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Abstract. Knowing the source and runout of debris-flows can help in planning strategies aimed at mitigating these hazards. 10 

Our research in this paper focuses on developing a novel approach for optimizing runout models for regional susceptibility 

modelling, with a case study in the upper Maipo river basin in the Andes of Santiago, Chile. We propose a two-stage 

optimization approach for automatically selecting parameters for estimating runout path and distance. This approach optimizes 

the random walk and Perla’s two-parameter modelling components of the open-source Gravitational Process Path (GPP) 

modelling framework. To validate model performance, we assess the spatial transferability of the optimized runout model 15 

using spatial cross-validation, including exploring the model’s sensitivity to sample size. We also present diagnostic tools for 

visualizing uncertainties in parameter selection and model performance. Although there was considerable variation in optimal 

parameters for individual events, we found our runout modelling approach performed well at regional prediction of potential 

runout areas. We also found that although a relatively small sample size was sufficient to achieve generally good runout 

modelling performance; larger samples sizes (i.e. ≥80) had higher model performances and lower uncertainties for estimating 20 

runout distances at unknown locations. We anticipate that this automated approach using open-source software R and SAGA-

GIS will make process-based debris-flow models more readily accessible and thus enable researchers and spatial planners to 

improve regional-scale hazard assessments. 

1 Introduction 

Knowledge of where debris flows are initiated and how far they travel is crucial for assessing their impact over large regions 25 

(Aleotti and Chowdhury 1999; van Westen et al. 2006). Commonly, debris-flow runout modelling for large areas is performed 

by first delineating source areas and then applying empirical-statistical or process-based numerical methods for simulating the 

runout characteristics (Blahut et al. 2010a; Horton et al. 2013; Mergili et al. 2019). There is a wide selection of heuristic, 

statistical and machine learning  methods suitable for predicting sources areas in large regions (Chung and Fabbri 1999; Carrara 
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et al. 1999; Brenning 2005; Goetz et al. 2015a; Lombardo et al. 2018). There are also many empirical-statistical and  numerical 30 

methods available to model runout patterns – see McDougall (2017) for an overview.  

Not all runout methods are suitable for application to large areas. Many of the physically based methods require event-specific 

geotechnical and rheological parameters, such as material composition (e.g. bulk density and source depths) and flow 

characteristics (e.g., flow discharge rates). These parameters, such as debris-flow volume, can be extremely difficult to obtain 

for large areas, let alone single unobserved events (Marchi and D'Agostino 2004; Dong et al. 2009). Consequently, runout 35 

modelling at larger scales has been progressing towards applying simplified conceptual models to simulate debris-flow patterns 

across different environmental conditions. These models combine spreading algorithms to control runout path with empirical-

statistical or numerical friction models to simulate likely runout paths and distances (Guthrie et al. 2008; Horton et al. 2013; 

Wichmann 2017; Mergili et al. 2019). Many of the spreading algorithms, including multiple flow direction models (Holmgren 

1994), cellular automata (Guthrie et al. 2008) and random walk  (Gamma 2000; Mergili et al. 2015), simulate runout paths 40 

using only topographic data. 

Calibration of model parameters continues to be one of the main challenges in runout modelling for single-events and over 

large areas  (Hungr 1995; van Westen et al. 2006; Schraml et al. 2015; McDougall 2017; Mergili et al. 2019). The objective 

of model calibration is to determine parameter values that best capture main debris-flow characteristics such as runout distance, 

velocity, and distribution of deposits (Hungr 1995; McDougall 2017). Approaches for model calibration include adjusting 45 

parameters based on visual inspection (i.e. trial and error; Hungr 1995; Mergili et al. 2012); expert knowledge (Horton et al 

2013); posterior analysis (Mergili et al. 2019; Aaron et al. 2019); and optimization algorithms that aim to minimize a cost 

function, i.e. a quantitative measure of runout model performance. Some measures of performance include estimates of the 

intersection-over-union (Galas et al. 2007), area under the receiver operating characteristic curve (AUROC; Cepeda et al. 

2010; Mergili et al. 2015) and depth error (Aaron et al. 2019) of simulated and observed debris flows. Since most of these 50 

calibration approaches are for single observed events, they rarely consider how transferable tuned parameter sets are from local 

to regional applications. 

