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Abstract. Incorporation of specific regional hydrological characteristics in empirical statistical landslide threshold models has
considerable potential to improve the quality of landslide predictions towards reliable early warning systems. The objective of
this research was to test the value of regional groundwater level information, as a proxy for water storage fluctuations, to
improve regional landslide predictions with empirical models based on the concept of threshold levels. Specifically, we
investigated: i) the use of a data driven time series approach to model the regional groundwater levels based on short duration
monitoring observations; ii) the predictive power of single variable and bilinear threshold landslide prediction models derived
from groundwater levels and precipitation. Based on statistical measures of the model fit (R? and RMSE), the groundwater
level dynamics estimated by the transfer function noise time series model are broadly consistent with the observed groundwater
levels. The single variable threshold models derived from groundwater levels exhibited the highest landslide prediction power
with 82-93 % of true positive alarms despite the quite high rate of false alarms with about 26-38 %. Further combination as
bilinear threshold models reduced the rate of false alarms by about 18-28 % at the expense of reduced true alarms by about 9—
29 % and thus, being less advantageous than single variable threshold models. In contrast to precipitation based thresholds,
relying on threshold models exclusively defined using hydrological variables such as groundwater can lead to improved
landslide predictions due to their implicit consideration of long-term antecedent conditions until the day of landslide occurrence.

1 Introduction

Landslide as well as other natural hazard prediction models are developed with purpose of being implemented into early
warning systems (LEWS) (Fathani et al., 2016; Pecoraro et al., 2019; Piciullo et al., 2018). LEWS are defined as tools to
monitor the long-term hydrological and short-term meteorological variations to predict and timely inform about the imminent
periods of landslide danger. Most landslide prediction approaches and development of early warning criteria routinely rely on
meteorological threshold level concepts which define the ty pical precipitation characteristics like event rainfall volume, event
rainfall intensity and event duration that initiate landslides (e.g. Guzzetti et al., 2008; Brunetti et al., 2010; Rosi et al., 2016;
Peruccacci et al., 2017). However, this exclusive reliance on meteorological data is problematic for several reasons. The most
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common problem attributed to these meteorological threshold level concepts is the frequent lack of considering pre-event
hydrological processes and specific characteristics of the studied region that predispose the slope to near failure (Bogaard and
Greco, 2014, 2018; Mostbauer et al., 2018; Peres et al., 2017). These approaches are therefore known to generate high rates of
false and missed alarms and thus, reducing the quality of landslide early warning systems. Hydrology, being an important
aspectin landslide hazard assessment, is still not sufficiently explored although many landslides are hydrologically caused and
meteorologically triggered (Bogaard and Greco, 2018). While landslides are hydrologically caused by elevated pre-event
subsurface water storage, they are meteorologically triggered by the input of precipitation and snow melt during a specific
event that lead to a further increase in pore water pressure, a decrease in frictional forces between particles that reduces the
effective shearing resistance and thus create slope instability (van Beek, 2002; Bishop, 1954; Kuriakose, 2010). According to
Bogaard and Greco, (2014, 2015), the integration of hydrological processes into large-scale models is still incomplete and
therefore, limited the application into landslide prediction models. The need for landslide hydrological-meteorological based
thresholds was highlighted and further postulated that both false and missed alarms could be significantly reduced if the
wetness state is incorporated in landslide prediction models through direct measurements of soil water content or groundwater
levels. However, various ways of including such hydrological state information into landslide hydro-meteorological thresholds
have been recently attempted. These include the direct use of in situ hydrological data through standard observation networks
such as stream flow or local soil moisture observations (e.g. Mirus et al., 2018b; Wicki et al., 2020) but also data from satellite
derived hydrological measurement (e.g. Zhuo et al., 2019; Thomas et al., 2019; Marino et al., 2020; van Natijne et al., 2020)
as well as hydrological variables estimated from hydrological models (e.g. Ciavolella et al., 2016; Mostbauer et al., 2018;
Prenner et al., 2018, 2019; Wang et al., 2019; Zhao et al., 2020). It should be noted that research that incorporates hydrological
parameters into landslide prediction models using in situ data is scarce due to absence of long-term hydrological monitoring
of sufficient spatial and temporal coverage in most regions worldwide. This is in particular true for many African countries,
where the underlying problem limiting landslide research is the lack of sufficient local data. Freely available satellite and
global hydrological model derived information is also still poorly explored. In Rwanda, many river catchments have been
recently equipped with groundwater observation wells, piezometers and river water level gauges. However, frequently, the
recorded data is insufficient tobuild historical time series that match the time period of landslide inventories and that could be
incorporated into landslide hydro-meteorological threshold model. Recently, Uwihirwe et al., (2020) published the first
empirical landslide hazard assessment relation for Rwanda, which is an important step forward in landslide early warning in
that country . The defined precipitation based landslide threshold included the antecedent precipitation conditions as an indirect
proxy for hydrological conditions. However, it still suffers from an elevated number of false and missed alarms. Recent
research suggests that the number of false alarms can be reduced once the hydrological state information are incorporated in
landslide prediction models. Several papers reported significant improvement of landslide forecast quality for early warning
systemby replacing the antecedent rainfall component with soil moisture data (Mirus et al., 2018b; Mostbauer et al., 2018;
Prenner et al., 2018, 2019; Zhuo et al., 2019; Thomas et al., 2019; Wang et al., 2019; Marino et al., 2020; Zhao et al., 2020;
van Natijne et al., 2020; Wicki et al., 2020). The need for landslide hydro-meteorological thresholds is therefore widely

