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Abstract. The change of climate and environmental conditions has obviously effecting on the evolution and propagation of9

drought in river basins. Hun River basin (HRB) is a region seriously troubled by drought in China, so it is particularly urgent10

to evaluate the evolution of hydrological drought and investigate the threshold of triggering hydrological drought in HRB. In11

this study, Standardized runoff Index (SRI) was implied to reveal the evolution characteristics of hydrological drought.12

Meanwhile, based on drought duration and severity identified by the run theory, the copula function with the highest13

goodness of fit was selected to calculate the return period of hydrological drought. Furthermore, the propagation time from14

meteorological to hydrological drought was determined by calculating the Pearson correlation coefficients between 1-month15

SRI and multi-time scale Standardized precipitation index (SPI). Finally, based on the improvement of the drought16

propagation model, the drought propagation thresholds for triggering different scenarios of hydrological drought and its17

potential influence factors were investigated. The results show that: (1) the hydrological drought showed gradually18

strengthed trend from the downstream to the upstream of HRB from 1967 to 2019; (2) the downstream of the HRB were19

vulnerable districts to hydrological drought with longer drought duration and higher severity; (3) the most severe drought20

with drought duration of 23 months, severity of 28.7, and corresponding return periods that both exceed the thresholds of21

duration and severity and exceed the threshold of duration or severity were 371 years and 89 years, respectively; (4) the22

propagation time from meteorological to hydrological drought in the downstream of reservoir has been significantly23

prolonged; and (5) the drought propagation threshold in the downstream of HRB was remarkably higher than that of the24

upstream at all drought scenarios. Additionally, midstream showed the highest drought propagation threshold at moderate25

and severe drought scenarios, while downstream at extreme drought scenario.26

1 Introduction27

Drought is a complex natural disaster caused by the abnormal decrease of precipitation, which can have serious effects on28

agriculture, ecology and social economy (Oladipo, 1985; Huang and Chou, 2008; Huang et al., 2015; Fang et al., 2019; Guo29
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et al., 2019). Compared with other natural disasters, droughts cause much more severe damages than other natural disasters1

because of their extensive spatial impact and generally longer duration (Mishra and Singh, 2010). In the last few decades,2

remarkable changes in global climate and environment aggravated the occurrence of hydrological extreme events3

characterized by drought (Wilhite and Glantz, 2009; Palmer and Räisänen, 2002; Kunkel, 2003; Beniston and Stephenson,4

2004; Christensen and Christensen, 2004; Leng et al., 2015).5

Hydrological drought, usually lagged the occurrence of meteorological drought, manifests in the case of long-term lack of6

precipitation, resulting in the overall water supply shortage in terms of river flow, groundwater and reservoir storage7

(Vicente-Serrano and LópezMoreno, 2005; Van Lanen et al., 2013; Joetzjer et al., 2013). Developing reliable drought indices8

can rellably reveal the hydrological drought status of the basin (Mishra and Singh, 2011; Wang et al., 2020). Standardized9

runoff Index (SRI), established based on runoff variation, is commonly applied in hydrological drought evaluation and has10

been widely used in drought frequency analysis and drought risk management (Vicente-Serrano et al., 2012; Rivera et al.,11

2017; Chen et al., 2018; Xu et al., 2019; Yang et al., 2020). Therefore, based on the SRI, the spatio-temporal evolution of12

drought events can be analyzed quantitatively. Run theory (Yevjevich, 1967), a time series analysis method, is widely13

applied to identify drought events and extract drought characteristic values, such as drought duration and severity (Kim et al.,14

2011; Liu et al., 2016a, 2016b; Wu et al., 2017; Sun et al., 2019). The copula function can be suitable to combine multiple15

drought characteristic variables, and provides an effective method for multivariate frequency analysis (Lee et al., 2013;16

Vyver and Bergh 2018; Dash et al., 2019; Lindenschmidt and Rokaya, 2019). Thus, once a suitable copula function is filted17

to model the joint distriution of drought duration and drought severity, the return period of hydrological drought can be18

estimated, which has significant practical significance for regional hydrological drought prediction (Kao and Govindaraju,19

2009; Mirabbasi et al., 2012).20

In general, hydrological drought results from the accumulation of meteorological drought conditions. Many scholars have21

made lots of attempts to study the relationship between hydrological drought and meteorological drought (Pandey and22

Ramasastri, 2001; Van Loon et al., 2012; Leng et al., 2015; Barker et al., 2016; Sattar et al. 2019). Amongst these previous23

studies, more efforts have been focused on the calculation of drought propagation time (Lorenzo-Lacruz et al., 2013; Huang24

et al., 2017; Gevaert et al., 2018). The Pearson correlation coefficients between 1-month SRI and multi-time scale25

Standardized Precipitation Index (SPI) were calculated to determinate the drought propagation time from meteorological26

drought to hydrological drought. And, the time scale of SPI with the highest correlation with the single time scale SRI is27

regarded as drought propagation time (i.e. PTMH) (Barker et al., 2016; Huang et al., 2017; Fang et al., 2020). However,28

there are few studies on the severity of the meteorological drought that triggers hydrological drought with different levels.29

Guo et al. (2020b) explored the drought propagation thresholds of meteorological drought for triggering hydrological30

drought at various levels based on the copula-based conditional probability model. The duration and severity of31



3

meteorological drought were used to characterize the drought propagation threshold. However, it is not ideal to use duration1

or severity of meteorological drought to represent the drought propagation threshold for triggering hydrological drought2

because of its relative absolute and inconvenient monitoring. Guo et al. (2020a) proposed a drought propagation threshold3

model based on Bayesian networks, which took cumulative precipitation deficit as the condition and single time scale SRI as4

the target to clarify the impact of large reservoirs on watershed drought tolerance by calculating cumulative deficit rainfall5

triggering different levels of hydrological drought. However, although single time scale SRI can capture hydrological regime6

changes sensitively and accurately, a severe drought event usually lasts for several months. Therefore, it is not accurate to7

take the cumulative precipitation deficit calculated with a single time scale SRI as the threshold for triggering hydrological8

drought in the drought propagation threshold model. Also, it is highly necessary to select appropriate hydrological and9

meteorological drought factors as targets and conditions to improve the drought propagation threshold model so as to obtain10

more accurate propagation threshold for triggering different scenarios of hydrological drought.11

In view of this, this paper adopted SRI to study the hydrological drought in the HRB. The primary objectives of this paper12

are: (1) to reveal the spatiotemporal evolution characteristics of hydrological drought; (2) to select the best-fit copula and13

calculate the hydrological drought return period; (3) to determine the PTMH; (4) to establish drought propagation threshold14

model based on Bayesian network to determine the propagation thresholds for triggering different scenarios of hydrological15

drought.16

2 Study region and data17

The HRB, as presented in Fig. 1, is located in Liaoning Province, NE China and covers an area of 11,481 km2, among which18

the hilly area occupies 67% and plain area 33%. The basin belongs to the temperate semi-humid and semi-arid monsoon19

climate, with four distinct seasons and the same season of rain and heat, and weak climate differences within the basin. The20

warm and wet air flow from the low latitude tropical monsoon circulation prevails in the summer brings more rainy days,21

while the Siberia-Mongolia high pressure dry cold continental air flow occurs during the winter, prevailing north wind and22

northwest wind, resulting in low temperature and less precipitation. The multi-year average precipitation is approximately23

