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Abstract. The change of climate and environmental conditions has obviously effecting on the evolution and propagation of8

drought in river basins. Hun River basin (HRB) is a region seriously troubled by drought in China, so it is particularly urgent9

to evaluate the evolution of hydrological drought and investigate the threshold of triggering hydrological drought in HRB. In10

this study, Standardized runoff Index (SRI) was implied to reveal the evolution characteristics of hydrological drought.11

Meanwhile, based on drought duration and severity identified by the run theory, the copula function with the highest12

goodness of fit was selected to calculate the return period of hydrological drought. Furthermore, the propagation time from13

meteorological to hydrological drought were determined by calculating the Pearson correlation coefficients between 1-month14

SRI and multi-time scale Standardized precipitation index (SPI). Finally, based on the improvement of the drought15

propagation model, the drought propagation thresholds for triggering different scenarios of hydrological drought and its16

potential influence factors were investigated. The results show that: (1) hydrological drought showed a slight strengthening17

trend in the eastern, while presented alternate characteristics of drought and flood in the western and center of the HRB; (2)18

the western and center of the HRB were vulnerable districts to hydrological drought with longer drought duration and higher19

severity; (3) the most severe drought with drought duration of 23 months, severity of 28.7, and corresponding return periods20

that both exceed the thresholds of duration and severity and exceed the threshold of duration or severity were 371 years and21

89 years, respectively; (4) the propagation time from meteorological to hydrological drought in the downstream of large22

reservoir has been significantly prolonged owing to the operation of large reservoir; and (5) the drought propagation23

threshold in the downstream of HRB was remarkably higher than that of the upstream at all drought scenarios. Additionally,24

SY showed the highest drought propagation threshold at moderate and severe drought scenarios, while XJWP at extreme25

drought scenario.26

1 Introduction27

Drought is a complex natural disaster caused by the abnormal decrease of precipitation, which has a grievous fatal effects on28

agriculture, ecology and social economy (Oladipo, 1985; Huang and Chou, 2008; Huang et al., 2015; Fang et al., 2019; Guo29
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et al., 2019). Compared with other natural disasters, droughts cause much more severe damages than other natural disasters1

because of their extensive spatial impact and generally longer duration (Mishra and Singh, 2010). In the last few decades,2

remarkable changes in global climate and environment aggravated the occurrence of hydrological extreme events3

characterized by drought (Wilhite and Glantz, 1985; Palmer and Räisänen, 2002; Kunkel, 2003; Beniston and Stephenson,4

2004; Christensen and Christensen, 2004; Leng et al., 2015).5

Hydrological drought, mainly lagged the occurrence of meteorological drought, manifests in the case of long-term lack of6

precipitation, resulting in the overall water supply shortage in terms of river flow, groundwater and reservoir storage7

(Vicente-Serrano and LópezMoreno, 2005; Van Lanen et al., 2013; Joetzjer et al., 2013). Developing reliable drought indices8

can reveal the hydrological drought status of the basin well (Mishra and Singh, 2011; Wang et al., 2020). Standardized9

runoff Index (SRI), established based on runoff variation, is commonly applied in hydrological drought evaluation and has10

been widely used in drought frequency analysis and drought risk management (Vicente-Serrano et al., 2012; Rivera et al.,11

2017; Chen et al., 2018; Xu et al., 2019; Yang et al., 2020). Therefor, based on the SRI, the spatio-temporal evolution of12

drought events can be quantitatively revealed. Run theory (Yevjevich, 1967), a time series analysis method, is widely13

applied to identify drought events and extract drought characteristic values, such as drought duration and severity (Kim et al.,14

2011; Liu et al., 2016a, 2016b; Wu et al., 2017; Sun et al., 2019). The copula function can combine multiple drought15

characteristic variables well, which provides an effective method for multivariate frequency analysis (Lee et al., 2013; Vyver16

and Bergh 2018; Dash et al., 2019; Lindenschmidt and Rokaya, 2019). Thus, the copula function with the highest goodness17

of fit would be selected to establish the joint distribution of drought duration and drought severity, and calculate the return18

period of hydrological drought, which has significant practical significance for regional hydrological drought prediction19

(Kao and Govindaraju, 2009; Mirabbasi et al., 2012).20

In general, hydrological drought is a response to the accumulation of meteorological drought conditions. Many scholars21

have made lots of attempts to study the relationship between hydrological drought and meteorological drought (Pandey and22

Ramasastri, 2001; Van Loon et al., 2012; Leng et al., 2015; Barker et al., 2016; Sattar et al. 2019). Amongst these previous23

studies, more efforts have been focused on the calculation of drought propagation time (Lorenzo-Lacruz et al., 2013; Huang24

et al., 2017; Gevaert et al., 2018). There are few studies on the intensity of the meteorological drought that triggers25

hydrological drought with different levels. Guo et al. (2020b) explored the drought propagation thresholds of meteorological26

drought for triggering hydrological drought at various levels based on the copula-based conditional probability model. The27

duration and severity of meteorological drought were used as the detection values to trigger hydrological drought. However,28

it is not ideal to use drought duration or severity as meteorological drought detection value for triggering hydrological29

drought because of its relative absolute and inconvenient monitoring. Guo et al. (2020a) proposed a drought propagation30

threshold model based on Bayesian networks, which took cumulative precipitation deficit as the condition and single time31
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scale SRI as the target to clarify the impact of large reservoirs on watershed drought tolerance by calculating cumulative1

deficit rainfall triggering different levels of hydrological drought. However, although single time scale SRI can capture2

hydrological regime changes sensitively and accurately, a severe drought event usually lasts for several months. Therefor, it3

is not accurate to take the cumulative precipitation deficit calculated with a single time scale SRI as the threshold for4

triggering hydrological drought in the drought propagation threshold model. And, it is highly necessary to select appropriate5

hydrological and meteorological drought factors as targets and conditions to improve the drought propagation threshold6

model so as to obtain more accurate propagation threshold for triggering different scenarios of hydrological drought.7

