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Dear Margreth Keiler (Editor),

Thank you for considering our manuscript for publication. We’re excited to present the new
version of our manuscript, which has been improved thanks to highly constructive comments
of the reviewers.

Overall, we addressed Reviewer #1’s main comments by providing more detail in the
methods regarding the use of the AUROC. We also included a much more detailed
description of the runout path and distance model components. Reviewer #2’s main
comments were addressed by adding new insights to the discussion related to our regional
runout-model behaviour and its limitations, which are supported by our results.

Below you will find our point-by-point reply to the reviewers’ comments.

Thank you,

Jason Goetz and co-authors.
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Reviewer #1 Comments

General Comments

Dear Editor, dear Authors,

this a well-written and interesting paper on the automatic calibration and validation of a
framework for regional debris-flow modelling. Besides the modelling of debris-flow initiation
sites with a GAM, the GPP model is used for debris-flow path and runout modelling in the
upper Maipo river basin, Andes of central Chile. The authors develop and present a novel
approach for model optimization and validation, including several aspects like uncertainty in
parameter selection, spatial transferability, and the models's sensitivity to sample size. The
results are well presented and discussed, including very nice and informative figures to
illustrate the findings. Most parts of section 2 (material and methods) are also well written,
but I think this is the section which could be improved most by adding some more detail on
some of the aspects (see specific comments below). Apart from that I think the paper is well
suited for publication in NHESS. It is also really nice to see that the tools developed for this
paper (as well as the data) are also made available to the public.

With best regards.

We thank this reviewer for their highly constructive comments. As shown in our following
response, we will make improvements to the methods section to help clarify our approach on
the use of the AUROC as a metric for runout path modelling, sampling debris-flow and
non-debris-flow source areas, and how the GPP implementation of the random walk model
limits runout distance. Additionally, we believe by addressing their comments on the potential
multiple optimal PCM (runout distance) model solutions, we enhance our discussion and
further demonstrate the suitability of our approach for regional debris flow runout modelling.

Specific Comments

Section 2.1.2

Please use a different color for debris flows and roads in Fig. 1, they are both grey and can't
be distinguished very well.

We have updated the colours in this figure.

Section 2.1.3

Regarding the sampling of presence and absence of source points: how do you exactly
determine the non-source points? Do you somehow guarantee that the samples are not "too
close" to mapped source points? There are much more non-source than source points in
your study area, how does this influence the results? This affects training as well as
validation, please elaborate.

We have rephrased some sentences in this section to help clarify how non-source points
were sampled and how many.
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“The non-source (i.e. absence) points were determined by random sampling locations within
the mapped sub-basins outside of the debris flow polygons. The resulting training and test
data contained 541 source points and 541 non-source points.”

We guaranteed that the samples were not too close to source points by sampling outside of
the mapped polygons. As mentioned in L.102. We used the commonly applied 1:1 sampling
ratio of source and non-source points.

After denoising, you apply a sink filling algorithm to the DEM, which one?

We used the sink filling algorithm from Planchon and Darboux (2001). This citation was
added.

Section 2.2.1

Regarding the rating of the random walk performance (line 160): performance was rated
higher if observed debris-flow tracks were within the modelled paths. Please provide more
details on how this was done exactly, e.g. did you also take the number of cells into
consideration that were outside the mapped track? Otherwise you might get optimized
parameters that overestimate the process area.

We accounted for the cells outside of the mapped track. The ROC curve plots the true
positive rate (TPR) vs the false positive rate (FPR; Zweig and Campbell, 1993). Therefore
the AUROC does consider cells inside and outside of the mapped tracks. We have added a
brief description of the AUROC to the paper to help clarify this, as well as the Zweig and
Campbell 1993 citation.

Regarding the random walk parameter optimization before the runout optimization
(two-stage approach): in order to optimize the random walk parameters, wouldn't you also
require to use some kind of friction model to limit the runout distance? This overlaps with the
previous question, please explain.

The Gamma (2000) random walk model implemented in the GPP model (Wichman, 2017)
does not have controls for runout distance. The flow paths will continue downslope until
neighboring cells have a higher or equal elevation compared to the central cell being
processed. We will add this detail to the paper.