780 mm, with obvious seasonal characteristics, and the precipitation in the main flood season (July to August) accounts for24

about 48.5% of the annual precipitation.25

Dahuofang (DHF) reservoir, located in the middle and upper reaches of HRB, is a large-scale water control project, with a26

total storage capacity of 2.268 billion cubic meters. DHF reservoir plays a vital function in flood control and water supply, as27

well as for power generation and fish farming. Since the operation of DHF Reservoir in 1958, the irrigation, the river28

ecosystem of the region and the hydrological condition of the river channel have been greatly affected. Four hydrological29

stations in HRB were selected from upstream to downstream: Beikouqian (BKQ), Dahuofang (DHF), Shenyang (SY), and30
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Xingjiawopeng (XJWP) stations to explore the spatial distribution of hydrological drought in this study. The locations of the1

four hydrological stations are shown in Fig. 1. The BKQ is located upstream of the DHF reservoir, while SY and XJWP are2

successively arranged in the downstream of DHF reservoir. The four hydrological stations selected are located downstream3

of each basin, so the hydrological information of each basin can be reflected by the status of the corresponding hydrological4

stations (Fu et al., 2004). They represent the hydrological conditions of above BKQ, BKQ to DHF, DHF to SY and SY to5

XJWP, respectively. The monthly runoff data of these four hydrological stations and monthly precipitation data of the6

twenty meteorological stations during 1967-2019 were adopted in this study, which were collected from the Hydrological7

Data of Liao River Basin from the Year Book of Hydrology P.R.CHINA. Among them, the runoff data of DHF station is the8

inflow runoff of DHF reservoir. Additionally, Thiessen polygon method was applied to calculate the precipitation of9

meteorological stations to get the corresponding area precipitation of each hydrological station.10

3 Methodology11

In this study, SRI and SPI were employed to characterize meteorological drought and hydrological drought, respectively12

(McKee et al., 1993; Shukla and Wood, 2008). Run theory was applied to SRI-1 series to identify hydrological drought13

events and capture their corresponding drought characteristic values, drought duration and severity. SRI and drought14

characteristic values were implied to quantitatively reveal the evolution characteristics of hydrological drought. Meanwhile,15

the copula functions with the highest goodness of fit were selected to establish the joint distribution of drought duration and16

drought severity, and calculate the return period of hydrological drought. The Pearson correlation coefficients between SRI-117

and multi-time scale SPI were calculated to determinate the PTMH. Based on the PTMH and drought duration, the18

cumulative precipitation deficit of each hydrological drought event was determined, which was applied to characterize19

meteorological drought. Drought duration and severity were used to describe a single hydrological drought event. Then,20

based on the copula function and Bayesian model, a improvement drought propagation threshold model was established,21

including the cumulative precipitation deficit, drought duration and drought severity. Finally, the drought propagation22

threshold interval would be determined according to the magnitude of the conditional probability of occurrence of23

hydrological drought events under different cumulative precipitation deficit conditions.24

3.1 Standardized precipitation index (SPI) and Standardized runoff Index (SRI)25

SPI was proposed by McKee et al. (1993) to characterize the drought conditions in Colorado, USA, and it has been26

recommended by the World Meteorological Organization as the primary meteorological drought index to be used. SRI was27

proposed by Shukla and Wood (2008) to reflect drought from the perspective of hydrology. Both SPI and SRI, established28

based on historical precipitation and runoff data respectively, can monitor droughts over a range of time scales. SPI and SRI29

were calculated in similar calculation procedures, in which Gamma distributions were used to describe the variation of30
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precipitation and runoff, respectively. The cumulative probability of precipitation / runoff can be obtained based on gamma1

distribution, and then cumulative probability was converted to the standard normal distribution to obtain SPI / SRI values.2

More details calculation can be found in Huang et al. (2017). According to the SPI/SRI values, droughts are classified into3

five classes. The criteria are shown in Table 1.4

5

Figure. 1 Locations of the HRB, DHF reservoir, and the meteorological and hydrological stations.6

Table. 1 Definition of drought conditions based on the SPI (SRI).7

State Condition Criterion

1 Non-drought SPI(SRI)>-0.5

2 Mild drought -1.0<SPI(SRI)≤-0.5

3 Moderate drought -1.5<SPI(SRI)≤-1.0

4 Severe drought -2.0<SPI(SRI)≤-1.5

5 Extreme drought SPI(SRI)≤-2.0

3.2 The Modified Mann-Kendall trend test method8

The Mann-Kendall (M-K) trend test (Mann, 1945; Kendall, 1962), a non-parametric statistical testing method, is widely used9

to accessing the trends of hydrological variables. The M-K method assumes that the data are independent and randomly10

ordered. However, the SRI series are autocorrelated, which influences the significance of the test results. The Modified11

Mann-Kendall (MMK) trend test method can eliminate the autocorrelation components in the sequence and improves the12
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testing ability of the MK method (Hamed and Rao, 1998; Longobardi et al., 2021). Therefore, this paper adopted MMK1

method to investigate the trend characteristics of hydrological drought in the HRB during 1967-2019 with the significance2

level of 0.05 and the corresponding |U| = 1.96. The calculation procedure of the MMK method was described in Longobardi3

et al. (2021).4

3.3 Drought identification and copula estimation5

Run theory is a time series analysis method which is widely applied to identify drought events and extract drought6

characteristic values (Yevjevich, 1967; Zhao et al., 2017; Sun et al., 2019). It is worth mentioning that in the process of7

drought recognition, some severe drought events may be interrupted by some non-drought events with short drought duration,8

causing severe drought events to be divided into several less severe drought events, thus weakening the impact of9

drought. Therefore, optimizing the threshold level of drought recognition is crucial to improve the accuracy of run theory in10

drought analysis (Wang et al., 2020). In this paper, based on the three thresholds SRI0 (- 0.5), SRI1 (- 1.0) and SRI2 (0.0), the11

run theory was used to identify three drought characteristics, namely drought event, duration and severity, from the 1-month12

scale SRI sequence. Fig. 2 shows the process of drought recognition based on the threshold method, and the specific13

identification process is as follows:14

(1) Drought characteristics are considered to appear when SRI value is less than SRI 0. Hence, it is preliminarily15

determined that drought occurs during the period from t1 when SRI value is equal to or less than SRI0 to t2 when SRI value is16

equal to SRI0 or even larger. The run duration (i.e. t2-t1) and the absolute value of the accumulated SRI during the drought17

duration are identified as drought duration (D) and drought severity (S), respectively. For example, five drought processes18