Assessing spatial transferability is essential for testing the assumption a trained model based on a sample of events captures 

the generic debris-flow characteristics across a region (Fabbri et al. 2003). The distribution of training data and the sample size 

can have a strong influence on the model calibration and performance of regional models (Heckmann et al 2014; Petschko et 55 

al 2014; Rudy et al 2016). For spatially distributed models, spatial transferability can be  assessed by exploring model 

parameter selection and performance under different spatial partitioning scenarios of training and test data (Wenger and Olden 

2012; Brenning 2012; Schratz et al. 2019; Mergili et al. 2019). Although spatial transferability has been well explored for 

regional landslide susceptibility models (Brenning 2005; Lombardo et al. 2014; Petschko et al. 2014; Goetz et al. 2015a; Cama 

et al. 2017; Knevels et al. 2020), such analysis is not common for regional runout modelling. 60 
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In this study, we developed an optimization procedure for process-based models applied for regional simulation of debris-flow 

runout patterns. The performance evaluation focuses on the spatial transferability and sensitivity to sample size of an optimized 

regional debris-flow runout model. We achieve this by utilizing the open-source statistical software R to add optimization and 

evaluation functionality to the open-source Gravitational Process Path (GPP) modelling framework (Wichmann 2017). 

Additionally, this study demonstrates the use of spatial cross-validation and visualization techniques to diagnose uncertainties 65 

in the prediction of source areas, runout paths and runout distances, including the sensitivity of optimized parameter selection. 

The aim of this research is to contribute to improving the development of quantitative techniques for runout model calibration 

and uncertainty estimation (McDougall 2017). This is especially important in large and inaccessible mountainous areas where 

various types of mass movements pose unique challenges to the safety of the local population, the integrity of transportation 

infrastructure, and the reliability of drinking water supplies. 70 

2 Materials and Methods 

2.1.1 Study area 

Out study area is the upper Maipo river basin (3303 to 3418 S, 800 m to 6108 m a.s.l.), located in the semi-arid Andes of 

central Chile. Debris-flow activity in remote and populated areas of the Maipo river basin have caused many deaths and severe 

disruptions to critical transportation and water supply infrastructure supporting Chile’s capital city Santiago  (Hauser 2002; 75 

Sepúlveda et al. 2015; Moreiras and Sepúlveda 2015). 

High-intensity rainfall (Sepúlveda et al 2015), rapid snowmelt (Moreiras et al 2012) and seismic activity (Serey et al 2019) are 

the main triggers of debris flows in this region. They occur in steep gullies and talus slopes consisting of gravel, small boulders 

and a fine sandy-silty matrix. Much of this material is from weathered volcanic and sedimentary rocks of the Abanico and 

Farellones formations in the western Main Cordillera (Sepúlveda et al 2006). A typical runout track will cut through previously 80 

formed debris flow channels and alluvial fans, resulting in new erosion and deposition paths (Sepúlveda et al 2015). Rainfall-

triggered runout distances in this area have been observed up to 5.5 km, and the thickness of deposits varies from 1 to 2 m in 

deposition areas (Sepúlveda et al 2015). 

2.1.2 The debris-flow inventory 

Debris flow polygons and source points were mapped based on photointerpretation of high-spatial resolution (0.50 m) satellite 85 

imagery (2000 to 2019) from CNES/Airbus and Maxar Technologies available through Google Earth Pro software, field 

observations, reviewing news articles and the compilation of data collected by public authorities. Each mapped polygon 

represents a debris-flow track that includes source, runout and deposition area. In total, 541 source points and 521 debris flow 

polygons were mapped (Table 1). Manually mapping all debris flows across the upper Maipo basin is a challenging task due 
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to its large geographical extent and its high abundance of mass movements. Therefore, a mapping strategy was employed that 90 

divided the basin into 58 sub-drainage basins (5,439 km2), 45 (3,936 km2) of which were selected for mapping (Figure 1). 

 

Figure 1: Map providing an overview of the debris flow polygons and source points mapped in the upper Maipo river basin.  

 

Table 1: Runout characteristics of the debris flow inventory 95 

 Median IQR Minimum Maximum 

Runout surface area (ha) 3.7 7.5 0.1 358.1 

Runout distance (m) 729 823 54 5668 

Max. elevation (m.a.s.l.) 2695 714 1256 4768 

Note. IQR = interquartile range 
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2.1.3 Modelling debris-flow source areas 

Potential debris-flow source areas were spatially predicted using a generalized additive model (GAM). In general, GAMs 

demonstrate good performance for susceptibility modeling compared to other commonly used physically-based and machine-

learning techniques (Goetz et al. 2011; Goetz et al. 2015a). To improve model generality and avoid overfitting, the GAM 100 

smoothing spline parameters were allowed a maximum 5 effective degrees of freedom (Wenger and Olden 2012; Goetz et al. 

2015b). The training and test data were based on the common 1:1 sampling strategy (Heckmann et al. 2014) of presence to 

absence of source points. 