Regarding runout distance optimization: here, you use a minimum area bounding box to
measure length. What impact has the character of the debris flow path on this concept? For
example, take (1) a quite short, more or less straight debris-flow path versus a (2) very long
path, which runs from a hillslope into a channel with a distinct change of direction, let's say
90°? Then you get (1) a bounding box matching the real length quite well and (2) a bounding
box which is almost square, strongly underestimating the runout length.

This is an excellent question. It was also brought up by Reviewer #2.

In theory, it is possible that the runout length of the minimum area bounding box can be
underestimated when a debris flow makes an abrupt 90 degree change in direction. This
may occur for some iterations of decreasing sliding friction coefficient (or increasing
mass-to-drag ratio) past the actual optimal value. However, by visualizing our debris flow
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optimization procedure for different sliding friction coefficients for all training samples, we did
not observe this to be an issue.

Additionally, to mitigate this potential issue in optimal parameter selection, we use the
AUROC to break any ties in performance. Longer runout paths should have a lower AUROC.
We added the following paragraph to the discussion to better explain this issue:

“In theory, it is possible that the minimum area-bounding box could contribute to parameter
insensitivity. Abrupt changes in flow perpendicular to the initial flow direction, such as a flow
meeting a channel, may only slightly increase the length of the bounding box for several
iterations of decreasing μ (or increasing M/D). However, we did not observe this to be an
issue within our training data for our given parameter ranges of μ and M/D.”

Regarding the optimization of the 2 parameters of the PCM model (sliding friction coefficient
"my" and mass-to-drag ratio "M/D"): a general problem with the PCM model calibration is,
that there is some mathematical redundancy between the parameters. I.e., you can achieve
the same runout length with different parameter combinations of my and M/D. How does
your calibration approach handle this? Please add some information on this, because this
may also have some impact on other sections of the paper, e.g. section 3.2 ("low sensitivity
for a large range of parameter combinations"), section 3.5 ("no clear spatial pattern in
optimal my and M/D parameter combinations across the study area"), section 4.1.2 ("we
observed high variability in optimal PCM parameters").

We found that this “uniqueness problem” was not a major issue for regional optimization -
the focus of our study. We were able to obtain a regionally unique PCM model solution.
Additionally, when training and testing on different clusters of sampled debris flows, we
observed only 5% of the repeated spatial cross-validation iterations (n =  5000) had multiple
optimal solutions.

If there were ties in the PCM model, we selected the parameter set that resulted in the
highest AUROC of the runout path performance. For individual events the occurrence rate of
multiple solutions before tie-breaking was much higher (56%). However, after using the
AUROC to break ties, the vast majority of individual events (97%) had a unique solution - we
have added  these results to sections 3.2 and 3.5. For the remaining cases, which still had
ties, we simply selected the first record.

We will add the following to the discussion to better highlight this issue with optimizing the
PCM model.

“The two-parameter PCM model has a uniqueness problem (Perla et al., 1980). Possibly
infinitely many pairs of the sliding friction coefficient and mass-to-drag ratio result in the
same runout distances. When optimizing individual events, we did observe this
phenomenon. The majority of individual events had more than one optimal combination of
parameters. Obtaining a unique solution was not an issue for the regional optimization in our
study for the given grid search space. Likely this is due to having to satisfy the runout
distances for a variety of hillslope conditions and lengths across the study area. The
observed reduced variability in optimal solutions for larger sample sizes (Figure 15) provides
some evidence for this conjecture.”
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Section 2.2.2

You assessed the transferability of optimized model parameters by 5-fold spatial
cross-validation. In section 2.2.1 you state that you are using a random sample of 100
debris-flow tracks for optimization. Is this the sample size you use here too? Or how is this
related?

It is the same sample. We added, “Based on our random sample of 100 debris-flow tracks,
...” to help clarify this.

Section 2.2.4

To calculate the AUROC, you used 1000 samples of both debris-flow and non-debris-flow
locations. How did you sample the non-debris-flow locations? Thematically similar to my
question on the non-source point sampling.

We randomly sampled locations outside of debris flow polygons. We rephrased this to, “The
AUROC was calculated using a sample of 1,000 debris-flow runout locations and 1,000
non-debris-flow locations outside of the debris-flow polygons”.