(i.e. a, b, c, d and e) can be recognized in Fig. 2.19

(2) On the basis of (1), if a drought has a duration of just one month, it is considered as a drought event only when its20

corresponding SRI value is less than SRI1, otherwise, it is not (c).21

(3) If a drought event (e) occurs one month later than the preceding one (d), and the SRI value in between is less than SRI2,22

these two drought events (d and e) are regarded as one combined drought event, otherwise, they are considered as two23

independent drought events. The severity and duration of the combined drought event is S=Sd+Se, and D=Dd+De+1,24

respectively.25

26
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Figure. 2 Drought identification process and definition of drought characteristic variables.1

The sequences of drought duration and severity determined by the run theory were then fitted by five common functions,2

including Gamma (GAM), Generalized extreme value (GEV), Exponential (EXP), Lognormal (Logn) and Weibull (WBL)3

distributions (Rad et al., 2017; Wang et al., 2020). And, Kolmogorov-Smirnov (K-S) (Hand, 2005), Root mean square error4

(RMSE) and Akaike information criteria (AIC) (Akaike, 1974) test were employed to identify the best-fit marginal5

distribution functions. Copula function is a multidimensional joint distribution function defined in [0,1], and can integrate6

marginal distributions of several dependent random variables to structure a joint probability distribution with multiple7

features. Previous studies have proved that the copula function is a high-efficiency tool for multivariate probability analysis8

of drought (Hao and Singh, 2015; Salvadori and De Michele, 2015; Ren et al., 2020). Its equation is expressed as follows:9

�(�, �) = �−1 � � , � � (1)10

where C(u,v) represents the copula function combining two random variables u and v; and φ is convex function.11

In this study, according to the univariate empirical frequency of drought duration and severity, three typical drought12

scenarios were selected to analyze the return periods. The scenarios corresponding to the univariate cumulative empirical13

frequency interval of [0.5,0.75), [0.75,0.95) and [0.95,1] were defined as moderate, severe and extreme drought, respectively.14

The dependency structures of drought duration and severity were modeled with the commonly used binary copula functions,15

including Gumbel-Hougaard, Clayton, Frank, t and Normal copula (Lee et al., 2013 and Wang et al., 2020). K-S, RMSE,16

AIC and Cramér-von Mises (C-M) (Genest et al., 2011 and Rad et al., 2017) test were applied to select the best copula17

function with highest goodness of fit (GOF). In addition, several joint probability expressions corresponding to bivariate18

return periods were used to further explore the occurrence frequency of hydrological drought. The expressions of joint19

probability are defined as (Shiau, 2006 and Kwon et al., 2016):20

���� = � �
� �>� ∩ �>�

= � �
1−�� � −�� � +� �,�

(2)21

��� = � �
� �>� ∪ �>�

= � �
1−� �,�

(3)22

where E(L) denotes the expected value of drought interval and FD (d) and FS (s) are marginal cumulative density function of23

drought duration and severity, respectively. F(d,s) is joint distribution function of drought duration and severity. Tand is the24

return period of drought events that both exceed the thresholds of duration (D ≥ d) and severity (S ≥ s) and Tor is return25

period of drought events that considered exceed the threshold of duration (D ≥ d) or severity (S ≥ s).26

3.4 The drought propagation time27

In general, hydrological drought is a response to the accumulation of meteorological drought conditions. Generally, the28

change of hydrological regime can be characterized sensitively by the single time scale SRI, and the accumulation of29

meteorological drought in the preceding n months can be reflected by the n time scale SPI. The time scale of SPI with the30
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highest correlation with the single time scale SRI is regarded as drought propagation time (Barker et al., 2016; Fang et al.,1

2020). Therefore, Pearson correlation between monthly scale SRI and multi-time scale SPI (1-24 months) was adopted in2

this study to determine the PTMH, which is denoted as TP.3

3.5 The calculation of drought propagation threshold4

In order to obtain more accurate propagation threshold triggering hydrological drought in different scenarios, we improved5

the drought propagation threshold model based on a Bayesian network model by selecting appropriate hydrological and6

meteorological drought factors in this study. Before analyzing joint probability and Bayesian networks, the marginal7

distribution must be determined. In this study, the drought duration (D) and severity (S) and cumulative precipitation deficit8

(CPD, mm) of each drought event were selected to describe the hydrological and meteorological drought, respectively. The9

D and S of each drought event were identified from the SRI-1 sequence based on the run theory. The CPD is the cumulative10

precipitation deficit of each hydrological drought event during the PTMH, which is defined as :11

���� =− �=��� �−���+1
� �� − ���� + �=�+1

� �� − ���� � ≥ � ≥ 1 (4)12

where CPDn is the corresponding CPD for the nth drought; Pi denotes the precipitation during the period of i; Pm represents13

the mulit-annual average monthly precipitation of the actual mth month corresponding to i; TPt refers to the drought14

propagation time of the month represented by t (i.e. when t equals 3 but the actual month is February, TPt refers to the15

drought propagation time of February); D is the drought duration of the nth drought event. To make the calculation process16

of CPD clearer, Fig. 3 was drawn to further explain Eqs. (4). As shown in Fig. 3, it is assumed that the nth drought event17

occurred in February 2002 with the drought duration was 3 months (February to April). At the same time, it is assumed that18

drought propagation time of February, March and April are 9, 6 and 9 months respectively. According to Eqs. (4), when t is19

equal to 1 (corresponding to February 2001), combined with the drought propagation duration of February is 9 months, it is20

believed that precipitation conditions affecting this drought can be traced back to June 2001, as shown in Fig. 3. Similarly,21

when t equals 2 and 3 (corresponding to March and April 2002), the precipitation that affected the drought dates back to22

October and August 2001, respectively. Taking the above into consideration, when t is equal to 1, the precipitation that23

affects this drought can be traced furthest, so the CPD of this drought event is the absolute value of the sum of monthly24

precipitation minus their monthly average precipitation from June 2001 to March 2002.25
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1
Figure. 3 The schematic diagram of determining the CPD.2

Bayesian network, a probabilistic graph model, is widely used in drought impact assessment (Sattar et al., 2019; Guo et al.,3

2020a). Therefore, a threshold model of drought propagation based on Bayesian network is established in this study.4

Suppose X (x1,x2…,xn) and Y (y1,y2…,yn) are two random variables, with X and Y as conditions and targets respectively.5

