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Abstract. Analyses of future agricultural drought impacts require a hattiplinary approach in which both
human and environmental dynamics are studrethis study, weused the socio-hydrologic, agentbasedirought
risk adaptation model ADOPT This model simulatesthe decisionsof smallholderfarmersregarding offarm
drought adaptation measuyesd the resulting dynamics inhouseholdvulnerability and drought impact over
time. We applied ADOPT to assesshe effectof four top-down disaster risk reductiomnterventionson
smallholder farme® d r o uig thdé Kemyansdk/landsThe robustness @idditional extension services, ex
ante rather than ex-post cash transfies, improved early warnirsgand loweed credit rateswasevaluatedunder
differentclimate change scenarios

Model results suggeghat extensionservices increase the adoption lofv-cost newer drought adaptation
measures while credit schemes are usefuhfeasuresvith a high investment cost, and exante cash transfers
allow the leastvealthy households to adopt leaostwell-known measureslmproved early warning systems
showmore effective in climate scenarios with less frequent dreu@ambining all four interventiondisplays
a mutwally-reinforcing effect with a sharmcrease in the adoption @h-farm drought adaptation measures
resulting in reduced food insecurity, de@ed poverty levels and drastically lowered foremergency aiceven
under hotter and drier climate conditions. These nonlinear synéndieatethat a holistic perspective is needed

to supporsmallholderesiliencein the Kenyan drylands

Key words: Agentbased modelling, drought disastgisk reduction adaptation measures, adaptive behaviour,
smallholder farmes; drought adaptation, AquacropOS, ADOPTrisk assessment; Kenya,dryland agriculture



26

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

1 Introduction

Droughts, defined as belemormal meteorolgical or hydrological conditions, are a pressing threat to the food
production in the drylands of Stfbaharan AfricgBrown et al., 2011; Cervigni & Morris, 2016; UNDP et al.,
2009) Over the last decades, increasing temperatures and erratic or inadedpfatl have already intensified
drought disasterKhisa, 2017) Climate change, population growth and see@mnomic development will lead

to additional pressures on watesources (Erenstein, Kassie, & Mwangi, 2011; Kitonyo et al., 2018Kenya,
three quarters of the population depemdsmallholder raifed agricultural production and nearly half of the
population is annually exposedrecurringdrought disasters causing income insecurity, malnutrition and health
issueqAlessandro et al., 2015; Khisa, 2018; Mutunga et al., 2017; Rudari et al., 2019; UNDPR RlR&)ing
drought risk is imperative to enhance the resilience of the agriculture sector, to protect the livelihoodsaif the
population and to avoid foothsecurity and famine n K e n y a §khisaj 2037| Shikulluset al., 2017)
Drought risk models are important tools to inform policy makers about the effectiveness of adaptation policies
and enable the design of customized drought adaptation stategler different future climate scenafiGarrao

et al.,, 2016; Stefano et al., 2019yaditionally, such models express disaster risk as the productzafdha
exposure and vulnerabilitand are based on histaicisk data. Recent disaster risk deds have dealt with
climate change adaptation in a tstage framework; first describirefew scenarios regarding adaptation choices

of representative households, then estimating the impacts of adaptation on)(furelfare while assuming
climate change scenari¢di Falco,2014) However, most existing research does not accoumhdoe complex
dynamics in adaptation andrulnerability (Conway et al., 2019)for the heterogeneity in human adaptive
behaviour(Aerts et a. 2018) or for the feedback between risk dynamics andaptive behaviour dynamig¢®i
Baldassarre et al., 2017)hough,these are thaspects that determine rfa large part, the actual rigkiser et

al., 2012)

It appears that farmers often boundedy rational towards drought adaptation rather than economically rational:
their economicrationality i boundedin terms of cognitive capability, information available, perceptions,
heuristics and biaséSchrieks et al., 202Wens et al., 2021Y o0 account for such individual adaptive behaviour
in drought risk assessments, an agenbased modelling technique can be app{ierger & Troost, 2014; Blair &
Buytaert, 2016; Filatova et al., 2013; Kelly et al., 2013; Matthews et al., 2007; Smajgl et al., 2011; Smajgl &
Barreteau2017) Agentbased models allow explicsimulation of the bottorup individual human adaptation
decisions andapture the macrscale consequences that emerge fronirtteeactions between individual agents
and their environments. Combining risk models with an abaséd approach is thus a promising way to analyse
drought risk, and the evolution of it through time, in a more realistic(¥kgns et al., 2019)

Here wepresent how magent-based drought risk adaptation model, ADORdesigned in Wens et a 2020), can
increase our understanding of the effect of drought policies on comnrumaity droughtisk for smallholder
farmers n K e ny a @Ehe design of ADOIPE as an agdratsed drought risk adaptation modeléscribed

in Wens et al., 202Moreover,Wens et al(2021) detail the empirial data on pasadaptive behavioujused to
calibrate the modglas well as empirad data on adaptation intentions that can be used to compare with the model

outputs.
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In this study, wepplythe ADOPT mode| totest the variation in household drought risk under different drought
management policies: (i) a reactive government only providing emergency aid, (iijaatjw® government,
which provides sufficient drought early warninggd ex-ante cash transfén the face of droughtsand (ii) a
prospectivegovernment thatin addition to early warnings and-axte transferssubsidises adaptation credit
schemes and provides regular drought adaptation extensiooesetoifarmers. In additiodDOPT is used to
evaluatehe robustness dfiesepoliciesunder different climate change scenarid& aknowledge thaADOPT
should be subject tadditional validation steps in order tmore accurately and precisglyedict future drought
risk. Yet, in this studywe elaborate the potential of this pramfconcept model by showcasittige trends in

drought rgk underrisk reductioninterventionsand climate change for a case study in sant Kenya

