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Abstract. Recent studies have drawn special attention to the significant dependencies between flood drivers and the occurrence
of compound flood events in coastal areas. This study investigates compound flooding from tides, river discharge (Q) and
specifically waves using a hydrodynamic model at Breede Estuary, South Africa. We quantify vertical and horizontal
differences in flood characteristics caused by driver interaction, and assess the contribution of waves. Therefore, we compare
flood characteristics resulting from compound flood scenarios to those in which single drivers are omitted. We find that flood
characteristics are more sensitive to Q than to waves, particularly when the latter only coincide with high spring tides. When
interacting with Q, however, the contribution of waves is high, causing 10-12 % larger flood extents and 45-85 cm higher
water depths, as waves caused backwater effects and raised water levels inside the lower reaches of the estuary. With higher
wave intensity, the first flooding began up to 12 hours earlier. Our findings provide insights on compound flooding in terms
of flood magnitude and timing at a South African estuary and demonstrate the need to account for the effects of compound

events, including waves, in future flood impact assessments of open South African estuaries.

Introduction

Floods, regardless of fluvial or oceanic origin, are among the world’s most devastating coastal hazards, causing numerous
deaths and large economic losses on an annual basis (Kirezci et al., 2020). Despite improved flood protection, forecasting, and
warnings, flooding remains a growing threat, due to the continued global coastal urbanisation which result in rapid population
growth, economic development and land use change (Brown et al., 2018; Hallegatte et al., 2013; Hanson et al., 2011).
Moreover, the accelerating rate of sea-level rise (SLR) may cause historically rare floods to become common by the end of the
century (Vitousek et al. 2017). In coastal areas, the interactions of oceanographic, hydrological, and meteorological phenomena
can lead to extensive flooding. Particularly in estuaries, such floods can result from combined spring tides and extreme wave
or storm surge conditions occurring simultaneously with high river discharge (Kumbier et al., 2018; Olbert et al., 2017; Ward
etal., 2018). These events are commonly referred to as compound flood events. Definitions of compound events have evolved
in recent years (Leonard et al., 2014; Zscheischler et al., 2018; Couasnon et al., 2020; IPCC, 2014) and these events are
described as incidents that result from the combination of physical drivers, leading to stronger impacts than from drivers,
occurring individually. Thus, neither of the drivers needs to be extreme in order to cause severe impacts, as drivers that occur
simultaneously or successively can result in extreme events, which contribute to societal or environmental risk (Leonard et al.,
2014; Seneviratne et al., 2012; Zscheischler et al., 2018).

Recent global and regional joint-probability analysis of river discharge, storm surge and waves (Couasnon et al., 2020; Ward
etal., 2017; Hendry et al., 2019; Wahl et al., 2015) as well as local-scale case studies distributed around the globe (Mazas and
Hamm, 2017; Bevacqua et al., 2019; Klerk et al., 2015; Rueda et al., 2016) have drawn special attention to statistical

dependencies between flood drivers and higher occurrence probabilities of compound events with climate change.
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With climate-change-induced sea-level rise (Nerem et al., 2018), potential changes in storminess (Church et al., 2013), more
extreme precipitation (Myhre et al., 2019) and higher river discharge (van Vliet et al., 2013), the risk of compound flooding is
likely to increase, and flood extent, magnitude and duration can be locally exacerbated (Couasnon et al., 2020).

Despite such studies focussing on dependencies between flood drivers, few published research on compound flood assessments
exist, with most exploring the differences in flooding caused by the interaction of fluvial drivers with storm surge and tides
(e.g. Olbert et al., 2017; Kumbier et al., 2018; Chen and Liu, 2014), pluvial drivers with surge (e.g. Bilskie and Hagen, 2018;
Bilskie et al., 2020) and tides (e.g. Shen et al., 2019). These studies successfully address the driver interaction in hydrodynamic
models and highlight the improved understanding of flood dynamics, when considering the interaction of flood drivers (Olbert
et al., 2017; Lee et al., 2020; Shen et al., 2019; Seenath et al., 2016). When coinciding with high river discharge, the
contribution of waves to flooding are seldom addressed (e.g. Lee et al., 2020), even though waves play a substantial role in
terms of flooding in many of the discussed areas (Kumbier et al., 2018; Bilskie and Hagen, 2018), while the influence on the

timing of the flood has not been analysed in detail.

Waves can raise water levels (WLs) at the coast in terms of wave setup, which is described in detail by Dodet et al. (2019).
Tanaka et al. (2009) have shown that in a shallow and narrow estuary entrance, wave setup can be up to 14% of the offshore
wave height. For South Africa, Marcos et al. (2019) have shown a dependence of extreme WLs and waves, and according to
Melet et al. (2018) and Theron et al. (2010) waves constitute the most important components of coastal flooding for the country.
Large destructive swells are generated by cold fronts, cut-off lows and cyclones (Guastella and Rossouw, 2012).These low-
pressure systems cause additional heavy rainfalls, leading to immense fluvial flash floods (Pyle and Jacobs, 2016; Molekwa,
2013). Thus, a dependency between both drivers is likely. However, no published regional to local compound flood probability
analyses exist for South Africa and global statistical dependency analysis accounting for storm surge and river discharge only
show small correlations between drivers (Couasnon et al., 2020). This may be due to the fact that the surge contribution
compared to other flood drivers, such as tides and waves is relatively small in most South African estuaries (Theron et al.,
2010; Theron and Rossouw, 2008).

The South African coastline comprises 291 estuaries, with the majority of rapidly developing coastal towns situated around
estuaries (Hughes and Brundrit, 1995; van Niekerk et al., 2020). Since estuaries are potentially prone to flooding from fluvial
and coastal high water-levels, urban development in and around estuaries may be affected from compound flooding (Pyle and
Jacobs, 2016). For this reason, in 2019-2020, the South African Department for Forestry, Fisheries and Environment conducted
the National Coastal Climate Change Assessment, which addressed coastal and estuarine flooding (DEFF, 2020); however,
this study did not account for compound flooding.

Flood impact assessments in general are rare, and those documented mostly assess the flood drivers individually (Fitchett et
al., 2016; Mather and Stretch, 2012; Theron et al., 2010).