The predictor variables of source areas included hillslope angle, elevation, catchment area, plan curvature and distance to 

faults. These predictor variables generally have a high importance for modeling debris-flow initiation susceptibility as observed 105 

in previous works (Blahut et al. 2010b; Goetz et al. 2015a; Angillieri 2020). The publicly available ALOS PALSAR 

Radiometrically Terrain Corrected (RTC) high-resolution (12.5 m) digital elevation model (DEM; ASF DAAC) was used to 

derive terrain attributes. Before deriving the terrain attributes, mesh denoising was applied to the DEM to mitigate the 

propagation of artifacts such as high-frequency noise (Brock et al. 2020) in the prediction of source areas (Sun et al. 2007; 

Stevenson et al. 2010). We used the implementation of this algorithm in SAGA-GIS. After denoising, an algorithm to fill sinks 110 

was applied to the DEM, and the terrain attributes were processed. Distance to faults was calculated as the Euclidean distance 

from the fault lines (Servicio Nacional de Geología y Minería de Chile 2003; scale 1:1,000,000). 

The performance of the source area prediction model was assessed using repeated k-fold spatial cross-validation (Brenning 

2012). Like cross-validation, spatial cross-validation randomly splits the data (e.g., source points and non-source points) into 

k disjoint subsets, where the model is trained using k-1 sets and tested with remaining set during each cross-validation iteration. 115 

For spatial cross-validation, the data is divided into spatially disjoint sub-areas, in our case using the k-means clustering 

algorithm (Ruß and Brenning 2010). This approach should provide a rigorous estimate of the spatial transferability of a model 

by attempting to reduce spatial autocorrelation between test and training data (Brenning 2005; Wenger and Olden 2012; Schratz 

et al. 2019). We estimated model performance by repeating 5-fold spatial cross-validation 1,000 times. Model performance 

was measured using the AUROC, which is an overall measure of goodness-of-fit that is independent of any particular decision 120 

threshold.  

2.2 Modelling debris flow runout 

The Gravitational Process Path (GPP; Wichmann 2017) model was used to regionally model runout. The GPP model is an 

open-source framework in the SAGA-GIS software that provides users with various model components to simulate runout 

path, distance, velocity and deposition of material of mass movements (e.g. snow avalanches, rock falls, and debris flows). 125 

Due to the extent and remoteness of the study area, we focus on modelling the likely spatial patterns of runout. That is, we are 

not modelling flow velocity and depth.    

https://doi.org/10.5194/nhess-2021-22
Preprint. Discussion started: 3 February 2021
c© Author(s) 2021. CC BY 4.0 License.



6 

 

Runout path was modelled using the random walk process path component of the GPP model  (Gamma 2000). It is a common 

approach for debris-flow runout path modelling at medium scales (Mergili et al. 2012; Heckmann and Schwanghart 2013; 

Mergili et al. 2015). Random walk models the potential path of runout by iteratively simulating (via Monte Carlo simulation) 130 

the downslope movement path of debris flows originating in an individual source-area grid cell. This simulation results in a 

grid with runout frequencies that indicate how many times a grid cell has been traversed. There are three parameters that need 

to be calibrated to obtain a desired runout path: (1) a slope threshold (°) defining where divergent flow is allowed; (2) the 

exponent of divergence that controls the amount of divergence, or lateral spreading; and (3) a persistence factor that controls 

the direction of movement (Wichmann 2017). 135 

Runout distance was constrained using Perla’s two-parameter friction model (PCM; Perla et al. 1980) component of the GPP 

model. The PCM model, which is also a component of the Flow-R model (Horton et al. 2013), has also been used for modelling 

debris-flow behaviour at medium scales (Mergili et al. 2012; Heckmann and Schwanghart 2013; Mergili et al. 2015). It is a 

centre-of-mass model where motion is controlled by (1) the sliding friction coefficient and (2) the mass-to-drag ratio. The 

sliding friction coefficient controls the velocity of movement and the mass-to-drag ratio (m) controls velocity movement over 140 

steep terrain (Wichmann 2017).  

2.2.1 Optimizing model parameters  

For regionally applying the runout model we needed to determine the combination of model parameters that result in the best 

match to our debris-flow inventory. Determining optimal parameters was based on two criteria: (1) the ability of the model to 

capture our observed runout paths, and (2) its ability to match the observed runout distances. Therefore, we performed this 145 

optimization task using a two-stage approach that first optimizes the random walk model and then the PCM model parameters. 

A random sample of 100 debris-flow tracks and corresponding source points was used for optimizing the runout models. This 

sample of the inventory was chosen to facilitate quality control and reduce the computational complexity of the optimization. 

Source areas were determined by buffering each source point by 50 m and masking away the buffered area that exceeds the 

runout trimline; this ensures the source area is contained within a mapped debris flow polygon. A sink-filled version of the 150 

original DEM was used for the runout modelling.  