2



65

70

75

80

85

90

95

acknowledged. However, the functional relationship between hydrological and meteorological conditions potentially linked to
landslide initiation is not yet standardized. Traditional precipitation based threshold models commonly used power-law
functions between precipitation variables like intensity —duration I-D and event—duration E-D (e.g. Caine, 1980; Guzzetti et
al., 2007, 2008; Ma et al., 2015; Hong et al., 2017) using the threshold model line as the best separator for landslide and no
landslide conditions sometimes defined based on the experts judgment. More advanced statistical approaches that include the
frequentist, probabilistic and receiver operating characteristics methods have been adopted and replaced the deterministic
method. The frequentist method (Brunetti et al., 2010; Melillo et al., 2018; Peruccacci et al., 2017; Piciullo et al., 2018) also
defines the threshold line separating landslide from no landslide conditions based on the targeted exceedance probabilities.
The probabilistic method (Berti et al., 2012; Robbins, 2016) fundamentally rely on Bayes’ prior and marginal probabilities for
landslide occurrence. The probabilistic methods are criticized for the biased prior and marginal probabilities due to the
incomp leteness of typical landslide inventory data (Berti et al., 2012) while frequentist methods are constrained by their high
dependency on a large and well distributed dataset to achieve significant results (Brunetti et al., 2010; Monsieurs et al., 2019).
The receiver operating characteristic ROC curve method compares the landslide and no landslide conditions based on the area
under the curve AUC while indicating the trade-off between true and false positive rates associated to each level of the tested
predictor variable or model. In landslide studies, the ROC approach has been mostly used to evaluate the performance of
landslide prediction models (Hong et al., 2017; Wicki et al., 2020) despite its capability to define the landslide initiation
thresholds once associated with other statistical metrics like the true skill statistics and radial distance. Some research that
incorporate the hydrological parameters in landslide prediction models also used the exponential or power-law function (e.g.
Crozier, 1999; Monsieurs et al., 2018, 2019). Monsieurs et al., (2018) used the frequentist statistical method to define the
landslide power-law threshold model line between antecedent rainfall and landslide susceptibility in west African region.
Similarly, Crozier, (1999) defined the exponential function between antecedent water status and daily rainfall in Wellington
City, New Zealand. However, recent research (Mirus et al., 2018a; Uwihirwe et al., 2020) used the ROC curve and other
statistical metrics (true skill statistics, radial distance, and threat score) to define the landslide threshold for each tested landslide
predictor variable. These thresholds indicate the optimum levels in one dimension 1D of either hydrological or meteorological
condition potentially linked to landslide initiation at local, regional and global scales. Hereafter, these thresholds are therefore
referred to as single variable threshold models. The combination of the optimum thresholds from two landslide predictor
variables in two dimensions 2D as X-Y pairs is referred to as a bilinear threshold models firstly proposed by Mirus et al.,
(2018a). Some landslide studies discussed different effects that groundwater system may have on landslide initiation
(Bronnimann, 2011; Cascini et al., 2010; Corominas et al., 2005; Duan et al., 2019; Hong and Wan, 2011; Trigo et al., 2005;
Zhao et al., 2016). However, the asset that regional groundwater level information may have in predicting landslide initiation
on a regional scale is still underexplored. It is hypothesized that the more water stored in the catchment, the higher the
probability a certain rain event will trigger landslides in a catchment. Therefore, estimates of catchment water storage could
be used as a pre-event hydrological processthat predisposeaslope to near failure and thus be among the hydrological landslide
predictor variables. However, as this information is scarce in the study area, we presuppose regional groundwater level to be
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a potential proxy of the relative regional catchment storage and used as a hydrological landslide predictor variable that could
be useful once incorporated in landslide threshold model definition. This research aims to include regional groundwater level
information into a hydro-meteorological landslide threshold models and assess their predictive capabilities. As this type of
information is not fully available, we used a parsimonious model totemporally extend regional groundwater level information

100

to the full time period covered by the Rwanda landslide inventory. More specifically, we here tested the hy potheses that the
incorporation of model derived groundwater levels in empirical landslide hazard assessment thresholds could improve the

105 landslide warning capability in Rwanda.

2 Study area description

This study was conducted using data from three catchments; Kivu, upper Nyabarongo and Mukungwa (Nieuwenhuis et al.,

2019); located in north western region of Rwanda, a landlocked country geographically located between 1°-3° Sand 28°-31°
E in central east Africa (Fig.1). The north western region is geomorphologically characterised by rounded, angular hills and

110
headlands, mountains and volcanoes with elevation reaching up to about 4500m and steep slope up to 55% (Fig. 2).
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Figure 1. Location of the study catchments: Kivu, upper Nyabarongo and Mukungwa in Rwanda and Africa; hydro-geology
of the study catchments; spatial and temporal distribution of landslides with light to dark red dots indicating old to new
landslides recorded from 2006-2018 (Uwihirwe et al., 2020); groundwater stations in yellow symbols and meteorological
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Figure 2. Geomorphological characteristics of the study catchments and landslides: a) landforms b)slope; spatial and
temporal distribution of landslides with light to dark red dots indicating old to new landslides recorded from 20062018

(Uwihirwe et al., 2020)

The total area of Kivu catchment is about 7,323 km? 2,425 km? of which is located in Rwanda. The mean annual rainfall is
around 1500 mm year® while potential evaporation is estimated at about 860 mm year® (Fig. 2). The Kivu catchment is
dominated by basaltic aquifers (volcanic rock) in the north and south west, fractured granite and gneiss aquifers in central and
south east, schists and mica schists in the centre and south while pegmatite are found in intermediate areas. Landslides are
most dominant in granite and mica schist units while basaltic units seems to be quite resistant to landslide activities as shown
in Fig. 1. The upper Nyabarongo catchment is located entirely within Rwanda with an area of about 3,348 km?. The mean
annual rainfall is around 1200 mm year* and potential evaporation is estimated at around 870 mm year* (Fig. 2). Granite and
gneiss aquifers are dominant in southern and to a lesser amount in north west part while quartz rich schists and mica schists
dominate in central parts of the catchment (Fig. 1). Granite—schists-and-mica-schists-prevail-in-the-landslide-prone-areas-of the
catchment—The Mukungwa catchment covers a total area of 1,949 km? and is topographically dominated by the volcanic
highlands region that receive abundant rainfall with a long-term mean annual rainfall of around 1200 mm year? with an
estimated actual evaporation of about 800 mm year(Fig. 2). The hydro-geology of the catchment (Fig. 2) is characterized by
volcanic deposits with basalt in the north. Granite and pegmatite basement aquifers are found in the south western areas whil e
quartzite and mica schist are in the south east and eastern part of the catchment.—andslides—are-frequent-in-mica-schist-units-of
the-catchment. Landslides are most dominant in granite_and mica schist units while basaltic units seem to be quite resistant to
landslide activities as shown in Fig. 1. This can be explained by the weathering products of volcanic rocks that produce a
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relatively permeable top layer but tend to form a brecciated or intruded sills of low permeability layer at shallow depth and

thus hampering deep groundwater recharge and thus less prone to groundwater induced landslides. Contrarily, the weathering

products of granites are generally coarse-grained that tend to develop and preserve open joint systems that increase

permeability and thus fast groundwater responsethat leads to landslide hazards. The weathering product of mica schists inclu de

clay minerals that tend to fill up the fractures and thus slowing the permeability. However, mica schists are prone to landslides

due to rapid weathering, easy splitting along the joints and bedding planes and loss of strength induced by the high content of

mica. A field based landslide inventory in the north western region, indicated that these landslides are classified as rotational

slide (34 %), flow (26 %); translational slide (17 %), fall (15 %) and complex ty pe of mass movement (7 %) involving debris,

earth and rock materials. The typical landslides are deep with estimated areal extent between 2.8x10% n? and 4.4x10° n?,

failure volume between 1.3x10' m® and 5.8x10° m® and mobilization rate of about 21 mm year?* (Uwihirwe et al., 2020). A
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Figure 23. Mean catchment annual rainfall and potential evaporation in a) Kivu, b) Upper Nyabarongo and ¢) Mukungwa
catchments

