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Abstract. Recent studies have drawn special attention to the significant dependencies between flood drivers and the occurrence 10 

of compound flood events in coastal areas. This study investigates compound flooding from tides, river discharge (Q) and 

specifically waves using a hydrodynamic model at Breede Estuary, South Africa. We quantify vertical and horizontal 

differences in flood characteristics caused by driver interaction, and assess the contribution of waves. Therefore, we compare 

flood characteristics resulting from compound flood scenarios to those in which single drivers are omitted. We find that flood 

characteristics are more sensitive to Q than to waves, particularly when the latter only coincide with high spring tides. When 15 

interacting with Q, however, the contribution of waves is high, causing 10-12 % larger flood extents and 45-85 cm higher 

water depths, as waves caused backwater effects and raised water levels inside the lower reaches of the estuary. With higher 

wave intensity, the first flooding began up to 12 hours earlier. Our findings provide insights on compound flooding in terms 

of flood magnitude and timing at a South African estuary and demonstrate the need to account for the effects of compound 

events, including waves, in future flood impact assessments of open South African estuaries. 20 

Introduction 

Floods, regardless of fluvial or oceanic origin, are among the world’s most devastating coastal hazards, causing numerous 

deaths and large economic losses on an annual basis (Kirezci et al., 2020). Despite improved flood protection, forecasting, and 

warnings, flooding remains a growing threat, due to the continued global coastal urbanisation which result in rapid population 

growth, economic development and land use change (Brown et al., 2018; Hallegatte et al., 2013; Hanson et al., 2011). 25 

Moreover, the accelerating rate of sea-level rise (SLR) may cause historically rare floods to become common by the end of the 

century (Vitousek et al. 2017). In coastal areas, the interactions of oceanographic, hydrological, and meteorological phenomena 

can lead to extensive flooding. Particularly in estuaries, such floods can result from combined spring tides and extreme wave 

or storm surge conditions occurring simultaneously with high river discharge (Kumbier et al., 2018; Olbert et al., 2017; Ward 

et al., 2018). These events are commonly referred to as compound flood events. Definitions of compound events have evolved 30 

in recent years (Leonard et al., 2014; Zscheischler et al., 2018; Couasnon et al., 2020; IPCC, 2014) and these events are 

described as incidents that result from the combination of physical drivers, leading to stronger impacts than from drivers, 

occurring individually. Thus, neither of the drivers needs to be extreme in order to cause severe impacts, as drivers that occur 

simultaneously or successively can result in extreme events, which contribute to societal or environmental risk (Leonard et al., 

2014; Seneviratne et al., 2012; Zscheischler et al., 2018).  35 

Recent global and regional joint-probability analysis of river discharge, storm surge and waves (Couasnon et al., 2020; Ward 

et al., 2017; Hendry et al., 2019; Wahl et al., 2015) as well as local-scale case studies distributed around the globe (Mazas and 

Hamm, 2017; Bevacqua et al., 2019; Klerk et al., 2015; Rueda et al., 2016) have drawn special attention to statistical 

dependencies between flood drivers and higher occurrence probabilities of compound events with climate change.  
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With climate-change-induced sea-level rise (Nerem et al., 2018),  potential changes in storminess (Church et al., 2013), more 40 

extreme precipitation (Myhre et al., 2019) and higher river discharge (van Vliet et al., 2013), the risk of compound flooding is 

likely to increase, and flood extent, magnitude and duration can be locally exacerbated (Couasnon et al., 2020).  

Despite such studies focussing on dependencies between flood drivers, few published research on compound flood assessments 

exist, with most exploring the differences in flooding caused by the interaction of fluvial drivers with storm surge and tides 

(e.g. Olbert et al., 2017; Kumbier et al., 2018; Chen and Liu, 2014), pluvial drivers with surge (e.g. Bilskie and Hagen, 2018; 45 

Bilskie et al., 2020) and tides (e.g. Shen et al., 2019). These studies successfully address the driver interaction in hydrodynamic 

models and highlight the improved understanding of flood dynamics, when considering the interaction of flood drivers (Olbert 

et al., 2017; Lee et al., 2020; Shen et al., 2019; Seenath et al., 2016). When coinciding with high river discharge, the 

contribution of waves to flooding are seldom addressed (e.g. Lee et al., 2020), even though waves play a substantial role in 

terms of flooding in many of the discussed areas (Kumbier et al., 2018; Bilskie and Hagen, 2018), while the influence on the 50 

timing of the flood has not been analysed in detail.  

 

Waves can raise water levels (WLs) at the coast in terms of wave setup, which is described in detail by Dodet et al. (2019). 

Tanaka et al. (2009) have shown that in a shallow and narrow estuary entrance, wave setup can be up to 14% of the offshore 

wave height. For South Africa, Marcos et al. (2019) have shown a dependence of extreme WLs and waves, and according to 55 

Melet et al. (2018) and Theron et al. (2010) waves constitute the most important components of coastal flooding for the country. 

Large destructive swells are generated by cold fronts, cut-off lows and cyclones (Guastella and Rossouw, 2012).These low-

pressure systems cause additional heavy rainfalls, leading to immense fluvial flash floods (Pyle and Jacobs, 2016; Molekwa, 

2013). Thus, a dependency between both drivers is likely. However, no published regional to local compound flood probability 

analyses exist for South Africa and global statistical dependency analysis accounting for storm surge and river discharge only 60 

show small correlations between drivers (Couasnon et al., 2020). This may be due to the fact that the surge contribution 

compared to other flood drivers, such as tides and waves is relatively small in most South African estuaries (Theron et al., 

2010; Theron and Rossouw, 2008).  

 

The South African coastline comprises 291 estuaries, with the majority of rapidly developing coastal towns situated around 65 

estuaries (Hughes and Brundrit, 1995; van Niekerk et al., 2020). Since estuaries are potentially prone to flooding from fluvial 

and coastal high water-levels, urban development in and around estuaries may be affected from compound flooding (Pyle and 

Jacobs, 2016). For this reason, in 2019-2020, the South African Department for Forestry, Fisheries and Environment conducted 

the National Coastal Climate Change Assessment, which addressed coastal and estuarine flooding (DEFF, 2020); however, 

this study did not account for compound flooding.  70 

Flood impact assessments in general are rare, and those documented mostly assess the flood drivers individually (Fitchett et 

al., 2016;  Mather and Stretch, 2012; Theron et al., 2010).  