2 Case study description

The ADOPT model has been applied to the cortézinallholder maize production in thedryland communities
in the areasKitui, MakueniandMachakos in soutleastern Kenya (figl). This semiarid to subhumid region

is droughtprone, being hit by drought disasters in 1983/84, 1991/92, 1995/96, 1998/2000, 2004/2005, and 2008
11, 20142018 (data fromEm-Dat and Deslnventar)The majority of the population in thislry transitional
farming zone is directly or indirectly employed through agricultugewever. technology adoption and
production level remain rather low, making the region very vulnerable to droughts and climate (&ase&
Oteng, 2014; Mutunga et al., 2017)

In Kenya, 75% of the counts maize is produced by smallholder fatrivkize isgrown in the two rainy seasgns
with the aimto meet household food neg@sibsistence farmingErenstein, Kassie, & Mwangi, 2011; Erenstein,
Kassie, Langyintuo, et al., 2011; Speranza et al., 2008)le duing the long rainy season @/kchApril-May)
multiple crops are planted, the short rainy seasatoti2rNovemberDecemberis considered the main growing
season for maize in the regi(Rao et al., 2011)

Reported smallholdenaizeyields often do not exceed 0.7 ton/kewever with optimal soil water management
maize yield can easily be around 1.3 ton/ha in the sarid medium potential maize growing zone in seuth
eastern Keny@Omoyo et al., 2015Few farmers use pesticides or improved seedgher adaptatiostrategies
(Tongruksawattaa & Wainaina, 2019)In Kitui, Makueni and Machakos, the most preferred segtbty is the
high yielding but less drought resistant Kikamba/Kinyaya variety (120 growing days) with a potential yield of
only 1.1 tons per hecta(8peranza, 2010; Rechaatt, 2012) Trend analysis (1992008) shows that yields are
declining due to the increasing pace of recurring droughtandiko, 2014)

Over 97%of the smallholderfarmersin this area grow maize mainly for own consumption or local markets
(Brooks et al., 2009; Kariuki, 2016; Nyariki & Wiggins, 199R)is the main staple foggroviding more than a
third of the caloric intake, and is ald@e primary ingredient used in animal feeds in Kef®damtey et al., 2016;
FAO, 2008) .. Only about 20% of the farmeeaseable to sell their excess crops, while 66%d@ buy maize

to complement their own productigMuyanga, 2004)
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Figure 1: Study area dry transitional maize agroecological zongright) located in South-Eastern Kenya (centre) in
the Horn of Africa (left) . Area wherethe survey data (Wens 2021is collected isindicated with a staron the right map.
Map adjusted from Barron and Okwach (Barron & Okwach, 2005)

3 Model and scenario description

ADOPT (fig. 2, Wens et al 202@DD+D (Overview,Design concepDetails+ Decisior) protocol inAppendix

A) is an agenbased model that links a crop production module to a behavioural module evaluating-thegytwo
feedback between drought impacisd drought adaptation decisionADOPT was parameterized with
information from expert interviews farm household survey witt6@ householdencluding a semstructured
guestionnair@xecuted in the Kitui Region, KeayWens et al. 2021 Moreover, a discrete choice experiment (a
guantitative method to elicit preferences from participants without directly asking them to state their preferred
options) was executed to getformation on changes in adaptation intentions under future top-down DRR
interventions (Wens et al 2021). This empirical datset feeds the decision rules in ADOE&scribing farm
househol dsd adaptive behaviour in the face of chang
networkgactions of neighbouring farmérsand top-down interventions (drought management policiels)
ADOPT, crop production is modelled using AquacropfOS o st er & B, rsimuating crdp,grovtooh 8 )

a daily basis and producing crop yieldlues at harvest time twice per year. Calibrated for the Kenyan dryland
conditions(Ngetich et al., 2012; Wamari et al., 200&jjuacropOS:onsiderghe current water management of

the farm(i.e., the applied drought adaptatioreasurespnd yields vary with weather conditions. The adaptive
behaviour of the farm households (agents) is modelled based Broteetion Motivation theory (PMT, Rogers

1975) This theorywas derived apromisingin anearlier study (Wens et al, 202&ndincludesmultiple relevant

factors that drivehe observed behaviour of farm households (Wens et dl) 202this application oADOPT,

the model wasun over 30 historial years adpaselingollowed by30 years ofuture scenarig (combinations of

policy and climatechangesthe start of these changes is indicated as fiyear 00). Througha sensitivity analyss,

both the average effect of individual adaptation decisions arehdsegenous modefariability are analysed
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(similar to Wens et al 2020)We usedl12 different initialisationger scenarido include variations in model
initialisation, the stochasticity that determines the individual adaptation decisions, and the relative weights of
factors influencing behaviour (See3.1).
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Fig. 22 ADOPT model overview, adjusted fromWens et al., 202Mescription of the modeOverview, , Design concepts
& Details) in Appendix A.