3 Methodology
3.1 Groundwater modelling: data and methodology
3.1.1 Meteorological data and selection of landslide representative meteorological stations
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Therainfall dataset was accessed from Rwanda meteorology agency while potential evaporation Ep time series were calculated
with Thornthwaite method (Thornthwaite, 1948) using the mean daily temperature and monthly heat index. We used time
series of daily rainfall and potential evaporation from nine meteorological stations located within the studied catchments for a
period of 13 years from 2006 to 2018. The meteorological stations (Fig. 1) spatially distributed in the three studied catchments
were selected based on their relative proximity to the observed locations of the landslides and include Rubengera, Kanama and
Gisenyi meteorological stations in the Kivu catchment; Byimana, Kibangu and Rwaza stations in the upper Nyabarongo
catchment; and Ruhengeri, Bigogwe and Rwankeri meteorological stations in the Mukungwa catchment as presented in Fig.1.

3.1.2 Groundwater data and selection of landslide representative groundwater station
The time series of groundwater levels used for this study were accessed from the Rwanda water portal
(https://waterp ortal.rwb.rnw/data/ground water). We selected three groundwater observation stations (Fig. 1) with a temporal

resolution of one day and a minimum continuous duration of one year. The three groundwater observation stations,
Nyamyumba, Rugabano and Cyuve, located within the Kivu, upper Nyabarongo and Mukungwa catchments respectively,
recorded data from December 2016 till December 2018. However, the intrinsic limitation of this database is linked to the

coarse spatial resolution of the data recording equipment and the recorded data is insufficient to build historical time series

that match the time period of landslide inventories (2006-2018). Nevertheless, this database has been previously used for

computation of water balance and catchment storage and proved to be useful in Rwanda (Nieuwenhuis et al., 2019; RWFA,
2019

3.1.3 Transfer function noise (TFN) time series model

A transfer function noise (TFN) time series model describes the dynamic relationship between a single output series and one
or more input series. The TFN model was used in this research to simulate groundwater levels (model outp ut) using both
rainfall and potential evaporation as model inputs (Bakker and Schaars, 2019; Collenteur et al., 2019). With Transfer function
noise modelling, the groundwater response to both rainfall and evaporation is simulated with a scaled Gamma response
function. The structure of a TFN model to simulate groundwater levels is expressed with Eq. (1):

he=X5_ 1 h(® + d+r(®, 1)

Where h, is the groundwater levels (m) at time t, h4(t) is the contribution of stresses s at time t (m d*), S is the total number
of stresses (-) that contribute to the groundwater level change here represented by rainfall and evaporation, d is the base
elevation of the model (-), and r(t) are the residuals (m). Each model can have an arbitrary number of stresses S that contribute
to the head; hydrological stresses may include rainfall, evaporation, river levels, and groundwater extractions. The contribution
of stress s to the groundwater level at time t is computed through convolution with Eq. (2):

hy® = [*_ s (D8,(t—1)dr, ®
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With s¢ denoting the time series of stress s, and 8¢ expressing the impulse response function for stress s. The groundwater
response is estimated using the scaled Gamma response function that indicates the relationship between the variation in the
inputs time series (rainfall and evaporation) and the variation in the groundwater levels as in Eq. (3):

— T —t/a
G(t)—Aan[(n)e , (€)]

With A denoting the scaling factor (-); a and n are shape parameters (-) while [ expresses the Gamma function.
3.1.4 Groundwater modelling approach

We used the Transfer Function Noise TEN time series Model implemented in Pastas, a new open source Python package for

analysis of groundwater time series. The TFN modelling explains an observed time series (here the observed groundwater

levels) by one or more other time series (here rainfall and potential evaporation time series). The TEN model inputs time ser ies,

rainfall and potential evaporation, were available for the entire study period 2006-2018, whereas the observed groundwater

level were available for December 2016 to December 2018. We have therefore used the two years available groundwater

observation time series and these short term data were only used for model calibration and no validation was carried out due

to the data limitations. By using the TEN modelling approach, we aimed for hindcasting and thus the reconstruction of past

groundwater levels to overlap with the time period of the recorded landslide inventory in Rwanda (2006-2018) by using the

fully available time series of rainfall and evaporation as model inputs or model stresses. Each model can have an arbitrary
number of hydrological stresses that contribute to the groundwater level changes. T hese hydrological stresses include rainfall

evaporation, river levels, and groundwater extractions. For this study, however, we used rainfall and evaporation and assumed

runoff and groundwater pumping to be negligible though not accessed in our study area. The impulse groundwater response

function to the stresses was fitted with the scaled Gamma distribution function and the calibrated parameters were A, n, a, d

as described in Sect. 3.1.3 and summarised in Appendix A. The output of the TFN model was then daily groundwater levels

ht (m) over the entire 13 years study period from 2006 to 2018. Apart from hindcasting, the TEFN model spatially extrapolated
the groundwater information accounted by different precipitation and potential evaporation inputs from the nine spatially
distributed meteorological _stations, Rubengera, Kanama, Gisenyi, Byimana, Kibangu, Rwaza, Ruhengeri, Bigogwe and

Rwankeri, shown in Fig. 1. The extrapolation was undertaken by changing the model inputs and model parameters at the

location of each of the meteorological stations and by implicitly relying on the main assumption here that other hydro—

geomorp hological parameters do not exhibit spatial variability within the individual catchment. This is an assumption made

given the data scarcity and some intrinsic limitation of the database in the east Africa rift region in general (Monsieurs et al.,

2018b) and Rwanda in particular.
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variabilitywithinthe individual catchment—The modelled groundwater levels were standardised and used in the regional hydro-

meteorological hazard assessment threshold definition. The standardisation was computed with Eq. (4):

¥s = (% —X)/o, @
Where y, is the standardised value of groundwater time series (-); x; is the value of time series (m) at time step i ;X s the
average value of time series (m); o is the standard deviation of time series (m); i is the subsequent time step in a time series.