 

The main objective of this study is to analyse local scale compound flooding at Breede Estuary, a South African permanently 

open estuary. Thereby we specifically account for the contribution of waves when coinciding with high river discharge. In this 75 

context we assess the effects of compound flooding from river discharge, tides, and waves in terms of magnitude and timing 

on the lower estuary, by using the hydrodynamic model Delft3D. We analyse the interaction of all drivers and estimate the 

sensitivity of the flood characteristics (extent, depth, and timing) to various driver combinations and intensities. We chose 

Breede Estuary as it has a large catchment, a notable tidal exchange and data could be obtained. Finally, the lower estuary has 

shown to be prone to flooding from coastal and fluvial drivers (see Basson et al., 2017) and since we focus on the contribution 80 

of waves during compound flooding, our study site is constrained to the lower estuary. 
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The paper is structured as follows. We describe the characteristics of Breede Estuary in section 2. We explain the hydrodynamic 

model setup, data used and compound event scenarios in section 3. In section 4 we present flood characteristics, resulting from 

the compound event scenarios, which we discuss in section 5. 

2. Study Area 85 

Of South Africa’s 291 estuaries, Breede Estuary is one of the largest permanently open estuaries (van Niekerk et al., 2020). 

Breede River has the fourth largest annual runoff in South Africa (Taljaard, 2003). It flows along 322 km from the south-west 

of the country, in south-easterly direction towards the South African south coast and enters the Indian Ocean at the town 

Witsand in Sebastian Bay (Fig. 1). The estuary extends about 50 km upstream, where the tidal influence ceases (Lamberth et 

al., 2008).  90 

 

Breede Estuary is sparsely populated by small settlements of up to 1000 inhabitants (e.g., Witsand, Fig. 1) situated on the 

northern and southern banks. The estuary provides tourism services with several holiday resorts located along the banks. 

Numerous farm properties spread along the banks further upstream, and most of the land in the immediate surroundings is 

privately owned agricultural land (SSI, 2016). 95 

 

Breede Estuary is open towards the south-east, where it enters the sea against a wave-cut terrace (Carter, 1983). Its mouth is 

characterised by an open channel, which is located at the southern end of an extensive sand barrier, formed by wave action 

(Schumann, 2013). Over the first 28 km, the depth of the estuary channel ranges from 3 to 6 m (SSI, 2016). At the lower 

estuary, the channel meanders along large and shallow sand banks, which have formed along the southern shore (Fig. 1).  100 

During the low-flow summer months, the estuary is marine dominated, meaning the estuary receives high seawater input (SSI, 

2016). Due to the relatively strong tidal inflow during summer (Taljaard, 2003), and the sand barrier, restricting the estuarine 

inlet, the estuary can be classified as tide and wave dominated (Cooper, (2001).  

 

The main tidal signal is semi-diurnal (M2), with additional diurnal oscillations (Schumann, 2013). During spring tidal periods, 105 

the tidal range can reach up to 2 m, as measured at the tide gauge of Witsand, situated at the northern shore of Breede Estuary 

(Fig. 1). The southern coastline is wave dominated and experiences the highest wave conditions along the entire South African 

coast (Theron et al., 2010). Thus, waves cause the largest relevant contribution to extreme WLs in South Africa (Melet et al., 

2018). Such wave conditions are generated mainly by two synoptic weather systems, namely cold front systems and cut-off 

lows (Mather and Stretch, 2012). These are responsible for long-period to local swell conditions, with waves approaching the 110 

south coast from south-westerly directions. Generally, annual mean significant wave heights (Hs) range from 2.4 - 2.7 m 

(Basson et al., 2017). During extreme storm events significant wave heights can reach more than 10 m and peak periods (Tp) 

range from 5 s to 20 s. The estuary mouth is relatively sheltered from south-westerly waves since it is protected by a southern 

headland of the bay (Fig. 1). Waves from the south-eastern sector occur as well, however these are generated by tropical 

cyclones, making landfall at the Mozambican and the South African east coast (DEA&DP, 2012). The dominating wind 115 

direction is from the westerly and easterly sector, whereby easterly winds generate local wind waves, penetrating into the 

estuary, as its opening faces east (Vonkeman et al., 2019). One example of coastal flooding occurring in the area, was an 

extreme storm in August 2008. Waves of 10.7 m were measured, and since the storm lasted longer than 12 hours, the extreme 

waves additionally co-occurred with high tide levels, one day after a spring tide. Consequently, a large area of the South 

African south coast was affected, resulting in severe damage to coastal infrastructure (Guastella and Rossouw, 2012).  120 

During winter, the estuary is highly responsive to freshwater inflows (Taljaard, 2003). The catchment receives 80% of the 

annual rainfall during winter months, causing peak flows and floods usually during that season. Breede Estuary has 
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experienced extreme fluvial flooding, with major events occurring in 1906, 2003 and 2008. In November 2008, intense rainfall 

far upstream, caused by a cut-off low, resulted in extreme river runoff (Holloway et al., 2010). Extreme river discharge caused 

WLs up to 10 m in the upper 20 km of the estuary while levels of 50 cm were measured at the estuary entrance (Basson et al., 125 

2017). A similar cut-off low event occurred in May 2021 but was less extreme, with estimated elevated WLs being 1-2 m in 

the upper reaches.  
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3. Methods 145 

3.1 Hydrodynamic model and data description 

We used the fully integrated open source modelling suite Delft3D (Lesser et al., 2004) which has been extensively used in 

coastal applications (Lyddon et al., 2018; Bastidas et al., 2016; Kumbier et al., 2018) for simulating flood extents and flood 

depths from waves, tides and river discharge, hereafter referred to as Q. We used the hydrodynamic numerical module Delft3D-

FLOW, coupled with the module Delft3D-WAVE, which is based on the SWAN (Simulate WAves Nearshore) model.  150 

Setting up a hydrodynamic model requires numerous input datasets. The characteristics of the datasets used in this study are 

shown in Table 1. A detailed description of the pre-processing of the datasets used as Delft3D input files and the model setup 

is provided in Appendix A. 