For each model component, a grid search in parameter space was used to find parameter sets that achieve optimal model 

performance across all sampled debris flows. The search ranges were similar to Wichmann’s (2017) suggested parameter limits 

for debris flows (see Table 2 for value ranges). We additionally tested the use of a spatially varying sliding friction coefficient. 

The value for this spatially varying sliding friction coefficient  was calculated as a function of catchment area a (km2) for 155 

maximum runout (Gamma 2000; Wichmann and Becht 2006; Mergili et al. 2012; Wichmann 2017): 

𝜇 = 0.13𝑎−0.25. (1) 
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Similar to Mergili et al. (2012) and suggested by Wichmann (2017), the spatially varying sliding friction coefficient was set 

to a maximum of 0.3 and minimum of 0.045. Runout was computed using 1,000 model iterations. 

The AUROC was used as a performance measure for the random walk model. Model performance was rated higher if the 

random walk model contained observed debris-flow tracks within its simulated paths. After optimizing the random walk model, 160 

we fixed these parameters for the PCM model, and optimized the sliding friction coefficient and mass-to-drag ratio parameters 

for determining runout distance. The performance of the PCM model was measured using the relative error of runout distance. 

Relative error was used so that each debris flow was weighted equally regardless of its magnitude.  

Runout distance was measured in terms of horizontal length of the debris-flow track. This distance was measured as the length 

of a bounding box containing the observed debris-flow track (Figure 2; Niculiţǎ 2016; Taylor et al. 2018). Estimated debris-165 

flow tracks were defined as grid cells with values greater than a median runout frequency (Figure 2). In this case, the median 

value represents the most typical simulated debris-flow track. It also provides a conservative estimate of runout distance, which 

helps mitigate the chance that the optimized model regionally underestimates runout distances. 

 

Figure 2: Illustration of runout distance optimization of the sliding friction coefficient using a minimum-area bounding box as a 170 
measure of travel distance – mass-drag-ratio fixed at 40 m. 

In addition to determining a global optimal parameter set, the best-performing parameters for individual debris-flow events 

were also explored. We similarly applied a grid search to each event and determined optimal parameter sets based on 

performances (AUROC and relative error) of each runout model component. 

2.2.2 Assessing spatial transferability 175 

We assessed the transferability of optimized runout model (random walk and PCM) parameters by performing 5-fold spatial 

cross-validation with 1,000 repetitions (Figure 3). This approach allows us to explore the sensitivity of grid-search optimized 

parameter combinations to spatial variation in training and test data. To do this, we observed the frequency of variations in 

https://doi.org/10.5194/nhess-2021-22
Preprint. Discussion started: 3 February 2021
c© Author(s) 2021. CC BY 4.0 License.



8 

 

optimized parameter combinations within all cross-validated iterations. Optimal parameter combinations that occurred more 

frequently were considered to have a higher degree of transferability; thus, being considered more reliable for application to 180 

the entire study area. 

 

Figure 3: An example realization of random partitions based on k-means clustering of debris-flow polygons for a single repetition 

of 5-fold spatial cross-validation.  

We also assessed if there were any spatial patterns in the optimized performance for each model component. That is, were 185 

there any spatial trends in model performance that may indicate our model is locally overfitting? We explored for such spatial 

trends by mapping the distribution of individual debris-flow runout model performances based on the optimized parameters. 

Additionally, we were concerned if the optimized parameters had a stronger fit to debris flows of a certain magnitude or 

initiating conditions. Therefore, the potential to overfit to certain debris flow characteristics was assessed by determining 

Spearman’s rank correlation of individual debris-flow performance (for each model component) with observed runout distance 190 

and the elevation, catchment area and hillslope angle of the corresponding source points. 

2.2.3 Testing sample-size dependence of performance 

We explored how runout model parameter selection, performance and robustness were affected by the number of debris flows 

used for optimization. This analysis was done by applying repeated spatial cross-validation to data sets of varying training 

sample sizes. To ensure a fair comparison, the size of the test data for each cross-validation iteration was set to 20 debris flows, 195 

which is the maximum test sample size when performing 5-fold cross-validation with a sample of 100 debris flows. We tested 

training samples sizes from 10 to 80. Model performance for each runout modelling components was summarized using the 

median and IQR (AUROC and relative error). The optimal parameter set for a given sample size were determined as the 

parameter combinations that were most frequent.   