Thus, in this study, SRI and Standardized Precipitation Index (SPI) were implied to characterize meteorological drought8

and hydrological drought, respectively (McKee et al., 1993; Shukla and Wood, 2008). The run theory was applied to SRI9

series to identify hydrological drought events and capture their corresponding drought characteristic values, drought duration10

and intensity. SRI and drought characteristic values were implied to quantitatively reveal the evolution characteristics of11

hydrological drought. Meanwhile, the copula functions with the highest goodness of fit were selected to establish the joint12

distribution of drought duration and drought severity, and calculate the return period of hydrological drought. Then, the13

Pearson correlation coefficients between 1-month SRI and multi-time scale SPI were calculated to determinate the drought14

propagation time from meteorological drought to hydrological drought (i.e. PTMH) (Barker et al., 2016; Huang et al., 2017;15

Fang et al., 2020). Based on the PTMH and drought duration, the cumulative precipitation deficit of each hydrological16

drought event was determined, which was applied to characterize meteorological drought. The drought duration and severity17

were used to describe a single hydrological drought event. Furthermore, based on the copula function and Bayesian model, a18

improvement drought propagation threshold model was established, including the cumulative precipitation deficit, drought19

duration and drought intensity. Finally, the drought propagation threshold interval would be determined according to the20

magnitude of the conditional probability of occurrence of hydrological drought events under different cumulative21

precipitation deficit conditions.22

In general, the primary objectives of this paper are: (1) to reveal the spatiotemporal evolution characteristics of23

hydrological drought; (2) to select the best-fit copula and calculate the hydrological drought return period; (3) to determine24

the PTMH; (4) to establish drought propagation threshold model based on Bayesian network to determinate the propagation25

thresholds for triggering different scenarios of hydrological drought.26

2 Study region and data27

The HRB, as presented in Fig. 1, is located in Liaoning Province, NE China and covers an area of 11,481 km2, among which28

the hilly area occupies 67% and plain area 33%. The basin belongs to the temperate semi-humid and semi-arid monsoon29

climate, with four distinct seasons and the same season of rain and heat, and weak climate differences within the basin. The30
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warm and wet air flow from the low latitude tropical monsoon circulation prevails in the summer brings more rainy days,1

while the Siberia-Mongolia high pressure dry cold continental air flow occurs during the winter, prevailing north wind and2

northwest wind, resulting in low temperature and less precipitation. The multi-year average precipitation is approximately3

780 mm, with obvious seasonal characteristics, and the precipitation in the main flood season (July to August) accounts for4

about 48.5% of the annual precipitation.5

Dahuofang (DHF) reservoir, located in the middle and upper reaches of HRB, is a large-scale water control project, with a6

total storage capacity of 2.268 billion cubic meters. DHF reservoir plays a vital function in flood control and water supply, as7

well as for power generation and fish farming. Since the operation of DHF Reservoir in 1958, the irrigation, the river8

ecosystem of the region and the hydrological condition of the river channel have been greatly affected. Three hydrological9

stations in HRB were selected from upstream to downstream: Dahuofang (DHF), Shenyang (SY), and Xingjiawopeng10

(XJWP) stations to explore the spatial distribution of hydrological drought in this study. The three hydrological stations11

selected are located downstream of each basin, so the hydrological information of each basin can be reflected by the status of12

the corresponding hydrological stations (Fu et al., 2004). They represent the hydrological conditions of above DHF, DHF to13

SY and SY to XJWP, respectively. The monthly runoff dates of these four hydrological stations and monthly precipitation14

data of the twenty meteorological stations during 1967-2019 were adopted in this study, which were collected from the15

Hydrological Data of Liao River Basin from the Year Book of Hydrology P.R.CHINA. Additionally, thiessen polygon16

method was applied to calculate the precipitation of meteorological stations to get the corresponding area precipitation of17

each hydrological station.18

3 Methodology19

3.1 Standardized precipitation index (SPI) and Standardized runoff Index (SRI)20

In this paper, meteorological and hydrological drought were characterized by SPI and SRI, respectively. SPI was proposed21

by McKee et al. (1993) to characterize the drought conditions in Colorado, USA, and it has been recommended by the World22

Meteorological Organization as the primary meteorological drought index to be used. SRI was proposed by Shukla and23

Wood (2008) to reflect drought from the perspective of hydrology. Both SPI and SRI, established based on historical24

precipitation and runoff data respectively, can monitor droughts over a range of time scales. SPI and SRI were calculated in25

similar calculation procedures, in which gamma distribution were used to describe the variation of precipitation and runoff,26

respectively. The cumulative probability of precipitation / runoff can be obtained based on gamma distribution, and then27

cumulative probability was converted to the standard normal distribution to obtain SPI / SRI values. More details calculation28

can be found in Huang et al. (2017). According to the SPI/SRI values, droughts are classified into five grades. The criteria29

are shown in Table 1.30
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1

Figure. 1 Locations of the HRB, DHF reservoir, and the meteorological and hydrological stations.2

Table. 1 Definition of drought conditions based on the SPI (SRI).3

State Condition Criterion

1 Non-drought SPI(SRI)>-0.5

2 Mild drought -1.0<SPI(SRI)≤-0.5

3 Moderate drought -1.5<SPI(SRI)≤-1.0

4 Severe drought -2.0<SPI(SRI)≤-1.5

5 Extreme drought SPI(SRI)≤-2.0

3.2 The Mann-Kendall trend test method4

The Mann-Kendall (M-K) trend test (Mann, 1945; Kendall, 1975), a non-parametric statistical testing method, is widely used5

to accessing the trends of hydrological variables. Therefore, this paper adopted M-K method to investigate the trend6

characteristics of hydrological drought on the seasonal, and annual scales in the HRB during 1967-2019 with the significance7

level of 0.05 and the corresponding |U| = 1.96. The calculation procedure of the M-K method was described in Huang et al.8

(2016).9

3.3 Run theory and copula functions10
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Run theory is a time series analysis method which is widely applied to identify drought events and extract drought1

characteristic values (Zhao et al., 2017; Sun et al., 2019). In this paper, based on the three thresholds SRI0 (- 0.5), SRI1 (- 1.0)2

and SRI2 (0.0), the run theory was used to identify three drought factors, namely drought event, duration and severity, from3

the 1-month scale SRI sequence. Fig. 2 shows the process of drought recognition based on the threshold method, and the4

specific identification process is as follows:5

(1) Drought characteristics are considered to appear when SRI value is less than SRI 0. Hence, it is preliminarily believe6

that drought occurs during the period from t1 when SRI value is equal to or less than SRI0 to t2 when SRI value is equal to7