3.1 Individual adaptive behaviour in ADOPT

Various soil watermanagement practicesurther called drought adaptationeasures, cabe adopted by
smallholder farmers in ADORTT here are shallow wells to provide irrigation watethe option to connect these

to drip irrigation infrastructureandFanyaJuu terraces as €arm water harvesting tenfgues. Moreovera soil
protectionmeasure reducing the evaporative stresdching is included. These measures are beneficial in most
T if not alli of theyears andhave a particularly good effect on maize yields in drought yblansetheless;urrent
adoption rates of these measures are quite varied and often remain ratf@ictoevu, 1990; Kiboi et al., 2017,
Kulecho & Weatherhead, 2006; Mo et al., 2016N8igi, 2019; S. N. Ngigi et al., 2000; Rutten, 2004; Zone,
2016)
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ADOPT appliesthe Protection Motivation Theory,a psy chol ogi cal theory often
rational adaptation behaviour (Schrieks et al 202 Hescribes how individuals adapt to shocks sudrasghts
andare motivated to react in a s@lifotective way towals a perceived threéBrothmann & Patt, 2005; Maddux

& Rogers, 1983)Four mai n f act or sadaptatioreimtentiomuncegriské rmodeted: (1prigk

us

perception is modelled through the number of experienced droughts and number of adopted measures, household

vulnerability, and experienced impact severity. Moreovesttin early warnings is added, which éafluence

the risk appraisal if a warning is gemu t . Coping appraisal i s reficheyl | ed

(household size / labour power, beliefGod, vulnerability), (3) adaptation efficacy (perceived efficiency, cost

t

and benefits, sesons in water scarcity, choices of neighbours, number of measures), and (4) adaptation costs

(farm income, offfarm income, adaptation spending, access to credit). These four PMT factors receive a value

between 0 and 1 and d ddpt Which smallhcdder faemerd adopt whichenmeasuresnn
which years is then stochastically determined based on this adaptation intgiaieimformation regarding the

decision making can be found in Appendix A.

3.2 Drought risk indicators in ADOPT

In ADOPT,annual maize yield influences the income and tlasets of th@argely) subsistence farm households.
This influence is indirect, because the farm households are assumed to be both panduemEnsumey securing

their own food needs he influence is alsa directone becausehese farm houselds sell their excess maize

t

(0]

on the market at a price sensitive to demand and availability. Farm households who cannot satisfy their food needs

by their own productionturn to this same markeTheybuy the needed maizeif they can afford it and if there
is still maizeavailableon the marketlf they do not have the financial capacity or if there is a market shortage,
they are deemed to be food insecurkeir food shortagéthe kilogram maize short to meet household food
demand) is multiplied by the market priceo estimatetheir food aid needs. Adding the farm income of the
household with their income from potential other sources of income, it is estimatdemithety fall below the

poverty lineof 1.9 USD per dayAs climate and weather variabilibauses maize yieldgo fluctuae over time,

so do the prevalence of poverty, the share of households in food insecurity and the total food aid needs. These

factors can be seen as proxies for drought risk and were evaluated over time.

3.3 Climate change scenarios

Multiple climate chang scenario$ all accounting for increased atmospheric carbon dioxide levedsetested:

a rising temperature of 10%, a drying trend of 18%uetting trend of 15%, and various combinations of these.
The warming and drying trendgerebased on a caimuation of the trendebserved in the last 30 years of daily
NCEP temperatur@alnay et al., 1996and CHIRPSrecipitation(Funk etal., 2015 at a (aut ho;r s o
similar trends found iGebrechorkos et al., 2020 he wetting trenavasinspired by the projections from most
climate change models which predict an increag®ecipitation in the long rain seasbma phenomenon known
as the OEast Af nGebrecmorkdsletiaim2019¢Lydn & VigaddpZ0Biang et al., 2015 he

no change scenario wagepetition of thdaselineperiod without changing precipitation or temperature hence

e

h

a

cal



172  only elevated carbon dioxide leveReference evaporation wealculated for each scenario using the Penman
173  Monteath modeland thus influenced by temperature char@dlen, 2005; Droogers & Allen, 2002)

174  Table 1: Average (daily temperature, annual precipitation) weather conditions (1982010) in ADOPT

min temperature max temperature precipitation reference evaporation
No change | 16.3 (+0.8) *C 26.9 (+0.9) *C 888 (+319) mm 1547 (+298) mm
Wet 16.3 (+0.8) *C 26.9 (+0.9) *C 1021 (+367) mm 1547 (+298) mm
Hot 17.9 (+0.9) *C 29.6(+- 0.9) *C 888 (+319) mm 1659 (+-320) mm
Dry 16.3 (+ 0.8) *C 26.9 (+ 0.9) *C 755 (+271) mm 1547 (+298) mm