Section 3.1

You write that areas with slightly concave profile curvature were modelled as more likely
being source areas. So far plan (not profile) curvature was used, and it is also plan curvature
that is shown in Fig. 5.

Thanks, this was a typo. We mean plan curvature.

Section 3.2

I think it would improve the reading of Table 2 if you would name the "third" model
component "Runout distance (spatially varying friction)" instead of only "Runout distance"
(like the "second" model component).

Good point! We made this change.

Section 3.4

In line 294 you write "... the modelled runout paths failed to follow the flow direction ...": is
this due to a general problem of the flow path model or is this caused by errors in the DEM?

This is likely a problem of the errors in the DEM than the flow path model. We previously
mentioned this in the discussion - however, we added references to works that cover these
issues in more detail,

“Poorly individually optimized events could be attributed to locally poor DEM quality (Horton
et al., 2013) and mapping uncertainties (Ardizzone et al., 2002)”.
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In line 299 you write that "these cases were related to missclassifying stream erosion ...":
was the runout lemgth over- or underestimated in these cases?

Runout was underestimated for these cases (Figure 11c), likely due to the relatively gentle
slope of these stream channels.

Section 4.1.2

This section (mostly) discusses the runout distance model, please also add a few sentences
on the runout path model.

Thanks, we added the following interpretation of the runout path model results to the
discussion,

“The best-performing regional random-walk parameters allowed for maximum lateral
spreading of the runout path given the range of parameters for optimization. Individual
events tended to also optimize for high lateral spreading, but not as strongly as the regional
model. We believe this high lateral spreading may be due to the location of the observed
debris-flows relative to simulated paths and the quality of the DEM. A large proportion of the
observed debris flow tracks were located at the fringe of the most frequent simulated paths.
Thus, a higher slope threshold and exponent of divergence are required to capture these
fringe debris flows. Additionally, the surface of DEMs with resolutions greater than 20 m can
be too general to capture minor gullies that may have high flow accumulation (Blahut et al,
2010b). The 12.5 m resolution ALOS DEM used in this study is derived from downsampled
SRTM data, and would likely contain some of the topographic generalizations of the original
DEM (~ 30 m spatial resolution). Despite potential issues with DEM quality, similarly to
Horton et al. (2013), we illustrated valuable results can still be achieved.”

Technical corrections

p1, l5: fix typo in "Germany"

Corrected.

p1, l29: remove additional blank after "learning"; "source" instead of "sources"

Corrected.

p2, l30: remove additional blank after "and"

Corrected.

p2, l46/47: not sure if a comma should be used instead of a semicolon in the enumeration

Corrected.

p2, l55/56: add missing periods after "al" in three citations

Corrected.
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p2, l56: remove additional blanks after "be"

Corrected.

p3, l73: "our" instead of "out"

Corrected.

p3, l77: add missing periods after "al" in three citations; Moreiras et al. 2012 and Serey et al.
2019 are missing in the references, please add

Corrected.

p3, l80: add missing period after "al" in the citation; Sepulveda et al. 2006 is missing in the
references, please add

Corrected.

p3, l81: add missing period after "al" in the citation

Corrected.

p3, l83: add missing period after "al" in the citation

Corrected.

p4, l95: add period at the end of the table description

Corrected.

p5, l115: add missing "the" in "with ___ remaining set"

Corrected.

p6, l136: the PCM model was developed by three authors, so it isn't "Perla's" model, please
rephrase

We made this change.

p9, l208: throughout the text you use a hypen in "debris-flow", here you write "non-debris
flow"; should this be changed?

We rephrased this to, “locations outside of the debris-flow polygons"

p9, l214: add the missing "a", the package is called "Rsagacmd"

Corrected.

p11, l243: "mass-to-drag ratio" not "mass-to-drag-ratio"

Corrected.
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p14, l278: "towards a threshold of 0.5" instead of "thresholds"

Corrected.

p14, l279: There's quite a break between the two sentences, I had to read it twice to realize
that "The resulting runout prediction map ..." was meant to be that with a threshold of 0.7.
Maybe it would help to start a new paragraph here or to reformulate the sentence to
something like "The runout prediction map resulting from the best threshold ..."