3.2 Regional landslide assessment: data and methodology

3.2.1 Landslide inventory

The available landslide inventory for Rwanda contains landslides recorded from 2006 to 2018. It was accessed from the NASA
global landslide catalogue (https:/data.nasa.gov/Earth-Science/Global-Landslide-Catalog/h9d8-neg4) uploaded by the
Landslide Inventory for the central section of the Western branch of the East African Rift (LIWEAR) project. The catalogue
was further extended by Uwihirwe et al., (2020) through compilation of additional rainfall induced landslides as reported from

local newspapers, blogs, technical reports and field observations. Between 2006 and 2018, the catalogue counts for 42

accurately dated landslides located within the studied region (Fig. 1). However, the detailed characteristics of these landslides

such as the accurate size, types, cause and triggers are frequently not recorded by the landslide hazard reporters.

3.2.2 Definition of landslide hydrological and meteorological conditions

The outputs from the TFN model, groundwater levels, were used to define the landslide hydrological conditions in each of the
studied catchments. The landslide hydrological conditions consist of standardized groundwater levels modelled on landslide
day htand prior to the landslide triggering event h.1and were here considered as landslide cause/predisposing conditions. The
meteorological conditions used here include event rainfall volumes E (mm E), event rainfall intensity | (mm d) as well as
event duration D (d) and were considered as landslide triggers. The event duration D was defined as individual periods of days
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with recorded rain interrupted by dry periods of at least two days. The event rainfall volume E was computed as the
accumulated rainfall during each individual event periods of duration D. The event rainfall intensity was then computed as a
ratio of E and D. Both hydrological and meteorological conditions were binary classified into landslides and no landslide
conditions depending on whether they have resulted into landslide or not.

3.2.3 Quantification of landslide predictor variables

The landslide predictor variables which include the predisposing conditions h: and ht.1as well as the triggering conditions E, |
and D were tested for their relevance using a receiver operating characteristic (ROC) curves and the area under the curve
(AUC) metrics. ROC is used as a statistical tool indicating the trade-off between false positive rate (FPR) and true positive
rate (TPR) associated to each threshold level on the curve (Hong et al., 2017; Postance and Hillier, 2017; Mirus et al., 2018a;
Prenner et al., 2018). In landslide studies, the AUC is an indicator of the capacity of the test variable to correctly distinguish
landslide from no landslide conditions. It is therefore used as statistical metric that compares the test variables to random
guessing AUC=0.5 and thereby indicating their significance where the perfect test variable has an AUC equal to unity. The
TPR and FPR corresponding to each threshold level on ROC curves are calculated with Eq. (5) and Eq. (6):

TPR = —&— | ©)
TP+EN
FP
FPR = FP+TN’ ©

Where TP true positives or true alarms which is the number of landslides correctly predicted by the threshold model; FN false
negatives or missed alarms that is the number of landslides that occurred in reality but were not predicted by the defined
threshold. FP false positives or false alarms are incorrect predictions of landslide occurrence by the threshold model while in
reality there was no landslide reported. TN true negatives are correct predictions of no landslide occurrence.

3.24 Landslide thresholds definition techniques

The optimum or the most informative threshold level above which landslide are high likely to occur have been defined using
two statistical techniques i.e. the maximum true skill statistic (TSS) and minimum radial distance (Rad). The true skill statistics
(TSS) is expressed as a balance between the true positive rate and false positive rate as indicated in Eq. (7):

TSS = TPR — FPR, @

Where the maximum value of TSS indicates the optimum threshold for landslide initiation. For a perfect threshold model, the

TSS reaches unity which indicates a zero false positive rate (FPR).
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The radial distance (Rad) shows the relative distance from the defined threshold level to the perfect model or optimum point
whose true positive rate (TPR) is a unit and null FPR and is computed in Eq. (8):

Rad = ./(FFPRE + (TPR — 1) ®)

3.2.5 Single variable and bilinear threshold models and landslide predictive capabilities

According to Postance and Hillier (2017), the optimum landslide threshold model is the one that maximizes the true positive
alarms (TP)while minimizing failed (FN) and false alarms (FP). Based on this criteria, the optimum threshold was here select ed
among the ones defined either by maximum true skill statistics or minimum radial distance as stated in Sect. 3.2.4. These
optimum thresholds were firstly plottedin 1D here referred to as single variable threshold model line beyond which landslide
are high likely to occur. Furthermore, these optimum thresholds were combined and p lotted in 2D here referred to as bilinear
threshold model line beyond which landslide are high likely tooccur. The bilinear threshold models made of hydrological and
meteorological predictors were formulated using x,y pairs such as h—E, hl, h.i—E and hi.1i—1 and referred to as hydro—
meteorological threshold models. Furthermore, the thresholds from traditional landslide prediction models that exclusively
rely on precipitation, precipitation threshold models, such as event-duration E-D and intensity —duration I-D were also defined
in abilinear framework and used as benchmarks for comparative performance evaluation. The predictive performance of these
threshold models was evaluated using a confusion matrix and the resulting rate of positive alarms (TP), false alarms (FP),
failed alarms (FN) and true negatives (TN).

4 Results and discussion
4.1 Regional groundwater modelling

The outputs of the Transfer Function Noise TFN time series model were daily groundwater levels (m) simulated over 13 years
from 2006 to 2018 as presented in Fig. 34. The results demonstrate that the TFN time series model can broadly reproduce the
main features of observed groundwater level fluctuations based on the metrics of goodness of the model fit i.e. R? and RMSE
between observed and simulated groundwater levels. Overall, the model explains between 60-87 % of the variance in the
observed groundwater data from the three studied catchments. The values of RMSE ~ 0.09m-1.84 m similarly suggested a
reasonable model fit across the catchments. More specifically, while the TFN model captures groundwater fluctuations rather
well in the Kivu and Mukungwa catchments (RMSE<0.5 m), the model is somewhat less robust for the upper Nyabarongo
(RMSE >0.5m). The weaker model fits observed in upperNyabarongo catchment are mostly the consequence of the relatively
large distance between the groundwater well and the meteorological stations as also highlighted as potential source for poor
TFN model fits by Bakker and Schaars (2019). They further postulated that TFN time series models are relatively simple, as
they include only a handful number of parameters and has the higher skill to simulate groundwater levels than more detailed
models.
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Figure 34. Groundwater simulation with TFN model: First row) TFN model calibrated with groundwater observations from
Nyamy umba groundwater well; rainfall and potential evaporation Ep time series as model inputs from three meteorological
stations (@) Rubengera (b) Kanama (c) Gisenyi located in Kivu catchment; Second row) TFN model calibrated with
groundwater observations from Rugabano groundwater well; rainfall and potential evaporation Ep time series as model inputs
from three meteorological stations (d) Byimana (e) Kibangu, (f) Rwaza located in upper Nyabarongo catchment; Third
row)TFN model calibrated with groundwater observations from Cyuve groundwater well; rainfall and potential evaporation
Ep time series as model inputs from three meteorological stations (g) Ruhengeri h) Bigogwe (i) Rwankeri located in
Mukungwa catchment