SRI0 or even larger. The run duration (i.e. t2-t1) and the absolute value of the accumulated SRI during the drought duration8

are identified as drought duration (D) and drought severity (S), respectively. For example, five drought processes (i.e. a, b, c,9

d and e) can be recognized in Fig. 2.10

(2) On the basis of (1), if a drought has a duration of just one month, it is considered as a drought event only when its11

corresponding SRI value is less than SRI1, otherwise, it is not (c).12

(3) If a drought event (e) occurs one month later than the preceding one (d), and the SRI value in between is less than SRI2,13

these two drought events (d and e) are regarded as one combined drought event, otherwise, they are considered as two14

independent drought events. The severity and duration of the combined drought event is S=Sd+Se, and D=Dd+De+1,15

respectively.16

17
Figure. 2 Drought identification process and definition of drought characteristic variables.18

The sequences of drought duration and severity determined by the run theory were then fitted by five common functions,19

including Gamma (GAM), Generalized extreme value (GEV), Exponential (EXP), Lognormal (Logn) and Weibull (WBL)20

distributions (Rad et al., 2017; Wang et al., 2020). And, Kolmogorov-Smirnov (K-S), Root mean square error (RMSE) and21

AIC test were employed to identify the best-fit marginal distribution functions. Copula function is a multidimensional joint22

distribution function defined in [0,1], and can integrate marginal distributions of several dependent random variables to23

structure a joint probability distribution with multiple features. Previous studies have proved that the copula function is a24

high-efficiency tool for multivariate probability analysis of drought (Hao and Singh, 2015; Salvadori and De Michele, 2015;25

Ren et al., 2020). Its equation is expressed as follows:26
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�(�, �) = �−1 � � , � � (1)1

where C(u,v) represents the copula function combining two random variables u and v; and φ is convex function.2

In this study, the dependency structures of drought duration and severity were modeled with the commonly used binary3

copula functions, including Gumbel–Hougaard, Clayton, Frank, t and Normal copula (Lee et al., 2013 and Wang et al., 2020).4

Kolmogorov-Smirnov (K-S), Cramér-von Mises (C-M) (Genest et al., 2011 and Rad et al., 2017), RMSE and AIC test were5

applied to select the best copula function with highest goodness of fit (GOF). In addition, several joint probability6

expressions corresponding to bivariate return periods were used to further explore the occurrence frequency of hydrological7

drought. The expressions of joint probability are defined as:8

���� = � �
� �>�∩ �>�

= � �
1−�� � −�� � +� �,�

(2)9

��� = � �
� �>� ∪ �>�

= � �
1−� �,�

(3)10

where E(L) denotes the expected value of drought interval and FD (d) and FS (s) are marginal cumulative density function of11

drought duration and severity, respectively. F(d,s) is joint distribution function of drought duration and severity. Tand is the12

return period of drought events that both exceed the thresholds of duration (D ≥ d) and severity (S ≥ s) and Tor is return13

period of drought events that considered exceed the threshold of duration (D ≥ d) or severity (S ≥ s).14

3.4 The drought propagation time15

In general, hydrological drought is a response to the accumulation of meteorological drought conditions. Generally, the16

change of hydrological regime can be characterized sensitively by the single time scale SRI, and the accumulation of17

meteorological drought in the preceding n months can be reflected by the n time scale SPI. The time scale of SPI with the18

highest correlation with the single time scale SRI is regarded as drought propagation time (i.e. PTMH) (Barker et al., 2016;19

Huang et al., 2017; Fang et al., 2020). Therefore, Pearson correlation between monthly scale SRI and multi-time scale SPI20

(1-24 months) was adopted in this study to determine the PTMH, which is symbolize as TP.21

3.5 The calculation of drought propagation threshold22

Bayesian network, a probabilistic graph model, is widely used in drought impact assessment (Sattar et al., 2019; Guo et al.,23

2020a). Therefore, a threshold model of drought propagation based on Bayesian network is established in this study.24

Suppose X (x1,x2…,xn) and Y (y1,y2…,yn) are two random variables, with X and Y as conditions and targets respectively.25

Then, in the case of X ≥ u , the probability of Y ≥ v can be expressed as:26

� � ≥ � � ≥ � = � �≥�,�≥�
� �≥�

= 1−� � −� � +� � � ,� �
1−� �

(4)27
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where C(x (u), y (v)) represents the joint cumulative probability of X ≤ u and Y ≤ v; x (u) and y (v) denote the cumulative1

probability of X ≤ u and Y ≤ v; x and y are the marginal cumulative distribution of two random variable X and Y. In addition,2

when u2≥ X ≥ u1 , the probability of Y ≥ v is expressed as:3

� � ≥ � �1 ≤ � ≤ �2 = � �≥�,�1≤�≤�2
�1≤�≤�2

= � �2 −� �1 −� � �2 ,� � +� � �1 ,� �
� �2 −� �1

4

= 1 − � � �2 ,� � −� � �1 ,� �
� �2 −� �1

(5)5

where u1 and u2 are the upper and lower limits of the given interval.6

Fig 3a shows the graphical model of Bayesian network. It describes the causal relationships among the cumulative7

precipitation deficit (CPD, mm), drought duration (D), severity (S) and hydrological drought levels (HDL). The response8

variable Y here is hydrological drought with two components duration (D) and severity (S), and the feature variable X that9

characterizes Y is cumulative precipitation deficit (CPD). Among them, the CPD is the cumulative precipitation deficit of10

each hydrological drought event during the PTMH, which is defined as (Guo et al., 2020a):11

