 billion USD (Cabot Venton et al.,

2012; Cenacchi, 2014). Hence the need to develop drought EWS with the ability to provide timely medium to long-range for

drought preparedness.
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Figure 1. A map of Kenya showing the arid and semi-arid counties where the research was focused.
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2.2 Data

To enable our model to capture adequate historical information on drought and produce weekly forecasts we acquired daily65

data over a long period. Table 1 shows details of the satellite earth observation data used for this work.

Table 1. Summary of the datasets for the forecast model

Data Source (Producer)
Spatial

Resolution

Temporal

Resolution

Acquisition

Period

Unit of

Measure

Precipitation
Climate Hazards Group InfraRed

Precipitation (CHIRPS)
5km Daily 2001-2018 mm

Soil Moisture
European Space Agency’s

Climate Change Initiative (CCI)
30km Daily 2001-2018 m3/m−3

Surface Reflectances NASA MODIS (MCD43A4 v006) 500m Daily 2001-2018 N/A

2.2.1 Precipitation (Rainfall Estimates)

The precipitation data were acquired from the Climate Hazards Group InfraRed Precipitation (CHIRPS) project (Funk et al.,

2015). The CHIRPS data comprise a combination of weather station data and rainfall estimates captured via satellite remote

sensing using the Cold Cloud Duration (CCD) (Milford and Dugdale, 1990) approach. The approach is used to estimates70

rainfall by using remote information on the period of time a cloud remains at a given temperature threshold. The final datasets

are available as daily 5km resolution images.

2.2.2 Soil Moisture

The daily 30km resolution soil moisture products by the European Space Agency’s Climate Change Initiative (ESA-CCI) was

used for this work. The data is produced from an algorithm that takes in back-scatter information from multiple active and75

passive Synthetic Aperture Radar (SAR) satellites. The values generated represent soil moisture at a soil depth of 10cm. The

ESA-CCI Soil moisture products are available as passive, active or a combination of both. For this work, the combined version

of the data is used (Gruber et al., 2019; Dorigo et al., 2017; Yang et al., 2017).

2.2.3 Surface Reflectance

The bidirectional reflectance distribution function (BRDF) corrected MODIS product, MCD43A4 Version 6, (Schaaf and80

Wang, 2015) was used to compute the NDVI and VCI. The product is available as daily 500m resolution images captured in 7

bands ranging from visible to infrared. Information on the vegetation health is derived from the Red and Near-Infra Red(NIR)

bands via equation (1).

NDVI =
NIR−Red
NIR+Red

(1)
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3 Methods85

3.1 Data pre-processing

The datasets were acquired from January 1, 2001, to December 31, 2018, to correspond with the availability of soil moisture

data at the time of research. Apart from the precipitation, clouded and low-quality pixels from poor atmospheric and radiometric

correction were removed using the quality flags from the Quality Assurance (QA) maps that came with the surface reflectance

and soil moisture products. Pixels representing grasslands and shrublands areas within our regions of interest were retrieved90

with the European Space Agency (ESA)’s 2016 Sentinel 2 Land Use and Land Cover (LULC) map. For the coastal semi-arid

counties like Lamu and Kwale we could not extract enough soil moisture data so no results were shown for these counties.

To measure the drought condition at a period in time, the minimum and maximum NDVI values for a chosen baseline

time interval and the NDVI value for that period are used to compute the Vegetation Condition Index (VCI) via equation (2)

(Kogan, 1995). VCI values range from 0-100, with values below 35 depicting a moderate to severe drought condition (Klisch95

and Atzberger, 2016).

VCIi = 100× NDVIi−NDVImin,i

NDV Imax,i−NDV Imin,i
, (2)

where NDV Imin,i and NDV Imax,i are the long-term minimum and long-term maximum NDVI values of a pixel at ith week

of the year.