 

Table 1: Datasets and characteristics applied to set up Delft3D. 155 

 

*Kaiser et al. (2011), Jung et al. (2011), Wamsley et al. (2009), Mourato et al. (2017), Chow (1959) 

 

Data Set 

 

Source 

Horizontal 

Resolution 

Temporal 

Resolution 

 

Time period 

Reference 

System 

Bathymetry Basson et al. (2017) 5 m - - MSL 

Elevation SUDEM van Niekerk (2016) 5 m - - MSL 

Land Cover/ Bottom 

Roughness 

 DEA (2015)/* 30 m - - - 

Tides FES2014 AVISO (n.d.) 1/16° 1 hour 1980-2014 MSL 

Q H7H006 (DWS) - 1 hour 1966-2019 Local MSL 

Waves Basson et al. (2017) - constant - - 

Observations H14T007 (DWS) -                1 hour 2002-2019 Local MSL 

Figure 1. Location of the study area and aerial photographs showing the Breede River and the Breede Estuary.  



5 

 

We performed simulations using tides and Q as input data in Delft3D-FLOW on a 5 x 5 m rectangular grid in a depth-averaged 

(2D) mode for the model validation, as well as scenario runs. The 2D mode has been successfully applied in numerous 

hydrodynamic flood modelling studies (Kumbier et al., 2018; Skinner et al., 2015; Olbert et al., 2017). As we focus on the 160 

additional contribution of waves during compound flooding, the model domain is restricted to the lower estuary (Fig. 2). 

Topographic input data were merged with bathymetric data, which were manually digitised, based on a bathymetry of an 

existing study report on flood lines at the Breede Estuary (Basson et al., 2017). We specified spatially varying manning bottom 

roughness via literature review from gridded land cover data (Table 1). We obtained 17 years of hourly measured WL 

observations serving for the model calibration and validation from the tide gauge station H14T007 (DWS, n.d.a), located in 165 

the small harbour of the town Witsand (Fig. 2).  

We forced the model at two open boundaries. The ocean boundary (Fig. 2) is located at the westernmost edge of the model 

domain and perpendicular to the main flow direction. Depending on the scenario, we forced this open boundary with tides and 

waves. We used historical tidal input data (Table 1), which were obtained from the global tidal FES2014 model (AVISO, n.d; 

Carrère et al., 2015). The data were extracted at a point closest to, but still located 24 km offshore from the westernmost edge 170 

of the model domain (Fig. 2). The second boundary (upstream boundary, Fig. 2) is situated at the upstream border of the model 

domain, perpendicular to the river flow, and was forced by hourly measured Q from the station in Swellendam (Table 1), 

which was the closest to the upstream boundary (54 km). For the Delft3D-WAVE setup, we increased the grid cell size and 

the horizontal resolution of the input bathymetry to 10 m for computational reasons. Since nearshore wave time series could 

not be obtained, a constant sea state (constant Hs and constant Tp) serves as wave boundary conditions (ocean boundary, Fig. 175 

2) which we obtained from two extreme value analysis (EVA), performed by Basson et al. (2017). 

 

 

3.2 Model calibration and validation 

To evaluate the performance of the model, we calculated the goodness-of-fit parameters R² (coefficient of determination), the 180 

Pearson correlation, r, and the root mean square error (RMSE) between the model output and observed WL time series (see 

Skinner et al., 2015).  

During model calibration, we adjusted the bottom roughness, and horizontal eddy viscosity (see Appendix A). We used the 

best fitting physical parameters to set up the model for model validation and the scenario runs. Waves were excluded during 

model calibration and validation, since no measured nearshore wave time series could be obtained. 185 

For the validation, we performed three simulations covering the full tidal range, and compared the model output to the 

corresponding observed WLs (Matte et al., 2017; Muis et al., 2017). To account for the full tidal range, these simulations 

Figure 2. Model domain, including the merged bathymetry and elevation raster, the location of the Witsand tide gauge and the two open 

boundaries. 
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include a spring-, average-, and a neap tide event (see Table 3 for the event names and dates of occurrence). For these 

simulations we selected events, where Q was constantly low in order to focus on model performance when the model is driven 

only from the ocean boundary and where continuous observations exist. To test the performance of the model when driven by 190 

both the oceanic and the upstream river boundary, we selected the largest continuously recorded high Q event occurring within 

the period of observed WLs at the tide gauge in Witsand (Table 3).  

 

Table 3. Tidal events used for validation and dates of occurrence. 

Event Name Average Neap Spring Spring + high Q 

Date 14-19/07/2007 18-23/09/2007 27/09-01/10/2007 22-25/11/2007 

 195 

According to the tide gauge data, this high Q event (1262.78 m³s-1) occurred simultaneously with a relatively large tidal range 

of up to 1.6 m. For this event the time lag of Q reaching the upstream open boundary from the measuring station must be 

considered. Thus, we estimated the difference between the timing of the peak from the upstream flow gauge and from the non-

tidal residual (NTR, see Appendix C) of the tide gauge, whereby we considered the maximum WL as the peak, caused by Q, 

since the tidal phase at this stage was at low tide level. We estimated a time lag of 8 hours, with the peak at the tide gauge 200 

occurring later (Fig. D3). We accounted for this time lag in the Q boundary conditions for the validation run to enable the 

comparison of model output and tide gauge data.  

3.3 Event selection and scenario development 

To assess compound flooding in terms of magnitude and timing, we developed four scenarios, accounting for tides, waves, 

and Q. 205 

Storm surge was not considered, as no nearshore WL time series could be obtained, and offshore input data would even increase 

model uncertainties. Additionally, analysis of tide gauge data along the South African coastline has shown that at the South 

African south coast storm surge has a small contribution, relative to the other considered flood drivers, even when considering 

extreme surges such as a 100-year event (Theron and Rossouw, 2008; Theron et al., 2014). Moreover, Melet et al. (2018) 

showed that the wave contribution to extreme WLs in South Africa is substantially larger, compared to the surge contribution. 210 

To explore this further, we additionally estimated the NTR of the tide gauge data of Witsand, which showed that the mean 

amplitude of the NTR of 10 cm is small compared to the tidal range of 2 m (Fig. D1). The contribution of wave setup and Q 

is still included in the NTR, and large peaks could be identified as caused by Q (see Fig. D2 and more information on the 

analysis in Appendix D).  