���� =− max
�≥�≥1 �=�−��+1

� �� − ���� + �=1
�−� �� − ���� (6)12

where CPDn is the corresponding CPD for the nth drought; Pi denotes the precipitation during the period of i; Pm represents13

the average precipitation of the mth month. As for Fig 3b showed, according to the method of determining the marginal14

distribution described in Section 3.3, the best-fit marginal distribution function of CPD was identified. The commonly used15

bivariate theoretical copula functions, including Clayton, Frank, and Gumbel copula were considered for modeling the16

dependence structure between CPD and drought duration and severity, respectively. And, K-S, C-M, RMSE and AIC test17

were applied to select the GOF copula function. Then, the joint distributions of CPD and D (S) were established based on the18

GOF copula functions. As shown in Fig 3c, in this model, the drought duration and severity of each drought event are taken19

as the target, respectively, and the corresponding CPD is identified as the condition. The conditional probability of20

hydrological drought under different CPD conditions would be calculated. Then, the CPD corresponding to the confidence21

level of 0.95 was identified to determine the drought propagation threshold for triggering hydrological drought events.22

file:///D:/Dict/8.9.9.0/resultui/html/index.html
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1
Figure. 3 The schematic of determining the drought propagation threshold based on bivariate copula and Bayesian network.2
(a) The graphical model of Bayesian network about CPD, D, S and HDL; (b) Modelling the dependence of CPD on3
hydrological drought; (c) Quantifying the CPD threshold under multiple drought levels.4

4 Results and discussions5

4.1 Spatiotemporal evolution of hydrological drought6

For hydrological drought, the change of hydrological regime can be sensitive and accurately captured by single time scale7

SRI. Therefore, the single time scale SRI is applied to study the spatiotemporal evolution of hydrological drought. Fig. 48

depicts the temporal variation trend of hydrological drought based on the monthly scale SRI in HRB from 1967 to 2019,9

which presented difference temporal evolution characteristics in each sub-basin. It is clear from Fig. 4a that the SRI10

sequence showed a non-significant decreasing trend in the DHF, which indicated that the drought showed slight11

strengthening trend in DHF. The significant strengthening trend of drought occurred from March 1991 to September 2004,12

with average SRI value of -0.54 and minimum of -3.33. Fig. 4 (b, c) presents that the temporal evolution characteristics of13

hydrological drought were similar in SY and XJWP, showed alternate characteristics of drought and flood. Droughts14

occurred mainly from May 1977 to April 1984, November 1988 to November 1993 and May 2000 to September 2003 in SY,15

with average SRI value of -0.84, -0.56 and -0.70, respectively. Similarly, droughts occurred mainly from April 1978 to May16

1985, November 1988 to July 1993 and March 2000 to March 2005 in XJWP, with average SRI value of -0.57, -0.50 and17

-0.81, respectively.18
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1

Figure. 4 Temporal variation of hydrological drought based on monthly scales in HRB during 1967-2019. (a) - (c) denote DHF, SY and2

XJWP, respectively.3

The multi-timescale SRI applies to describe the mean hydrological regime during the preceding few months. Therefore,4

the SRI-3 and SRI-12 were calculated to analyze the seasonal and annual variation trend of hydrological drought. The SRI-35

values in February, May, August and November were applied to describe the variations of hydrological drought in winter,6

spring, summer and autumn, respectively. Fig. 5 presents the temporal variation of hydrological drought at seasonal scales in7

HRB from 1967 to 2019. From the interannual perspective, the drought trend was different in sub-regions, with the linear8

slope of SRI changed from -0.089/10a to 0.469/10a. SRI showed a decreasing trend at spring, summer and autumn in DHF,9

with the linear slope of SRI were -0.025/10a, -0.008/10a and -0.050/10a, which indicated that drought was aggravating at10

spring, summer and autumn. The linear slope of SRI was 0.167/10a and 0.207/10a at spring and winter, while -0.054/10a and11

-0.079/10a at summer and autumn in SY, indicating that drought was strengthening in summer and autumn and decreasing in12

spring and winter. Similar to the temporal characteristics of SY, drought showed a strengthening trend in summer and13

autumn, while a decreasing trend in spring and winter in XJWP with the linear slope of SRI were -0.083/10a, -0.089/10a,14

0.319/10a and 0.469/10a, respectively. Moreover, it can be observed from Fig. 5 that both continuous drought and15

drought-flood abrupt alternation may occur in HRB within the year.16

file:///D:/Dict/8.9.9.0/resultui/html/index.html


11

In order to further explore the temporal evolution characteristics of hydrological drought, the trend characteristic U values1

of M-K trend test of SRI-3 and SRI-12 was calculated. Table 2 shows the calculation results of trend characteristic value U at2

seasonal and annual scales. It is clear from Table 2 that the characteristics of drought trends in different periods and stations3

are obviously different. On the annual scale, the U value of DHF, SY and XJWP stations were -0.84, -0.37 and -0.09,4

indicating an non-significant strengthening trend of drought in the HRB. On the seasonal scale, the U values of each5

sub-basin in summer and autumn were less than zero, which indicated that drought was strengthening in summer and autumn6

in HRB. The U values of DHF were less than zero in spring and winter, which indicated that drought showed a strengthening7

trend in spring and winter at DHF. However, the U values of SY and XJWP stations were 2.15, 2.34, 3.67 and 6.64 in spring8

and winter, respectively. These trend characteristic U values passed the significance test of α = 0.05, indicated that the9

drought showed a significant decreasing trend in spring and winter at the SY and XJWP of HRB. All in all, the drought at10

DHF showed an strengthening in all seasons and showed an strengthening trend in summer and autumn, while an decreasing11

trend in spring and winter at SY and XJWP, which can be confirmed with the conclusions of previous section.12

13

file:///D:/Dict/8.9.6.0/resultui/html/index.html


12

Figure. 5 Temporal variation of hydrological drought at seasonal scales in the HRB from 1967 to 2019. (a)-(c) denotes DHF, SY and1

XJWP, respectively.2

Table. 2 U values of SRI at the seasonal and annual scales in the HRB during 1967-2019.3

Sub-region DHF SY XJWP

U value Trend U value Trend U value Trend

Spring -0.52 downward 2.15 upward 3.67 upward

Summer -0.4 downward -1.47 downward -1.49 downward

Autumn -0.95 downward -1.46 downward -1.15 downward

Winter -0.11 downward 2.34 upward 6.64 upward

Year -0.84 downward -0.37 downward -0.09 downward

The bold letters denote that the U values passed the MK trend test of α = 0.05.4

Based on the run theory, three drought factors, namely drought events, duration and severity, were identified from the5