Temporal gaps created by the removal of poor quality pixels were filled with the Radial Basis Function (RBF) interpolation100

method (Rippa, 1999). This approach was used to avoid interpolated values for periods with longer gaps from going over the

valid ranges. Noise resulting from faulty instruments were reduced with the Whittaker smoother (Eilers, 2003), which filters

noise via a penalised least-squares. Since our target variable was computed from the long term minimum and maximum NDVI,

the additional variables were also converted to anomalies by subtracting their long term means to produce soil moisture anomaly

and precipitation anomaly. The persistence within individual variables was enhanced by computing with three months (12105

weeks) rolling averages to derive three-month VCI (VCI3M), three-month precipitation (P3M) and three-month soil moisture

(SM3M). Finally, the precipitation and soil moisture data were standardised to eliminate any associated units of measurements

and avoid the dominance of certain variables. This was done by subtracting their mean and dividing it by the standard deviation.
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Figure 2. A flow chart showing data prepossessing and modelling

3.2 Drought Model and Forecasting

The Auto-Regressive Distributed Lag (ARDL) modelling approach used for this work is a generalised form of Auto Regression110

(AR) method mainly used for multivariate time series analysis. The method enables the variable of interest (dependent variable)
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to be modelled as a function of its lags and that of additional explanatory variables (independent variable) (Gujarati, 2003). An

ARDL(p,q), consists of p, which represents the number of lags of the independent variable and q, which is the auto-regressive

part of the model, represents the number of lags of the dependent variable. This approach has been extensively used in the field

of economics and modelling the effect of climate and environmental variables on vegetation (Lei Ji and Peters, 2004; Ji and115

Peters, 2005).

For this study, however, parameter estimation for the ARDL was implemented within a Bayesian framework instead of using

maximum likelihood methods based on Ordinary Least Squares (OLS). The Bayesian framework enables the incorporation of

domain knowledge about the parameters through the use of informative priors. The model parameters, with this approach, are

inferred using the Markov Chain Monte Carlo (MCMC) (Neal, 1993) sampling algorithm. The sampling process generates120

posterior probability distribution of the model parameters. As a consequence, we get a full probability distribution of forecast

values for all lead time, which makes it easy to quantify forecast uncertainty for making informed decisions (Martin, 2018;

Lambert, 2018).

The MCMC is a well-established sampling algorithm used for parameter inference in Bayesian models. However, Asaad

and Magadia (2019), outlined some of its limitations and recommended the use of the Hamiltonian Monte Carlo (HMC) (Hoff-125

man and Gelman, 2014), an improved variant of the traditional MCMC algorithm which is based on Hamiltonian dynamics

and converges faster to a global minimum for models with high dimensional parameter space. (Robert et al., 2018). Param-

eter inference for this work was done with the No-U-Turn Sampler (NUTS)(Hoffman and Gelman, 2014) version of HMC

implemented with PyMC3 (Salvatier et al., 2016) Python package.

The Bayesian ARDL model used for forecasting VCI3M with lagged P3M, and S3M is defined as:130

Dt+n = α0 +
q∑

i=0

βdDt−q +
p∑

i=0

θpPt−p +
p∑

i=0

δsSt−p + εt−p (3)

where Dt+n is the drought index at n lead time, Dt−q are the lags (0, to q) of drought indicator (Dependent variable). Pt−p,

St−p represent the lags 0, to p, for precipitation, and soil moisture respectively. α0 is a constant representing the intercept

and βd, θp, and δs are the regression coefficients of the input variables with εt−p being the error term which is assumed to be

Gaussian.135

Equation (3) can re-written as:

Dt+n = α+
i∑

i=0

βiXt−i + εt−i (4)

where n is the lead time, βi are the model parameters and Xt−i represent the lagged input variables in equation 3.

The Bayesian approach makes explicit the prior beliefs about model parameters, which are then updated given some new

data via the likelihood function, to give the posterior probability distribution.140
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Parameter inference with the Bayesian framework is based on Bayes’ theorem via the equation below:

P (θ|Xt) =
P (Xt|θ).P (θ)

P (Xt)
(5)

where Xt represents Dt−q,Pt−p,St−p, P (θ|Xt) is the posterior or the probability of our model parameters given our data

Xt, P (Xt|θ) is the likelihood or the probability of the data given the parameters, P (θ) is our prior belief about the parameters.

P (Xt), known as the evidence, is a normalisation term that represents the probability of the data. The term is difficult compute145

and usually ignored (Lambert, 2018; McElreath, 2016). Thus the equation (5) for Bayes’ theorem is re-written as:

P (θ|Xt)∝ P (Xt|θ).P (θ) (6)

To put the ARDL model (equation 4) in the context of equation 6, the likelihood function P (Xt|θ) is written as:

P (Xt|α,βi,σ)∼N(α+
i∑

i=0

βiXt−i,σt−i) (7)

Equation 6 is practically intractable due the complex integrals required (Lambert, 2018) thus, the need to use the HMC150

algorithm (Hoffman and Gelman, 2014) for sampling model parameters.