2.2.4 Finding a suitable source area prediction threshold 200 

For regionally applying the runout model for susceptibility mapping or exposure analysis, a dichotomous classification of the 

predicted source areas is required to define the grid cells where simulated debris flows initiate. In the case of basing the source 
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areas on a susceptibility model, a suitable threshold of the prediction values needs to be selected. In this study, we determine 

a suitable prediction threshold to classify source areas by searching for the threshold that results in the best-performing runout 

model for the entire area. Using the optimized model parameters, we tested runout models based on source areas that were 205 

delineated using prediction thresholds from 0.5 to 0.95 with a step of 0.05. The performance of each these models was 

measured using the AUROC. The AUROC was calculated using a sample of 1,000 debris-flow runout locations and 1,000 

non-debris flow locations. The source-area prediction threshold resulting in the highest AUROC values was selected for 

regionally computing a debris-flow runout map for our study area. 

2.3 Geocomputing and visualization software 210 

The methods for runout modelling optimization, validation and visualization of the source area prediction and runout modelling 

were implemented using the open-source statistical software R (ver. 3.6.2; R Core Team 2019) and SAGA GIS (version 6.1; 

(Conrad et al. 2015) with its Gravitational Process Path model tool (Wichmann 2017). Coupling SAGA GIS with R was done 

using a combination of the ‘RSAGA’ (Brenning et al. 2018) and ‘Rsagcmd’ (Pawley 2019) packages. The GAM was 

implemented using the ‘mgcv’ package (Wood 2011). General handling of spatial data in R used the ‘sf’ (Pebesma 2018), ‘sp’ 215 

(Pebesma and Bivand 2005),‘rgeos’ (Bivand and Rundel 2019), ‘rgdal’ (Bivand et al. 2019) and ‘raster’ (Hijmans 2020) 

packages; spatial cross-validation was applied using the ‘sperrorest’ (Brenning 2012) and ‘ROCR’ (Sing et al. 2005) packages. 

Parallelization of the optimization and validation procedure used ‘foreach’ (Microsoft and Weston 2020). Visualization was 

done using R’s ‘ggplot2’ (Wickham 2009) and ‘metR’ (Campitelli 2020) packages and ESRI’s ArcMap (ver. 10.5). 

3 Results 220 

3.1 Source area model performance 

The overall performance of the source area prediction based on the GAM was good with a spatially cross-validated median 

AUROC of 0.80 and an interquartile range (IQR) of 0.001. We found the source-area prediction map was also 

geomorphologically plausible. Locations most likely to be source areas were within steep terrain associated with channels, 

gullies and scree slopes. Shallow-flat terrain and areas along ridgelines were modelled as least likely to be source areas (Figure 225 

4). This geomorphological knowledge was also expressed in the plots of the GAM spline transformations (Figure 5). 

Relatively steep terrain, slightly concave profile curvature, and areas near faults were modelled as more likely being source 

areas. 
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Figure 4: Map of the debris-flow source area prediction. 230 
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Figure 5: Transformation of predictor variables in the generalized additive model, where the y-axis can be interpreted as the 

associated likelihood (log-odds) of being a source area. Terms of the form s(predictor) indicate a nonlinear smoothing spline 

transformation. The effective degrees of freedom (EDF) refer to the flexibility of the smoothers. The dashed lines represent 

confidence bands at a 95 % level.  235 

3.2 Runout model parameter optimization 

The parameter optimization produced runout models with a good spatially cross-validated performance. The optimal 

parameters for the runout-path model were a slope threshold of 40, an exponent of divergence of 3.0, and a persistence factor 

of 1.9 with a median AUROC of 0.94 (IQR = 0.02; Table 2). Using these values as plug-in estimates for the PCM runout-

distance model component, the optimal sliding friction coefficient and mass-to-drag ratio were 0.11 and 40 m, respectively. 240 

The median spatially cross-validated relative length error of the runout-distance model was 0.11, or 11% (IQR = 0.09). We 

also found that the model based on a global sliding friction parameter estimate performed better than the runout-distance model 

using a spatially varying sliding friction coefficient (optimal mass-to-drag-ratio = 95 m; Table 2), which had a median relative 

error of 0.19 (IQR 0.09).  

 245 
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Table 2: Runout model grid-search optimization setup and results. Optimization performance was assessed using spatial cross-

validation (CV). 