Thanks for the recommendation. We rephrased it to, “The runout prediction map resulting
from the best threshold”.

p18, l314, Figure 11: "... runout path (a), ..." "... relative error (b), actual runout length error
(c), and ..."

Corrected.

p22, l264: "source conditions to spatially" instead of "source conditions spatially"

Corrected.

p22, l373: "parameters of the PCM model" instead of "parameters the PCM model"

Corrected.

p24, References: please add the missing references and also have a look at the formatting -
there are many references in which the author's first names are not shortened to the initials

Corrected.
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Reviewer #2 Comments

General comments

The paper presents an approach to optimize the parameters of the Gravitational Process
Path model for regional debris-flow runout modelling. It addresses the evaluation of the
source areas as well as of the runout path and its length. The approach is illustrated with a
case study in the upper Maipo river basin in the Andes of Santiago, Chile. The method and
the sensitivity analyses are interesting and add value to the field of regional debris flow
modelling. The paper is well written, and the figures are of high quality. I recommend
publishing it after consideration of two main concerns I have about performance metrics that
may require additional work.

We would also like to thank this reviewer for providing highly constructive comments. We
believe the first concern regarding the use of the AUROC as a metric for runout path is
addressed by providing a more explicit description of how the AUROC is computed, as well
as by providing a more detailed interpretation of the random walk optimization in the
discussion. We addressed the second issue regarding runout distance based on the
minimum area bounding box length by providing a discussion of how this metric may
potentially impact the results. Overall, we believe by addressing these concerns and the
specific comments, we are able to provide an even more valuable contribution to the debris
flow modelling community.

Main concerns

I have two main concerns about the performance metrics of the runout distance and runout
path:

AUROC for the path: you process the AUROC as defined by: “Model performance was rated
higher if the random walk model contained observed debris-flow tracks within its simulated
paths” (2.2.1). The problem here is that there is no “false positive” in your approach, and
thus the model is not penalized for over-predicting. The approach is correct for the source
areas but not for the runout path. As we can see in Fig. 2, the extent of the modelled debris
flow is much larger than the observed one, but the AUROC is almost = 1. It means that your
model needs to spread as widely as possible to have a good score. I get the difficulty of
comparing potential events to a single observed event, but you might then use another
contingency table score that does not have false positives. Using a ROC-type score is
misleading here if there is no false positive.

Thanks for bringing up this concern. The AUROC does account for false positives. The
receiver operating characteristic curve (ROC), from which we calculate the area under the
curve (AUROC), is a plot of true positive vs. false positive rates (Zweig and Campbell, 1993).
We did not explicitly state this in the original manuscript, so we will put a brief description of
the AUROC into the methods section. Our results also indicated that the path optimization
does not always favour maximum lateral spread. This is illustrated by the variety of
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exponent-of-divergence values in the parameter selection frequency plot (Figure 12a). We
didn’t make this point clear in the paper, so we added it, as well as the following
interpretation of the optimization of the random walk model:

“The best-performing regional random-walk parameters allowed for maximum lateral
spreading of the runout path given the range of parameters for optimization. Individual
events tended to also optimize for high lateral spreading, but not as strongly as the regional
model. We believe this high lateral spreading may be due to the location of the observed
debris-flows relative to simulated paths and the quality of the DEM. A large proportion of the
observed debris flow tracks were located at the fringe of the most frequent simulated paths.
Thus, a higher slope threshold and exponent of divergence are required to capture these
fringe debris flows. Additionally, the surface of DEMs with resolutions greater than 20 m can
be too general to capture minor gullies that may have high flow accumulation (Blahut et al,
2010b). The 12.5 m resolution ALOS DEM used in this study is derived from downsampled
SRTM data, and would likely contain some of the topographic generalizations of the original
DEM (~ 30 m spatial resolution). Despite potential issues with DEM quality, similarly to
Horton et al. (2013), we illustrated valuable results can still be achieved.”