To investigate the effects of Q and waves on the flood characteristics during compound flooding, we developed the following 215 

scenarios (Table 2): 

 

Table 2. Scenario descriptions 

 

 220 

 

 

 

The scenarios were named according to their driving mechanisms. Thereby T stands for tides, W for waves and Q for river 

discharge. The selected extremes were extracted either via peak-over-threshold (POT) analysis, or by finding the maxima in 225 

the time series. All scenarios assume that the peaks of the drivers occur at the same time. The maximum Q event within the 

hourly time series applied for this study has a peak value of 1357 m³s-1 and occurred in November 2008. According to Basson 

et al. (2017) this value was corrected to 1546 m³s-1, corresponding to a return period of 15 years. The value was corrected, as 

Scenario River discharge Tide Waves 

STQ 100-year (long)  Spring - 

STW Constant-low  Spring  100-year (ESE direction) 

STWQ 100-year (long) Spring 100-year (ESE direction) 

STQWextr 100-year (long) Spring 100-year (all directions) 
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for this event the flow gauging station stopped measuring before the peak was reached. Based on this value, a peak Q of 3295 

m³s-1 corresponds to a 100-year event which we selected here as extreme Q (see Basson et al. (2017) for a more detailed 230 

description). We developed the Q-hydrograph to force the upstream open boundary by normalizing the hydrograph of the 

highest Q event, for which the full hydrograph was available. We then multiplied the normalized hydrograph with the 100-

year peak value. For the STW, so the no-Q scenario, we kept the upstream boundary open, so that incoming flood water does 

not accumulate there. Thus, we chose the lowest measured Q event from the time series, where Q does not exceed 1.2 m³/s. 

For the spring tide event, we selected the maximum tidal flood peak of 1.3 m from the FES2014 tidal input data, which occurred 235 

in March 2007. 

For the wave conditions, we chose two 100-year wave events from two different extreme value analysis (EVA) of Basson et 

al. (2017). According to their EVA, a 100-year wave event coming from east-south-easterly (ESE) directions (110°), the 

direction from which waves directly penetrate the estuary, has a Hs of 6.2 m and a Tp of 12 s. To consider an even higher wave 

event for a final worst-case scenario, Hs was increased to 9.3 m and Tp to 19.95 s, corresponding to Hs and Tp of a 100-year 240 

wave event, when considering all wave directions in the EVA. The ESE wave direction was maintained for all scenarios that 

include waves. For the sea states driving the model, it must be pointed out that Basson et al. (2017) performed EVAs on 

offshore wave data. As the location of the open boundary for this study is located nearshore, the considered wave scenarios 

may be more extreme than the sea state would be at the open boundary, as wave refraction and diffraction were not accounted 

for. Due to computational constraints and data limitations, we have employed the 100-year return period for waves and Q, as 245 

this was also recommended by previous flood assessment studies for South Africa (e.g. Theron and Rossouw, 2008; Basson 

et al., 2017). 

To compare the results of the scenarios WLs, flood extents and flood depths were extracted at the time of the maximum flood. 

4. Results 

4.1 Model validation 250 

For all validation runs the model setup was able to reproduce the timing of flood and ebb tide (Fig. 3). Variations occurred 

however in the WL magnitude, especially during high tide (Fig. 3, upper left panel), where simulated WLs were 25 cm higher 

than the observed for average tidal conditions. During low tide events in the spring tide simulation, modelled WLs were up to 

60 cm lower (Fig. 3, lower left panel), peak values only however, showed differences of maximum 14 cm (see RMSE Table 

C1). The neap tide event on the other hand, was simulated with a RMSE of only 10 cm (Fig. 3, upper right), and peak values 255 

only 7 cm (Table C1). The goodness-of-fit estimates also showed agreement of observed and modelled WLs, for all tidal 

events, excluding Q (Table C1).  

 

Moreover, for the simulation that included high Q (Fig. 3, lower right) the compared maximum WL peak did not show any 260 

difference. After the maximum event peak, however, the model overestimated flood peaks by about up to 30 cm. WLs during 

low tide before the peak of the event were strongly underestimated (~70 cm) by the model. The goodness-of-fit, however did 

not differ much from tide only conditions (Table C1). 

As flooding is usually caused by peak WLs and simulated peaks showed an RMSE of 0.15 m compared to observations for all 

validation runs, we considered the model performance as fit for purpose. 265 
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4.2 Flood sensitivity to varying driver combinations 

To analyse the scenario results according to their flood characteristics in terms of magnitude and timing and to estimate the 

wave contribution, we initially compared the compound flood scenario STWQ to scenarios in which one driver was excluded 

(STW, STQ). Then we compared the compound flood scenario STWQ with the extreme wave compound flood scenario (STQWextr). 

WLs, flood extent, and maximum and mean flood depths of all compound scenarios are summarised in Table E1 of Appendix 270 

E. For demonstrative reasons we separated the model domain into three areas, termed “upper”, “centre” and “lower” domain 

as shown in Fig. 5. 

 

The results of the compound flood simulation (STWQ) with the simulation excluding river discharge (STW) showed large 

differences in all flood characteristics. The WLs of STWQ were substantially higher throughout the entire estuary than the WLs 275 

produced by accounting only for oceanic drivers (STW, Fig. 4).  

Figure 3. WLs of the model validation runs (red curve) at the tide gauge station, compared to observed WLs from the tide gauge (blue curve). Upper left 
panel shows WLs of the average tide event, upper right panel the neap tide event, the lower left panel the spring tide event, and the lower left panel the high 

river discharge event, coinciding with the spring high tide. All panels include goodness-of-fit estimates for peak values of each event (RMSEpeaks, rpeaks). 
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The WLs of STW showed a continuous state around 1.54 m throughout the entire estuary, slightly decreasing towards the estuary 295 

mouth. As in STWQ, WLs were highest at the upstream open boundary and decreased substantially towards the estuary mouth, 

the largest WL differences between both scenarios occurred at the upper domain with up to 1.5 m. Further towards the estuary 

mouth differences reached a minimum of 15 cm, decreasing towards the outside area.  