Then, in the case of X ≥ u , the probability of Y ≥ v can be expressed as:6

� � ≥ � � ≥ � = � �≥�,�≥�
� �≥�

= 1−� � −� � +� � � ,� �
1−� �

(5)7

where C(x (u), y (v)) represents the joint cumulative probability of X ≤ u and Y ≤ v; x (u) and y (v) denote the cumulative8

probability of X ≤ u and Y ≤ v; x and y are the marginal cumulative distribution of two random variable X and Y. In addition,9

when u2≥ X ≥ u1 , the probability of Y ≥ v is expressed as:10

� � ≥ � �1 ≤ � ≤ �2 = � �≥�,�1≤�≤�2
�1≤�≤�2

= � �2 −� �1 −� � �2 ,� � +� � �1 ,� �
� �2 −� �1

11

= 1 − � � �2 ,� � −� � �1 ,� �
� �2 −� �1

(6)12

where u1 and u2 are the upper and lower limits of the given interval.13

Fig. 4 shows the schematic diagram for determining drought propagation thresholds based on bivariate coupla functions14

and Bayesian networks. Fig. 4a shows the graphical model of Bayesian network. It describes the causal relationships among15

the CPD, D, S and hydrological drought levels (HDL). HDL includes three drought scenarios defined in Section 3.3 in terms16

of univariate empirical frequencies of drought duration and severity, which are moderate, severe, and extreme drought. The17

response variable here is hydrological drought with two components D and S, and the feature variable that characterizes18

response variable is CPD. Fig. 4b shows the selection of the probability distributions of D (S) and CPD and the19

determination of their joint distributions. As for Fig. 4b showed, according to the method of determining the marginal20

distribution described in Section 3.3, the best-fit marginal distribution functions of D, S and CPD under three drought21

scenarios were identified. The commonly used bivariate theoretical copula functions, including Clayton, Frank, and Gumbel22

copula were considered for modeling the dependence structure between CPD and D (S), respectively. And, K-S, C-M,23
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RMSE and AIC test were applied to select the GOF copula function. Then, the joint distributions of CPD and D (S) under1

three drought scenarios were established based on the GOF copula functions. Fig. 4c expresses the process of determining2

CPD thresholds for triggering multiple hydrological drought scenarios. As shown in Fig. 4c, in this model, the D and S of3

each drought event are taken as the target, respectively, and the corresponding CPD is identified as the condition. According4

to Eqs. (5) and (6), the conditional probability of hydrological drought under different CPD conditions would be calculated5

for different scenarios. Generally, as the accumulation of meteorological drought, the probability of occurrence hydrological6

drought will infinitely close to 1. The confidence level in this study is 0.95, which means while the conditional probability is7

equal to or greater than 0.95, the corresponding CPD will be taken as the meteorological triggering conditions of8

hydrological drought at this scenario.9

10
Figure. 4 The schematic of determining the drought propagation threshold based on bivariate copula functions and Bayesian11
network. (a) The graphical model of Bayesian network about CPD, D, S and HDL; (b) Selecting the probability distributions12
of D (S) and CPD and determinating their joint distributions; (c) Quantifying the CPD threshold under multiple drought13
scenarios.14

4 Results and discussions15

4.1 Spatiotemporal evolution of hydrological drought16

Fig. 5 depicts the temporal variation trend of hydrological drought based on the SRI-1 in HRB from 1967 to 2019, which17

presented difference temporal evolution characteristics in upstream and downstream of the reservoir. It is clear from Fig. 5 (a,18

b) that the temporal evolution characteristics of SRI-1 sequence in BKQ and DHF were similar, showing a non-significant19

downward trend, indicating that drought in DHF and BKQ has a slight increasing trend. The significant strengthening trend20



11

of drought occurred from March 1991 to October 2004, with average SRI value of -0.29 and -0.48, and minimum of -1.811

and -3.33, respectively. Fig. 5 (c, d) presents that the temporal evolution characteristics of hydrological drought were similar2

without obvious trend characteristics in SY and XJWP. Droughts occurred mainly from May 1977 to April 1984, November3

1988 to July 1993 and March 2000 to March 2005 in SY, with average SRI value of -0.56, -0.50 and -0.83, respectively.4

Similarly, droughts occurred mainly from May 1977 to April 1984, November 1988 to July 1993 and March 2000 to5

September 2003 in XJWP, with average SRI value of -0.84, -0.57 and -0.70, respectively.6

7

Figure. 5 Temporal variation of hydrological drought based on monthly scales in HRB during 1967-2019. (a) - (d) denote BKQ, DHF,8

SY and XJWP, respectively.9

The multi-timescale SRI applies to describe the mean hydrological regime during the preceding few months. Therefore,10

the SRI-3 and SRI-12 were calculated to analyze the seasonal and annual variation trend of hydrological drought. The SRI-311

values in February, May, August and November were applied to describe the variations of hydrological drought in winter,12

spring, summer and autumn, respectively. It is worth mentioning that the irrigation and river ecological water that occurs13

from May to August is supplied by the reservoir through the river channel, which affects the river runoff. Therefore, this14

paper considers that the water supply period (WS-P) is from May to August, and the storage period (S-P) is from September15

to April of the following year. Meanwhile, the SRI-4 values in August and SRI-8 values in April were applied to describe the16

variations of hydrological drought in WS-P and S-P, respectively. Fig. 6 presents the temporal variation of hydrological17

drought at seasonal scales, WS-P and S-P in HRB from 1967 to 2019. From the seasonal perspective, the drought trend was18

different in sub-regions, with the linear slope of SRI changed from -0.167/10a to 0.469/10a. SRI showed a decreasing trend19
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at summer, autumn and winter in BKQ, with the linear slope of SRI were -0.167/10a, -0.053/10a and -0.142/10a, which1

indicated that drought was aggravating at summer, autumn and winter. SRI showed a decreasing trend at spring, summer and2

autumn in DHF, with the linear slope of SRI were -0.026/10a, -0.008/10a and -0.050/10a, which indicated that drought was3

aggravating at spring, summer and autumn. The linear slope of SRI was 0.167/10a and 0.208/10a at spring and winter, while4

-0.054/10a and -0.079/10a at summer and autumn in SY, indicating that drought was strengthening in summer and autumn5

and decreasing in spring and winter. Similar to the temporal characteristics of SY, drought showed a strengthening trend in6

summer and autumn, while a decreasing trend in spring and winter in XJWP with the linear slope of SRI were -0.083/10a,7

-0.089/10a, 0.319/10a and 0.469/10a, respectively. From the WS-P and S-P perspective, the drought trend were different in8

sub-regions at different periods. It can be observed from Fig. 6 that SRI showed a decreasing trend in both WS-P and S-P,9

while the decrease was greater in WS-P than S-P in BKQ and DHF. And, SRI showed a decreasing trend in S-P, and an10

increasing trend in WS-P at both SY and XJWP. Considering the above information, the drought was aggravating in BKQ11

and DHF, while the drought was weakening in SY and XJWP at WS-P.12

In order to further explore the temporal evolution characteristics of hydrological drought, the trend characteristic U values13

of MMK trend test of multi-timescale SRI was calculated. Table 2 shows the calculation results of trend characteristic value14

U at seasonal scale, WS-P, S-P and annual scale. It is clear from Table 2 that the characteristics of drought trends in different15

periods and stations are obviously different. On the annual scale, the U value of BKQ, DHF, SY and XJWP stations were16