4.2 Catchment standardised groundwater levels and landslides activities

The standardised daily groundwater levels and the linked landslide hazards are presented in Fig. 4-5 for the Kivu, upper
Nyabarongo and Mukungwa catchments respectively. The simulated groundwater levels were standardised based on the
assumption that landslides occur when the groundwater levels positively deviate from the long-term mean up toa critical level
for landslide initiation. The comparisons of mean daily rainfall and standardised groundwater levels across the three studied
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catchments, calculated by averaging of data within each catchment, indicates general similarities in terms of landslide
triggering and predisposing but also reveal systematic differences between the groundwater responses. For example,
Mukungwa catchment is slowly responding and also quite drier from 2014 to 2018 than the other catchments despite its
elevated landslide hazard during that period. The results indicated that landslides are likely to occur at a certain level above
the long-term mean groundwater level and thus justifying the importance of groundwater and catchment wetness in terms of
slope failure predisposition. They also indicate that landslides occur when the catchment groundwater reaches a certain peak
level above the long-term mean which is a function of the rainfall received in the past depending on the time memory of each
catchment. Even though, the most hazardous landslides in the studied catchments are shallow seated landslides which are
mostly rainfall induced, the conducted field based inventory indicated that the most frequently recorded landslides in north
western Rwanda are deep seated which are high likely linked to the combined effects of groundwater and other hydro—
geological factors. The critical positive deviation of groundwater levels up to 3 m from the mean was noticed to be the range
where most of landslide activities happen in the studied region. However, Van Asch et al. (1999) highlighted that deep seated
landslide at about 5-20 m deep are induced by rising groundwater level with about 4 m below the ground surface being the
critical threshold for landslide reactivation. Hong and Wan, (2011); Duan et al., (2019) forecasted the groundwater fluctuation
and indicated that landslides are likely to occur when groundwater level increases by about 8 m from the datum. Even so, these
absolute threshold values were not statistically approved using appropriate landslide threshold definition techniques.
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Figure 45. (a) Mean daily catchment rainfall and (b) catchment mean standardised groundwater simulated with TFN model
using meteorological data from Kivu catchment as model inputs (c) mean daily catchment rainfall and (d) catchment mean
standardised groundwater simulated with TFN model using meteorological data from upper Nyabarongo catchment as model
inputs (e) mean daily catchment rainfall and (f) catchment mean standardised groundwater simulated with TFN model using
meteorological data from Mukungwa catchment as model inputs; landslides represented with red dots
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4.3 Landslide predictor variables and their discriminatory power

The discriminatory power of each landslide predictor variable was evaluated using a receiver operating characteristic (ROC)
curves and area under the curve metrics as presented in Fig. 56. Based on the results, the standardized groundwater levels h
modelled on a landslide day with AUC between 0.76-0.80 and the event rainfall volume E whose AUC ranges from 0.74-0.93
were identified as the hydrological and meteorological variables with the highest discriminatory p ower to distinguish landslide
from no-landslide conditions and thus, the most dominant control on landslide occurrence in the studied region. The
standardised groundwater levels h.1 recorded prior to the landslide triggering event, with AUC ranging from 0.63-0.74, were
not as significant as h:. This is likely a consequence of the hydro—geological properties of soil such as soil texture, presence of
fissures, porosity and permeability that contribute to aquifer leakage, drainage and seepage of longer cumulated groundwater
levels. Although the AUC metric was used to identify the variable with the highest skill to distinguish landslide from no-
landslide conditions, it does not indicate the optimum threshold levels above which landslide are high likely tooccur. Therefore
the maximum true skill statistics (TSS) and minimum radial distance (Rad) statistical metrics were used to identify the optimum
thresholds represented by the dots on the ROC curves and the corresponding balance of true positive (TPR) and false positive
rate (FPR) are presented in Fig. 5-6 and detailed in Table 1. The maximum TSS and minimum Rad indicated for example that
landslides are high likely to occur when standardised groundwater levels ht positively deviate by about 0.21 to 0.48 from the
long-term mean and these threshold levels resulted to about 82-93 % of correct predictions of landslides i.e. true positive rate
and about 26-38 % of false positive rate. Similarly, both TSS and Rad indicated 66.8mm event* as the optimum threshold
rainfall volume E with 64 % of true positive rate and 15 % of false positive rate in Kivu catchment. However, the optimum
thresholds E between 44.7-63.5 mm event* were defined by Rad in upperNyabarongo and Mukungwa catchment and correctly
predict about 73-92 % of landslides with 18-24 % of false positive rate. These findings indicated that the used statistical
metrics TSS and Rad lead to quite similar results expressing their identical capabilities in landslide thresholds definition.
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Figure 56. Receiver operating characteristic (ROC) curves and area under the curve (AUC) for each landslide predictor variable

in the studied catchments: .(a) Kiwu,

(b) upper Nyabarongo and (c) Mukungwa; the optimum thresholds defined using

maximum true skill statistics (TSS), with square shaped markers while cycle shaped marker are threshold defined with
minimum radial distance (Rad); once T SSand Rad reveals different threshold values the optimum (with maximum T PR and minimum

FPR) is kept; once TSS and Rad reveals similar threshold values only the square shaped marker (T SS) is kept and the corresponding
balance of true and false positive rate are presented
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4.4 Comparative prediction power of single variable and bilinear thresholds models