The main objective of this study is to analyse local scale compound flooding at Breede Estuary, a South African permanently
open estuary. Thereby we specifically account for the contribution of waves when coinciding with high river discharge. In this
context we assess the effects of compound flooding from river discharge, tides, and waves in terms of magnitude and timing
on the lower estuary, by using the hydrodynamic model Delft3D. We analyse the interaction of all drivers and estimate the
sensitivity of the flood characteristics (extent, depth, and timing) to various driver combinations and intensities. We chose
Breede Estuary as it has a large catchment, a notable tidal exchange and data could be obtained. Finally, the lower estuary has
shown to be prone to flooding from coastal and fluvial drivers (see Basson et al., 2017) and since we focus on the contribution

of waves during compound flooding, our study site is constrained to the lower estuary.
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The paper is structured as follows. We describe the characteristics of Breede Estuary in section 2. We explain the hydrodynamic
model setup, data used and compound event scenarios in section 3. In section 4 we present flood characteristics, resulting from

the compound event scenarios, which we discuss in section 5.

2. Study Area

Of South Africa’s 291 estuaries, Breede Estuary is one of the largest permanently open estuaries (van Niekerk et al., 2020).
Breede River has the fourth largest annual runoff in South Africa (Taljaard, 2003). It flows along 322 km from the south-west
of the country, in south-easterly direction towards the South African south coast and enters the Indian Ocean at the town
Witsand in Sebastian Bay (Fig. 1). The estuary extends about 50 km upstream, where the tidal influence ceases (Lamberth et
al., 2008).

Breede Estuary is sparsely populated by small settlements of up to 1000 inhabitants (e.g., Witsand, Fig. 1) situated on the
northern and southern banks. The estuary provides tourism services with several holiday resorts located along the banks.
Numerous farm properties spread along the banks further upstream, and most of the land in the immediate surroundings is

privately owned agricultural land (SSI, 2016).

Breede Estuary is open towards the south-east, where it enters the sea against a wave-cut terrace (Carter, 1983). Its mouth is
characterised by an open channel, which is located at the southern end of an extensive sand barrier, formed by wave action
(Schumann, 2013). Over the first 28 km, the depth of the estuary channel ranges from 3 to 6 m (SSI, 2016). At the lower
estuary, the channel meanders along large and shallow sand banks, which have formed along the southern shore (Fig. 1).

During the low-flow summer months, the estuary is marine dominated, meaning the estuary receives high seawater input (SSI,
2016). Due to the relatively strong tidal inflow during summer (Taljaard, 2003), and the sand barrier, restricting the estuarine

inlet, the estuary can be classified as tide and wave dominated (Cooper, (2001).

The main tidal signal is semi-diurnal (M2), with additional diurnal oscillations (Schumann, 2013). During spring tidal periods,
the tidal range can reach up to 2 m, as measured at the tide gauge of Witsand, situated at the northern shore of Breede Estuary
(Fig. 1). The southern coastline is wave dominated and experiences the highest wave conditions along the entire South African
coast (Theron et al., 2010). Thus, waves cause the largest relevant contribution to extreme WLs in South Africa (Melet et al.,
2018). Such wave conditions are generated mainly by two synoptic weather systems, namely cold front systems and cut-off
lows (Mather and Stretch, 2012). These are responsible for long-period to local swell conditions, with waves approaching the
south coast from south-westerly directions. Generally, annual mean significant wave heights (Hs) range from 2.4 - 2.7 m
(Basson et al., 2017). During extreme storm events significant wave heights can reach more than 10 m and peak periods (Tp)
range from 5 s to 20 s. The estuary mouth is relatively sheltered from south-westerly waves since it is protected by a southern
headland of the bay (Fig. 1). Waves from the south-eastern sector occur as well, however these are generated by tropical
cyclones, making landfall at the Mozambican and the South African east coast (DEA&DP, 2012). The dominating wind
direction is from the westerly and easterly sector, whereby easterly winds generate local wind waves, penetrating into the
estuary, as its opening faces east (Vonkeman et al., 2019). One example of coastal flooding occurring in the area, was an
extreme storm in August 2008. Waves of 10.7 m were measured, and since the storm lasted longer than 12 hours, the extreme
waves additionally co-occurred with high tide levels, one day after a spring tide. Consequently, a large area of the South
African south coast was affected, resulting in severe damage to coastal infrastructure (Guastella and Rossouw, 2012).

During winter, the estuary is highly responsive to freshwater inflows (Taljaard, 2003). The catchment receives 80% of the

annual rainfall during winter months, causing peak flows and floods usually during that season. Breede Estuary has
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experienced extreme fluvial flooding, with major events occurring in 1906, 2003 and 2008. In November 2008, intense rainfall
far upstream, caused by a cut-off low, resulted in extreme river runoff (Holloway et al., 2010). Extreme river discharge caused
WLs up to 10 m in the upper 20 km of the estuary while levels of 50 cm were measured at the estuary entrance (Basson et al.,
2017). A similar cut-off low event occurred in May 2021 but was less extreme, with estimated elevated WLs being 1-2 m in

the upper reaches.

South Africa

St Sebastian

Figure 1. Location of the study area and aerial photographs showing the Breede River and the Breede Estuary.

3. Methods
3.1 Hydrodynamic model and data description

We used the fully integrated open source modelling suite Delft3D (Lesser et al., 2004) which has been extensively used in
coastal applications (Lyddon et al., 2018; Bastidas et al., 2016; Kumbier et al., 2018) for simulating flood extents and flood
depths from waves, tides and river discharge, hereafter referred to as Q. We used the hydrodynamic numerical module Delft3D-
FLOW, coupled with the module Delft3D-WAVE, which is based on the SWAN (Simulate WAves Nearshore) model.

Setting up a hydrodynamic model requires numerous input datasets. The characteristics of the datasets used in this study are
shown in Table 1. A detailed description of the pre-processing of the datasets used as Delft3D input files and the model setup

is provided in Appendix A.

Table 1: Datasets and characteristics applied to set up Delft3D.