-2.26, -1.58, -0.34 and -0.10, indicating an significant strengthening trend of drought in the HRB. In addition, the drought17

trend gradually increased from the lower reaches to the upper reaches, and strengthened significantly in BKQ. On the18

seasonal scale, the U values of each sub-basin in summer and autumn were less than zero, which indicated that drought was19

strengthening in summer and autumn in HRB. And, the U values of BKQ and XJWP in summer were less than -1.96, which20

indicated that drought was significant strengthening in summer at BKQ and XJWP. The U values of BKQ in spring and21

winter were 2.14 and -2.24 , respectively, indicating that drought showed a weakening trend in spring and a strengthening22

trend in winter, both of which reached a significant level. The U values of DHF were less than zero in spring and winter,23

which indicated that drought showed a strengthening trend in spring and winter at DHF. However, the U values of SY and24

XJWP stations were 3.04, 2.76, 3.30 and 9.90 in spring and winter, respectively. These trend characteristic U values passed25

the significance test, indicated that the drought showed a significant strengthening trend in spring and winter at the SY and26

XJWP of HRB. From the WS-P and S-P perspective, the U values of each sub-basin in S-P were less than zero, which27

indicated that drought was strengthening in S-P at HRB. The U values of WS-P were less than zero in BKQ and DHF, while28

greater than zero in SY and XJWP. In addition, the trend characteristic U values of BKQ and XJWP passed the significance29

test. Thus, the drought showed an strengthening trend at BKQ and DHF, while an weakening trend at SY and XJWP in30

WS-P, which can be confirmed with the conclusions of previous section.31
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Table. 2 U values of SRI at different scales in the HRB during 1967-2019.1

Sub-region BKQ DHF SY XJWP

U value Trend U value Trend U value Trend U value Trend

Spring 2.14 upward -0.61 downward 3.04 upward 2.76 upward

Summer -2.67 downward -0.71 downward -1.94 downward -2.41 downward

Autumn -1.17 downward -1.14 downward -1.48 downward -1.45 downward

Winter -2.24 downward -0.02 downward 3.30 upward 9.90 upward

WS-P -2.61 downward -0.39 downward 0.28 upward 4.18 upward

S-P -1.35 downward -0.95 downward -1.57 downward -1.73 downward

Year -2.26 downward -1.58 downward -0.34 downward -0.10 downward

The bold letters denote that the U values passed the MMK trend test of α = 0.05.2

Based on the run theory, three drought factors, namely drought events, duration and severity, were identified from the3

1-month scale SRI sequence. Drought events which were detected sum up to 186 in 4 districts of HRB during 1967-2019.4

DHF was most frequently affected by drought, with a total of 57 drought events, followed by BKQ, XJWP and SY with 53,5

39 and 37 drought events, respectively. The box chart of drought duration and severity was drawn, and the spatial6

distribution of drought was discussed (Fig. 7). Fig. 7 shows that the districts with an the mean of drought duration more than7

5 months included SY and XJWP, where the mean of drought duration differs greatly from the median. And, the mean of8

drought duration in BKQ and DHF were smaller than that of SY and XJWP, and the difference between their mean and9

median were small. Besides, SY and XJWP experienced extremely long and persistent drought events lasting more than 2010

and 23 months, respectively. Taking the above two points into consideration, the drought duration in downstream (BKQ and11

DHF) of the reservoir is longer than that of the upstream (SY and XJWP), and the downstream are more likely to experience12

long duration extreme drought events. Drought severity and drought duration maintained a highly consistency. The mean13

drought severity of drought events in the downstream of the reservoir were higher than that in the upstream, and the drought14

events with the maximum severity occurred in XJWP (Fig. 7). In summary, the downstream district of the reservoir were15

vulnerable district to hydrological drought, where the drought duration and severity were more serious than upstream district.16

Nevertheless, the upstream district of the reservoir was more sensitive to short-duration drought, which were dominated by17

two-month and three-month drought events.18



14

1



15

Figure. 6 Temporal variation of hydrological drought at seasonal scales in the HRB from 1967 to 2019. (a)-(d) denotes BKQ, DHF, SY1

and XJWP, respectively.2

3

Figure. 7 Box chart of duration and severity of hydrological drought.4

4.2 Return period analysis5

In order to grasp the occurrence frequency of hydrological drought in HRB , the recurrence was analyzed by calculating the6

return period. In this study, five common functions including Gamma, EXP, GEV, Logn, and WBL, were used to fit the7

sequence of duration and severity of hydrological drought events in the three sub-basins of HRB. AIC, RMSE and K-S test8

were applied to select the best-fit marginal distribution, and the results were shown in Table 3. Table 3 illustrates that the9

optimal distribution for different drought characteristics passed the K-S test (α = 0.05) in all the four sub-regions. The joint10

distribution of drought duration and severity in the HRB was determined with the application of copula functions. According11

to the values of K-S, C-M, RMSE and AIC, the GOF copula functions were selected as the best joint distribution of drought12

duration and severity in the HRB (Table 4).13

Table. 3 Optimum marginal distribution function of drought characteristics (D, S and CPD).14

Sub-region Drought characteristics Optimal distribution AIC RMSE K-S

BKQ

Duration (D) EXP -283.37 0.068 0.190*

Severity (S) Logn -310.04 0.053 0.123*

CPD GAM -374.31 0.029 0.062*

DHF

Duration (D) EXP -333.89 0.053 0.094*

Severity (S) GEV -386.58 0.033 0.072*

CPD WBL -404.9 0.028 0.061*

SY

Duration (D) EXP -204.75 0.061 0.148*

Severity (S) GEV -249.64 0.033 0.098*

CPD GEV -239.9 0.038 0.098*

XJWP

Duration (D) GEV -239.43 0.045 0.105*

Severity (S) Logn -251.49 0.039 0.106*

CPD GEV -236.55 0.047 0.113*

“*” denote that the optimal distribution passed the K-S test of α = 0.05.15

Table. 4 GOF evaluation of different copula functions about drought duration and severity in the HRB.16
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Copulas GOF test BKQ DHF SY XJWP

Clayton

K-S 0.122 0.119 0.129 0.115

C-M 0.151 0.14 0.079 0.084

RMSE 0.053 0.049 0.046 0.046

AIC -308.51 -340.68 -225.69 -237.35

Gumbel–Hougaard

K-S 0.13 0.092 0.099 0.141

C-M 0.144 0.079 0.058 0.098

RMSE 0.052 0.037 0.04 0.05

AIC -311.13 -373.13 -237.05 -231.59

Frank

K-S 0.124 0.103 0.109 0.138

C-M 0.133 0.094 0.051 0.089

RMSE 0.05 0.041 0.037 0.048

AIC -315.51 -363.3 -241.88 -235.26

Normal

K-S 0.302 0.091 0.107 0.131

C-M 1.147 0.082 0.056 0.088

RMSE 0.147 0.038 0.039 0.048

AIC -201.14 -371.35 -238.47 -235.51

t

K-S 0.236 0.091 0.106 0.126

C-M 1.05 0.08 0.059 0.088

RMSE 0.141 0.038 0.04 0.048

AIC -205.83 -372.16 -236.11 -235.6

Bold letters represent the optimal copula functions.1

Fig. 8 shows the contour plots of return period levels of drought events based on the optimal copula, and the return period2