The prior for the model’s regression coefficients are assumed to be Gaussian P (θ) =N(µ,σ) with µ set to 0 to allow inferred

parameters to have both positive and negative values and a weakly informative σ of 0.5 as a regularization prior. This was done

to avoid the approximation of unreasonable parameters and (Martin, 2018).

3.3 Selecting optimal lags and forecasting155

A full grid search was done with various combinations of p and q values for dependent and independent values to select the

optimal p and q for the BARDL model. The Akaike Information Criterion (AIC) (Akaike, 1998) equation (8) and the R2

(Equation 9) metric were used as the score criteria to choose the optimal lags. AIC enables model selection by determining the

model that best fits the data. The model with lowest AIC value is preferred. Whereas theR2 score explains how much variation

in the observed data could be explained by the model. Valid R2 scores range between 0&1 where models with scores close to160

1 are considered more accurate. The search was done on lag values ranging from 1 to 16 weeks. The optimal lag values varied

for different counties. However, across all counties, low AIC and high R2 scores were obtained when all input variables were

set to a lag of 6 weeks. The AIC scores are derived as follows:

AIC = log
RSS

n
+ 2K (8)

where theRSS is the residual sum of squares error, n is the number of data points andK is the number of estimated parameters.165

The R2 scores are derived as follows:

R2-score = 1−
∑

i(yi− fi)2∑
i(yi− ȳ)2

, (9)
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where the yi are the observed data, and the fi are the forecasts.

Forecasting with the BARDL was done using the direct multi-step forecast approach, where separate models are fitted for

n step ahead forecasts (Ben Taieb et al., 2010; Ben Taieb and Hyndman, 2014). To fit the model for n steps ahead, the data170

was restructured to offset values of the dependent (Dt+n), n weeks from lag 0 Xt−0 for all input variables. A rolling window

cross-validation approach (Hyndman and Athanasopoulos, 2018) was used for model training and forecasting.

3.4 Forecast skill assessment

The performance of the models was assessed by measuring the accuracy, i.e. how well the forecasts agree with the observations

and the precision, i.e. the quoted uncertainty and the accuracy of that uncertainty.175

The model accuracy was evaluated with the R2 (equation 9) and Root Mean Squared Error (RMSE) (equation 10). The

RMSE measures the mean deviation between the observed and forecast values.

RMSE =

√∑n
i=1(yi− fi)2

n
(10)

where the yi are the observed data, fi are the forecasts and n the total number of data points.

The precision, was quantified with the Prediction Interval Coverage Probability (PICP) and the Mean Prediction Interval180

Width (MPIW) (Pang et al., 2018) were also computed. The MPIW measures the average width between the upper (u(Di))

and lower bound l(Di) of a proportion of forecast distribution (n weeks ahead ) defined by a chosen prediction interval (e.g.

95%).

MPIW t+n =
1
N

m∑

i=1

|u(Di)− l(Di)|. (11)

The PICP shows the percentage of time the observed variable lies within the credible interval of the forecast distribution and185

is derived as follows:

PICPt+n =
1
N

m∑

i=1

ci (12)

where N is the number of predicted samples and ci is either 0, or 1. If the observed drought target variable falls within the

upper and lower bound of the forecast distribution (n weeks ahead) then ci = 1; else ci = 0 if otherwise.

The goal is to minimize the MPIW while maintaining a high PICP value. A high PICP value (0.90 to 0.99) indicates that the190

observed values lie within the forecast distribution and a low MPIW value indicates a more precise forecast (Su et al., 2018).

For the AR model, the confidence interval used to derive its PICP and MPIW was computed with the forecast RMSE and z-

score of 1.96 representing the 95% confidence level of a standard normal distribution. This was done to permit its comparison

to the output of the full BARDL model.

The contribution of the individual lagged inputs in the ARDL model were also measured by computing their percentage195

relative importance via the Relative Weight Analysis method (Tonidandel and LeBreton, 2011). With this approach, the inputs
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variables are initially transformed into orthogonal variables. Through an iterative process, each orthogonal variable is added to

a linear regression model and the change in R2 score for each iteration is measured and expressed as a percentage of the total

R2 score.