Figure 5(a) presents the flood extent of STW on top of the extent of STWQ, which showed a substantially larger extent. Further, 

both scenarios showed large spatial differences in flood extent patterns. STWQ inundated an additional extent of 45%, compared 300 

to the flood produced by the STW scenario (Table D1). During the compound scenario, the flood covered a large low-lying area 

at the northern shore (about 5 km from the mouth), inundating up to 570 m further inland. However, in the scenario STW where 

Q was excluded, only a narrow area got flooded, reaching at its widest part 250 m inland. On the southern bank (centre), the 

STWQ flood reached 80 m further inland than STW. At the estuary mouth, both scenarios flooded about the same areas. 

Figure 5(b) represents differences in flood depths. From the estuary mouth towards the estuary entrance, differences in flood 305 

depths showed the same pattern as differences in WLs. At the sand barrier, flood depth differences reached up to 1 m. 

Comparing WLs of the Q scenario in which waves were excluded (STQ) to the compound flood scenario STWQ (Fig. 4), both 

WL curves showed the same pattern, with the WLs of STWQ generally being higher than those simulated by STQ. The differences 

in WLs between both scenarios decreased from the area around the estuary mouth with maximum differences of 53 cm towards 

the centre of the study area. We found the smallest differences of ~20 cm close to the upstream edge of the model domain 310 

where WLs were highest in both scenarios. We observed a similar pattern in flood depth differences (Fig. 5(e)), showing a 

maximum of 70 cm at the northern shore of the estuary entrance, decreasing towards the upstream boundary to ~20 cm. Figure 

5(b) shows the overlaying flood extents of both scenarios, where both scenarios inundated mostly the same areas. The flood 

extent of STWQ covered a 10% larger area than the flood, resulting from STQ (see Table D1 for the flood size). Inside the estuary, 

the largest differences occurred in the populated area at the southern shore (centre). 315 

 

Figure 4. WL (m) with distance from the upstream boundary of all scenarios with the vertical dashed line demonstrating the location of 

the estuary mouth. The map shows the location of the transect (yellow line), as well as the location of the upstream open boundary (orange 

vertical line) and the estuary mouth (grey dashed line). 
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As anticipated, both scenarios accounting for all three drivers during an extreme stage (STWQ and STQWextr) showed the highest 

values in terms of inundation depth and extent. Comparing the compound flood scenario (STWQ), with the one including even 

higher extreme waves (STQWextr), we found large differences in the WLs, throughout the entire study area (Fig. 4).  

Inside the estuary, STQWextr produced continuously higher WLs, than STWQ, with increasing differences of up to 40 cm towards 320 

the estuary entrance. Such differences are further encountered in the flood depth, showing the same magnitude in the entire 

lower area. Generally, the higher flood depths produced by STQWextr reached towards the upstream open boundary, but the 

differences were decreasing (Fig. 5(f)). The flood extent was 12% larger, when considering large waves during compound 

flooding. Spatially, the larger flood plain in STQWextr was mainly restricted to the southern shore of the central and lower model 

domain. In these areas, the STQWextr extent expanded up to 40 m further inland than the extent of STWQ. At the northern shore, 325 

the only noticeable area, which got flooded in STQWextr, but not in STWQ, was the sand barrier forming the estuary mouth. STQWextr 

almost entirely flooded the sand dune, indicating that it is likely to be eroded during a flood (Fig. 5(c)). 

 

To further estimate the effects of waves during compound flooding on the timing of the flood, different time steps of the flood 

WLs in scenarios STQWextr, STWQ and STQ are presented in Fig. 6. The left panel shows all three scenarios at the same time step 330 

(17 March 2007, 23:45), which was selected according to the onset of high WLs at the upstream open boundary in STQ. The 

three scenarios at the same time step showed the highest WLs at the upper model domain, which then decreased towards the 

open sea. Generally, STQ produced the lowest WLs (Fig. 6 (a)), followed by STWQ (Fig. 6(b)), and the largest WLs were 

produced in STQWextr (Fig. 6(c)). 

 335 

 

 

Figure 5. Comparison of flood extents of compound and excluding driver scenarios (left panel, a), b) and c)) and differences in flood depths 

(right panel). Panel d) shows the flood depths of STWQ - STW, e) shows STWQ - STQ and f) STQWextr - STWQ. 
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The figure also reveals differences in the areas in which the high WLs dominated at that time. While in STQ WLs of up to 1.8 

m were only shown in the upper area, the same magnitude of WLs reached until 4.2 km in STQW and even crossed the estuary 

mouth in STQWextr. Furthermore, the right panel of Fig. 6 shows the timing of the onset of the flood in the three scenarios, at the 340 

point highlighted by the blue star. In STQWextr the area got flooded earliest (18 March at 00:00, Fig. 6(f)) and was followed 90 

min later by STQW (Fig. 6(e)). In STQ however, the same area got flooded even 12 hours later, at the 18 March at 12:00. 

 

 

 345 

 

 

 

 

 350 

 

5. Discussion 

5.1 Effects of interaction between drivers during compound flooding and the contribution of extreme waves 

Model outputs show differences in the magnitude and spatial variation of flood characteristics between all scenarios. Spatial 

variations in flood characteristics of the different scenarios indicate locations where the interaction of waves, tides, and Q 355 

during compound flooding have amplified flooding and where individual drivers contribute to the flood. Enhanced flood 

characteristics during compound flooding and spatial variations in the flood pattern caused by different driver combinations 

were previously discussed by Olbert et al. (2017), Kumbier et al. (2018) as well as by Bilskie and Hagen (2018). Yet, none of 

the studies accounted for the additional influence of waves. In addition to this, none of them addressed the effects of the oceanic 

flood drivers on the timing of the flood, when co-occurring with Q.  360 

The comparison of STWQ, with the riverine (STQ) and the wave scenario (STW), highlights that compound flooding increases 

flood extent and depth. In particular, the additional extent in the central study area, as well as the continuously higher WLs 

and water depths during compound flooding (Fig. 5(a), (b), (c), (d)) indicate an accumulation of water inside the estuary. 