Horizontal Temporal Reference
Data Set Source Resolution Resolution Time period System

Bathymetry Basson et al. (2017) 5m - - MSL
Elevation SUDEM van Niekerk (2016) 5m - - MSL
Land Cover/ Bottom DEA (2015)/* 30m - - -
Roughness
Tides FES2014 AVISO (n.d.) 1/16° 1 hour 1980-2014 MSL
Q H7HO006 (DWS) - 1 hour 1966-2019 Local MSL
Waves Basson et al. (2017) - constant - -
Observations H14T007 (DWS) - 1 hour 2002-2019 Local MSL

*Kaiser et al. (2011), Jung et al. (2011), Wamsley et al. (2009), Mourato et al. (2017), Chow (1959)

4
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We performed simulations using tides and Q as input data in Delft3D-FLOW on a 5 x 5 m rectangular grid in a depth-averaged
(2D) mode for the model validation, as well as scenario runs. The 2D mode has been successfully applied in numerous
hydrodynamic flood modelling studies (Kumbier et al., 2018; Skinner et al., 2015; Olbert et al., 2017). As we focus on the
additional contribution of waves during compound flooding, the model domain is restricted to the lower estuary (Fig. 2).
Topographic input data were merged with bathymetric data, which were manually digitised, based on a bathymetry of an
existing study report on flood lines at the Breede Estuary (Basson et al., 2017). We specified spatially varying manning bottom
roughness via literature review from gridded land cover data (Table 1). We obtained 17 years of hourly measured WL
observations serving for the model calibration and validation from the tide gauge station H14T007 (DWS, n.d.a), located in
the small harbour of the town Witsand (Fig. 2).

We forced the model at two open boundaries. The ocean boundary (Fig. 2) is located at the westernmost edge of the model
domain and perpendicular to the main flow direction. Depending on the scenario, we forced this open boundary with tides and
waves. We used historical tidal input data (Table 1), which were obtained from the global tidal FES2014 model (AVISO, n.d;
Carrere et al., 2015). The data were extracted at a point closest to, but still located 24 km offshore from the westernmost edge
of the model domain (Fig. 2). The second boundary (upstream boundary, Fig. 2) is situated at the upstream border of the model
domain, perpendicular to the river flow, and was forced by hourly measured Q from the station in Swellendam (Table 1),
which was the closest to the upstream boundary (54 km). For the Delft3D-WAVE setup, we increased the grid cell size and
the horizontal resolution of the input bathymetry to 10 m for computational reasons. Since nearshore wave time series could
not be obtained, a constant sea state (constant Hs and constant Tp) serves as wave boundary conditions (ocean boundary, Fig.

2) which we obtained from two extreme value analysis (EVA), performed by Basson et al. (2017).
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Figure 2. Model domain, including the merged bathymetry and elevation raster, the location of the Witsand tide gauge and the two open
boundaries.

3.2 Model calibration and validation

To evaluate the performance of the model, we calculated the goodness-of-fit parameters R2 (coefficient of determination), the
Pearson correlation, r, and the root mean square error (RMSE) between the model output and observed WL time series (see
Skinner et al., 2015).

During model calibration, we adjusted the bottom roughness, and horizontal eddy viscosity (see Appendix A). We used the
best fitting physical parameters to set up the model for model validation and the scenario runs. Waves were excluded during
model calibration and validation, since no measured nearshore wave time series could be obtained.

For the validation, we performed three simulations covering the full tidal range, and compared the model output to the

corresponding observed WLs (Matte et al., 2017; Muis et al., 2017). To account for the full tidal range, these simulations
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include a spring-, average-, and a neap tide event (see Table 3 for the event names and dates of occurrence). For these
simulations we selected events, where Q was constantly low in order to focus on model performance when the model is driven
only from the ocean boundary and where continuous observations exist. To test the performance of the model when driven by
both the oceanic and the upstream river boundary, we selected the largest continuously recorded high Q event occurring within
the period of observed WLs at the tide gauge in Witsand (Table 3).

Table 3. Tidal events used for validation and dates of occurrence.
Event Name Average Neap Spring Spring + high Q
Date 14-19/07/2007 18-23/09/2007 27/09-01/10/2007 22-25/11/2007

According to the tide gauge data, this high Q event (1262.78 m3s) occurred simultaneously with a relatively large tidal range
of up to 1.6 m. For this event the time lag of Q reaching the upstream open boundary from the measuring station must be
considered. Thus, we estimated the difference between the timing of the peak from the upstream flow gauge and from the non-
tidal residual (NTR, see Appendix C) of the tide gauge, whereby we considered the maximum WL as the peak, caused by Q,
since the tidal phase at this stage was at low tide level. We estimated a time lag of 8 hours, with the peak at the tide gauge
occurring later (Fig. D3). We accounted for this time lag in the Q boundary conditions for the validation run to enable the

comparison of model output and tide gauge data.

3.3 Event selection and scenario development

To assess compound flooding in terms of magnitude and timing, we developed four scenarios, accounting for tides, waves,
and Q.

Storm surge was not considered, as no nearshore WL time series could be obtained, and offshore input data would even increase
model uncertainties. Additionally, analysis of tide gauge data along the South African coastline has shown that at the South
African south coast storm surge has a small contribution, relative to the other considered flood drivers, even when considering
extreme surges such as a 100-year event (Theron and Rossouw, 2008; Theron et al., 2014). Moreover, Melet et al. (2018)
showed that the wave contribution to extreme WLs in South Africa is substantially larger, compared to the surge contribution.
To explore this further, we additionally estimated the NTR of the tide gauge data of Witsand, which showed that the mean
amplitude of the NTR of 10 cm is small compared to the tidal range of 2 m (Fig. D1). The contribution of wave setup and Q
is still included in the NTR, and large peaks could be identified as caused by Q (see Fig. D2 and more information on the
analysis in Appendix D).