The Receiver operating characteristic (ROC) curve was also plotted to see how well the model forecasts a drought event given200

a threshold. The forecast distribution from our BARDL model enabled the computation of forecast probabilities given some

drought thresholds. The model’s ability to forecast these probabilities correctly was also assessed by plotting and analysing a

Reliability Diagram and Sharpness. The Reliability Diagram shows how well forecast probabilities for a given drought event

agreed with its corresponding observed event while the Sharpness shows the frequency of a forecasted drought event. (WWRP,

2009; Wilks, 2006).205

4 Results

4.1 Forecast accuracy

AR modelling approach had proved to be skilful for short-range (2 to 6 weeks lead time) VCI3M forecasts (Barrett et al., 2020).

However, the goal of this study was to extend the forecast range beyond 6 weeks while maintaining high accuracy by using the

BARDL model and considering the effect of exogenous factors like precipitation and soil moisture. The results shown in this210

section are for 6 to 12 weeks lead time for the BARDL models and with the AR modelling as a comparative baseline.

The contour plots in Figure 3, shows a joint distribution of the observed VCI3M and forecasted VCI3M at 6, 8, 10 & 12

weeks for both AR and the BARDL models. For each plot, the correlation (r), RMSE and R2 were computed. Overall, the

results from the BARDL model showed a roughly 2-week gain in the performance metrics. For instance, R2 score for the AR

model at 6 weeks is equivalent to R2 score at 8 weeks lead time for the BARDL models. This pattern can be seen across all215

forecast ranges for the RMSE as well.
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Figure 3. Contour plots showing VCI3M forecast against True VCI3M. Plots (a,b,c,d) shows the results from the AR method with VCI3M

only, (e,f,g,h) shows the overall results for BARDL modelled with lags of VCI3M plus lags of Precipitation (P3M) and Soil Moisture (S3M)

Anomalies for 6, 8, 10 and 12 weeks lead time for all counties

The performance metrics for the BARDL model in comparison to the AR model are shown in figure 4. This shows a

significant improvement in performance at the same lead-time and, as a consequence, similar performance in the BARDL

models is seen 2 weeks ahead of the AR models.
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Figure 4. Performance metrics used to measure model accuracy as a function of forecast lead time. R2(Left), RMSE (Right).
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Table 2 shows the R2 scores for 6 to 12 weeks forecasts for AR and BARDL models at the county level for arid and semi-220

arid regions. Just as observed in the contour plots, significant improvements are seen from 6 to 10 weeks lead time across all

counties. In an arid county like Mandera, the R2 improved from 0.84, 0.72 and 0.58 using AR to 0.93, 0.84 and 0.73 using

BARDL for 6, 8 and 10 weeks lead times respectively. Kitui in the semi-arid region also showed an improvement in R2 score

from 0.84, 0.71 and 0.57 to 0.91, 0.81 and 0.67 for weeks 6, 8 and 10 respectively. Overall the BARDL method demonstrated

better results compared to the AR across all counties.225
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Table 2. R2 scores (6 to 12 weeks lead times) for AR modelled with lags of VCI3M only, BARDL modelled with lags of VCI3M with

Precipitation (P3M) and Soil Moisture (SM3M) for arid and semi-arid counties.