1-month scale SRI sequence. Drought events which were detected sum up to 133 in 3 districts of HRB during 1967-2019.6

DHF was most frequently affected by drought, with a total of 57 drought events, followed by XJWP and SY with 39 and 377

drought events, respectively. The box chart of drought duration and severity was drawn, and the spatial distribution of8

drought was discussed (Fig. 6). Fig. 6 shows that districts with the mean of drought duration more than 5 months included9

SY and XJWP, while the median drought duration of XJWP was greater than DHF and SY. Besides, SY and XJWP have10

experienced extremely long duration drought events lasting more than 23 months. The districts in the west (XJWP) and11

center (SY) were more likely experience longer drought events and the longer-duration drought events was most likely to12

occur in central regions. Drought severity and drought duration maintained a highly consistency. The highest drought13

severity occurred in XJWP and the mean drought severity of DHF was less than XJWP and SY (Fig. 6). In summary,14

western and center of the HRB were vulnerable district to hydrological drought, where the drought duration and severity15

were more serious than in eastern (DHF) districts. Nevertheless, the eastern region of the HRB was more sensitive to16

short-duration drought, which were dominated by two-month and three-month drought events.17

18
Figure. 6 Box chart of duration and severity of hydrological drought.19

4.2 Periodicity analysis20
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In order to grasp the occurrence frequency of hydrological drought in HRB , the periodicity was analyzed by calculating the1

return period. In this study, five common functions including Gamma, EXP, GEV, Logn, and WBL, were used to fit the2

sequence of duration and severity of hydrological drought events in the three sub-basins of HRB. AIC, RMSE and K-S test3

were applied to select the best-fit marginal distribution, and the results were shown in Table 3. Table 3 illustrates that the4

optimal distribution for different drought characteristics passed the K-S test (α = 0.05) in all the four sub-regions. The joint5

distribution of drought duration and severity in the HRB was determined with the application of copula functions. According6

to the values of K-S, C-M, RMSE and AIC, the GOF copula functions were selected as the best joint distribution of drought7

duration and severity in the HRB (Table 4).8

Table. 3 Optimum marginal distribution function of drought characteristics (D, S and CPD).9

Sub-region Drought characteristics Optimal distribution AIC RMSE K-S

BKQ

Duration (D) EXP -283.37 0.068 0.190*

Severity (S) Logn -310.04 0.053 0.123*

CPD GAM -374.31 0.029 0.062*

DHF

Duration (D) EXP -333.89 0.053 0.094*

Severity (S) GEV -386.58 0.033 0.072*

CPD WBL -404.9 0.028 0.061*

SY

Duration (D) EXP -204.75 0.061 0.148*

Severity (S) GEV -249.64 0.033 0.098*

CPD GEV -239.9 0.038 0.098*

XJWP

Duration (D) GEV -239.43 0.045 0.105*

Severity (S) Logn -251.49 0.039 0.106*

CPD GEV -236.55 0.047 0.113*

“*” denote that the optimal distribution passed the K-S test of α = 0.05.10

Table. 4 GOF evaluation of different copula functions about drought duration and severity in the HRB.11

Copulas GOF test DHF SY XJWP

Clayton

K-S 0.119 0.129 0.115

C-M 0.140 0.079 0.084

RMSE 0.049 0.046 0.046

AIC -340.68 -225.69 -237.35

Gumbel–Hougaard

K-S 0.092 0.099 0.141

C-M 0.079 0.058 0.098

RMSE 0.037 0.040 0.050

AIC -373.13 -237.05 -231.59

Frank

K-S 0.103 0.109 0.138

C-M 0.094 0.051 0.089

RMSE 0.041 0.037 0.048

AIC -363.30 -241.88 -235.26

Normal

K-S 0.091 0.107 0.131

C-M 0.082 0.056 0.088

RMSE 0.038 0.039 0.048

AIC -371.35 -238.47 -235.51



14

t

K-S 0.091 0.106 0.126

C-M 0.080 0.059 0.088

RMSE 0.038 0.040 0.048

AIC -372.16 -236.11 -235.60

Bold letters represent the optimal copula functions.1

Fig. 7 shows the contour plots of return period levels of drought events based on the optimal copula, and the return period2

Tand and Tor of drought events in each sub-region can be observed. The drought return period increased with the increase of3

drought duration and severity in the HRB. For the same drought event, return period Tand would be higher than Tor.4

Meanwhile, regarding the same return period, drought duration and severity from large to small were SY, DHF and XJWP,5

respectively. In DHF, the drought occurred from September 2001 to July 2002 was the most severe, lasting 11 months, with6

severity of 16.2, and return period Tand and Tor were 33 years and 17 years, respectively. In SY, the most severe drought7

happened from May 2000 to November 2001, lasting19 months, with severity of 24.1, and return period Tand and Tor were8

152 years and 24 years, respectively. Similarly, the drought occurred from August 1981 to June 1983 was the most severe in9

XJWP, lasting 23 months, with severity of 28.7, and return period Tand and Tor were 371 years and 89 years, respectively.10

11

Figure. 7 The return periods Tand and Tor of 1-month scale drought events in DHF (a and d), SY (b and e) and XJWP (c and f).12

Besides, according to the univariate empirical frequency of drought duration and severity, three typical drought scenarios13

were selected to analyze the return periods. The scenarios corresponding to the empirical frequency of 0.50, 0.25 and 0.05 of14

the univariate were defined as moderate, severe and extreme drought (i.e. Moderate drought is defined as the drought when15

the duration and intensity of drought is greater than the median corresponding to 0.5). Table 5 exhibits the drought return16
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periods Tand and Tor under different drought scenarios and their corresponding drought duration and drought severity in DHF,1

SY and XJWP. For moderate drought, the return period Tand and Tor had the same regularity in DHF, SY and XJWP, with the2

largest value in SY, followed by XJWP and DHF. As for severe drought, the distribution of Tand and Tor about severe and3

extreme drought were consistent in DHF, SY and XJWP, which showed that SY has the highest return period Tor, followed4

by XJWP and DHF, while the return period Tand in XJWP was greater than SY and DHF. It should be noted that the drought5

presented the characteristics of smaller return period with high drought duration and large severity in eastern of the HRB. It6

is foreseeable that eastern districts will be more likely to suffer from more serious drought events.7