To investigate the effects of Q and waves on the flood characteristics during compound flooding, we developed the following

scenarios (Table 2):

Table 2. Scenario descriptions

Scenario River discharge Tide Waves

Stq 100-year (long) Spring -

Stw Constant-low Spring 100-year (ESE direction)
Stwq 100-year (long) Spring 100-year (ESE direction)
StQwextr 100-year (long) Spring 100-year (all directions)

The scenarios were named according to their driving mechanisms. Thereby t stands for tides, w for waves and q for river
discharge. The selected extremes were extracted either via peak-over-threshold (POT) analysis, or by finding the maxima in
the time series. All scenarios assume that the peaks of the drivers occur at the same time. The maximum Q event within the
hourly time series applied for this study has a peak value of 1357 m3s™and occurred in November 2008. According to Basson

et al. (2017) this value was corrected to 1546 m3s™, corresponding to a return period of 15 years. The value was corrected, as

6
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for this event the flow gauging station stopped measuring before the peak was reached. Based on this value, a peak Q of 3295
m3s! corresponds to a 100-year event which we selected here as extreme Q (see Basson et al. (2017) for a more detailed
description). We developed the Q-hydrograph to force the upstream open boundary by normalizing the hydrograph of the
highest Q event, for which the full hydrograph was available. We then multiplied the normalized hydrograph with the 100-
year peak value. For the Stw, so the no-Q scenario, we kept the upstream boundary open, so that incoming flood water does
not accumulate there. Thus, we chose the lowest measured Q event from the time series, where Q does not exceed 1.2 m3/s.
For the spring tide event, we selected the maximum tidal flood peak of 1.3 m from the FES2014 tidal input data, which occurred
in March 2007.

For the wave conditions, we chose two 100-year wave events from two different extreme value analysis (EVA) of Basson et
al. (2017). According to their EVA, a 100-year wave event coming from east-south-easterly (ESE) directions (110°), the
direction from which waves directly penetrate the estuary, has a Hs of 6.2 mand a Tyof 12 s. To consider an even higher wave
event for a final worst-case scenario, Hs was increased to 9.3 m and T, to 19.95 s, corresponding to Hs and T, of a 100-year
wave event, when considering all wave directions in the EVA. The ESE wave direction was maintained for all scenarios that
include waves. For the sea states driving the model, it must be pointed out that Basson et al. (2017) performed EVAs on
offshore wave data. As the location of the open boundary for this study is located nearshore, the considered wave scenarios
may be more extreme than the sea state would be at the open boundary, as wave refraction and diffraction were not accounted
for. Due to computational constraints and data limitations, we have employed the 100-year return period for waves and Q, as
this was also recommended by previous flood assessment studies for South Africa (e.g. Theron and Rossouw, 2008; Basson
etal., 2017).

To compare the results of the scenarios WLs, flood extents and flood depths were extracted at the time of the maximum flood.

4. Results
4.1 Model validation

For all validation runs the model setup was able to reproduce the timing of flood and ebb tide (Fig. 3). Variations occurred
however in the WL magnitude, especially during high tide (Fig. 3, upper left panel), where simulated WLs were 25 cm higher
than the observed for average tidal conditions. During low tide events in the spring tide simulation, modelled WLs were up to
60 cm lower (Fig. 3, lower left panel), peak values only however, showed differences of maximum 14 cm (see RMSE Table
C1). The neap tide event on the other hand, was simulated with a RMSE of only 10 cm (Fig. 3, upper right), and peak values
only 7 cm (Table C1). The goodness-of-fit estimates also showed agreement of observed and modelled WLs, for all tidal
events, excluding Q (Table C1).

Moreover, for the simulation that included high Q (Fig. 3, lower right) the compared maximum WL peak did not show any
difference. After the maximum event peak, however, the model overestimated flood peaks by about up to 30 cm. WLs during
low tide before the peak of the event were strongly underestimated (~70 cm) by the model. The goodness-of-fit, however did
not differ much from tide only conditions (Table C1).

As flooding is usually caused by peak WLs and simulated peaks showed an RMSE of 0.15 m compared to observations for all

validation runs, we considered the model performance as fit for purpose.



270

275

Average
T

15
a)
1k 4
ns q
ot 4
05 B
1F q 1r b
RMSE cars = 0.25 CM; s = 0.96 RMSE, .4 = 0.07 cm; rp.qs = 0.91
5 . L . 15 L . L L |
Jul 14 Jul1s Jul 16 Jul 17 Jul 18 Sep 18 Sep 19 Sep 20 Sep 21 Sep 22 Sep 23 Sep 24
2007 2nny

Spring Spring + highQ
T T T

RMSE oas = 0.14 cm; rpeqys = 0.85
1 1 1

Sep 28

RMSE peaxs = 0.11 €M; rpeays = 0.81

Il 1
Sep 28 Sep 27

15 L I L
Oct 01 Mov 22 Nov 23 Nov 24 MNov 25 Mov 28 Mov 27

2007 2007

15
Sep 25 Sep 29 Sep 30

Figure 3. WLs of the model validation runs (red curve) at the tide gauge station, compared to observed WLs from the tide gauge (blue curve). Upper left
panel shows WLs of the average tide event, upper right panel the neap tide event, the lower left panel the spring tide event, and the lower left panel the high
river discharge event, coinciding with the spring high tide. All panels include goodness-of-fit estimates for peak values of each event (RMSE peaks, Ipeaks)-

4.2 Flood sensitivity to varying driver combinations

To analyse the scenario results according to their flood characteristics in terms of magnitude and timing and to estimate the
wave contribution, we initially compared the compound flood scenario Stwq to scenarios in which one driver was excluded
(Stw, Stq). Then we compared the compound flood scenario Stwq with the extreme wave compound flood scenario (Stowextr)-
WLs, flood extent, and maximum and mean flood depths of all compound scenarios are summarised in Table E1 of Appendix
E. For demonstrative reasons we separated the model domain into three areas, termed “upper”, “centre” and “lower” domain

as shown in Fig. 5.

The results of the compound flood simulation (Stwg) with the simulation excluding river discharge (Stw) showed large
differences in all flood characteristics. The WLs of Stwq were substantially higher throughout the entire estuary than the WLs

produced by accounting only for oceanic drivers (Stw, Fig. 4).
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The WLs of Stw showed a continuous state around 1.54 m throughout the entire estuary, slightly decreasing towards the estuary
mouth. As in Stwo, WLs were highest at the upstream open boundary and decreased substantially towards the estuary mouth,
the largest WL differences between both scenarios occurred at the upper domain with up to 1.5 m. Further towards the estuary
mouth differences reached a minimum of 15 cm, decreasing towards the outside area.