This research identified the landslide thresholds for each predictor variables that include the hydrological ht, hi1 and
meteorological E, I, D variables. The landslide predictive capability was evaluated for each variable in 1D here considered as
single variable threshold model presented in Table 1and by each of the blue line in Fig. 67, 78, and 89. The landslide predictive
capability was also evaluated through combination of variables in 2D as X-Y pairs here considered as bilinear threshold
models summarised in Table 2 and by the intersection of both blue lines in in Fig. 67, 78, and 89. A recall from Postance and
Hillier, (2017) indicates that the basic strategy for selection of accurate landslide threshold model is to choose the one that
offers the greatest level of true positive alarms (TPR)and that provide the lowest rate of failed (FNR) and false alarms (FP R).
Therefore, the findings of this research indicated that single variable threshold models either hydrological or meteorological
have the greatest landslide predictive capability in terms of elevated true positive rate and low level of failed alarms as
compared to the bilinear threshold models. For example with groundwater level modelled on landslide day h: with threshold
values between 0.2-0.48 above the mean, 82-93 % of landslides were correctly predicted (TPR) with 25-38 % of wrongly
predicted landslides (FPR). Similarly, the event rainfall intensity | between 7.5-12.5 mm das single variable thresholds were
able to correctly predict 64-92 % of landslides with 25-37 % of false alarms. Contrarily, the resulting bilinear threshold models
he—1 were able to correctly predict 64-85% with 8-15 % of FPR. The greatest landslide prediction capability of single variables
threshold models in terms of TPR was also noticed in previously conducted research in Rwanda (Uwihirwe et al., 2020).
However, it was noticed that relying on single variable threshold models that are exclusively defined using precipitation
variables like event rainfall volume E, and event intensity | considered as landslide triggers could lead to biased results due to
the fact that many landslides occur not only due to the trigger itself but a rather combination of both trigger and pre-event
hydrological conditions. Contrarily, relying on single variable threshold models exclusively defined using hydrological
variables like groundwater levels ht, could lead to unbiased landslide predictions due to their high consideration of long-term
antecedent conditions until the day of landslide occurrence. T he bilinear threshold models lead to a minimized level of false
positive rate (FPR) which is the main focus behind the cause-trigger and bilinear thresholds concepts proposed by Bogaard
and Greco, (2018); and Mirus et al., (2018a) with a rather reduced rate of true positives (TPR).

17



Table 1. Single variable landslide thresholds definition with the maximum true skill statistics (TSS) and minimum radial
distance (Rad)and their predictive power

TSS

RAD

Variables threshold TPRFPR FNR  TNR TSS RAD .-, TPR FPR FNR TNR TSS RAD
Kivu catchment
hd 0.21 093 038 0.07 062 055 039 0.21 0.93 0.38 0.07 0.62 0.55 0.39
het® 0.05 093 043 0.07 058 050 043 0.05 0.93 043 0.07 0.58 0.50 0.43
E (mm)° 66.75 064 015 036 0.85 049 039 66.75 0.64 0.15 0.36 0.85 0.49 0.39
D (d)* 7.50 0.43 0.17 057 0.83 0.26 0.60 3.50 0.64 042 0.36 0.58 0.23 0.55
I (mmd?)® 10.84 064 025 036 075 040 044 10.84 064 0.25 0.36 0.75 0.40 0.44
Upper Nyabarongo catchment
h; 0.46 0.82 0.26 0.18 0.74 056 0.32 0.46 0.82 0.26 0.18 0.74 056 0.32
het 0.64 064 022 036 078 042 042 0.64 0.64 022 0.36 0.78 042 042
E (mm) 90.50 0.64 009 036 092 055 037 44.70 0.73 024 0.27 0.76 0.49 0.36
D (d) 12.50 0.46 006 055 095 040 055 12.50 0.46 0.06 0.55 0.95 0.40 0.55
I (mm d?) 12.48 073 025 027 075 048 037 12.48 073 025 0.27 0.75 0.48 0.37
Mukungwa catchment
h, 0.48 085 035 0.15 0.65 050 0.38 0.82 069 020 0.31 0.80 0.49 0.37
het 0.92 054 0.17 046 0.83 0.37 049 0.92 054 0.17 0.46 0.83 0.37 0.49
E (mm) 46.75 1.00 025 000 075 0.75 0.25 63.50 092 0.18 0.08 0.82 0.75 0.19
D (d) 7.50 085 022 015 0.79 063 0.26 7.50 0.85 0.22 0.15 0.79 0.63 0.26
I (mmd?) 6.78 1.00 044 000 056 056 0.44 7.55 0.92 0.37 0.08 0.63 0.55 0.38

a Groundwater levels recorded on the day of landslide

d Event duration  eEvent rainfall intensity

b Groundwater levels recorded prior to landslide triggering event

¢ Event rainfall volume

450
Table 2. Landslide bilinear threshold model and waming capabilities
Cause-Trigger Bilinear threshold models TPR FPR FNR TNR TSS Rad
Kiw catchment
h—E h>0.205, E>66.75 0.57 0.07 043 093 050 043
he1 h>0.205, 1>10.84 0.64 0.10 036 0.90 055 037
ht1-E ht1>0.052, E>66.75 0.57 0.08 043 093 050 044
M1 ht1>0.052, 1>10.84 0.64 011 036 0.89 054 037
E-D D>3.5, E>66.75 0.57 0.14 0.43 0.86 0.43 0.45
I-D D>3.5, 1>10.84 0.36 0.06 064 094 029  0.65
Nyabarongo catchment
h—E he>0.457, E>44.7 0.73 0.08 0.27 0.92 064 029
hel he>0.457, 1>12.48 0.73 0.08 0.27 0.92 065 0.28
herE h1>0.636, E>44.7 0.55 0.07 045  0.93 048 046
he—l ht1>0.635, 1>12.48 0.64 0.07 036 093 056 037
E-D D>12.5, E>44.7 0.45 0.05 055 095 040 055
I-D D>12.5, 1>12.48 0.36 0.01 064  0.99 036 064
Mukungwa catchment
h—E he>0.483, E>63.5 0.77 0.11 023  0.90 066 025
he-1 he>0.483, 1>7.55 0.85 0.15 015 085 070 021
her-E h+1>0.921, E>63.5 0.46 0.03 054 097 043 054
ht1—1 ht1>0.921, 1>7.55 0.54 0.06 046 094 048 047
E-D D>7.5, E>63.5 0.85 0.14 015 086 071 021
I-D D>7.5, 1 >7.55 0.77 0.06 023 094 071 024
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45 Comparative analysis of the warning capabilities of landslide hydro—meteorological thresholds and precipitation
based thresholds