Table. 5 The drought return periods Tand and Tor under different drought scenarios and their corresponding drought factors in HRB.8

Sub-region Drought scenario Tand (Year) Tor (Year)
Drought duration

Drought severity
(Month)

DHF

Moderate drought 2.3 1.7 3 2.6

Severe drought 4.5 3.1 5 4.3

Extreme drought 22.8 14.9 11 11.9

SY

Moderate drought 3.3 2.7 4 2.8

Severe drought 6.7 4.8 7 5.3

Extreme drought 71 18.6 16 20.7

XJWP

Moderate drought 3.2 2.6 4 3.5

Severe drought 7.3 4.4 6 6.1

Extreme drought 79 16.3 13 13.8

4.3 The propagation from meteorological to hydrological drought9

Based on the superiority of SPI that it can be calculated at multi-time scales, the Tp were determined by calculating the10

Pearson correlation coefficient between the monthly SRI and the multi-time SPI. The Tp was indicated by the month with the11

strongest correlation. However, the correlation is high for a large variety of SPI time scales in some months, which makes12

the identification of Tp values highly uncertain. Therefor, in order to overcome this issue, the uncertainty of the correlation13

coefficients was calculated. And the Tp was expressed on SPI time scale with strong correlation and low uncertainty. The14

Pearson correlation coefficient and the Tp of DHF, SY and XJWP were shown in Fig. 8. It can be seen from Fig. 8 that the Tp15

of SY and XJWP was significantly higher than that of DHF in all months. In order to further confirm the difference in Tp16

between the upstream and downstream of DHF reservoir, and to analyze the causes of the difference, the Tp at Beikouqian17

(BKQ) was also analyzed. The locations of the four hydrological stations are shown in Fig. 1. The BKQ is located upstream18

of the DHF reservoir, while SY and XJWP are successively arranged in the downstream of DHF reservoir. As shown in Fig.19

1, the BKQ and DHF are located in the eastern part of the HRB with mountainous terrain, while SY and XJWP are in the20

western plain. The slope of BKQ and DHF is greater than that of other sub-basins, indicating that the underlying surface has21

less water retention and buffer capacity than other regions. Meanwhile, the runoff process in the downstream of the reservoir22

can be redistributed on the spatial and temporal scale through the operation of the reservoir (Shiklomanov et al., 2000;23
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Chang et al., 2019). Therefore, under the combined action of stronger water retention and buffer capacity and the1

redistribution of runoff processes by DHF reservoir operation, the Tp of SY and XJWP was higher than that of other regions.2

3

Figure. 8 The correlation between monthly SRI and multi-time scale SPI and the Tp in BKQ (a), DHF (b), SY (c) and XJWP (d).4

In order to further reveal the changes of Tp, the Tp in different periods are calculated. Fig. 9 expresses the results of the Tp5

included the four seasons, water supply period (WS-P), storage period (S-P), and full series (F-series) at the four regions in6

the HRB. It is clear from Fig. 9 that, from the point of view of the F-series, the Tp of SY (17.2 months) and XJWP (15.87

months) were obviously higher than the DHF ’s (4.5 months), which indicating that the Tp in the area downstream of DHF8

Reservoir was significantly postponed. In order to explore the reasons for the postponed of Tp, the evolution of9

meteorological factor was explored. The annual precipitation and its variation trend in the control areas of four hydrological10

stations during 1967-2019 are shown in Fig. 10. It was clear from Fig. 10 that there was no significant trend in annual11

precipitation at four sub-regions during 1967-2019, implying that the prolonged of drought propagation is not due to the12

change of meteorological factors. Meanwhile, as Fig. 9 showed, the Tp of BKQ (4.5 months) was equal to DHF ’s, whilst13

obviously lower than the SY and XJWP ’s. Therefore, the construction and operation of DHF reservoir is the main reason for14

the significant extension of Tp in the downstream of the reservoir. Many studies have also confirmed the impact of reservoir15

operation on hydrological drought (Wu et al., 2016; Wu et al., 2018; Wang et al., 2019). Moreover, the Tp of SY was higher16

than the XJWP ’s, implying that the improvement effect is weakness with the rising of the interval from hydrological stations17

to DHF reservoir.18

file:///D:/Dict/8.9.9.0/resultui/html/index.html
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Similar to the F-series, the Tp of SY and XJWP were obviously higher than the BKQ ’s in the four seasons, while the Tp of1

DHF was not significantly different from that of BKQ. Meanwhile, on the whole, the seasonal variations of Tp in DHF, SY,2

and XJWP were brought into line with BKQ with that of BKQ, with long Tp in spring and winter and short in summer and3

autumn. Vegetation can consume more water through evapotranspiration during the season with higher temperatures. Higher4

temperatures in summer and autumn may be the reason for the relatively long Tp of spring and winter. In addition, there are a5

large amount of snow in winter and most of the snow melts in the next spring at HRB. Therefore, the longer Tp in winter and6

spring may be caused by the lower temperature in spring and winter and the melting of snow in spring. Besides, it is worth7

mentioning that, the Tp of XJWP was longer than that of SY in summer compared to other seasons. This change indicated8

that the duration of drought propagation at XJWP in summer was prolonged, which may be due to the partial agricultural9

water supply from DHF reservoir directly reaching downstream (XJWP) through channels without passing through SY in10

summer.11

For S-P, the Tp of SY and XJWP were both longer than BKQ, and with the rising of interval between hydrological station12

and DHF reservoir, the Tp showed a decreasing trend, which showed similar characteristics with the F-series. It is worth13

mentioning that the Tp of XJWP is longer than SY during WS-P, which was inconsistent with the conclusion that the Tp14

decreases as the increase of the interval between hydrological station and reservoir during S-P. The reason for this is most15

likely that part of agricultural water supply from DHF reservoir directly reaching downstream (XJWP) through channels16

without passing through SY, which increased runoff at XJWP while SY runoff was little affected. Moreover, agricultural17

water supplies mostly occur in the summer, which can be mutually verified with the results of seasonal perspective.18