Figure 5(a) presents the flood extent of Stw on top of the extent of Stwg, which showed a substantially larger extent. Further,
both scenarios showed large spatial differences in flood extent patterns. Stwo inundated an additional extent of 45%, compared
to the flood produced by the Stw scenario (Table D1). During the compound scenario, the flood covered a large low-lying area
at the northern shore (about 5 km from the mouth), inundating up to 570 m further inland. However, in the scenario Stw where
Q was excluded, only a narrow area got flooded, reaching at its widest part 250 m inland. On the southern bank (centre), the
Stwaq flood reached 80 m further inland than Stw. At the estuary mouth, both scenarios flooded about the same areas.

Figure 5(b) represents differences in flood depths. From the estuary mouth towards the estuary entrance, differences in flood
depths showed the same pattern as differences in WLs. At the sand barrier, flood depth differences reached up to 1 m.
Comparing WLs of the Q scenario in which waves were excluded (Stq) to the compound flood scenario Stwq (Fig. 4), both
WL curves showed the same pattern, with the WLs of Srwq generally being higher than those simulated by Stq. The differences
in WLs between both scenarios decreased from the area around the estuary mouth with maximum differences of 53 cm towards
the centre of the study area. We found the smallest differences of ~20 cm close to the upstream edge of the model domain
where WLs were highest in both scenarios. We observed a similar pattern in flood depth differences (Fig. 5(¢)), showing a
maximum of 70 cm at the northern shore of the estuary entrance, decreasing towards the upstream boundary to ~20 cm. Figure
5(b) shows the overlaying flood extents of both scenarios, where both scenarios inundated mostly the same areas. The flood
extent of Stwq covered a 10% larger area than the flood, resulting from Srq (see Table D1 for the flood size). Inside the estuary,

the largest differences occurred in the populated area at the southern shore (centre).
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As anticipated, both scenarios accounting for all three drivers during an extreme stage (Stwg and Stowextr) Showed the highest
values in terms of inundation depth and extent. Comparing the compound flood scenario (Srwg), with the one including even
higher extreme waves (Stowextr), We found large differences in the WLs, throughout the entire study area (Fig. 4).

Inside the estuary, Stowexr produced continuously higher WLs, than Stwq, with increasing differences of up to 40 cm towards
the estuary entrance. Such differences are further encountered in the flood depth, showing the same magnitude in the entire
lower area. Generally, the higher flood depths produced by Stowexr reached towards the upstream open boundary, but the
differences were decreasing (Fig. 5(f)). The flood extent was 12% larger, when considering large waves during compound
flooding. Spatially, the larger flood plain in Stowexe Was mainly restricted to the southern shore of the central and lower model
domain. In these areas, the Stowexr €xtent expanded up to 40 m further inland than the extent of Stwq. At the northern shore,
the only noticeable area, which got flooded in Stowextr, but not in Stwo, was the sand barrier forming the estuary mouth. Stowexr

almost entirely flooded the sand dune, indicating that it is likely to be eroded during a flood (Fig. 5(c)).

To further estimate the effects of waves during compound flooding on the timing of the flood, different time steps of the flood
WLs in scenarios Stowexr, Stwo and Stq are presented in Fig. 6. The left panel shows all three scenarios at the same time step
(17 March 2007, 23:45), which was selected according to the onset of high WLs at the upstream open boundary in Stq. The
three scenarios at the same time step showed the highest WLs at the upper model domain, which then decreased towards the
open sea. Generally, Stq produced the lowest WLs (Fig. 6 (a)), followed by Stwq (Fig. 6(b)), and the largest WLs were
produced in Stowextr (Fig. 6(C)).
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Figure 5. Comparison of flood extents of compound and excluding driver scenarios (left panel, a), b) and c)) and differences in flood depths
(right panel). Panel d) shows the flood depths of Stwq - Stw, €) shows Stwq - Stq and f) Stowextr - STwq.
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The figure also reveals differences in the areas in which the high WLs dominated at that time. While in Stq WLs of up to 1.8
m were only shown in the upper area, the same magnitude of WLs reached until 4.2 km in Stowand even crossed the estuary
mouth in Stowextr. Furthermore, the right panel of Fig. 6 shows the timing of the onset of the flood in the three scenarios, at the
point highlighted by the blue star. In Stowexr the area got flooded earliest (18 March at 00:00, Fig. 6(f)) and was followed 90

min later by Stow (Fig. 6(e)). In Stq however, the same area got flooded even 12 hours later, at the 18 March at 12:00.
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Figure 6. WLs of the scenarios Stq, Stwq and Stqwextr, €xtracted at the same time step (left panel) and time series of all three
scenarios, showing the timing of the onset of the flood, extracted from the point, marked by the blue star.

5. Discussion
5.1 Effects of interaction between drivers during compound flooding and the contribution of extreme waves

Model outputs show differences in the magnitude and spatial variation of flood characteristics between all scenarios. Spatial
variations in flood characteristics of the different scenarios indicate locations where the interaction of waves, tides, and Q
during compound flooding have amplified flooding and where individual drivers contribute to the flood. Enhanced flood
characteristics during compound flooding and spatial variations in the flood pattern caused by different driver combinations
were previously discussed by Olbert et al. (2017), Kumbier et al. (2018) as well as by Bilskie and Hagen (2018). Yet, none of
the studies accounted for the additional influence of waves. In addition to this, none of them addressed the effects of the oceanic
flood drivers on the timing of the flood, when co-occurring with Q.

The comparison of Stwq, with the riverine (Srg) and the wave scenario (Stw), highlights that compound flooding increases
flood extent and depth. In particular, the additional extent in the central study area, as well as the continuously higher WLs
and water depths during compound flooding (Fig. 5(a), (b), (c), (d)) indicate an accumulation of water inside the estuary.