The landslide hydro—meteorological threshold models defined as X-Y pairs in a 2D bilinear framework and their warning
capabilities in Kivu catchment are presented in Fig. 67. The combined groundwater level-event rainfall intensity he—I [h>0.205,
1>10.84 mm d"!] threshold model outperforms other combinations in terms of true positive alarms with about 64 %. Comparing
the predictive capabilities of he—I, a hydro-meteorological threshold model, to I-D, a precipitation threshold model, significant
improvement of about 28 % in terms of the rate of true alarms was obtained from h-1 as compared to I-D. This confirms the
high landslide prediction and warning capability of hydro-meteorological thresholds over precipitation based thresholds.
However, there was no significant improvement from E—D to h—E and h..1—E in terms of true alarms. This suggests that the
combinations involving event rainfall volume E have lower landslide warning skill than the ones that consider the event rainfall
intensity I. This may be explained by the fact that rainfall event volume E is estimated over various time scale D making E an
unstandardized variable which could be normalized by the respective time duration and thus, favouring the event rainfall
intensity 1. Unexpectedly, there was no significant improvement in terms of reduced false alarms FPR by the tested landslide
hy dro-meteorological threshold models as compared to the precipitation based threshold models in Kivu catchment.
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Figure 6.7 Landslide warning capabilities of the hy dro-meteorological and precipitation threshold models: .(a) h—E; (b) he1;
(©) hei—E; (d) h—E; (e) E-D; (f) I-D in Kivu catchment
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The defined landslide hydro-meteorological threshold models in upper Nyabarongo catchments are presented in Fig. 78.
Similar to Kivu catchment, the landslide hydro-meteorological threshold models h+E, hl, hi.1-E and he.1—I performs much
higher with 55-73 % of correctly predicted landslides (TP) than precipitation threshold models E-D and I-D with around 36—
45 % of true alarms. A significant reduction of the rate of failed /missed alarms (FN) with about 37 % from I-D to he—I and
about 28 % from E-D to h—E was also observed. Unexpectedly, there was no significant improvement in terms of reduced
false alarms by the landslide hydro-meteorological thresholds as compared to the landslide precipitation thresholds.
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Figure 78. Landslide warning capabilities of the hy dro—meteorological and precipitation threshold models: .(a) h+—E; b) he1;
(©) hei—E; (d) h—E; (e) E-D; (f) I-D in upper Nyabarongo catchment

The defined landslide hydro-meteorological threshold models in Mukungwa catchment are shown in Fig. 89. Although, there
was no significant improvement in terms of false positive alarms (FP) reduction as expected, the best landslide hydro—
metrological thresholds models heI outperforms the precipitation based threshold I-D models in terms of elevated rate of true
positive alarms TP with about 85 % as compared to 77 % and low rate of failed alarms FN with 15 % compared to 23 %. The
highest prediction level in terms of true alarms with 85 % was observed from both he1 and E-D hydro-meteorological and
precipitation based threshold models. Contrary to Kivu and upper Nyabarongo catchments, precipitation based threshold
models E-D and I-D performed quite similar to he—I and even better than other tested hy dro—meteorological threshold models
in Mukungwa catchments. This could be explained by the catchment specific hy dro—geological characteristics that probably
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makes the catchment to be a very slow groundwater responding systemand thus, a rather more precipitation induced landslide

than groundwater levels.
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Figure 89. Landslide warning capabilities of the hy dro—meteorological and precipitation threshold: (a) heE; (b) heI; (c) ht-
+E; (d) heE; (e) E-D; (f)I-D in Mukungwa catchment

4.6 Adaptability and limitation of the defined landslide threshold models

Within the framework of this research study, we defined the landslide empirical hydro—meteorological thresholds using

continuous_historical precipitations time series and groundwater level time series as proxy for the catchment water storage.

We mainly analysed the difference in landslide thresholds and warning capabilities as a result of the differences in catchment

water storage, estimated from the groundwater responses to precipitation. It was observed that the catchment with complex or

slow groundwater responding system such as Mukungwa, the warning capability of the groundwater based thresholds have

less performance as compared to the fast and clear groundwater responding systems like Nyabarongo and Kivu catchments.

This is truly owed by the catchment specific hy drogeological and geomorphological characteristics. Nevertheless, the in deep

analysis of the hydrogeological and geomorphological differences between the three catchments and how they could be among

the explanatory factors of the observed difference in landslide thresholds and the warning capabilities was not fully conducted.

However, with reference to Fig.1 and Appendix B, Mukungwa catchment is hydrogeologically characterized by complex

aquifer in volcanic rocks and thus being a complex or slow groundwater responding system. This is due to the weathering
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products of volcanic rocks that produce a relatively permeable top layer but tend to form a brecciated or intruded sills of low

permeability layer at shallow depth and thus hampering deep groundwater recharge. Contrarily, Nyabarongo and Kivu

catchments are dominated by fractured granites with overall high transmissivity and recharge and hence fast and clear

groundwater responding systems (Appendix B). The weathering products of granites are generally coarse grained that tend to

develop and preserve open joint systems that increase permeability and thus fast groundwater response. In Nyabarongo and

Kivu catchments therefore, the landslide warning capability of groundwater based thresholds performed higher than

precipitation thresholds as opposed to Mukungwa catchment. This is to say that 4in regions with very slow groundwater

responding system where rainfall-induced shallow landslides prevails, precipitation based thresholds can still practically be
useful for landslide prediction and warning. However, the need for hydrological thresholds is true for both shallow and deep
seated landslides (Cascini et al., 2010; Corominas et al., 2005; Duan et al., 2019; Hong and Wan, 2011) and thus, being more
powerful than precipitation based thresholds. More studies also confirm the high warning capability of hy dro—meteorological
thresholds over precipitation based thresholds after incorporation of either soil moisture or catchment storage (Ciavolella et
al., 2016; Mirus et al., 2018a; Prenner et al., 2018; Thomas et al., 2019; Wicki et al., 2020). According to Uwihirwe et al.,
(2020), a study conducted in Rwanda to define precipitation thresholds, the highest predictive capability of precipitation based
threshold in a bilinear framework that used the antecedent precipitation AP1and event rainfall intensity | as AP1s0-1, was about
68 % of true alarms associated with 27 % of false alarms. However, this prediction level was further improved through this
research by considering the catchment specific groundwater levels where the best predictor hi—I was able to correctly predict
85 % of landslides (TP)with 15 % of false alarms.