In conclusion, the Tp of SY and XJWP were higher than BKQ ’s and DHF ’s in different periods. The Tp in the19

downstream of DHF reservoir has been remarkably strengthened in each period. Moreover, with the rising of interval20

between hydrological station and DHF reservoir, the improvement effect was weakened. Meanwhile, the Tp showed longer in21

spring and winter, while shorter in summer and autumn and the Tp of XJWP was longer than that of SY in WS-P because of22

the effect of agricultural water supply of DHF reservoir.23

24

file:///D:/Dict/8.9.9.0/resultui/html/index.html
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Figure. 9 The Tp of BKQ, DHF, SY and XJWP from meteorological to hydrological drought in different periods.1

2

Figure. 10 The variation trend of annual precipitation in the four sub-regions during 1967-2019. (a)-(d) denotes BKQ, DHF, SY and3

XJWP, respectively.4

4.4 The drought propagation thresholds for triggering hydrological drought5

In this study, drought propagation threshold model was established to explore the CPD thresholds for triggering hydrological6

drought. In the model, moderate, severe and extreme hydrological droughts defined in Section 4.2 were selected as specific7

hydrological drought scenarios. The drought duration and severity of each hydrological drought event were taken as the8

target respectively, and the corresponding CPD was regarded as the condition. Five common functions including Gamma,9

EXP, GEV, Logn, and WBL, were used to fit the sequence of CPD in the four sub-basins at HRB. The AIC, RMSE and K-S10

test were applied to select the best-fit marginal distribution, and the consequences were shown in Table 3. The commonly11

used bivariate theoretical copula functions, including Clayton, Frank, and Gumbel copula were considered for modeling the12

dependence structure between CPD and drought duration (D-CPD) and severity (S-CPD), respectively. Based on the K-S,13

C-M, RMSE and AIC test, the GOF copula functions were selected and shown in Table 6. Fig. 11 shows the conditional14

probabilities of occurrence different scenarios hydrological droughts characterized by drought duration and severity under15

the condition of various CPD in four sub-regions. It can be seen from Fig. 11 that the CDP corresponding to the same16

probability in the four regions increased with the enhancement of drought level. Under the same probability, the CDP of17

upstream regions (BKQ and DHF) of DHF reservoir is smaller than that of downstream regions (SY and XJWP) with the18

same level of drought.19

Table. 6 GOF evaluation of different copula functions between CPD and drought duration and severity at four sub-regions.20

Zones BKQ DHF SY XJWP

Copulas GOF test D - CPD S - CPD D - CPD S - CPD D - CPD S - CPD D - CPD S - CPD

Clayton

K-S 0.146 0.108 0.108 0.074 0.117 0.102 0.103 0.117

C-M 0.099 0.102 0.184 0.053 0.112 0.071 0.075 0.056

RMSE 0.043 0.044 0.057 0.031 0.055 0.044 0.044 0.038

file:///D:/Dict/8.9.9.0/resultui/html/index.html
file:///D:/Dict/8.9.9.0/resultui/html/index.html
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AIC -330.95 -329.45 -324.83 -395.81 -212.48 -229.21 -242.11 -253.53

Gumbel–Hougaard

K-S 0.110 0.112 0.091 0.054 0.102 0.068 0.107 0.095

C-M 0.092 0.137 0.090 0.037 0.069 0.037 0.077 0.046

RMSE 0.042 0.051 0.040 0.025 0.043 0.032 0.044 0.034

AIC -334.98 -313.61 -365.50 -416.43 -230.42 -267.49 -240.88 -260.96

Frank

K-S 0.120 0.110 0.098 0.048 0.109 0.077 0.105 0.097

C-M 0.084 0.114 0.108 0.032 0.075 0.047 0.073 0.045

RMSE 0.040 0.046 0.044 0.024 0.045 0.036 0.043 0.034

AIC -339.81 -323.44 -355.05 -424.55 -227.24 -257.85 -243.17 -262.23

The bold letters represent the selected optimal copula functions.1

2
Figure. 11 Conditional probabilities of occurrence of extreme (a), severe (b), and moderate (c),hydrological drought under3
the circumstance of various CPD at HRB.4

In order to quantitatively reveal the threshold triggering different scenarios of hydrological drought, the CPD threshold5

interval was obtained based on the drought propagation threshold model introduced in Section 3.5 (Table 7). It was clear6

file:///D:/Dict/8.9.9.0/resultui/html/index.html
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from Table 7 that the CPD threshold of hydrological drought at all scenarios in the upstream region (BKQ and DHF) of DHF1

reservoir are significantly lower than that in the downstream basins (SY and XJWP). The upstream region is located in the2

eastern part of the HRB with mountainous terrain, while downstream region are in the western plain. The slope of upstream3

is greater than that of downstream, indicating that the underlying surface of upstream region has less water retention and4

buffer capacity. Meanwhile, due to the operation of the DHF reservoir, which provides agricultural and ecological water5

supply to the downstream in May-August, it can provide a strong supply to the downstream and alleviate the hydrological6

drought (Guo et al., 2020a). Therefore, under the combined action of the the stronger stagnant water and buffer capacity of7

underlying surface, and the water supply by the operation of DHF reservoir, the CPD threshold in the downstream region of8

DHF reservoir are significantly higher than that in the upstream basins.9

For the DHF and BKQ, both of them are located in mountainous areas with higher slope, but the vegetation coverage rate10

of BKQ is relatively larger than that of DHF, which indicated by the Normalized Difference Vegetation Index (NDVI) of the11

HRB (Fig. 12). Therefore, BKQ has strong water retention and buffering capacity, which leads to the CDP of BKQ relatively12

greater than DHF. As for the SY and XJWP, both of them are located in the plain area with little difference in slope.13