The results further reveal where each driver has its highest influence. This information is relevant for understanding the flood 

dynamics due to driver interaction and the wave contribution. Regions only inundated in the compound flood scenario, but not 365 

in STW, or STQ, were mostly located in the central zone of the study area. In STWQ additional inundated areas in the upper sector 

were small (10%) when compared to STQ, but were large (45%) when compared to STW. These floods highlight the generally 

Figure 6. WLs of the scenarios STQ, STWQ and STQWextr, extracted at the same time step (left panel) and time series of all three 

scenarios, showing the timing of the onset of the flood, extracted from the point, marked by the blue star.  
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higher effect of river discharge in the more confined upper section during compound flooding. The influence of Q decreases 

towards the mouth area, as increased friction through the widening of the estuary at the central area and the large flood plain 

at the upper northern shore of the domain attenuate the flood wave (Cai et al., 2016). On the contrary, waves have clearly 370 

shown to be the dominating factor at the estuary mouth area, resulting in substantially higher WLs (Fig. 4). These can be 

caused by wave setup, as the steep bathymetry and shallow water depths outside the estuary cause waves to break before 

entering (Carter, 1983; Xu et al., 2020), increasing WLs inside the estuary. Tanaka et al. (2009) have shown that in a shallow 

and narrow estuary entrance, wave setup can be up to 14% of the offshore wave height, which strongly depends on the 

morphology of the inlet. Olabarrieta et al. (2011) demonstrated that wave setup propagates inside the estuary and interacts 375 

with outflowing currents (Olabarrieta et al., 2011; Zaki et al., 2015). Additionally, the funnelling effect due to the narrow 

estuary mouth may amplify wave setup-induced WLs (Lyddon et al., 2018), contributing to the elevated WLs inside the 

estuary, and causing a relatively large flood extent at the sand barrier in STW. The small differences in flood characteristics in 

the upper area (STWQ vs. STQ), however, demonstrate a decreasing influence of waves from the entrance towards the upstream 

boundary of the model domain. 380 

 

In STWQ the increased WLs at the entrance and the larger flood extents at the sand barrier and in the central estuary indicate an 

interaction of drivers mostly in the lower area. Delpey et al. (2014) have shown that extreme waves can reduce the freshwater 

outflow from the estuary mouth towards the open ocean, increasing the water volume inside the estuary, and thereby raise the 

WLs. Such a blocking of the riverine component through the oceanic component was also observed in Orton et al. (2020), 385 

although they only accounted for tides and excluded waves. Hence, the blocking of Q through waves may explain the larger 

flood characteristics in STWQ at the central domain area, even approximating the upstream open model boundary. This shows 

a large contribution of waves on flood characteristics during compound flooding, which were not apparent when considering 

the components individually. High outflowing Q can also dampen the wave and tidal propagation inside the estuary, causing 

increased WLs at the entrance (Sassi and Hoitink, 2013). This implies that during compound flooding, waves play a stronger 390 

role when coinciding with Q, by amplifying the flood magnitude. When considering flood drivers individually however, the 

effects caused by waves were relatively low, as compared to effects caused by Q. 

 

We further assessed the wave contribution by testing the sensitivity of compound flooding to more extreme wave conditions. 

Comparing results of the compound flood scenario STWQ with results of the extreme wave compound flood (STQWextr) confirms 395 

the expected larger flooding caused by more intense waves. This was valid for all flood characteristics throughout the entire 

study area. The effects of increased wave conditions were found to be greatest in the lower reaches. First, the considerably 

larger flood extent at the sand barrier can be explained by wave overtopping, and shows that extreme wave conditions 

coinciding with spring high tides may lead to eroding and a breaching of the barrier. 

As explained above, wave setup can raise WLs inside the estuary (Olabarrieta et al., 2011), which becomes more extreme with 400 

higher waves. An impact of waves on WL variabilities in South African estuaries has previously been shown by Schumann 

(2013) who states that waves together with the tidal influence can determine how far ocean water propagates upstream in an 

estuary. Therefore, increased wave conditions during compound flooding does not only have effects on the lower domain flood 

extent and depth. STQWextr enhanced flood characteristics in the upper domain, as shown in all STQWextr related figures (Fig. 4, 

5(c), (f), and 6(c), (f)), confirm the fact that higher waves cause greater impacts further upstream when compared to STWQ.  405 

 

Last, an interesting finding of the study is that compound events do not only affect flood characteristics in terms of magnitude.  

The timing of the flood also changed when all drivers coincide, and when stronger wave conditions are accounted for. The 

increased volumes of water during the compound event and in STQWextr resulted in flooding occurring earlier than when the 

drivers, waves, and Q, were not coinciding. Figure 6 shows that at the specific considered time step, the flood characteristics 410 
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of STQWextr were largest (also in the upper area), although at that time Q was still moderate. Therefore, even when the riverine 

component was still moderate, waves led to enhanced flooding. Considering the timing at which most of the in Fig. 6 marked 

flood plain was inundated in all three scenarios (see Fig. 6(d)-(f)) further highlights the large wave contribution during 

compound flooding. In this case the flood plain was flooded earliest in STQWextr, followed by STWQ about 95 minutes later. 

When not accounting for waves, however, the flood plain was inundated 12 hours later than in STWQ. These findings indicate 415 

that waves play a substantial role when coinciding with the fluvial component and spring tides, as they lead to larger flooding 

and an earlier onset of the inundation, even when Q was still moderate.  

5.2 Model performance, limitations, and outlook 

This analysis has shown the sensitivity of flood characteristics to compound flooding when compared to individual flood 

drivers. This was demonstrated by spatial variabilities in the flood extents, and by variabilities in the flood magnitude and 420 

timing. We must note however, that flood extent and depths could not be directly validated. Commonly used data types for 

flood impact validation are pictures, satellite imagery or high watermarks (Molinari et al., 2017). Yet, such data were not 

available for the study area. According to Basson et al. (2017), pictures and high watermarks of a fluvial flood, occurring in 

2008 exist, however only at sites further upstream. This area was not considered in the model domain of this study, as detailed 

upstream bathymetry data could not be obtained. Nevertheless, model performance was validated at the tide gauge at Witsand 425 

near the mouth (Fig. 2). Flood peaks matched the observed peaks in almost all simulations (Fig. 3, Table C1). The model 

overestimated tidal high-water peaks only during the average tide event. Tidal low water peaks, though, were generally 

underestimated.  