175 These trendsvereadded to time series of 30 years of observed. ¥ditéle such approach does not acaduor
176  an increased variability, it allows #ccount forthe temporal coherence ithe dataand the interrelationships
177  among different weather variabl@seather generatoiis another option to downscalegpected climate have
178  still someprogres¢o makein orderto accuratelyaacount for extreme even{giilliot et al., 2015; Mehan et al.,
179  2017). This resultedf 30 years ofyntheticd f ut ur e 6 d at a-wetfhotwet, &ad, drip hotiry antl he s i x
180 no change scenarios . Whil¢hey not have &nown probability ofoccurring they enabletesting the robustness
181  of theon-farmadaptationgandtop-down droughtdisaster risk reduction strategies undehangingaveragenydro-
182  meteorological onditions.
183
90%
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184
185 Fig. 3: Probability of having a year with three or more consecutive months under a SPEI <4, for the climate change

186 scenarios

187  Droughts,heredefined asat least threenonths with standardized precipitation index (SPEI) values belbw
188 have a different rate of occurrence under these different future clsnatariogFig. 3). SPEI iscalculated
189 through standardizing a fitted GEV distribution over the hisébriconthly timeseries anduperimposing this
190 onto the climate scenario time serigader theno chagescenario25%of thethirty simulatedyearsfall below
191 this thresholdUnder the wet scenarifewerdroughts occur (15% of theears), buunderthedry scenariq the
192  number ofdroughtsyearsmore than doubleb4% of the years)Temperature is dominant over precipitation is
193 determining drought conditions, as under thewet scenario41% droughtyearsare recorded, andinder hot

194  dry conditions 78% ofthe years can be considered drought years
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34 Drought risk reduction intervention scenarios

Kenya Vision 2030 for thASAL promotes drought management through extenséovices andims to increase

access to financial services such as affordable credit sch@oesrnment of Kenya, 2012; Kenya, 2016)

Besides, building on the Ending Drought Emergenciglan, the National Drought Management Authority

prioritizes the customization, improvement and dissemination of drought early warning syi$tamss to

establish trigger levels for eante cash transfer so as to upscale drbuigk financing(Government of the

Republic of Kenya, 2013; National Drought Management Authority, 2015; Republic of Kenya, ROfpived

extension services tailored to the changing needs of farm housékhiganga & Jayne, 20063 better early

warning system with longer lead timé3eltares, 2012; van Eeuwijk, n.dgxante cash transfers to the most
vulnerable when a drought is expecf(€diimardes Nobre et al., 2018)d access to creditarketyBerger et al.,

2017; Fan et al., 2013reall assumed tincreasd a r nietantsold to adopt new measures.

As shown in Wens et al (2021xtension services are best offéte younger, less rich aelss educated people,

or to thosewho already adopted the most common meas&iesilarly, early warning systems are appreciated

more by less educated, less rich farmerghose not part of farmémowledge exchanggroups. The exante

cash transfer instiga¢hose who spend already a lotabney on adaptation, to adopt more expensive measures

the most. Access to credit is preferred by less rich farmdrshave a larger land size, are mengzgra farm

group, went to extension trainings, have easy access to information and/or arethigiaiteWenset al. 202).

In this application of ADOPTthe effect ofthese four interventionsextension services, early warning systems,

ex-ante cash transfer and credit schemesere tested individually. Additionally, three scenarios, combining

different types ofnterventionswereevaluated a | | i nitinthé¢modelrumn year nA0O

1. Reactivepolicy interventionfisupporting drought recovasyEmergency aid is given to farmers who lost their
livelihoods after drought disasters; this food aid is distributed to farmers who are @rdkeot povest to
avoid famine.

2. Proactivepolicyi nt er v e nptepadng fopdioaght digastérdEarly warnings are sent out each season
if a drought is expected. This is as snecastransfass r ai s e
are given to all smallholder farmers (those without incomefasfh and without commercialisation) to
strengthen resilience in the face of a drought. This is done when severe and extreme (BB&dhkt4, and
<-1.5) are expectedhat ould lea to crop yield lower than respectively 500kg/ha and 300kg/ha. Money
equivalent to the food insecurity following these yields is paid out to farmers with low external income
sourcesMoreover, like in the reactive government scenario, emergency aid is given to farmers wieed it

3. Prospectivepolicy intervention plafUNDRR 2021)Amitigating (future) drought disastegs Credit rates are
lowered so that it is affordable to people to take a loan for adaptation measaremterest rate of 2% and
a payback periodof five yeas. Besides, frequent trainings are given in communities with poor practices to
improve theircapacity related to drought adaptation practices for agriculture. Moreover, like in Hutiyeo
government scenario, an improved early wagrigystem is set up and-amte cash transfer is givdrastly,

emergency aid is given to farmers who need it.
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4. Results
4.1 Maize yield under different adaptation measuresand future climate scenarios