However, the XJWP showed the lower CDP at all scenarios hydrological drought than SY. On the one hand, large reservoirs14

can postpone the propagation from meteorological drought to hydrological drought, and the effect decreases with the15

increase of the distance from the reservoir (Guo et al., 2020a). The distance between SY and DHF reservoir is greater than16

that from XJWP to DHF reservoir. On the other hand, as the urbanization process of SY is much faster than that of XJWP,17

the vegetation coverage rate of SY is lower than that of XJWP, which was confirmed in Fig. 12. During extreme18

meteorological droughts, vegetation is in a state of water shortage, and consumes more water through evapotranspiration,19

which would eaggravate drought in the basin (Teuling et al., 2013; Niu et al., 2019). Therefore, the higher vegetation20

coverage in XJWP is another reason why the CDP of the XJWP to extreme drought is lower than the SY.21

The mean value of CPD thresholds under different drought scenarios and the increase rate (IR) of CPD thresholds as the22

drought scenario intensified were calculated to investigate the difference of CPD increase rate in each sub-basin with the23

aggravation of hydrological drought. Table 8 exhibits the mean of CPD thresholds and the IR of CPD under extreme and24

severe drought relative to moderate drought in each sub-basin. It can be seen from Table 8 that the IR of CPD threshold in25

BKQ and XJWP were less than that of DHF and SY with the intensifying of drought scenario. Moreover, the IR of CPD26

threshold from severe drought to extreme drought were much lower than that from moderate drought to severe drought in27

BKQ and XJWP. These suggest that BKQ and XJWP are more sensitive to CPD in the event of drought, and a slight28

increase in CPD may trigger a more severe drought. Especially in severe drought scenario, a small increase in CPD is likely29

to trigger extreme drought. As shown in Fig. 1, DHF and SY are located around DHF reservoir, while BKQ and XJWP are30

file:///D:/Dict/8.9.9.0/resultui/html/index.html
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far away from DHF reservoir. Therefore, the cause of this result is most likely to be the operation of DHF reservoir, which1

needs further research to confirm.2

Meanwhile, for a specific hydrological drought, the higher the CPD that triggered this hydrological drought is, the3

stronger the drought resistance of this basin is (Guo et al., 2020a). Therefore, the CPD thresholds for triggering hydrological4

drought can be employed to characterize the drought resistance of the basin in this study. According to the above CPD5

threshold analysis results of sub-basins, the drought resistance of the downstream region of DHF reservoir is stronger than6

that of the upstream region under all hydrological drought scenarios. SY showed the strongest resistance for all scenarios7

hydrological drought. The difference of drought resistance of each sub-basin mainly depends on the topography of the basin,8

the influence of reservoir operation on the watercourse hydraulic conditions and the change of underlying surface conditions9

caused by urbanization.10

11
Figure. 12 Normalized Difference Vegetation Index (NDVI) of the HRB.12

Table. 7 CPD threshold intervals for triggering different scenarios of hydrological drought at HRB.13

Drought scenario Moderate Severe Extreme

BKQ CPD (mm) [204.3, 222.4] [238.2, 239.8] [246.5, 253.1]
DHF CPD (mm) [146.8, 172.5] [188.7, 213.8] [234.4, 253.7]
SY CPD (mm) [258.0, 321.7] [339.3, 346.6] [357.6, 461.7]

XJWP CPD (mm) [217.0, 226.3] [253.8, 255.5] [265.9, 271.1]

Table. 8 The mean and the IR of CPD thresholds in each sub-basin.14

Drought scenario
BKQ DHF SY XJWP

CPD (mm) IR (%) CPD (mm) IR (%) CPD (mm) IR (%) CPD (mm) IR (%)

Extreme 249.8 244.1 409.7 268.5
4.5 21.3 19.4 5.5

Severe 239.0 201.2 343.0 254.6
12.0 26.1 18.3 14.9

Moderate 213.4 159.6 289.9 221.6
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5 Conclusions1

In this paper, SPI and SRI were adopted to characterize meteorological and hydrological drought respectively, and the2

spatiotemporal variation characteristics of hydrological drought were investigated in the HRB from 1967 to 2019.3

Meanwhile, the joint distribution of drought duration and intensity was established by using copula function to calculate the4

return period of hydrological drought. Furthermore, the Tp were determined by calculating the Pearson correlation5

coefficients between 1-month SRI and multi-time scale SPI. Finally, the CPD threshold intervals for triggering hydrological6

drought are obtained by the drought propagation threshold model. From the results, primary conclusions are given as7

follows:8

(1) Hydrological drought showed a slight strengthening trend in DHF, while presented alternate characteristics of drought9

and flood in SY and XJWP from 1967 to 2019. From seasonal perspective, drought presented an strengthening trend in each10

season at DHF. Nevertheless, drought presented an strengthening trend in summer and autumn, while showed a decreasing11

trend in spring and winter at SY and XJWP.12

(2) The western and center of the HRB were vulnerable districts to hydrological drought with longer drought duration and13

higher severity. Furthermore, the eastern region of the HRB was more sensitive to short-duration drought, which was14

dominated by two-month and three-month drought events.15

(3) The return periods Tand (Tor) of moderate, severe, and extreme hydrological drought in DHF, SY and XJWP were 2.316

(1.7), 4.5 (3.1), 22.8 (14.9), 3.3 (2.7), 6.7 (4.8), 71.0 (18.6), 3.2 (2.6), 7.3 (4.4) and 79.0 (16.3) years, respectively.17

(4) The average Tp in BKQ, DHF, SY and XJWP were 4.1, 4.3, 14.9, and 1.9 months, respectively, which indicated that18

the Tp in the downstream of DHF reservoir has been significantly improved owing to the operation of DHF. Moreover, with19

the increase of interval between hydrological station and DHF reservoir, the improvement effect was weakened.20

(5) The mean CPD thresholds of moderate hydrological drought at BKQ, DHF, SY and XJWP were 213.4, 159.6, 289.921

and 221.6 mm, severe were 239.0, 201.2, 343.0 and 254.6 mm, and extreme were 249.8, 244.1, 409.7 and 268.5 mm,22

respectively. And, the difference of CPD thresholds of each sub-basin mainly depends on the topography of the basin, the23

evolution of river hydraulic condition by reservoir operation and the change of underlying surface conditions caused by24

urbanization.25

Data availability. Some or all data, models, or code that support the findings of this study are available from the26

corresponding author upon reasonable request.27
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