Model 

component Model Parameter 

Grid search 

value range 

Grid search 

steps 
Optimal value 

Spatial CV 

performance 

Runout path 

(Random walk)  

Slope threshold 20-40 2 40 AUROC 

Median: 0.94 

IQR: 0.02 

Exponent of divergence 1.3-3.0 0.17 3.0 

Persistence factor 1.5-2.0 0.05 1.9 

Runout distance 

(PCM model) 

Sliding friction 

coefficient 
0.04-0.6  0.01 0.11 

Relative error 

Median: 0.11 

IQR: 0.09 Mass-to-drag ratio 20-150 m 5 m 40 m 

Runout distance 

(PCM model) 

Sliding friction 

coefficient 
0.13a-0.25 - - 

Relative error 

Median: 0.19 

IQR: 0.06 Mass-to-drag ratio 20-150 m 5 m 95 m 

Note. IQR = interquartile range; a = catchment area (km2) 250 

By visualizing the runout-distance optimization results across grid search space, we can observe model performance and 

sensitivity to different parameter combinations. In this case, we observed only slight model performance differences for sliding 

friction coefficients just under 0.2 to 0.04 and mass-to-drag ratios from 20 to 150 m (Figure 6a). In general, the values in this 

band across grid search space would result in good performances with median relative errors ≤ 0.15. However, in terms of 

controlling the spread of error (Figure 6b), sliding coefficients from about 0.05 to 0.15 and mass-to-drag ratios from 20 to 95 255 

m had the lowest IQRs (≤ 0.2). This result illustrates a generally low sensitivity in runout distance model for a wide range of 

parameter combinations. 

Exploring the optimal combination of parameter values using spatial cross-validation provides insights into performance 

reliability of the optimized model. Given different spatial combinations of testing and training data, we found that the optimal 

combinations of parameters were associated with high performance values (AUROC = 0.94, relative error = 0.11) and high 260 

relative frequencies (61-69%) of occurring in each cross-validation iteration (Figure 7). Additionally, the spatially cross-

validated optimal parameter sets were generally clustered in grid search space, showing there was little variation in optimized 

parameters depending on the spatial partitions (Figure 7).  
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 265 

Figure 6: Density contour plots of parameter optimization of sliding friction coefficient and mass-to-drag ratio in the PCM model, 

illustrating median relative runout length errors (a) and the associated variations in relative error (b) using the interquartile range 

(IQR). 
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 270 

Figure 7: Model performance and frequency of optimal parameters for the runout path (a; given an optimized slope threshold = 40) 

and runout distance models (b) estimated using 1,000-repeated 5-fold spatial-cross-validation. Relative frequency is the percentage 

of all repeated spatial-cross validation iterations where a given parameter combination was optimal. 

 

3.3 Thresholding source areas for runout analysis 275 

The best threshold for delineating source areas from the GAM prediction for runout modelling was 0.7, which results in runout 

affecting 22% of the study area. This threshold had the peak AUROC value of 0.83. The performance of the runout model 

drastically decreased with thresholds > 0.8 and gradually decreased towards a thresholds of 0.5: lower thresholds spatially 

predicted more runout area (Figure 8). The resulting runout prediction map (Figure 9) appears to be geomorphologically 

plausible. The locations of the runout deposit areas are similar to what we have observed in the satellite imagery. Additionally, 280 

lateral spreading is generally low in narrow gullies and much broader on talus slopes, which is what we would expect for debris 

flows occurring in our study area. 
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Figure 8: Performance of debris flow runout model for different source area thresholds (a) and percentage of study area impacted 

by runout (b). Optimal threshold was a threshold of 0.70 (AUROC = 0.83) with runout affecting 22% of the study area.  285 
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Figure 9: Map of optimized debris-flow runout model based on global parameters and source area threshold of 0.70. 

3.4 Exploring patterns in model performance 

We observed no clear spatial pattern of individual debris-flow performances of the runout model components (Figure 10), 290 

which is evidence that there was no local overfitting to a particular region of the study area. The distribution of individual 

AUROC performances of the runout path model were generally high for most of the region, showing that optimization of the 

path model performs well across the study area. One debris flow was not captured within the runout path model (AUROC < 

0.5; Figure 10; Figure 11). Having a closer look at this occurrence, we found that the modelled runout paths failed to follow 

the flow direction of the observed debris flow and source point.  295 

The runout distance model had generally more spatial heterogeneity in performance (Figure 10), but again no clear spatial 

patterns in the distribution of relative errors were observed. We investigated the debris-flows that did not perform well for 

https://doi.org/10.5194/nhess-2021-22
Preprint. Discussion started: 3 February 2021
c© Author(s) 2021. CC BY 4.0 License.



17 

 

modelling runout distance (relative error > 0.8) by looking at the satellite imagery used for mapping. It was found that these 

cases were related to misclassifying stream erosion in relatively shallow and long-hillslope channels as debris flows.  

 300 

Figure 10: Maps of the performances of the runout path (a) and runout distance models (b) for individual debris-flows based on the 

global optimal parameters. 