Relative error for the runout distance: your approach of using a bounding box on the median
frequency (2.2.1) to quantify the runout distance is interesting, but I have an issue with it.
Most observed debris flows will likely propagate to the valley-bottom, where they might meet
the main river. My problem is that when you model the debris flow propagation with small
friction values, it is likely to reach the main river and continue perpendicularly, thus not
increasing the bounding box for some iterations of the parameter values. We can see such
behaviour in your Fig. 2. There is, therefore, a discontinuity as too long propagations are
less penalized than too short ones. I believe this might play a role in the results of Fig. 6,
where the runout length error remains low for a large range of sliding friction coefficients. It
might provide a misleading impression of insensitivity. Or is it the case that most
propagations reach a flatter area where they quickly stop anyway? Although an approach
based on actual length (for example, defined by a D8) might better represent the difference
in runout distance, it might not be trivial to use the median frequency criteria. What about
using the median length of all random walk runs for one setting, provided it’s a piece of
information you can get? This problem should be at least discussed and considered in the
interpretation of the sensitivity analyses. Then, interpretation such as in l. 380-381 (“This
may indicate that the combination of random walk and the process based PCM model
dictates a general runout pattern that is insensitive to values within a broad and nearly
optimal range of physically reasonable parameters”) might not be stated this way. Same for l.
407 (“we observed a general insensitivity in runout distance performance of the PCM model
to a range of parameters”).

Thanks. These are excellent questions that enabled us to better understand the pattern of
PCM model performance across grid search space.

Regarding parameter insensitivity. For our study, we do not believe there is a general issue
of longer slides being less penalized than short ones. This seems to only occur when the
flow path is nearly perpendicular to the initial flow direction, which is not the case for all the
mapped debris-flows tracks used for regional-model training. We visualized the bounding
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box positions and relative errors for different sliding friction coefficient iterations for the entire
debris flow training sample to confirm this.

We agree that it is important to mention this potential limitation, so we have added the
following paragraph to the discussion and removed our previous statements  (l. 380-381 and
l. 407) on this issue.

“In theory, it is possible that the minimum area-bounding box could contribute to parameter
insensitivity. Abrupt changes in flow perpendicular to the initial flow direction, such as a flow
meeting a channel, may only slightly increase the length of the bounding box for several
iterations of decreasing μ (or increasing M/D). However, we did not observe this to be an
issue within our training data for our given parameter ranges of μ and M/D.”

Alternatively, this observed ‘insensitivity’ of runout distance performance across the sliding
friction coefficients μ is likely due to decreasing hillslope gradient being one of the main
controls of runout in the PCM model. Similar to Perla et al (1980), we used tanθ > μ to
interpret μ as the slope angle where deceleration and deposition of runout begins, and found
that best performing  μ values were similar to the slope angles at or near the stopping
positions of the training sample of debris flows. We have added the following paragraph to
the discussion to explain this, as well describing the equation tanθ > μ in our methods.

“Although we obtained a unique regional model solution, runout-distance relative errors were
only slightly higher than the best performer for combinations of μ and M/D across a band in
grid-search space of lower μ values (Figure 6). We believe this model performance
insensitivity to sliding friction angles is due to decrease in slope being one of the main
factors controlling runout distance. The lowest relative errors tended to occur when the slope
condition for deceleration was in the range of 2.3° to 11.3°, and the optimal being 6° (μ >
0.04, μ > 0.20 and μ > 0.11; Eq. 6; Figure 6). This range matches well to the slope values
observed at or near the stopping locations of the debris flows used to train the PCM model.
These results are also very similar to modelled observations of debris-flow runout in the
semi-arid Andes by Mergili et al. (2012). They observed that best PCM runout modelling
results for individual events occurred when deposition began at slope angles ranging from
2.6° to 14.0° (μ > 0.045 and μ > 0.25). Additionally, this range fits within other global
observations of debris-flow deposition occurring on slopes smaller than 6° to 17° (Hungr et
al, 1984; Ikeya, 1989, Rickenmann and Zimmermann, 1993; Bathurst et al. 1997; Lorente et
al., 2003). The insensitivity across M/D values (Figure 6) is due to many possible solutions
for obtaining similar runout distances with different combinations of μ and M/D (i.e. the
uniqueness problem). The range of μ values resulting in low relative error only slightly
increased with higher M/D value, which indicates that μ had a much stronger role than M/D
in governing runout distances.”