Those differences can be explained by uncertainties inherent in the model input data, such as tides and bathymetry. Tides, 

serving as input data for model validation and all scenarios of this study were obtained from the global FES2014 tidal model 430 

(Carrère et al., 2015). Even though the model shows a rather high accuracy offshore, on shelves and on nearshore areas 

(Stammer et al., 2014; Ray et al., 2019), the local scale coastal processes caused by the local topography and the influence of 

the estuarine channel morphology (Wang et al., 2019; Godin and Martínez, 1994) are not considered in the data. Additionally, 

the model open boundary was placed at a location several kilometers further nearshore of the point from which the tidal inputs 

were extracted. Processes modifying the tidal propagation between both locations were therefore not considered. One way to 435 

overcome this limitation would be to downscale the tides from the model towards the location of the open boundary, which 

however, is beyond the scope of this study. Moreover, permanently opened estuaries are highly dynamic areas due to a constant 

influence of sediment deposition by river inflow and sediment removal due to floods (Moore et al., 2009; Whitfield et al., 

2012). The sand bars and sand banks at the timing of the validation runs (covering events in 2007) were therefore likely in a 

different position than at the time when the input bathymetry was generated (Basson et el., 2017). This can have a high impact 440 

on water levels at the location of the tide gauge (Wang et al., 2019). 

Additionally, the omitted storm surge, wind, and waves as model input during the validation runs can explain the large 

discrepancies occurring specifically in the Q validation run (Fig. 3, lower right panel), where tidal low water peaks preceding 

the actual event peak were strongly underestimated in the model. Thus, the higher observed WLs could have been produced 

by wave setup or less likely a storm surge (Zaki et al., 2015). Relative to other flood drivers, storm surge alone does not have 445 

a significant effect on coastal flooding along the South African south and west coast (Theron et al., 2014), but it still may effect 

WLs inside the estuary (Lyddon et al., 2018). Testing the effect of waves and surge on the model performance, however, would 

require observed wave time series and nearshore WL data which were not available for this study. 

Storm surge has been considered in most regional or local flood assessments, specifically in those dealing with compound 

flooding (Eilander et al., 2020; Olbert et al., 2017; Shen et al., 2019). Despite its low contribution at the location of Breede 450 

Estuary (Appendix C), storm surge may still contribute to compounding drivers to become an extreme event, even when neither 

of the drivers is extreme (Leonard et al., 2014). To estimate its contribution, storm surge should be considered in further 
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simulations. Our analysis presents driver interactions during extreme (100-year) conditions, without showing joint probabilities 

of waves and Q. This information becomes relevant when assessing risk from compound flooding, which is beyond the scope 

of this study and should be considered in future work. For such a risk assessment, a wider range of return periods should be 455 

explored. 

6. Conclusions 

We assessed compound flooding from tides, Q, and waves at the permanently open Breede Estuary (South Africa) using a 

hydrodynamic model. For the assessment, we simulated scenarios accounting for the three flood drivers (i.e., tides, Q and 

waves) and scenarios omitting either waves or Q in order to analyse their contribution. We found that flood characteristics 460 

such as extent, water depth and timing are affected by the interaction between the drivers. As anticipated, the omission of 

waves caused major inundations to occur in the upper domain area, whereas the omission of Q produced comparably small 

flooding. Thus, we have shown that when considered separately, the contribution of waves to flooding was small. When waves 

were combined with spring tides and Q however, they had a substantial effect on the spatial distribution and magnitude of the 

floods by impeding river flow to the sea. A notable impact of waves during compound flooding was their effect on the flood 465 

timing. Through backwater effects, waves induced the flood to occur earlier. This was further emphasised when increasing the 

wave intensity in the compound flood scenario. We therefore suggest that compound flooding induced by high Q, tides, and 

waves should not only be considered in risk assessment studies in terms of magnitude, but also in terms of timing. The earlier 

onset of intense flooding needs to be accounted for when forecasting, planning, and managing flood hazards. 

As we have shown in this study for Breede Estuary, compound flooding can exacerbate flooding and waves make a substantial 470 

contribution to flooding, when coinciding with extreme Q. Extreme waves co-occurring with spring tides and high precipitation 

have been documented by Guastella and Rossouw (2012), who additionally predicted a change in wave climate for the South 

African south-west coast towards more frequent extreme wave conditions. Our results in combination with a changing wave 

climate further confirm the necessity of accounting for compound flooding and specifically waves in future local flood impact 

assessments in South Africa, particularly for other South African estuaries, which are highly populated, as Mngeni Estuary 475 

(Durban), Swartkops Estuary (Port Elizabeth), Nahoon Estuary (East London), Diep/Rietvlei (Cape Town) where it can lead 

to substantial infrastructure damage. 

The achievement of data for complex modelling studies, as well as validating model results, in South Africa remains a major 

challenge, however. 

Appendix A: Data pre-processing 480 

For the hydrodynamic model we used the 5 m SUDEM elevation dataset (van Niekerk, 2016) merged with bathymetric data, 

which we manually digitised, based on a bathymetry of a study report on flood lines at the Breede Estuary (Basson et al., 

2017). As model friction parameters, we specified spatially varying manning values from land cover raster data, provided by 

the Department of Environmental Affairs (DEA, 2014), originally coming in a 30 m horizontal resolution. Manning roughness 

values for the different land cover classes were derived from a literature review, following Kaiser et al. (2011), Jung et al. 485 

(2011), Wamsley et al. (2009), Mourato et al. (2017) and Chow (1959). 

 As model boundary conditions we used historical tidal input data, which we obtained from the global tidal FES2014 model   

(AVISO, n.d; Carrère et al., 2015). We extracted the data at a point closest to, but still located 24 km offshore from the open 

boundary. The time series covers a period of 34 years, from 1980-2014. We obtained hourly measured river discharge from 

the station H7H006 in Swellendam, which was the closest to the upstream boundary (54 km). The data were provided by the 490 

Department for Water and Sanitation of South Africa (DWS, n.d.b) and cover a period of 53 years, from 1966 until 2019.  

Hourly water level observations serving for the model calibration and validation were provided by the DWS from the tide 
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gauge station H14T007 (DWS, n.d.a), located in a small harbour of the town Witsand, inside the estuary mouth. The 

measurements cover 17 years (2002-2019). We derived wave data, significant wave height (Hs) and peak period (Tp) from two 

extreme value analysis (EVA) performed by Basson et al. (2017). They extracted from the ECMWF model simulated offshore 495 

wave data of 37 years (1979-2016), from a point close to the estuary, while still being located 30 km off the coast.  