Tand and Tor of drought events in each sub-region can be observed. The drought return period increased with the increase of3

drought duration and severity in the HRB. For the same drought event, return period Tand would be higher than Tor.4

Meanwhile, regarding the same return period, drought duration and severity from large to small were SY, BKQ, DHF and5

XJWP, respectively. In BKQ, the drought occurred from December 1981 to October 1982 was the most severe, lasting 116

months, with severity of 11.5, and return period Tand and Tor were 46 years and 11 years, respectively. In DHF, the drought7

occurred from September 2001 to July 2002 was the most severe, lasting 11 months, with severity of 16.2, and return period8

Tand and Tor were 33 years and 17 years, respectively. In SY, the most severe drought happened from May 2000 to November9

2001, lasting19 months, with severity of 24.1, and return period Tand and Tor were 152 years and 24 years, respectively.10

Similarly, the drought occurred from August 1981 to June 1983 was the most severe in XJWP, lasting 23 months, with11

severity of 28.7, and return period Tand and Tor were 371 years and 89 years, respectively.12
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1

Figure. 8 The return periods Tor and Tand of 1-month scale drought events in BKQ (a and e), DHF (b and f), SY (c and g) and XJWP (d and2

h).3

Table 5 exhibits the drought return periods Tand and Tor under different drought scenarios and their corresponding drought4

duration and drought severity in BKQ, DHF, SY and XJWP. For moderate drought, the return period Tand and Tor had similar5

regularity in BKQ, DHF, SY and XJWP, with the largest value in SY, followed by XJWP, DHF andBKQ. The distribution6

of Tand and Tor about severe and extreme drought were consistent in BKQ, DHF, SY and XJWP, which showed that SY has7

the highest return period Tor, followed by XJWP, DHF and BKQ, while the return period Tand in XJWP was greater than SY,8

BKQ and DHF. It should be noted that the drought presented the characteristics of smaller return period with low drought9

duration and small severity in the downstream of the reservoir. It is foreseeable that the downstream of the reservoir will be10

more likely to suffer from serious drought events with long duration.11

Table. 5 The drought return periods Tand and Tor under different drought scenarios and their corresponding drought factors in HRB.12

Sub-region Drought scenario Tand (Year) Tor (Year)
Drought duration

Drought severity
(Month)

BKQ
Moderate drought 2.2 1.8 3 3.3
Severe drought 5.0 3.4 6 5.3
Extreme drought 49.6 12.8 13 10.4

DHF

Moderate drought 2.3 1.7 3 2.6

Severe drought 4.5 3.1 5 4.3

Extreme drought 22.8 14.9 11 11.9

SY

Moderate drought 3.3 2.7 4 2.8

Severe drought 6.7 4.8 7 5.3

Extreme drought 71 18.6 16 20.7

XJWP

Moderate drought 3.2 2.6 4 3.5

Severe drought 7.3 4.4 6 6.1

Extreme drought 79 16.3 13 13.8
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4.3 The propagation from meteorological to hydrological drought1

Based on the superiority of SPI that it can be calculated at multi-time scales, the Tp were determined by calculating the2

Pearson correlation coefficient between the monthly SRI and the multi-time SPI. The Tp was indicated by the month with the3

strongest correlation. However, the correlation is high for a large variety of SPI time scales in some months, which makes4

the identification of Tp values highly uncertain. Therefore, in order to overcome this issue, the uncertainty of the correlation5

coefficients was calculated. And the Tp was expressed on SPI time scale with strong correlation and low uncertainty. The6

Pearson correlation coefficient and the Tp of BKQ, DHF, SY and XJWP were shown in Fig. 9. It can be seen from Fig. 9 that7

the Tp of SY and XJWP was significantly higher than that of BKQ and DHF in all months. As shown in Fig. 1, the BKQ and8

DHF are located in the eastern part of the HRB with mountainous terrain, while SY and XJWP are in the western plain. The9

slope of BKQ and DHF is greater than that of other sub-basins, indicating that the underlying surface has less water retention10

and buffer capacity than other regions. Meanwhile, the runoff process in the downstream of the reservoir can be redistributed11

on the spatial and temporal scale through the operation of the reservoir (Shiklomanov et al., 2000; Chang et al., 2019).12

Therefore, under the combined action of stronger water retention and buffer capacity and the redistribution of runoff13

processes by DHF reservoir operation, the Tp of SY and XJWP was higher than that of other regions.14

15

Figure. 9 The correlation between monthly SRI and multi-time scale SPI and the Tp in BKQ (a), DHF (b), SY (c) and XJWP (d).16

In order to further reveal the changes of Tp, the Tp in different periods are calculated. Fig. 10 expresses the results of the Tp17

included the four seasons, WS-P, S-P, and full series (F-series) at the four regions in the HRB. It is clear from Fig. 10 that,18
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from the point of view of the F-series, the Tp of SY (17.2 months) and XJWP (15.8 months) were obviously higher than the1

DHF ’s (4.5 months), which indicating that the Tp in the area downstream of DHF Reservoir was significantly postponed. In2

order to explore the reasons for the postponed of Tp, the evolution of meteorological factor was explored. The annual3

precipitation and its variation trend in the control areas of four hydrological stations during 1967-2019 are shown in Fig. 11.4

It was clear from Fig. 11 that there was no significant trend in annual precipitation at four sub-regions during 1967-2019,5

implying that the prolonged of drought propagation is not due to the change of meteorological factors. Meanwhile, as Fig. 106

showed, the Tp of BKQ (4.5 months) was equal to DHF ’s, whilst obviously lower than the SY and XJWP ’s. Therefore, the7

construction and operation of DHF reservoir is the main reason for the significant extension of Tp in the downstream of the8

reservoir. Many studies have also confirmed the impact of reservoir operation on hydrological drought (Wu et al., 2016; Wu9

et al., 2018; Wang et al., 2019). Moreover, the Tp of SY was higher than the XJWP ’s, implying that the improvement effect10

is weakness with the rising of the interval from hydrological stations to DHF reservoir.11

Similar to the F-series, the Tp of SY and XJWP were obviously higher than the BKQ ’s in the four seasons, while the Tp of12

DHF was not significantly different from that of BKQ. Meanwhile, on the whole, the seasonal variations of Tp in DHF, SY,13

and XJWP were brought into line with that of BKQ, showing long Tp in spring and winter and short in summer and autumn.14