Thank you for suggesting other approaches to estimating runout distance. We are satisfied
with our approach to quickly estimate runout length for our study area. As we confirmed by
visualizing optimization iterations for all sampled debris flows, we found that the
bounding-box approach did well at approximating runout length for model optimization.
Additionally, much of the work in this paper was developing an open-source framework to
optimize process-based models for runout simulation that can be adapted by others. We
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highly encourage and look forward to seeing future applications of this approach modify this
framework, such as trying different performance metrics, to best suit particular applications.

Specific comments

Figure 1: The caption should be a bit more comprehensive, explaining, for example, the
random sample.

Thanks, we added, “The selection of these debris-flow polygons was based on a random
sample” to the caption.

Section 2.1.3: It might be useful to describe the fundamental principles of the AUROC in 1
sentence.

Here, we added the following, “The receiver operating characteristic (ROC) is a plot of the
true positive rate versus the false positive rate. AUROC values range from 0.5 (random
discrimination between classes) and 1.0 (a perfect classifier).”

Section 2.2: Please provide more details about the models and their parameters. For
example, mention the random component in the iterative simulations of the random walk and
give more information about the persistence factor and the exponent of divergence. As they
are key parameters for the rest of the paper, adding a few sentences to describe them and
1-2 equations would be beneficial for the readers.

We agree that a better description of the random walk model (Gamma, 2000) can help
improve the reader’s interpretation of the results. We therefore added the following to
Section 2.2:

“Flow path is determined using a 3×3 window that first controls the path of a central cell by
considering only neighboring cells with lower elevation. If the neighbouring cells are below
the slope threshold, the neighboring cell with the steepest descent is selected; otherwise,
neighbours are assigned transition probabilities based on slope. These probabilities are
adjusted using the exponent of divergence and the persistence factor. A higher exponent of
divergence will result in more even probabilities across the neighbouring cells, allowing for a
higher likelihood of not selecting the steepest descent path. The persistence factor considers
the previous flow direction in weighting the probabilities. A higher persistence factor
increases the probability that the selected neighbor will follow the direction of the previous
cell. Based on these transition probabilities, a pseudo-random number generator selects a
cell to define the flow path (see Gamma 2000; and Wichman, 2017 for a more detailed
description). With this random-walk implementation, the flow path stops when the
neighboring cells have a higher or equal elevation compared to the central cell.”

We also added equations and a more in-depth description of the PCM model to this methods
section.

Section 2.2.1: Please mention that you do an exhaustive grid search.
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Added.

Section 2.2.4: You have chosen 1000 “non-debris flow locations”. However, could these be
excluded to be potential source areas for future events? Could they become source areas
under certain triggering conditions?

This is a general challenge in selecting non-debris-flow locations. Future work could focus
on improving methods for identifying these locations.

Figure 5: It would deserve some more interpretation. For example, what can explain the role
of elevation in debris flow conditioning? Why is the slope angle contribution decreasing after
a certain threshold? What about the plan curvature?

The relationship between elevation and debris-flow activity is complex. In the upper Maipo
river basin elevation can be a proxy for vegetation, snow cover duration, terrain ruggedness,
permafrost and glacial bodies, and geology. It is therefore difficult to discern any direct
relationships between elevation and likelihood of being debris source areas. However, we
suspect that lower elevations are predicted  to be less prone to be source areas due to
increased vegetation cover and less rugged terrain. The decrease observed at the highest
elevations may relate to permafrost and glacial bodies holding potentially mobilized sediment
(e.g. Sattler et al., 2011).

We observed a decrease in likelihood of source areas occurring at high slope angles (e.g. ~
>45°). These steep slopes can be associated with steep rock faces that are more likely
sources of rock falls than debris flows (Loye et al, 2009).

Slightly concave plan curvature of the slopes (relative to the DEM) are associated with being
more likely source areas.

We added this interpretation to the discussion.

Section 3.3 & Figure 9: Is the runout frequency relative to a single source? How are they
combined when different propagations overlap? Please add some clarifications.

As computed from the GPP model, the runout frequencies are the total times a cell is
traversed from all source areas (Wichmann, 2017). We added the following to section 2.2.