Appendix B: Model setup and model calibration 

Grid and topography of the model are based on the Cartesian coordinate system WGS84/UTM zone 34S. The model domain 

expands over an area of 19.2 km², covering the lower estuary and the area until 1.5 km offshore (Fig. 2). We used a time step 

of 1.5 seconds for calibration, validation and scenario runs, as it was suggested by the Courant number. We changed the 500 

reflection parameter α, which determined the permeability of the open boundaries to 1000 for the ocean boundary and to 200 

for the upstream boundary, as the model otherwise produced instabilities in preliminary runs (Deltares, 2014a). 

Additionally, we considered several physical and numerical parameters for the model setup. These were either kept at the 

default value, as suggested by Deltares (2014), or were changed and adjusted during model calibration runs. For the wave 

setup we increased the grid cell size to 10 m for computational reasons. We used a JONSWAP (Joint North Sea Wave Project) 505 

spectrum with a peak enhancement factor of 1.75 and a wave direction spreading of 30° according to Basson et al. (2017).  

 

For the model calibration we selected an event occurring from the 26 June until the 3 July 2003 due to the low and constant 

river discharge before, during and after the calibration event (max 3 m³s-1). This is important, because the time lag of the river 

discharge between the measuring station in Swellendam and the upstream open boundary of the model domain is not 510 

considered. Waves were excluded during model calibration and validation. 

For the model calibration we changed the physical parameters bottom roughness and horizontal eddy viscosity, as these can 

affect the tidal amplitude and the speed of the tidal wave propagation into the estuary (Skinner et al., 2015; Garzon and Ferreira, 

2016). Table B1 shows changed physical parameters and goodness of fit estimates, resulting from compared modelled and 

observed time series. The best fitting physical parameters resulting from the calibration were used to setup the model for the 515 

validation and scenario runs, even though the improvements were small (see Table B1). 

 

Table B1. Parameter changes during model calibration and final model setup 

 

Appendix C: Model validation 520 

 

Model calibration 

Goodness of fit Default n = 0.035 n = Land cover Visc* = 4 m²/s 

RMSE 0.22 m 0.21 m 0.21 m 0.21 m 

R² 0.76  0.77  0.77 0.77 

r 0.96 0.95 0.96 0.96 

Final model setup 

Simulation Resolution n Visc (m²/s) Time step (s) Alpha 

Calibration & 

Validation 

5 m Land cover 4 1.5  1000 

Delft3D module Resolution n Visc (m²/s) Time step (s) Alpha  

FLOW 5 m Land cover 4 1.5 1000/200 

WAVE 10 m Land cover 4 1.5 1000 
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Table C1. Goodness-of-fit estimates of model validation runs compared to observations. Columns 2-4 show goodness-of-fit estimates for 

each tidal event of flood peaks only. Column 5 shows the goodness-of-fit for tide-only conditions (entire time series) and column 6 for tides 

including high river discharge (entire time series). 

 525 

 

 

 

Appendix D: Surge contribution 

To estimate storm surge height at Breede Estuary, we extracted the non-tidal residual (NTR) of the Witsand tide gauge time 530 

series. Then we performed a harmonic analysis on the water levels, using the Utide package of Codiga (2011) and subtracted 

the resulting tidal signal from the tide gauge data. The tidal signal plotted against the NTR is shown in Fig. D1. We calculated 

the mean amplitude of the entire NTR time series (0.1 m) and the mean peak height of all NTR peaks, including outliers, being 

0.54 m. Only several outliers exceed the average peak height of the NTR, reaching up to 1.7 m (Fig. D1). As the NTR still 

contains the signal of river discharge from Breede River, we tested if peaks can be related to river discharge. Thus, we tested, 535 

if NTR peaks occurred within 3 days after peaks of in Swellendam measured river discharge time series. In total 9 NTR peaks 

were considered as being caused by high river discharge, of which 5 are highlighted in Fig. D2, for the period 2007 - 2010. 

Additional to river discharge and non-linear interactions, the NTR at Witsand includes wave setup. The contribution of wave 

setup to coastal water levels has already been shown by Dodet et al. (2019). As for our local study no measured nearshore 

wave time series could be obtained neither for the study area, nor for close by locations, it is difficult to estimate the 540 

contribution of wave setup. In a widely applied formula wave setup has been estimated to be 0.2x Hs (e.g., Vousdoukas et al., 

2016). As according to Basson et al. (2017) and Guastella and Rossouw (2012) Hs can exceed 10 m (100-yr return period) at 

the area, Breede Estuary is located at, we can according to named wave setup estimations assume that the component 

contributes a substantial proportion to the NTR, underlining the assumption of a comparably small surge contribution.  

 545 
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Goodness-of-fit Average Neap Spring Spring + high 

Q 

Spring-, neap-, 

average tide 

Spring-, neap-, average & 

Spring + high Q 

RMSE 0.25 0.07 0.14 0.11 0.21 m 0.23 m 

R² 0.52 0.79 0.78 0.69 0.8  0.94 

r 0.96 0.91 0.85 0.81 0.9 0.91 

Figure D1. NTR (green) plotted against tidal signal (blue) at Witsand 
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Appendix E: Results 

Table E1. Flood extents and maximum and mean flood depths of all scenarios 

 

 

 595 

 

Scenario Flood extent (km²) Mean. flood depth (m) Max flood depth (m) 

STQ 0.66  1.06 3.61 

STW 0.46 0.71 3.52 

STWQ 0.73 1.28 4.08 

STQWextr 0.82 1.42 4.45 

Figure D2. River discharge for the period 2007 - 2010 with peaks (red markers) occurring within 3 days before peaks of NTR (upper 

panel). NTR at Witsand with peaks (red markers) occurring within 3 days after peaks of river discharge (lower panel). The period 2007 - 

2010 was chosen for representative reasons, as this was the period containing most peaks. 

Figure D3. Validation event (22 - 25 November 2007) of river discharge at the flow gauge Swellendam (upper panel) and of the NTR 

at the tide gauge in Witsand (lower panel), between both peaks we estimated a time lag of 8 hours. 



18 

 

Data availability. All data used in this paper are properly cited and referred to in the reference list. The local tide gauge and 

flow gauge data can be obtained under request from the DWS, or can be downloaded from this webpage: 
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