Vegetation can consume more water through evapotranspiration during the season with higher temperatures. Higher15

temperatures in summer and autumn may be the reason for the relatively long Tp of spring and winter. In addition, there are a16

large amount of snow in winter and most of the snow melts in the next spring at HRB. Therefore, the longer Tp in winter and17

spring may be caused by the lower temperature in spring and winter and the melting of snow in spring. Besides, it is worth18

mentioning that, the Tp of XJWP was longer than that of SY in summer compared to other seasons. This change indicated19

that the duration of drought propagation at XJWP in summer was prolonged, which may be due to the partial agricultural20

water supply from DHF reservoir directly reaching downstream (XJWP) through channels without passing through SY in21

summer.22

For S-P, the Tp of SY and XJWP were both longer than BKQ, and with the rising of interval between hydrological station23

and DHF reservoir, the Tp showed a decreasing trend, which showed similar characteristics with the F-series. It is worth24

mentioning that the Tp of XJWP is longer than SY during WS-P, which was inconsistent with the conclusion that the Tp25

decreases as the increase of the interval between hydrological station and reservoir during S-P. The reason for this is most26

likely that part of agricultural water supply from DHF reservoir directly reaching downstream (XJWP) through channels27

without passing through SY, which increased runoff at XJWP while SY runoff was little affected. Moreover, agricultural28

water supplies mostly occur in the summer, which can be mutually verified with the results of seasonal perspective.29

In conclusion, the Tp of SY and XJWP were higher than BKQ ’s and DHF ’s in different periods. The Tp in the30

downstream of DHF reservoir has been remarkably strengthened in each period. Moreover, with the rising of interval31
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between hydrological station and DHF reservoir, the improvement effect was weakened. Meanwhile, the Tp showed longer in1

spring and winter, while shorter in summer and autumn and the Tp of XJWP was longer than that of SY in WS-P because of2

the effect of agricultural water supply of DHF reservoir.3

4
Figure. 10 The Tp of BKQ, DHF, SY and XJWP from meteorological to hydrological drought in different periods.5

6

Figure. 11 The variation trend of annual precipitation in the four sub-regions during 1967-2019. (a)-(d) denotes BKQ, DHF, SY and7

XJWP, respectively.8

4.4 The drought propagation thresholds for triggering hydrological drought9

In this study, drought propagation threshold model was established to explore the CPD thresholds for triggering hydrological10

drought. In the model, moderate, severe and extreme hydrological droughts defined in Section 4.2 were selected as specific11

hydrological drought scenarios. The drought duration and severity of each hydrological drought event were taken as the12

target respectively, and the corresponding CPD was regarded as the condition. Five common functions including Gamma,13

EXP, GEV, Logn, and WBL, were used to fit the sequence of CPD in the four sub-basins at HRB. The AIC, RMSE and K-S14

test were applied to select the best-fit marginal distribution, and the consequences were shown in Table 3. The commonly15

used bivariate theoretical copula functions, including Clayton, Frank, and Gumbel copula were considered for modeling the16
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dependence structure between CPD and drought duration (D-CPD) and severity (S-CPD), respectively. Based on the K-S,1

C-M, RMSE and AIC test, the GOF copula functions were selected and shown in Table 6. Fig. 12 shows the conditional2

probabilities of occurrence different scenarios hydrological droughts characterized by drought duration and severity under3

the condition of various CPD in four sub-regions. It can be seen from Fig. 12 that the CDP corresponding to the same4

probability in the four regions increased with the enhancement of drought level. Under the same probability, the CDP of5

upstream regions (BKQ and DHF) of HRB reservoir is smaller than that of midstream (SY) and downstream regions (XJWP)6

with the same level of drought.7

Table. 6 GOF evaluation of different copula functions between CPD and drought duration and severity at four sub-regions.8

Zones BKQ DHF SY XJWP

Copulas GOF test D - CPD S - CPD D - CPD S - CPD D - CPD S - CPD D - CPD S - CPD

Clayton

K-S 0.146 0.108 0.108 0.074 0.117 0.102 0.103 0.117

C-M 0.099 0.102 0.184 0.053 0.112 0.071 0.075 0.056

RMSE 0.043 0.044 0.057 0.031 0.055 0.044 0.044 0.038

AIC -330.95 -329.45 -324.83 -395.81 -212.48 -229.21 -242.11 -253.53

Gumbel–Hougaard

K-S 0.110 0.112 0.091 0.054 0.102 0.068 0.107 0.095

C-M 0.092 0.137 0.090 0.037 0.069 0.037 0.077 0.046

RMSE 0.042 0.051 0.040 0.025 0.043 0.032 0.044 0.034

AIC -334.98 -313.61 -365.50 -416.43 -230.42 -267.49 -240.88 -260.96

Frank

K-S 0.120 0.110 0.098 0.048 0.109 0.077 0.105 0.097

C-M 0.084 0.114 0.108 0.032 0.075 0.047 0.073 0.045

RMSE 0.040 0.046 0.044 0.024 0.045 0.036 0.043 0.034

AIC -339.81 -323.44 -355.05 -424.55 -227.24 -257.85 -243.17 -262.23

The bold letters represent the selected optimal copula functions.9

In order to quantitatively reveal the threshold triggering different scenarios of hydrological drought, the CPD threshold10

interval was obtained based on the drought propagation threshold model introduced in Section 3.5 (Table 7). It was clear11

from Table 7 that the CPD threshold of hydrological drought at all scenarios in the upstream region of HRB reservoir are12

significantly lower than that in the downstream basins. The upstream region is located in the eastern part of the HRB with13

mountainous terrain, while downstream region are in the western plain. The slope of upstream is greater than that of14

downstream, indicating that the underlying surface of upstream region has less water retention and buffer capacity.15

Meanwhile, due to the operation of the DHF reservoir, which provides agricultural and ecological water supply to the16

downstream in May-August, it can provide a strong supply to the downstream and alleviate the hydrological drought (Guo et17

al., 2020a). Therefore, under the combined action of the the stronger stagnant water and buffer capacity of underlying18

surface, and the water supply by the operation of DHF reservoir, the CPD threshold in the downstream region of DHF19

reservoir are significantly higher than that in the upstream basins.20

For the DHF and BKQ, both of them are located in mountainous areas with higher slope, but the vegetation coverage rate21

of BKQ is relatively larger than that of DHF, which indicated by the Normalized Difference Vegetation Index (NDVI) of the22
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HRB (Fig. 13). Therefore, BKQ has strong water retention and buffering capacity, which leads to the CDP of BKQ relatively1

greater than DHF. As for the SY and XJWP, both of them are located in the plain area with little difference in slope.2

However, the XJWP showed the lower CDP at all scenarios hydrological drought than SY. On the one hand, large reservoirs3

can postpone the propagation from meteorological drought to hydrological drought, and the effect decreases with the4

increase of the distance from the reservoir (Guo et al., 2020a). The distance between SY and DHF reservoir is greater than5

that from XJWP to DHF reservoir. On the other hand, as the urbanization process of SY is much faster than that of XJWP,6

the vegetation coverage rate of SY is lower than that of XJWP, which was confirmed in Fig. 13. During extreme7

meteorological droughts, vegetation is in a state of water shortage, and consumes more water through evapotranspiration,8

which would eaggravate drought in the basin (Teuling et al., 2013; Niu et al., 2019). Therefore, the higher vegetation9

coverage in XJWP is another reason why the CDP of the XJWP to extreme drought is lower than the SY.10