The results further reveal where each driver has its highest influence. This information is relevant for understanding the flood
dynamics due to driver interaction and the wave contribution. Regions only inundated in the compound flood scenario, but not
in Stw, Or Stg, were mostly located in the central zone of the study area. In Stwq additional inundated areas in the upper sector

were small (10%) when compared to Stq, but were large (45%) when compared to Stw. These floods highlight the generally

11



370

375

380

385

390

395

400

405

410

higher effect of river discharge in the more confined upper section during compound flooding. The influence of Q decreases
towards the mouth area, as increased friction through the widening of the estuary at the central area and the large flood plain
at the upper northern shore of the domain attenuate the flood wave (Cai et al., 2016). On the contrary, waves have clearly
shown to be the dominating factor at the estuary mouth area, resulting in substantially higher WLs (Fig. 4). These can be
caused by wave setup, as the steep bathymetry and shallow water depths outside the estuary cause waves to break before
entering (Carter, 1983; Xu et al., 2020), increasing WLs inside the estuary. Tanaka et al. (2009) have shown that in a shallow
and narrow estuary entrance, wave setup can be up to 14% of the offshore wave height, which strongly depends on the
morphology of the inlet. Olabarrieta et al. (2011) demonstrated that wave setup propagates inside the estuary and interacts
with outflowing currents (Olabarrieta et al., 2011; Zaki et al., 2015). Additionally, the funnelling effect due to the narrow
estuary mouth may amplify wave setup-induced WLs (Lyddon et al., 2018), contributing to the elevated WLs inside the
estuary, and causing a relatively large flood extent at the sand barrier in Stw. The small differences in flood characteristics in
the upper area (Stwa vs. Sto), however, demonstrate a decreasing influence of waves from the entrance towards the upstream

boundary of the model domain.

In Stwo the increased WLs at the entrance and the larger flood extents at the sand barrier and in the central estuary indicate an
interaction of drivers mostly in the lower area. Delpey et al. (2014) have shown that extreme waves can reduce the freshwater
outflow from the estuary mouth towards the open ocean, increasing the water volume inside the estuary, and thereby raise the
WLs. Such a blocking of the riverine component through the oceanic component was also observed in Orton et al. (2020),
although they only accounted for tides and excluded waves. Hence, the blocking of Q through waves may explain the larger
flood characteristics in Stwg at the central domain area, even approximating the upstream open model boundary. This shows
a large contribution of waves on flood characteristics during compound flooding, which were not apparent when considering
the components individually. High outflowing Q can also dampen the wave and tidal propagation inside the estuary, causing
increased WLs at the entrance (Sassi and Hoitink, 2013). This implies that during compound flooding, waves play a stronger
role when coinciding with Q, by amplifying the flood magnitude. When considering flood drivers individually however, the

effects caused by waves were relatively low, as compared to effects caused by Q.

We further assessed the wave contribution by testing the sensitivity of compound flooding to more extreme wave conditions.
Comparing results of the compound flood scenario Stwq with results of the extreme wave compound flood (Stowextr) confirms
the expected larger flooding caused by more intense waves. This was valid for all flood characteristics throughout the entire
study area. The effects of increased wave conditions were found to be greatest in the lower reaches. First, the considerably
larger flood extent at the sand barrier can be explained by wave overtopping, and shows that extreme wave conditions
coinciding with spring high tides may lead to eroding and a breaching of the barrier.

As explained above, wave setup can raise WLs inside the estuary (Olabarrieta et al., 2011), which becomes more extreme with
higher waves. An impact of waves on WL variabilities in South African estuaries has previously been shown by Schumann
(2013) who states that waves together with the tidal influence can determine how far ocean water propagates upstream in an
estuary. Therefore, increased wave conditions during compound flooding does not only have effects on the lower domain flood
extent and depth. Stowexr enhanced flood characteristics in the upper domain, as shown in all Stowexr related figures (Fig. 4,

5(c), (f), and 6(c), ()), confirm the fact that higher waves cause greater impacts further upstream when compared to Stwo.

Last, an interesting finding of the study is that compound events do not only affect flood characteristics in terms of magnitude.
The timing of the flood also changed when all drivers coincide, and when stronger wave conditions are accounted for. The
increased volumes of water during the compound event and in Stowexr resulted in flooding occurring earlier than when the

drivers, waves, and Q, were not coinciding. Figure 6 shows that at the specific considered time step, the flood characteristics
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of Stowexrr Were largest (also in the upper area), although at that time Q was still moderate. Therefore, even when the riverine
component was still moderate, waves led to enhanced flooding. Considering the timing at which most of the in Fig. 6 marked
flood plain was inundated in all three scenarios (see Fig. 6(d)-(f)) further highlights the large wave contribution during
compound flooding. In this case the flood plain was flooded earliest in Stowexr, followed by Stwg about 95 minutes later.
When not accounting for waves, however, the flood plain was inundated 12 hours later than in Stwq. These findings indicate
that waves play a substantial role when coinciding with the fluvial component and spring tides, as they lead to larger flooding

and an earlier onset of the inundation, even when Q was still moderate.

5.2 Model performance, limitations, and outlook

This analysis has shown the sensitivity of flood characteristics to compound flooding when compared to individual flood
drivers. This was demonstrated by spatial variabilities in the flood extents, and by variabilities in the flood magnitude and
timing. We must note however, that flood extent and depths could not be directly validated. Commonly used data types for
flood impact validation are pictures, satellite imagery or high watermarks (Molinari et al., 2017). Yet, such data were not
available for the study area. According to Basson et al. (2017), pictures and high watermarks of a fluvial flood, occurring in
2008 exist, however only at sites further upstream. This area was not considered in the model domain of this study, as detailed
upstream bathymetry data could not be obtained. Nevertheless, model performance was validated at the tide gauge at Witsand
near the mouth (Fig. 2). Flood peaks matched the observed peaks in almost all simulations (Fig. 3, Table C1). The model
overestimated tidal high-water peaks only during the average tide event. Tidal low water peaks, though, were generally
underestimated.