Theannualaverage maize yields under the different climate scenariogh&fiour on-farm drought adaptation
measuregmplemented in ADOPT- mulch, FanyaJuubunds, shallow wekhnd drip irrigation, were calculated
using AquacropOS (Figl). Under wetter future climate conditions, maize yields are expected to increase under
all management scenarios, with mulch having a particular positive effect on the soil moisture conditions
throughout the full gzwing season. Hotter climate conditions reduce yields slighthe assumptions in this
model on the frequency and amount of manual irrigation or drip irrigation water are not sufficient to diminish this
effect, even under wetter conditions. Paireithvdrier conditions, this hotter future sidramatically negative
effects on yields, showing on average 28% lower yields compared to the no climate change seenatio

management scenarios
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Fig. 4. Average maize yield under differentdrought adaptation measuresand different future climate scenarios.
4.2 The adoption of adaptation measuregver time

In ADOPT, all evaluatedop-downinterventionsncreasd the adoption rate ohe evaluated adaptation measures
comparedtothereactien o i nt esaenaldiig.3) reduded creditatesimproved early warning systems,
tailored extension servicesy@exante cash transferas well aghe proactiveand prospective scenaridsadto

increases in adopticas compared to theactive scenaricolours in Fig5).
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Fig. 5: Total amount of measures adoptegber 1000 initialized householdsinder no climate changeaveraged over all
runs. The shaded area indicates thevariation - uncertainty introduced by different model initialisations and by
different relative importance of the PMT factors on the decisions of hoseholds(sensitivity analysis) Year 0 initiates
policy drought risk reduction interventions (indicated with different line colaurs).

Looking into detail to the effect of possiblgolicy interventiors (Fig. 5, tableB2 in Appendix B), affordable

credit schemes had tinghest effect on the adoption rate of drougthéptatiormeasures. Furthermore,-arte

cash transfers (which cannot be seen as large sums of investment moas\ammgre means to keep families

food secure) were more effective to increase adoption of the more affordable mdasleedricher families

mostly had already adopted these measures bedtioy interventions were in place. Extended extension service
training increased the adoption of less popular measures and decreased the adoption of the popular but not as
costeffective FanyaJuuterraces. Early Warning Systemad more effect in thevetterclimate conditionsThe

dry-hot scenaridiasso many drought episodes that risk perception is automatically high while thiakenrs

when droughts beconsearceiin the less dry scenarios.

Overall, although the procesgisough vhich the interventions support households to adapt differ significantly,

the differences irventualdoption rate under thdifferent interventionsvere small (they overlap in uncertainty

interval). Also, the effect of climate changm the adoption rate (Figure Bllable B2 in Appendix B was rather

small when evaluating the reactive (no intervention) sceniddaever, with interventions, the climate change
scenarios diffead more

When examining the effect tfiethreeinterventionscenaris (Figure B in Appendix B table B2 in Appendix

B), it is clear that implementing multiplgoliciesat onceresultedin astrongr increase in adoptiora proactive
andprospectivantervention planincrease the ad@tion of different adaptation measures witlspectively 40%

and 140% mor ereactiven nwonatdrn mtah & wielk nonngee/éntios mkenpaddottoa

proactive angprospectiveapproachncreased the adoption of cheapéaptatiormeasures to close to 100% of

the farm households. For the more expensive measures, the proactive scenario showed to be less effective while

the prospectivescenario reached quite high adoption ratehénmore extreme climate scenarios.

10
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277  changeand policy intervention scenarios The shaded area indicates theariation - uncertainty introduced by different
278 model initialisations and by different relative importance of the PMT factors on the decisions of householffensitivity
279  analysis)

280 The adoption of adaptation measures by households infld¢heie maize yield and thus affectaétle average
281 and median maize harvest under the different future climatedrandht risk reductiomterventions (Fig6).
282  This becomes clear comparing the firghirty baseline years with the following thirgcenarioyears When no
283  policy interventionswere in place, average maize yields increlséh almost 30% under a wéibt future and
284  decrease over 25% under a drljot climate. Under grospectivegovernment supporting the adoption of
285 adaptation measures, average maize yields inategst 100% under a wiiot future and increadevith over
286  60% under dryhot future conditions. Clearly, an increased uptake of measandes this intervention scenario
287  did offset a potentially harfal drying climate trend.

288 4.3 Drought risk dynamics under policy and climate change

289  Assuming offfarm income to fluctuate randomly but not steadily increasing or decrettgingjjanging harvests
290 over timedirectly affecedthe poverty rate and the shafehouseholds in food insecurifffig. 7). Both trends in
291  vyield caused by droughts by the adoption of new adaptation measuwesld drivefarm householdh or out of
292  poverty Running ADOPT with a reactive and no climate change scenaiigh&increase of percentage points
293  (pp)in poverty levelsvas visible. Poverty levels increabep to 15p compared to the baseline situatiorhen
294  adryer and/or hotter climate scenanias run. A proactiventervention plameducedpovertyby 11pp under no
295 climate changeln the dryhot climate scenario this combination of improved early warning systems aardeex
296 cash transfers lead to reductions of3pp compared to the baseligears However, thg@rospectiveggovernment
297  scenario showethe most prominent results, projecting reductions @ipdfder no climate change and around

298  60ppunder dryer and hotter climate conditions.
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301 intervention scenarios). The shaded area indicates thevariation - uncertainty introduced by different model
302 initialisations and by different relative importance of the PMT factors on thedecisions of household¢sensitivity
303 analysis)

304  Food insecurity is partly caused by a lack of income or assets, but also by the farm market mechanism. Droughts,
305 climate change and adaptation levels influence the availability of maize on this market. Farm dsusklubl

306 do not produce enough to be sslffficient, buy maize on the market if they have the money and if there is maize
307 locally available. Households are assumed to be in food shortage if they have to rely on food aid to fulfil their
308 caloricneedsOnaveragé n t he édno cl| i pidigyentchrangrtdi,madsécbitycaen ar i o0 s
309 were predicted to remain stable compared to laselineperiod (fig. 8). However policy interventions and

310 climate clange can alter this balance.