County AR BARDL

6 8 10 12 6 8 10 12

A
ri

d
C

ou
nt

ie
s

Garissa 0.88 0.78 0.66 0.54 0.92 0.83 0.71 0.60

Isiolo 0.89 0.79 0.67 0.55 0.95 0.88 0.77 0.66

Mandera 0.86 0.74 0.60 0.46 0.93 0.84 0.73 0.63

Marsabit 0.91 0.81 0.69 0.54 0.96 0.90 0.80 0.68

Samburu 0.88 0.75 0.59 0.43 0.95 0.87 0.75 0.62

Tana-River 0.85 0.75 0.64 0.53 0.92 0.83 0.72 0.62

Turkana 0.90 0.79 0.65 0.50 0.96 0.89 0.79 0.65

Wajir 0.82 0.69 0.55 0.42 0.91 0.82 0.71 0.61

Mean 0.87 0.76 0.63 0.50 0.94 0.86 0.75 0.63

Std. Dev. 0.03 0.04 0.04 0.05 0.02 0.03 0.03 0.03

6 8 10 12 6 8 10 12

Se
m

i-
A

ri
d

C
ou

nt
ie

s

Baringo 0.92 0.83 0.70 0.56 0.95 0.86 0.74 0.60

Kajiado 0.90 0.80 0.69 0.57 0.96 0.90 0.81 0.71

Kilifi 0.84 0.72 0.60 0.48 0.88 0.76 0.62 0.49

Kitui 0.84 0.70 0.56 0.43 0.92 0.81 0.68 0.53

Laikipia 0.93 0.85 0.73 0.59 0.97 0.91 0.81 0.67

Makueni 0.84 0.72 0.59 0.46 0.93 0.83 0.71 0.59

Meru 0.83 0.67 0.49 0.33 0.92 0.81 0.67 0.52

Narok 0.85 0.74 0.60 0.45 0.92 0.81 0.67 0.50

Nyeri 0.90 0.81 0.68 0.54 0.93 0.85 0.73 0.60

Taita-Taveta 0.86 0.74 0.60 0.47 0.92 0.81 0.69 0.59

Tharaka-Nithi 0.81 0.64 0.45 0.28 0.83 0.63 0.39 0.17

West-Pokot 0.91 0.82 0.69 0.54 0.95 0.86 0.72 0.57

Mean 0.87 0.75 0.62 0.48 0.92 0.82 0.69 0.54

Std. Dev. 0.04 0.06 0.08 0.09 0.04 0.07 0.10 0.13

4.2 Uncertainty Analysis (PICP and MPIW)

The PICP and MPIW for a 95% forecast confidence interval were computed for each lead time for both the AR and BARDL

models. In figure 5, the time series plots show that the observed VCI3M values lie within the 95% forecast interval between
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94–96% of the time across all lead times for both the BARDL and AR models, indicating that the errors bounds are very good

for both. However, lower values of MPIW demonstrate that BARDL provided a more precise forecast. Appendix A, tabulates230

PICP and MPIW for 6 to 12 weeks forecasts for the AR and BARDL models for all counties (Table A1).
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Figure 5. Time series plot showing uncertainty for 6, 8, 10, 12 weeks lead time for Mandera county. Plots on the left side are from the AR

model and plots to the right are BARDL. The PICP and MPIW for the other counties can found in Appendix A

4.3 Drought Events ROC Curve

The Receiver Operating Characteristic (ROC) curve (figure 6) illustrates how well the model can discriminate drought events.

Drought events are forecasted when the predicted VCI3M drops below a threshold and are deemed correct if the observed

VCI3M is below 35 (moderate to severe drought) (Klisch and Atzberger, 2016). The ROC show the probability of a forecasted235

event being true (True Positive Rate (TPR)) against the chance of that predicted event being false alarm (False Positive Rate
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(FPR) as the threshold is varied. The Area Under the Curve (AUC), quantifies the ability of the forecast model to distinguish

between drought events (Wilks, 2006; Bradley, 1997). The ROC curve and AUC metric for the BARDL model also demon-

strated an improvement over the AR model. The points plotted on the curve represent the TPR and FPR where VCI3M<35.

This indicates that when the AR model (Dotted curve), forecasts a drought condition (i.e VCI3M<35) for 6 weeks ahead, the240

probability of it being true is 86% with a FPR of 9%. Whereas a forecast by the BARDL model (Solid curve) at the same 6

weeks had a TRP of 89% and a FPR of 7%. The improvements with the BARDL model were mainly seen in the TPRs (6 to 10

week lead time) for the BARDL model while the FPR remained almost the same.
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Figure 6. ROC Curve showing True Positive Rate (TPR), False Positive Rates(FPR) and AUC for 6,8,10,12 weeks for both AR (Dotted line)

and BARDL (Solid line) forecasts. The VCI3M < 35 threshold is plotted as points on the lines.

4.4 Forecast Reliability

Using the Bayesian approach also enabled the computation of forecast probabilities for a given drought event (No Drought245

Condition – VCI3m>35 or Drought Condition – VCI3M<35). To assess the skill for forecasting drought probabilities, we

used the reliability diagrams in figure 7. The plot shows a joint distribution between the forecast probabilities in bins and the
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frequencies of the observed drought events that fall in those bins. For each lead time, the sharpness histogram which shows the

frequency at which an event is forecasted are also plotted (WWRP, 2009). The reliability of a perfect model would follow the

line y = x which has been represented by a dashed line in figure 7. The closer a model is to this dashed line, the more reliable it250

is. Figure 7 shows the reliability for drought events (VCI3M<35) in arid counties, the forecast skill assessment of our BARDL

model indicates that when we forecast a ‘Drought’ condition with a probability between 80% to 100% for 6 week lead time,

it corresponds with the observed drought events about 88% to 99% of the time. In terms of the model’s sharpness, it can be

seen that most of the drought events forecasted by the BARDL model have a probability between 90% to 100%. The peak at

the 0% to 10% bin of the sharpness plot shows the frequency of ’No Drought’ forecasts in the arid counties. This indicates the255

likelihood of the model missing some drought events especially from 8 weeks lead time and beyond.
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Figure 7. Reliability diagram showing forecast probability and their corresponding observed frequencies for 6, 8, 10, 12 weeks lead time

together with their corresponding sharpness plots for drought events (VCI3M< 35) in the arid and semi-arid counties