Those differences can be explained by uncertainties inherent in the model input data, such as tides and bathymetry. Tides,
serving as input data for model validation and all scenarios of this study were obtained from the global FES2014 tidal model
(Carrére et al., 2015). Even though the model shows a rather high accuracy offshore, on shelves and on nearshore areas
(Stammer et al., 2014; Ray et al., 2019), the local scale coastal processes caused by the local topography and the influence of
the estuarine channel morphology (Wang et al., 2019; Godin and Martinez, 1994) are not considered in the data. Additionally,
the model open boundary was placed at a location several kilometers further nearshore of the point from which the tidal inputs
were extracted. Processes modifying the tidal propagation between both locations were therefore not considered. One way to
overcome this limitation would be to downscale the tides from the model towards the location of the open boundary, which
however, is beyond the scope of this study. Moreover, permanently opened estuaries are highly dynamic areas due to a constant
influence of sediment deposition by river inflow and sediment removal due to floods (Moore et al., 2009; Whitfield et al.,
2012). The sand bars and sand banks at the timing of the validation runs (covering events in 2007) were therefore likely in a
different position than at the time when the input bathymetry was generated (Basson et el., 2017). This can have a high impact
on water levels at the location of the tide gauge (Wang et al., 2019).

Additionally, the omitted storm surge, wind, and waves as model input during the validation runs can explain the large
discrepancies occurring specifically in the Q validation run (Fig. 3, lower right panel), where tidal low water peaks preceding
the actual event peak were strongly underestimated in the model. Thus, the higher observed WLs could have been produced
by wave setup or less likely a storm surge (Zaki et al., 2015). Relative to other flood drivers, storm surge alone does not have
a significant effect on coastal flooding along the South African south and west coast (Theron et al., 2014), but it still may effect
WLs inside the estuary (Lyddon et al., 2018). Testing the effect of waves and surge on the model performance, however, would
require observed wave time series and nearshore WL data which were not available for this study.

Storm surge has been considered in most regional or local flood assessments, specifically in those dealing with compound
flooding (Eilander et al., 2020; Olbert et al., 2017; Shen et al., 2019). Despite its low contribution at the location of Breede
Estuary (Appendix C), storm surge may still contribute to compounding drivers to become an extreme event, even when neither

of the drivers is extreme (Leonard et al., 2014). To estimate its contribution, storm surge should be considered in further
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simulations. Our analysis presents driver interactions during extreme (100-year) conditions, without showing joint probabilities
of waves and Q. This information becomes relevant when assessing risk from compound flooding, which is beyond the scope
of this study and should be considered in future work. For such a risk assessment, a wider range of return periods should be

explored.

6. Conclusions

We assessed compound flooding from tides, Q, and waves at the permanently open Breede Estuary (South Africa) using a
hydrodynamic model. For the assessment, we simulated scenarios accounting for the three flood drivers (i.e., tides, Q and
waves) and scenarios omitting either waves or Q in order to analyse their contribution. We found that flood characteristics
such as extent, water depth and timing are affected by the interaction between the drivers. As anticipated, the omission of
waves caused major inundations to occur in the upper domain area, whereas the omission of Q produced comparably small
flooding. Thus, we have shown that when considered separately, the contribution of waves to flooding was small. When waves
were combined with spring tides and Q however, they had a substantial effect on the spatial distribution and magnitude of the
floods by impeding river flow to the sea. A notable impact of waves during compound flooding was their effect on the flood
timing. Through backwater effects, waves induced the flood to occur earlier. This was further emphasised when increasing the
wave intensity in the compound flood scenario. We therefore suggest that compound flooding induced by high Q, tides, and
waves should not only be considered in risk assessment studies in terms of magnitude, but also in terms of timing. The earlier
onset of intense flooding needs to be accounted for when forecasting, planning, and managing flood hazards.

As we have shown in this study for Breede Estuary, compound flooding can exacerbate flooding and waves make a substantial
contribution to flooding, when coinciding with extreme Q. Extreme waves co-occurring with spring tides and high precipitation
have been documented by Guastella and Rossouw (2012), who additionally predicted a change in wave climate for the South
African south-west coast towards more frequent extreme wave conditions. Our results in combination with a changing wave
climate further confirm the necessity of accounting for compound flooding and specifically waves in future local flood impact
assessments in South Africa, particularly for other South African estuaries, which are highly populated, as Mngeni Estuary
(Durban), Swartkops Estuary (Port Elizabeth), Nahoon Estuary (East London), Diep/Rietvlei (Cape Town) where it can lead
to substantial infrastructure damage.

The achievement of data for complex modelling studies, as well as validating model results, in South Africa remains a major
challenge, however.

Appendix A: Data pre-processing

For the hydrodynamic model we used the 5 m SUDEM elevation dataset (van Niekerk, 2016) merged with bathymetric data,
which we manually digitised, based on a bathymetry of a study report on flood lines at the Breede Estuary (Basson et al.,
2017). As model friction parameters, we specified spatially varying manning values from land cover raster data, provided by
the Department of Environmental Affairs (DEA, 2014), originally coming in a 30 m horizontal resolution. Manning roughness
values for the different land cover classes were derived from a literature review, following Kaiser et al. (2011), Jung et al.
(2011), Wamsley et al. (2009), Mourato et al. (2017) and Chow (1959).

As model boundary conditions we used historical tidal input data, which we obtained from the global tidal FES2014 model
(AVISO, n.d; Carrere et al., 2015). We extracted the data at a point closest to, but still located 24 km offshore from the open
boundary. The time series covers a period of 34 years, from 1980-2014. We obtained hourly measured river discharge from
the station H7HO006 in Swellendam, which was the closest to the upstream boundary (54 km). The data were provided by the
Department for Water and Sanitation of South Africa (DWS, n.d.b) and cover a period of 53 years, from 1966 until 2019.

Hourly water level observations serving for the model calibration and validation were provided by the DWS from the tide
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gauge station H14T007 (DWS, n.d.a), located in a small harbour of the town Witsand, inside the estuary mouth. The
measurements cover 17 years (2002-2019). We derived wave data, significant wave height (Hs) and peak period (Tp) from two
extreme value analysis (EVA) performed by Basson et al. (2017). They extracted from the ECMWF model simulated offshore
wave data of 37 years (1979-2016), from a point close to the estuary, while still being located 30 km off the coast.