311 Improving extension services or providing-amte cash transfers individually shesdwn average 7.5% more

312  reduction in food insecurity than the reactive government scenarioovexgbearly warning systems showed on

313 average over all climate scenariean increased reduction of 4.5%. It should be kept in mind that ADOPT does
314  notconsidefillicit) coping activities in the face of droughts such as food stocking or charcoal budtungver,

315 both of them mighreduce the food security threat. Credit schemes at 2%, individually, lead to more than 8%
316 reduction in food insecurity levels as compared to the reactive scenario; buthemean average net food

317 insecurity rates increase due to climate chaAgaroactive intervention resulted in afood insecurity rate which

318 is 6 percent points lower than under the reactive scenario; but still showed increases in the prevalence of food

319 insecurity under hotter and drier conditions. A prospectiveintervention combining all four interventionsyas

320 able toconsistently reduce the food insecurity levels over time, even under théairgimate scenario. This

321 scenario wa able to counteract the increase in food insecurity, achieving a wdwéthouseholds in food

322  shortage over time with on average8% compared to the reactive scenario, all climate scenarios considered.
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Fig. 8: Absolute change (average and standard deviationintrod uced by sensitivity analysis- variation causedby
different model initialisations and by different relative importance of the PMT factors on the decisions of households
in averageshare of households in food shortagef the 20 last years ofscenariorun, compared to thefirst 20 yearsof
basel i ne r un ,undefddferent climate andpoligyfintervention scenarios. ADOPT model output.

Expressing drought impacts in average annual foodeguired (in USD) can help to evaluate the effect of
different climate change scenarios or diffengolicy intervention scenarios dhe drought risk of the community.
These estimations are translated to USD, assuming a maize price for shortage markets, as price volatility is
consideredTable2 shows the change in aid needs compared to ttetimate change, ntop-down intervention
baseline period (based on the 19800 situation). When assuming no climate change, it sektimat the
community is stable, only slightly increasing the share in vulnerable households. More measeae®pted as
information isdisseminated thought the farmer networks, but those who stay behind will face lower sell prices as
markets get more stable and have a harder dooemulating assetUnder wetter conditions, reductions in
drought emergency aiddireduce However, drier, hotter climates dha detrimental effect on the food needs,

with more vulnerable people crossing the food shortage threshold.

Under the no climate change scenario, each of theplicy interventionsdid cause a reduction in aid needs,

with credit schemes having the largest effect. Under wetter conditions, they also ih¢heassduction of aid

needs compared to the reactive scen&tawever, no individual measureas able to offset the effect of hett

and drier climate conditions. Evemder aproactiveintervention there would still be an increase in aid needs
under suctclimate conditions Only under theprospectiventerventionscenario, a decrease in aid needs

visible under all poskle climate change scenarios.

Table 2: Change in aid needs (%) in 203@050 compared to 198@000 (average and standard deviatiorintrod uced by
sensitivity analysis- variation causedby different model initialisations and by different relative importance of the PMT
factors on the decisions of householiisinder different climate and policy intervention scenarios. ADOPT model
output.

No change Wet Wet Hot Hot Dry Hot Dry
Reactivescenario 4 (+-4)% -29(+-20% | -11(-+6)% | 37(+-6)%
Ex ante cash transfer -2(+-4)% -31(+-15% | -20(+-5)% | 24(+-5)%
Early warning systen| -6(+-6)% -42(+-18)% | -24(+-6)% 25(+-5)%
Extension services | -20(+-7)% | -49(+17)% | -33(+-6)% | 15(+-4)%
Credit at 2% rate -24(+-10% | -50(+-18)% | -33(+-8)% 10(+-12)% 62(+-28)%
Proactive scenario | -15(+-6)% | -48(+12)% | -37(+-3)% | 13(+-5)% 58(+-17)%
Prospectivescenario | -80(+-1)% | -81(+1)%  -82%(+-1) | -78+2%  -68+3)% | -66(+-4)%
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5. Discussion
51 The effect of early waming, extension services, eante transfers and low interest rates

Under a reactive strategy (fino interventionodo) and
mulch, FanyaJuy shallow well and irrigation practices is estimated. This is a result of an ever increasing
information diffusion throughhte farmer networks and existing extension services, as also fotitadtimich et

al., 2008a; van Duinen et al., 2016a; Villanueva et al., 2016; Wossen et al.,YZ18ultiple smallholder
households still suffer from the effectsdrbughts, indicated by the elevated food insecurity rates and poverty
rates. Whilesome can break the cycle of drought and subsequent income losses, others are trapped by financial
or other barriers and end up in poverty and recurring food insectihityis also foundby e.g.,Enfors & Gordon,