11
Figure. 12 Conditional probabilities of occurrence of extreme (a), severe (b), and moderate (c),hydrological drought under12
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the circumstance of various CPD at HRB.1

The mean value of CPD thresholds under different drought scenarios and the increase rate (IR) of CPD thresholds as the2

drought scenario intensified were calculated to investigate the difference of CPD increase rate in each sub-basin with the3

aggravation of hydrological drought. Table 8 exhibits the mean of CPD thresholds and the IR of CPD under extreme and4

severe drought relative to moderate drought in each sub-basin. It can be seen from Table 8 that the IR of CPD threshold in5

BKQ and XJWP were less than that of DHF and SY with the intensifying of drought scenario. Moreover, the IR of CPD6

threshold from severe drought to extreme drought were much lower than that from moderate drought to severe drought in7

BKQ and XJWP. These suggest that BKQ and XJWP are more sensitive to CPD in the event of drought, and a slight8

increase in CPD may trigger a more severe drought. Especially in severe drought scenario, a small increase in CPD is likely9

to trigger extreme drought. As shown in Fig. 1, DHF and SY are located around DHF reservoir, while BKQ and XJWP are10

far away from DHF reservoir. Therefore, the cause of this result is most likely to be the operation of DHF reservoir, which11

needs further research to confirm.12

Meanwhile, for a specific hydrological drought, the higher the CPD that triggered this hydrological drought is, the13

stronger the drought resistance of this basin is (Guo et al., 2020a). Therefore, the CPD thresholds for triggering hydrological14

drought can be employed to characterize the drought resistance of the basin in this study. According to the above CPD15

threshold analysis results of sub-basins, the drought resistance of the downstream region of DHF reservoir is stronger than16

that of the upstream region under all hydrological drought scenarios. SY showed the strongest resistance for all scenarios17

hydrological drought. The difference of drought resistance of each sub-basin mainly depends on the topography of the basin,18

the influence of reservoir operation on the watercourse hydraulic conditions and the change of underlying surface conditions19

caused by urbanization.20

21
Figure. 13 Normalized Difference Vegetation Index (NDVI) of the HRB.22
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Table. 7 CPD threshold intervals for triggering different scenarios of hydrological drought at HRB.1

Drought scenario Moderate Severe Extreme

BKQ CPD (mm) [204.3, 222.4] [238.2, 239.8] [246.5, 253.1]
DHF CPD (mm) [146.8, 172.5] [188.7, 213.8] [234.4, 253.7]
SY CPD (mm) [258.0, 321.7] [339.3, 346.6] [357.6, 461.7]

XJWP CPD (mm) [217.0, 226.3] [253.8, 255.5] [265.9, 271.1]

Table. 8 The mean and the IR of CPD thresholds in each sub-basin.2

Drought scenario
BKQ DHF SY XJWP

CPD (mm) IR (%) CPD (mm) IR (%) CPD (mm) IR (%) CPD (mm) IR (%)

Extreme 249.8 244.1 409.7 268.5
4.5 21.3 19.4 5.5

Severe 239.0 201.2 343.0 254.6
12.0 26.1 18.3 14.9

Moderate 213.4 159.6 289.9 221.6

5 Conclusions3

In this paper, SPI and SRI were adopted to characterize meteorological and hydrological drought respectively, and the4

spatiotemporal variation characteristics of hydrological drought were investigated in the HRB from 1967 to 2019.5

Meanwhile, the joint distribution of drought duration and severity was established by using copula function to calculate the6

return period of hydrological drought. Furthermore, the Tp were determined by calculating the Pearson correlation7

coefficients between 1-month SRI and multi-time scale SPI. Finally, the CPD threshold intervals for triggering hydrological8

drought are obtained by the drought propagation threshold model. From the results, primary conclusions are given as9

follows:10

(1) the hydrological drought showed gradually strengthed trend from the downstream to the upstream of HRB from 196711

to 2019, and strengthened significantly in BKQ; From seasonal perspective, drought presented an strengthening at each12

sub-basin in summer and autumn. Nevertheless, drought showed a significant strengthening trend in spring and winter at the13

SY and XJWP. From the WS-P and S-P perspective, drought presented an strengthening in S-P at each sub-basin. And, the14

drought showed an strengthening trend at BKQ and DHF, while an weakening trend at SY and XJWP in WS-P.15

(2) The downstream of the HRB were vulnerable districts to hydrological drought with longer drought duration and higher16

severity. Furthermore, the upstream region of the HRB was more sensitive to short-duration drought, which was dominated17

by two-month and three-month drought events.18

(3) The return periods Tand of moderate, severe, and extreme hydrological drought in BKQ, DHF, SY and XJWP were2.2,19

5.0, 49.6, 2.3, 4.5, 22.8, 3.3, 6.7, 71.0, 3.2, 7.3 and 79.0 years, respectively. And, the return periods Tor of moderate, severe,20

and extreme hydrological drought in DHF, SY and XJWP were1.8, 3.4, 12.8, 1.7, 3.1, 14.9, 2.7, 4.8, 18.6, 2.6, 4.4 and 16.321

years, respectively.22
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(4) The average Tp in BKQ, DHF, SY and XJWP were 4.1, 4.3, 14.9, and 1.9 months, respectively, which indicated that1

the Tp in the downstream of DHF reservoir has been significantly improved owing to the operation of DHF. Moreover, with2

the increase of interval between hydrological station and DHF reservoir, the improvement effect was weakened.3

(5) The mean CPD thresholds of moderate hydrological drought at BKQ, DHF, SY and XJWP were 213.4, 159.6, 289.94

and 221.6 mm, severe were 239.0, 201.2, 343.0 and 254.6 mm, and extreme were 249.8, 244.1, 409.7 and 268.5 mm,5

respectively. The midstream of HRB showed the highest drought propagation threshold at moderate and severe drought6

scenarios, while downstream at extreme drought scenario. And, the difference of CPD thresholds of each sub-basin mainly7

depends on the topography of the basin, the evolution of river hydraulic condition by reservoir operation and the change of8

underlying surface conditions caused by urbanization.9

Generally, the findings of this study help to reveal the spatiotemporal evolution, return period characteristics and10

meteorological triggering conditions of hydrological drought, in particular, the improved drought propagation threshold11

model helps to further enhance the understanding on the drought propagation process, thus contributing to the development12

of efficient hydrological drought early warning system, which is of great significance for local drought assessment and13

management. Note that the framework and methodology of drought research in this paper are universal and generalized, so it14

can be extended to other regions without restriction.15
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