Appendix B: Model setup and model calibration

Grid and topography of the model are based on the Cartesian coordinate system WGS84/UTM zone 34S. The model domain
expands over an area of 19.2 kmz, covering the lower estuary and the area until 1.5 km offshore (Fig. 2). We used a time step
of 1.5 seconds for calibration, validation and scenario runs, as it was suggested by the Courant number. We changed the
reflection parameter o, which determined the permeability of the open boundaries to 1000 for the ocean boundary and to 200
for the upstream boundary, as the model otherwise produced instabilities in preliminary runs (Deltares, 2014a).

Additionally, we considered several physical and numerical parameters for the model setup. These were either kept at the
default value, as suggested by Deltares (2014), or were changed and adjusted during model calibration runs. For the wave
setup we increased the grid cell size to 10 m for computational reasons. We used a JONSWAP (Joint North Sea Wave Project)

spectrum with a peak enhancement factor of 1.75 and a wave direction spreading of 30° according to Basson et al. (2017).

For the model calibration we selected an event occurring from the 26 June until the 3 July 2003 due to the low and constant
river discharge before, during and after the calibration event (max 3 m3s?). This is important, because the time lag of the river
discharge between the measuring station in Swellendam and the upstream open boundary of the model domain is not
considered. Waves were excluded during model calibration and validation.

For the model calibration we changed the physical parameters bottom roughness and horizontal eddy viscosity, as these can
affect the tidal amplitude and the speed of the tidal wave propagation into the estuary (Skinner et al., 2015; Garzon and Ferreira,
2016). Table B1 shows changed physical parameters and goodness of fit estimates, resulting from compared modelled and
observed time series. The best fitting physical parameters resulting from the calibration were used to setup the model for the

validation and scenario runs, even though the improvements were small (see Table B1).

Table B1. Parameter changes during model calibration and final model setup

Model calibration

Goodness of fit Default n =0.035 n = Land cover Visc* = 4 m?/s
RMSE 0.22m 0.21m 0.21m 0.21m
R2 0.76 0.77 0.77 0.77
r 0.96 0.95 0.96 0.96

Final model setup
Simulation Resolution n Visc (m#s) Time step (s) Alpha
Calibration & 5m Land cover 4 15 1000
Validation
Delft3D module Resolution n Visc (m?/s) Time step (s) Alpha
FLOW 5m Land cover 4 15 1000/200
WAVE 10m Land cover 4 15 1000

Appendix C: Model validation
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Table C1. Goodness-of-fit estimates of model validation runs compared to observations. Columns 2-4 show goodness-of-fit estimates for
each tidal event of flood peaks only. Column 5 shows the goodness-of-fit for tide-only conditions (entire time series) and column 6 for tides
including high river discharge (entire time series).

Goodness-of-fit Average Neap Spring  Spring + high  Spring-, neap-,  Spring-, neap-, average &
Q

average tide Spring + high Q
RMSE 0.25 0.07 0.14 0.11 0.21m 0.23m
R2 0.52 0.79 0.78 0.69 0.8 0.94
r 0.96 0.91 0.85 0.81 0.9 0.91

Appendix D: Surge contribution

To estimate storm surge height at Breede Estuary, we extracted the non-tidal residual (NTR) of the Witsand tide gauge time
series. Then we performed a harmonic analysis on the water levels, using the Utide package of Codiga (2011) and subtracted
the resulting tidal signal from the tide gauge data. The tidal signal plotted against the NTR is shown in Fig. D1. We calculated
the mean amplitude of the entire NTR time series (0.1 m) and the mean peak height of all NTR peaks, including outliers, being
0.54 m. Only several outliers exceed the average peak height of the NTR, reaching up to 1.7 m (Fig. D1). As the NTR still
contains the signal of river discharge from Breede River, we tested if peaks can be related to river discharge. Thus, we tested,
if NTR peaks occurred within 3 days after peaks of in Swellendam measured river discharge time series. In total 9 NTR peaks
were considered as being caused by high river discharge, of which 5 are highlighted in Fig. D2, for the period 2007 - 2010.

Additional to river discharge and non-linear interactions, the NTR at Witsand includes wave setup. The contribution of wave
setup to coastal water levels has already been shown by Dodet et al. (2019). As for our local study no measured nearshore
wave time series could be obtained neither for the study area, nor for close by locations, it is difficult to estimate the
contribution of wave setup. In a widely applied formula wave setup has been estimated to be 0.2x Hs (e.g., Vousdoukas et al.,
2016). As according to Basson et al. (2017) and Guastella and Rossouw (2012) Hs can exceed 10 m (100-yr return period) at
the area, Breede Estuary is located at, we can according to named wave setup estimations assume that the component

contributes a substantial proportion to the NTR, underlining the assumption of a comparably small surge contribution.

_1.5 1 L 1 1 L
2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

Time

Figure D1. NTR (green) plotted against tidal signal (blue) at Witsand
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Figure D2. River discharge for the period 2007 - 2010 with peaks (red markers) occurring within 3 days before peaks of NTR (upper
panel). NTR at Witsand with peaks (red markers) occurring within 3 days after peaks of river discharge (lower panel). The period 2007 -
2010 was chosen for representative reasons, as this was the period containing most peaks.
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Figure D3. Validation event (22 - 25 November 2007) of river discharge at the flow gauge Swellendam (upper panel) and of the NTR
at the tide gauge in Witsand (lower panel), between both peaks we estimated a time lag of 8 hours.

Appendix E: Results

Table E1. Flood extents and maximum and mean flood depths of all scenarios

Scenario Flood extent (km?) Mean. flood depth (m) Max flood depth (m)
Stq 0.66 1.06 3.61
595 Stw 0.46 0.71 3.52
Stwo 0.73 1.28 4.08
StQwextr 0.82 142 4.45
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Data availability. All data used in this paper are properly cited and referred to in the reference list. The local tide gauge and
flow gauge data can be obtained under request from the DWS, or can be downloaded from this webpage:
https://www.dws.gov.za/Hydrology/Verified/hymain.aspx. FES2014 global tide model data are publicly available at
https://www.aviso.altimetry.fr/es/data/products/auxiliary-products/global-tide-fes.html. The SUDEM can be purchased from
Stellenbosh University for research purposes at https://geosmart.space/products/sudem.html. Bathymetric data and model
output can be provided from the first author on request.
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