(2008); Mango et al., (2009); Mosberg & Eriksen, (2015); Sherwood, (2043he reactive scenarid,is clear

that adaptation intentioislimited byfactorssuch asa low risk perception, high (initial) adaptation costéyéed
knowledge of the adaptation efficacy or a low sdffcacy. Some of thesdarriers are alleviated through the
different government interventions

As compared to this reactive scenario an increased rate of adoption is obserdedall policy interventions. This
trandates into a comparatively lower drought risk (expressed by the indicatoommunity poverty rate, food
security and aid needs)Vhile initially extension services have the largest eftecthe adoption of on-farm

drought adaptation measures, over time access to credit results in the highest adoption rates and is also estimated
to decrease emergency aid the mdste former alleviating the knowledge (sedffficacy) barrier,increases
adoption undermclimate change with 27% as compared to no interventismindeed widely recognized as an
innovation diffusion tool in different contexts.(y.,Aker, 2011; Hartwich et al., 2008b; Wossen et al., 2013

latter, alleviation the financial (adaptation costs) barriecyeases adoption under no climate change with 30%

as compared to no interventidiis alsofound to be an effective policy to reduce poverty in Ghana by Wossen
and Bergef(Wossen & Berger, 2Ib). Ex-ante cash transfers also tackle the financial barrier but less effectively
(the cash sum is small and fixéddnly significant forless wealthyhouseholds)increasing adoption under no
climate change witB5% as compared to no interventidrnis matches empirical evidencen the positive effects

of exante cash transfefasfaw et al., 2017; Davis et al., 2016; Pople et al., 208@d)vever, ADOPTmodel
estimations might be an underestimationttas modeldoes not account for many preparedness strategies of
households such as stocking up food while the price is still low, fallowing land to reduce farm expenses, or
searching for other sources ioicome (Khisa & Oteng, 2014)Seasonakarly warning systemswhich raise
awareness of upcoming droughitscreasethe adoptionof measuresvith 22% as compared to no intervention

Early warningshave a stronger effect on the adoption of mulching or Fanygcheaper measurekwer
financial barrierthan ondrip irrigation. Clearly, the positive effecof the interventionen household resilience
varies which is confirmed by theempiricalfindings of Wens et al. 202

The proactive government scenaiiopr e par i ng f osrby snprovingdarty watring systems and
supporting exante cash transfersas aarger effect on drought riskdowever, this effect is not as much as the
sumof the effect of the two interventionk contrast, he prospective governmesitc e n anitigatmg diiought

di s a Dy cembising al four interventions, alleviates multiple barriers to adoption at onthis creats a
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significant non-linear increase in adoptigmrmatching thesignificant positivecorrelationbetweerthe preferences
for extension, creditarly warningin Wens et al. 202X Consequently, this scenario results in a clear growth in

resilience of the farm households, shown in more stable income, lower poverty rates and less food .insecurity

5.2 The robustness ofirought risk reduction interventions under climate change

Climate changénfluencest he ef fectivity of the measures as well
Under all climate change scenarios, a lower adoption of adaptation measures comparea tdithate change
assumption is observedihis could be explained by the fact that the perceived need to adaplower under wet
conditions and the financial strength to adagower under dry or hot condition$his highlightstwo different

barriers to adoptiarrisk appraisal lowers when the occurrenceof drought impacts is less frequent, while coping

appraisal lowers due to experiencingnore droughtimpacts. Thislink between drought experiencg®verty and
adaptation was also found in other studieg., Gebrehiwot & van der Veen, 2015; Holden, 2015; Makoti &
Waswa, 2015; Mude et al., 2007; Oluealingo, 2011; Winsen et al., 2016)

Whiletheir effect on the adoption rates seems rather small, thediverseclimate change scenaribaveadistinctly
different effect on thevolution of drought risk ithe rural communitiedDue to the adaptation choices of the

farm households, average maize harvestsestimated toslightly increase under thBno climate change
scenario A major increase igstimatedunder wet and weliot conditions where both increased adoption and
better maize producing weather conditigrlay a role. Under hot, dry and dry hot conditions, the average
household harvests aestimatedo decreaséalso found irWamari et al., 2007)ncreasen median and mean
assets (household wealthje estimateddightly increase under the no climate change scenahothis case,
adaptatiorefforts are able to reducing the drougtdisaster riskDrier climatesnightlead to decreases in median

and meanassetsjf farm households are not supported through top-down interventions, Hotter climatesare
estimatd to resultdecreased median but incredsgerage assets of the householdshis caseadaptatiorates

are not high enough to avoid increasing droughtfosithe median households

The proactive government scenaiscestimated to level poverty and food security urigter or drier climate

change scenario§he prospectivgovernmenscenarias the only scenario estimated to reduce emergency aid
under all possible future climates. However, it should be noted that it takes one to two decades to make a
significant difference between the reactive stance and prospective intervention plan. In odiserwto climate
change effects already visible through an increased frequency of drought disasters, and more to be expected within
the following 1020 yearsprospective interventioshould bestartechow in order to be benefit from tlcreased

resilience in timaunder any of the evaluated futures

5.3 ADOPT as a dynamic drought risk adaptation model

In the past decadéhe use of ABM in expostandexanteevaluations of agricultural policies and agricultural
climate mitigation has been progressively increagihgper et al., 2018; Kremmydas et alD18). A pioneerin
agricultural ABMis Berger (2001yvho couples economic and hydrologioygmonents into a spatial muligent

system This isfollowed more recently by forkampleBerger and Trost (2011), Van Oel and Van Der Veen
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420  (2011), Mehryar et al. (2019and Zagaria et al. (2021The sociehydrological, agerbasedADOPT model
421  follows this trend in thait fully couples a biophysical modél AquacropO® and a sociatlecisionmodeb