4.5 Relative Importance

Figure 8 shows the cumulative percentage relative importance for the lags of VCI3M, P3M anomaly and SM3M anomaly.

The lags of VCI3M contributes the most for shorter lead time and decreases longer lead times. The precipitation anomaly also

contributes significantly to future VCI3M and its relative importance increases with increasing forecast lead times. The relative260

importance of soil moisture, although it varies less across various lead times, also contributes significantly. Detailed plots of
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the relative importance for individual lag contribution for each arid and semi-arid county in figure B1 (Appendix B). A critical

look at these plots also showed that VCI3M responds better to precipitation anomaly in most arid counties like Turkana and

Wajir compared to semi-arid counties like Kitui and West-Pokot.
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Figure 8. Bar plots showing the cumulative (All lags) relative importance of additional variables to the VCI3M forecast for all counties

5 Discussion265

In this paper we increased the range of VCI3M forecasts, using additional lagged information from P3M and S3M anomalies.

The VCI3M used here was derived from the 12-week rolling mean of VCI, as used by Kenya’s National Drought Management

Authority (NDMA) for monitoring and reporting agricultural droughts occurrences. The soil moisture data especially, though

retrieved via a combination of remote sensing and a soil moisture model (Gruber et al., 2019), has proved useful for drought

monitoring and forecast. The extensive model skill assessments done here shows that our Bayesian ARDL approach not only270

performs better compared to results from previous studies (Barrett et al., 2020) but also, the BARDL model, by design, provides

additional uncertainty information for better decision making.

Our BARDL which incorporates the precipitation and soil moisture exhibited a 2-week gain in forecast range with overall

R2 scores of 0.94, 0.85 and 0.74 at 6, 8 and 10 weeks lead time respectively. Our forecasts were mostly driven by the variables

at lag 0. However, the collective contribution of the additional lags substantially improved the forecast ranges. Finally, the skill275

assessment based on forecast probabilities indicated a good separation between No-Drought and Drought events.
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The results from the model evaluation revealed a strong persistence within soil moisture and VCI3M, a property that enables

future values to be inferred from their past values (AghaKouchak, 2014). Despite this inherent persistence in the VCI3M, it

still required the information from additional biophysical factors to improve its forecast range as seen in figure B1 and the

overall performance of the BARDL model. Another interesting observation from figure ?? also showed that VCI3M responded280

very slowly to short term moisture anomalies (Quiring and Ganesh, 2010; Vicente-Serrano, 2007). From a spatial perspective,

both models (AR & BARDL) gave a higher forecast R2 score in the arid areas compared to the semi-arid areas. This was more

significant for the BARDL model.

Further evaluation of forecasts based on Kenya’s long rain (March, April, May (MAM)) and short rain (October, November,

December (OND)) seasons (Camberlin and Wairoto, 1997) also showed even betterR2 score for longer range forecast in MAM285

season compared to the OND for the BARDL model (see figures D1 and E1). This indicates that although VCI3M responds

slowly to short term moisture levels, the impact of precipitation and soil moisture on vegetation condition is very important.

The R2 scores for the AR model in the MAM season however dropped significantly compared to the OND season. A possible

reason for this observation, especially during the MAM season, could be attributed to the absence of information from the

moisture levels (precipitation and soil moisture) in the AR model. The relative importance (figure C1) of the lagged exogenous290

factors for different seasons also confirms the reliance of future VCI3M on precipitation anomalies. The contribution of the

lagged soil moisture anomalies during the OND seasons also increased compared to the MAM season. This also indicates that

during the short rain season, vegetation condition is also controlled by soil moisture. When it comes to forecasting drought

events, a much higher frequency is seen during the OND season (see figure F1. This is expected since there are fewer rains in

the OND seasons.295

Aside from the significant improvements in the forecast range and precision, the strength of our model hinges on the fact

that we implemented it in a Bayesian context. Using the Bayesian approach generates a full posterior probability distribution

of forecasted VCI3M values which gave us the power to easily gain insight into the uncertainty of forecasted VCI3M values