“This is a cumulative frequency based on simulations from all source areas”

Section 3.4, l. 299: “these cases were related to misclassifying stream erosion”: can you
identify such information from satellite imagery?

Through expert interpretation of DEM derived hillslope angles and very high resolution
satellite imagery (0.50 m) we are confident in our ability to identify such information. We
didn’t make it clear in the paper that the hillslope angle was used to help with the
interpretation, so we added this to the paper.

Section 3.4, l. 309-311: not so clear; please clarify.

Thanks. We clarified this section by rephrasing it to:
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“The optimization of the runout model avoided overfitting to debris-flow tracks of a certain
magnitude and general terrain conditions. That is, we did not observe a strong correlation
between runout distance performance to length of observed debris flow (ρ = -0.36), starting
elevations (-0.21), catchment area (0.11) or hillslope angle (0.29) of source points used for
model training.”

Figure 12a: You do not mention plot 12a in the text, i.e., the slope threshold values in the
grid of other parameters.

We added the following to the results to describe the simulated path behaviour of the
individual events:

“Most individual events optimized runout paths with parameter sets leading to high lateral
spreading. The optimal-path parameters for most of the individual events had a 40° slope
threshold, high exponent of divergence and low persistence values (Figure 12a). By
individually examining the optimal simulated paths for each training event, we observed that
60% of the observed debris-flow tracks did occur within the most frequent simulated paths.
The other 40% of events were typically located on the fringes of the most frequent paths.”

Section 3.6 & Figure 14: You might mention again here that these scores are processed on
the test data.

We added that we used spatial cross-validation to assess the performance in the figure
caption.

“Figure 14. Comparison of runout path (a) and distance (b) performances for different model
training samples sizes assessed using spatial cross-validation. The error bars indicate the
standard deviation in performances.”

We also added some clarification of this in the methods (Section 2.2.3).

“Spatial cross-validation was applied to data sets of varying training sample sizes using the
random sample of 100 debris flows used for model optimization”

Section 4.2: The ability to optimize the runout path and the runout distance separately is
related to the fact that the random walk mainly controls the path/spreading, and the PCM
controls the runout distance. The influences of these algorithms are quite distinct.

Thank you. This is a really valid point to remind the readers in the discussion. We added the
following to Section 4.2.:

“The modular framework of the GPP model provides the ability to optimize two distinct
runout components, the runout path including lateral spreading and the runout distance. In
our study, we used the random walk and PCM components of the GPP model to simulate
spatial extent of runout.”

Conclusion: Should contain some more results of your study.

We added the following points to our conclusion.
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- We demonstrated that the combination of the statistical prediction (GAM) of source
areas and our regional optimization of the GPP runout model (random walk and
PCM) performed well at generalizing runout patterns across the upper Maipo river
basin.

- In addition to high model performance, the transparency and interpretability of the
GAM provided further confidence in the prediction of source areas by illustrating
regionally geomorphically plausible modelled behavior.

- The optimized runout model parameters sets were consistently similar within grid
search space when assessing transferability using spatial cross-validation. We
believe this strong transferability of our runout model was due to the hillslope
gradient of the deposition area being one of the major controls of runout distance in
the PCM model.

- The regionally optimized runout model also resulted in geomorphically plausible
results, with best performing μ and M/D combinations occurring when simulated
debris-flow deposition and termination occurred on slopes less than 11°.

- Although obtaining unique PCM parameter solutions for individual events can be an
issue, we were able to obtain a unique PCM model solution for our regional model. In
general, we found unique regional-optimal PCM model solutions were more prone
with larger sample sizes, as well as higher model performance and lower
uncertainties.

Technical corrections

l. 5: “y” is missing in Germany

Corrected.

l. 73: “our” instead of “out”

Corrected.

l.186: “We explored *for* such spatial…” ?

Corrected.

l. 378: what do you mean by “ambiguous events”?

We meant to refer to uncertainties in mapping debris-flows.

We changed this sentence to, “Poorly individually optimized events could be attributed to
locally poor DEM quality (Horton et al, 2013) and mapping uncertainties (Ardizzone et al,
2002).”
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l. 386: “very *a* specific problem”

Corrected.
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