Although, the catchment water storage would have been a better landslide predictor, this type of information is scarce.
Therefore the groundwater level was considered as a proxy and used as a hydrological landslide predictor variable in our
research. The component of groundwater has been on one hand considered as landslide triggering factor and on the other hand
as landslide predisposing factor (Cascini et al., 2010; Corominas et al., 2005; Duan et al., 2019; Hong and Wan, 2011). Being
a hydrological parameter, it was subjectively considered as landslide predisposing factor and plotted on x-axis of a 2D plotas
a cause in a cause-trigger framework. However, the neutral use of groundwater levels (neither trigger nor cause) in a single
variable threshold model h: provided excellent prediction results up to 93 % of correctly predicted landslide and only 7 % of
failed alarms with a rather high rate of false alarms up to 38 %. The adopted ap proach for hy dro-meteorological and/or bilinear
threshold model definition aimed to reduce the rate of false alarms associated with single variable thresholds and follows the
cause-trigger concept (Bogaard and Greco, 2018) in which the groundwater levels as cause were combined with precipitation
variables as trigger in a bilinear framework (Mirus et al. 2018a). We have tested different combinations of the optimum
hydrological and meteorological threshold variables such as hE, hel, ht1—E, and he.1—1 and the combination of groundwater
levels on the day of landslide and event rainfall intensity hi—I proved to have higher skill for landslide prediction and warning
with high rate of true alarms 64-85 % and reduced rate of false alarms 8-15 % as compared to other combinations. We remain
convinced that the combination of appropriate threshold variables into cause-trigger framework should consider the timescale
of each variable to avoid overlapping time scales between hydrological and meteorological variables. However, the
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combinations of h—E, and h—I may led to overlapping time scale between groundwater levels and rainfall event. This would
be very true for longer time scale triggers and very fast groundwater responding systemwith very short time memory which
was not the case in our studied catchments. To account on this constraints, we have also considered the groundwater level
recorded prior to landslide triggering events he1-E and he-1—I combinations but the result was not as significant as h—E and he—

I In this research, the single variable and bilinear threshold models were adopted rather than power law models commonly
used in landslide precipitation threshold like intensity —duration and event-duration. These single variable and bilinear
threshold models were selected based on our dataset that disp lays most of the landslide conditions in the upper right corner of
the plotsas shown in Fig. 6, 7, 8 and the achieved landslide predictive capabilities summarized in Table 1 and Table 2. Although
one is free to choose any other model that fit the dataset, the single variable and bilinear threshold models proved to be more
efficient for hydro-meteorological threshold model definition (Mirus et al., 2018a; Uwihirwe et al., 2020). Furthermore, the
transfer function noise TFN time series model was used for groundwater modelling because of its simplicity, less data
requirement and above all its higher skill in groundwater simulation (Bakker and Schaars, 2019; Collenteur et al., 2019).
However, like other models, 100 % of the observed data cannot fit the model. Therefore, the modelled groundwater data used
to define the hydro-meteorological threshold may be prone to minor errors._Additionally, the spatial extrapolation of

groundwater information relied on the main assumption that other hy dro-geomorphological parameters do not exhibit spatial

variability within the individual catchment. This is an assumption made, given the data scarcity in the east Africa rift region

in general (Monsieurs et al., 2018b) and Rwanda in particular. Lastly, the landslide inventory used for this study relied largely

on the information from government reports, newspapers,and other media where many landslide events are likely to be missed.
Although, the reliance on these data sources is likely to lead to a bias towards larger landslide events and those with impact to
society, this landslide inventory is the most comprehensive currently available in the study area.

5 Conclusion

This research aimed to improve the landslide forecast quality by incorporating the catchment specific groundwater levels as a
proxy for regional water storage. A parsimonious transfer function noise (TFN) time series model was used to simulate the
groundwater levels that temporally match with the available landslide inventory. Based on the statistical measures of goodness
of fit, the root mean square error (RMSE<0.5 m) and the explained variance (R? >60 %), the TFN time series model
demonstrates sufficient skill to simulate groundwater levels. The standardized groundwater levels ht modelled on a landslide
day with AUC between 0.76-0.80 and the event rainfall volume E whose AUC ranges from 0.74-0.93 were identified as the
hydrological and meteorological variables with the highest discriminatory power to distinguish landslide from no landslide
conditions and thus, the most dominant control on landslide occurrence in the studied region. The single variable threshold
model derived from groundwater levels ht indicated the highest landslide prediction and/or warning capability with about 85—
93 % of true positive alarms despitethe resulting rate of false alarms between 26-38 %. Similarly, thesingle variable threshold
models derived from precipitation intensity | and volume E reveal also high landslide predictive skill in terms of true positive
alarms with about 64-100 % associated with 15-44 % of false alarms. However, it was noticed that relying on single variable
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threshold models exclusively derived from precipitation variables like E and | considered as landslide triggers could lead to
biased results due to the fact that many landslides occur not only due to the trigger itself but a rather combination of both
trigger and pre-event hydrological conditions. Contrarily, relying on single variable threshold models exclusively defined using
hydrological variables like groundwater h, lead to unbiased landslide predictions due to their high consideration of long-term
antecedent conditions until the day of landslide occurrence. Further combination of the optimum groundwater and precipitation
thresholds as bilinear threshold models reduced the rate of false alarms by about 18-28 % at the expense of reduced rate of
true positive alarms by about 9-29 % and thus being less advantageous than single variable threshold models. However, the
hy dro-meteorological threshold models defined in bilinear framework as heI indicated higher landslide predictive skill in
terms of true positive alarms (64-85 %) than traditional threshold model I-D (36-77 %) that exclusively rely on precipitation.
Furthermore, the integration of catchment specific groundwater levels in landslide hazard assessment in Rwanda improved the
landslide prediction and warning capabilities of the existed precipitation based threshold that used the antecedent precipitation
API as a proxy for hydrological condition and event intensity | as a meteorological condition. Overall, the incorporation of
observed and model derived groundwater variables in an empirical statistical approach and the use of regional specific
hydrological characteristics improve the landslide prediction capacity as compared to the exclusive use of global precipitation
based threshold models.
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Appendices
Appendix A
720 Table Al. Final values of the calibrated parameters
Parameters Kiwu catchment Upper Nyabarongo catchment Mukungwa catchment
Rubengera Kanama Gisenyi Byimana Kibangu Rwaza Ruhengeri Bigogwe Rwankeri
A 0.75 0.40 0.63 0.84 0.68 0.82 0.97 031 0.20
a 81.64 3.88 11769 1054 13.19 8.97 1000 257.23 128.23
n 345 5.63 2.34 4.92 3.78 5.64 0.79 0.92 0.91
d 111 0.092 091 242 5.66 6.27 048 161 143
With A denoting the scaling factor (-); a and n_are shape parameters (-) while d_is the base elevation of the model (-) as
described in Sect. 3.1.3.
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Figure B1. Groundwater response function a) Block responseand b) Step responseto both rainfall and potential evaporation

755  recorded from three landslide representative meteorological station in Kivu catchment c) Block response and d) Step response
to both rainfall and potential evaporation recorded from three landslide representative meteorological station in Upper
Ny abarongo catchment e) Block response and f) Step response to both rainfall and potential evap oration recorded from three
landslide representative meteorological station in Mukungwa catchment
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