Overall, the regionally optimized runout modelled distances fit well with our mapped observations (Figure 11). It tended to 

slightly overestimate debris-flow travel lengths with a median runout distance error of 16.6 m (Figure 11). This error is just 

slightly over a single grid cell size of the DEM. The highest runout distance errors were due to misclassified debris-flows, as 305 

previously mentioned. The optimization of the runout model avoided overfitting to higher or smaller runout distance and 

elevations of source points. That is, we observed no clear relationship between runout model optimization performance to the 

observed runout length and the elevation, catchment area or hillslope angle of the training source points (Figure 11). Spearman 
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correlations of estimated and observed runout distance were -0.36 and -0.17 for runout path (AUROC) and runout distance 

(relative error model) performance, respectively. The runout model error correlations with elevation, catchment area, and 310 

hillslope angle of the source points were -0.21, 0.11 and 0.29 respectively. 

 

 

Figure 11: Histogram of performance of the runout path (a) runout distance models based on relative error (b) and actual runout 

length error (c), and a plot of observed runout lengths versus modelled runout lengths (d). 315 

3.5 Optimization for individual debris-flows 

The optimal parameters for individual debris-flows were also computed for general comparison to the regional model. We 

found that the optimized runout model parameters were highly variable for individual debris flows (Figure 12). The relative 

errors were low (median = 0.002, IQR = 0.007), except for a few debris flows that failed to optimize (Figure 12). There was 

no clear spatial pattern in optimal sliding friction coefficient and mass-to-drag ratio parameter combinations across the study 320 

area, which shows that runout characteristics were quite diverse for individual debris-flows across this large study area (Figure 
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13). We also observed no strong relationships between terrain attributes and optimal parameters. Spearman’s correlations of 

sliding friction coefficient and mass-to-drag ratio with elevation, slope and catchment area were ≤|0.29|. 

 

Figure 12: Performance and frequency of runout path (a, b) and distance (c) optimal parameters determined for individual debris 325 
flows. Relative frequency is the percentage of all repeated spatial-cross validation iterations where a given parameter combination 

was optimal. 

 

Figure 13: Map of runout distance model optimal parameters determined for individual debris flows. 
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 330 

3.6 Runout model robustness to sample size 

Runout model performance and variation tends to improve slightly when using larger sample sizes (Figure 14). Large sample 

sizes also resulted in more consistently selected model parameters across spatial cross-validation iterations (Figure 15). The 

larger spread across grid search space of the relative frequency of optimal parameter combinations for smaller sample sizes 

illustrates that we may be less likely to find the best model parameters that generalize well for a large region (Figure 15). In 335 

general, as we increased sample size, we reduced sampling variability and narrowed the number of optimal combinations of 

parameters in grid search space, meaning we became more confident that the selected parameters would transfer better to 

estimate runout distance in adjacent areas.  

 

Figure 14: Comparison of runout path (a) and distance (b) performances for different model training samples sizes. The error bars 340 
indicate the standard deviation in performances. 
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Figure 15: Relative frequencies of optimal parameter combinations for different training sample sizes computed using spatial cross-

validation.  

4 Discussion 345 

4.1 Model performance and transferability 

Assessing the spatial transferability of runout models is essential when extending their use from single or local events to 

regionally modelling runout across unknown space. Overall, this study demonstrates that our novel optimization approach 

performed well at regionally modelling the spatial distribution of runout path and distances across the upper Maipo river valley 

basin. A key component of the success of our modelling approach was its ability to generalize. The transferability of a regional 350 

runout model can be affected by the generalization ability of both the source area prediction and the optimized process-based 

runout model. 

4.1.1 Source area modelling 

In the development of our source area prediction model, we aimed to produce a simplified empirical model that would result 

in good performance and transferability. Wenger and Olden (2012) recommended to control the flexibility of the GAM 355 

smoothing parameters to avoid overfitting that would lead to poorer model transferability. Therefore, similarly to previous 

landslide susceptibility studies using the GAM (Goetz et al. 2011; Goetz et al. 2015b; Bordoni et al. 2020) we limited the 

degrees of freedom for smoothing-spline fitting. 

A detailed model based on a large set of predictors can impede its ability to transfer to other locations (Tuanmu et al. 2011). 

As we and others have demonstrated, good predictive performance of susceptibility models of debris flows can be achieved 360 
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with a relatively small set of predictors, which are primarily DEM-derived terrain attributes (Blahut et al. 2010b; Heckmann 

et al. 2014; Goetz et al. 2015a). Additionally, by fitting our models with multi-temporal data, we may be more likely to achieve 

better transferability in time (Tuanmu et al. 2011; Knevels et al. 2020). Event-specific inventories may not be large enough for 

regional optimization and risk the potential of overfitting source conditions spatially varying conditions of that event (e.g., 

precipitation and snowmelt patterns). A smaller sample may also lead to not capturing the range of terrain conditions across 365 

the study area required for robust empirical modelling of source area locations (Petschko et al. 2014; Rudy et al. 2016). 