(Lambert, 2018). It also allowed the computation of probabilistic forecast of specific drought events (e.g. VCI3M falling

in a particular range) (Wilks, 2006). For our target end-users and stakeholders like the NDMA, using the Bayesian model300

proposed in this paper as part of their EWS will enable them to confidently report on drought events. Also, policymakers and

administrators of disaster relief organisations based on the forecast-based finance initiatives (Coughlan de Perez et al., 2015),

can make better decisions and prioritise which drought alarms to act on. This will help with the efficient management of funds.

Although we have shown that we can extend forecast ranges with the added variables, a key limitation to moving this forward

is the availability of soil moisture data. The ESA CCI Soil Moisture products used in this paper are released annually and are305

also a year behind. Thus they cannot currently be used for producing real-time forecasts.

6 Conclusion and Future Work

In this study we have made two key developments, these include primarily, the improvement in the forecast range of VCI3M

using lagged information from precipitation (P3M) and soil moisture (S3M) by approximately 2 weeks compared to previous
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works. Secondly, modelling within the Bayesian framework also gave the added advantage of easily assessing model uncer-310

tainty and forecast probability of a drought event.

The forecast-based finance initiatives aimed at monitoring agricultural drought indicators and their impact on livelihoods

should consider Bayesian approaches to enable better decision making. We would also recommend that soil moisture data be

made available sooner and promptly to enable near real-time forecasting of vegetation condition via our proposed method.

The disparity in model performance between arid and semi-arid regions points to the fact that the differences in climate315

and vegetation land use and land cover (LULC) should also be considered when developing such forecast models. A natural

expansion of our BARDL model would be to simultaneously explore and model for spatial variations like LULC in a county

or any region of interest via a hierarchical modelling approach. Doing this will give us the advantage of pooling information

between spatial variations, whilst still allowing flexibility between them.
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Code and data availability. Link to Data and Code repository https://github.com/edd3x/Bayesian-ARDL.git320

Appendix A: A table showing the PICP and MPIW (in brackets) estimates for the arid and semi-arid counties

Table A1. The PICP and MPIW (in parenthesis ) estimates for the all arid and semi-arid counties.

County AR Model BARDL Model

6 8 10 12 6 8 10 12

A
ri

d
C

ou
nt

ie
s

Garissa 0.93 (0.33) 0.94 (0.46) 0.94 (0.57) 0.93 (0.67) 0.86 (0.21) 0.84 (0.31) 0.83 (0.39) 0.81 (0.46)

Isiolo 0.93 (0.29) 0.93 (0.4) 0.93 (0.51) 0.93 (0.6) 0.94 (0.18) 0.92 (0.27) 0.9 (0.36) 0.89 (0.43)

Mandera 0.93 (0.33) 0.94 (0.44) 0.94 (0.55) 0.93 (0.63) 0.94 (0.23) 0.95 (0.34) 0.96 (0.44) 0.96 (0.53)

Marsabit 0.92 (0.25) 0.91 (0.36) 0.93 (0.46) 0.94 (0.56) 0.93 (0.15) 0.9 (0.23) 0.88 (0.32) 0.88 (0.38)

Samburu 0.95 (0.26) 0.94 (0.37) 0.95 (0.47) 0.95 (0.56) 0.95 (0.17) 0.97 (0.27) 0.95 (0.37) 0.94 (0.44)

Tana-River 0.94 (0.32) 0.93 (0.43) 0.94 (0.51) 0.94 (0.58) 0.87 (0.2) 0.86 (0.28) 0.85 (0.35) 0.85 (0.41)

Turkana 0.95 (0.24) 0.95 (0.34) 0.95 (0.43) 0.95 (0.52) 0.92 (0.14) 0.92 (0.23) 0.93 (0.33) 0.94 (0.41)

Wajir 0.94 (0.37) 0.94 (0.49) 0.94 (0.59) 0.95 (0.67) 0.9 (0.22) 0.89 (0.32) 0.9 (0.4) 0.9 (0.48)

Mean 0.94 (0.3) 0.94 (0.41) 0.94 (0.51) 0.94 (0.6) 0.91 (0.19) 0.91 (0.28) 0.9 (0.37) 0.9 (0.44)