4.1.2 Runout analysis 

By optimizing the runout distance model using the median relative error as a metric, we managed to reduce the impact of 

possible outliers in our training and test data. We additionally reduced our chances of overfitting the regional model to larger 

debris flow events, which was crucial for a model to maintain a generalization that makes it transferable across large areas.  370 

Plotting the individual optimized models and exploring correlations between terrain attributes and optimal parameters allowed 

us to see if there were any broad trends in the parameter selection. In our study, we observed high variability in optimal 

parameters the PCM model. While applying a trial and error approach, Mergili et al. (2012) also observed different optimal 

parameter combinations when modelling runout for a couple of debris flows just north of our study area. It seems apparent 

that determining runout parameter values for regional modelling without an optimization procedure would be difficult. It is 375 

also no surprise that the errors of the individually optimized debris-flows were low (Figure 12). Whether meaningful or not, 

the optimization approach should be able to match the runout distance with very low error. Poor individually optimized events 

could be attributed to locally poor DEM quality and/or complex or ambiguous events. It was interesting that despite the variety 

in optimal parameters, we were still able to produce a good spatially distributed model of runout patterns using a global set of 

parameters. This may indicate that the combination of random walk and the process based PCM model dictates a general 380 

runout pattern that is insensitive to values within a broad and nearly optimal range of physically reasonable parameters. For 

regional applications, such models that are already well adapted to generalize runout patterns are likely to transfer well to 

unknown locations, as we observed in this study by assessing runout model transferability.  

4.2 Regionally optimizing runout models 

As with any optimization problem, using a suitable cost function is critical to ensure the model parameters are optimized to 385 

solve a very a specific problem. It can be difficult to define a single metric that simultaneously measures both performance of 

path and distance simulations. As shown in this study, it may also not be necessary. By using the two-stage approach to 

optimization, where we first optimize the runout path model and then plugin those values to optimize the runout-distance 

model component, we can considerably reduce computational complexity, while ensuring that our final model result explicitly 

optimizes for runout distance – a key characteristic for spatially predicting areas potentially impacted by debris flow runout.  390 

In our case, we only needed to solve two separate problems with 3 (random walk) and 2 (PCM) unknown parameters, as 

opposed to solving simultaneously for 5 unknowns. We used an exhaustive grid search to optimize the runout model 
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components because it allowed us to visualize and assess model performance across parameter space. However, a drawback 

of this optimization method is that it can be computationally slow to explore all candidate parameter combinations. If speed is 

a requirement for regional runout analysis, then a faster method like random search (Bergstra and Bengio 2012) may be 395 

preferred (Schratz et al. 2019).  

In terms of model improvement, analysis of the spatial distribution of optimal parameters may lead to better parameter 

optimization based on terrain or geological characteristics. The spatially varying values used in this study were based on 

modelling for alpine regions (Gamma 2000), and do not account for the potential variability in sliding conditions between 

different catchments (Guthrie 2002). This challenge may be overcome by using regional modelling strategies already applied 400 

for landslide initiation susceptibility modelling, where the study area is divided into geologically similar regions, runout model 

optimization is performed for each region and then combined (e.g., Petschko et al. 2014).  

5 Conclusions 

Modelling the spatial pattern of debris flow runout in large, mainly remote areas, with sparse data, requires model calibration 

and validation methods that ensure spatial transferability. In this study, we demonstrated that our integrated two-stage 405 

optimization approach is one such method suitable for regionally simulating debris-flow runout patterns. Through this analysis, 

we observed a general insensitivity in runout distance performance of the PCM model to a range of parameters, which is an 

indication of the model’s inherent capability to characterize general runout behaviour across our study area. Future 

improvements to our approach may include building a model that allows for more spatial variation in optimized parameters, 

especially in regions with better availability of soil physical information. Overall, our open-source modelling approach, which 410 

enhanced the GPP model by adding support for automated model calibration and transferability assessment, provides an 

accessible and extendible modelling framework for such advances in regional runout modelling. 

Code availability 

To go with this paper, we developed the runoptGPP R package for optimizing mass movement runout models using the random 

walk and PCM model components of the GPP tool in SAGA-GIS. It is available for download from the GitHub repository: 415 

https://github.com/jngtz/runoptGPP (DOI: 10.5281/zenodo.4428050). This package contains tutorials on how to apply the 

optimization methods regionally or for single runout events. The GitHub repository also contains the R code used to conduct 

our analysis. 

Data availability 

The data is available for download from Zenodo https://doi.org/10.5281/zenodo.4428080. 420 
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