6 8 10 12 6 8 10 12

Se
m

i-
A

ri
d

C
ou

nt
ie

s

Baringo 0.95 (0.29) 0.96 (0.42) 0.95 (0.54) 0.95 (0.65) 0.95 (0.22) 0.94 (0.36) 0.94 (0.49) 0.95 (0.61)

Kajiado 0.93 (0.3) 0.93 (0.42) 0.93 (0.53) 0.93 (0.63) 0.94 (0.18) 0.93 (0.29) 0.94 (0.4) 0.93 (0.48)

Kilifi 0.94 (0.23) 0.94 (0.31) 0.95 (0.36) 0.94 (0.41) 0.88 (0.2) 0.89 (0.28) 0.89 (0.36) 0.9 (0.42)

Kitui 0.93 (0.34) 0.95 (0.47) 0.94 (0.57) 0.94 (0.64) 0.9 (0.21) 0.89 (0.31) 0.88 (0.4) 0.89 (0.47)

Laikipia 0.94 (0.24) 0.95 (0.35) 0.96 (0.46) 0.96 (0.56) 0.96 (0.17) 0.95 (0.28) 0.94 (0.4) 0.93 (0.5)

Makueni 0.94 (0.34) 0.94 (0.46) 0.93 (0.56) 0.94 (0.64) 0.93 (0.22) 0.91 (0.32) 0.88 (0.4) 0.89 (0.47)

Meru 0.95 (0.3) 0.95 (0.43) 0.95 (0.54) 0.95 (0.62) 0.93 (0.2) 0.93 (0.31) 0.92 (0.4) 0.91 (0.47)

Narok 0.95 (0.27) 0.95 (0.37) 0.94 (0.45) 0.94 (0.53) 0.95 (0.19) 0.95 (0.29) 0.93 (0.39) 0.92 (0.48)

Nyeri 0.94 (0.23) 0.95 (0.32) 0.96 (0.41) 0.95 (0.49) 0.91 (0.18) 0.89 (0.27) 0.88 (0.35) 0.89 (0.43)

Taita-Taveta 0.92 (0.32) 0.92 (0.44) 0.92 (0.55) 0.93 (0.63) 0.85 (0.2) 0.84 (0.29) 0.84 (0.38) 0.85 (0.44)

Tharaka-Nithi 0.94 (0.26) 0.94 (0.37) 0.95 (0.45) 0.94 (0.52) 0.92 (0.21) 0.91 (0.3) 0.9 (0.38) 0.9 (0.45)

West-Pokot 0.96 (0.25) 0.96 (0.36) 0.95 (0.47) 0.95 (0.56) 0.95 (0.19) 0.94 (0.32) 0.93 (0.44) 0.95 (0.54)

Mean 0.94 (0.28) 0.94 (0.39) 0.94 (0.49) 0.94 (0.57) 0.92 (0.2) 0.91 (0.3) 0.91 (0.4) 0.91 (0.48)
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Appendix B: Relative Importance plots for each county
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Figure B1. Relative Importance for each exogenous factors for each lag (0-5) variable per county.
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Appendix C: Relative Importance plots for MAM and OND seasons
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Figure C1. Cumulative lag relative importance plots for counties for the MAM and OND Seasons.
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Appendix D: Contour plots showing forecast performance for MAM and OND seasons
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Figure D1. Contour plots showing VCI3M forecast against True VCI3M for MAM and OND Seasons. Plots (a,b,c,d) shows the results from

the AR method with VCI3M only, (e,f,g,h) shows the overall results for BARDL modelled with lags of VCI3M plus lags of Precipitation

(P3M) and Soil Moisture (S3M) Anomalies for 6, 8, 10 and 12 weeks lead time for all counties
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Appendix E: Forecast performance metrics for MAM and OND seasons325
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Figure E1. Performance metrics used to measure model accuracy as a function of forecast lead time for MAM and OND Season.

24

https://doi.org/10.5194/nhess-2021-223
Preprint. Discussion started: 16 August 2021
c© Author(s) 2021. CC BY 4.0 License.



Appendix F: Forecast reliability for MAM and OND seasons
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Figure F1. Reliability diagram showing forecast probability and their corresponding observed frequencies for 6, 8, 10, 12 weeks lead time

together with their corresponding sharpness plots for drought events (VCI3M< 35) MAM and OND
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