422  simulating adaptation decisions using behavioural thebriesough both impact and adaptation interactions
423  The initial ADOPT model setup was created through interviews with stala@kqM/ens et al. 2020), and the
424  adaptive behaviour is based on both existing econorpiychological theory and on empirical household data
425  (Wens et al. 2021)heassumption of heterogeneous, bounded rational behasiaddressegetonly by afew

426  risk studieqe.g. VanDuinenet d. 2015, 2016Hailegiorgis et al. 2018, Keshanz and Karami 2016, and Pouladi
427 et al. 2019) These studiesaveimplemented empirically supported and complex behavioural theories in ABMs
428  similarly to ADOPT(Schrieks et al. 20215ager, 2021Taberna et al., 2020; Waldman et al., 2020)

429  ADOPT differs fromthesemodels however throughits specific aim to evaluate households and community
430 drought dsaster riskbeyond the number of measures adopted, crop yielthter useRarely(excepte.g.,Dobbie

431 et al 2018)do innovation diffusion ABM use sociecanomic metrics to evaluate drought impacts over fime
432  while such risk proxies are gfeatsocial relevape.As such ADOPT evaluats the heterogeneoushanges in
433  droudht risk for farm households, influenced by potential topdown drought disaster risk reductigPRR)
434  interventions|t does sdhrough simulating their influence on individual bottap drought adaptation decisions
435  bythesefarm households and their effect mcioeconomicgproxies for drought riskpoverty rate, food security
436  and aid needs)lo our knowledge, thisisrathernovelin the field of DRRand drought risk assessments.

437 54 Uncertainties in ADOPT and limitationsin investigated measures and interventions

438  While yield data has been validated over the histbperiod (Wens et ak020), the model outputannot be

439 used as a predicting todlhis would requirenoreextensive validationtor which, currently, datais notavailable

440  Such data would includengitudinal information on household vulnerability and adaptation choices from areas
441  where certain policies are being implementaddetailed data on aid needs for the case study @heapast

442  average peerty and food insecurity rates matched observations (\eals2020) However, absolute amounts

443  of emergency aid needs are sensitive to the averages and fluctuations of household assets which proved harder to
444 verify. Besides, poverty and food insecurity depend also on external, food or labour market and other influences
445  which might change towards the fututdoreover, the simulated climate scenarios amet entirely realistic

446  (becauseariability changes arignored andecausehe synthetic futuralata is created based on statistics rather
447  thanphysical climate and weather system chang@édpreover,the East African Climate Parad@kunk et al.,

448  2021)creates its own set of challenges predicting future lvegatonditions in the study area.

449  Unavoidably, multiple possiblemallholder adaptiin measureare omitted in this studynanymoreagricultural

450 water management measur@gronomicactions and other options under the umbrella aflimatesmart

451  agricultue, exist Besides, only four differemgolicy interventions are evaluated while various other ex@ists

452  of these topdown interventions are unknown, making ch&nefit estimatesegarding drought risk reduction

453  drategies not possikd for this study.Studying additional measures or interventions is be possible using the

454  ADOPT modelput requires (the collection of) more data for parametrization and calibration.
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Anotherfuture improvement to the model coul@ bodirectly samplethe empirical househd surveydata(Wens

et al 2020)o create a synthetic agent.9dbw, thecreation ofagents (households) with different characteristics
is drawn from distribution functions based on frequencies in the empirical Slath oneto-one datadriven
approach is similar tonicrosimulation andyaining popularity among ABMs(Hassan et a2010) Lastly, the
model application does assume no shifts inpifteesses underlying weather and human decision mairniy
thesynthetic future weather situation and the decision makiogggses are based on past observafianavoid

the effect of systemic changes and black swan effatt,30f f u tyearseu@ modelled.

Becausdhe model setugould not be fully validated andscenariogio not provide a completverview of all
possibilities this studydoes notlaim to provide a prediction of the futufer southeastern KenyaHowever,
ADOPT is meant td rather than forecast drought impadncrease understanding of the differentiated effect of
adaptéion policies: theelative differences in the risk indicators are informative for the comparisihresd top
downinterventions under differechanges in temperature and precipitatidns study showcases the applidan

of ADOPT as a decision support totilevaluaésthe robustness of a few, dedicatedly chgsaicy interventions
onfarm household drought risk under climate scenarios that are deemed telegant for the specific argauture
research can use ADORG study the differentiated effect of these interventions on different types of households

in order to tailor strategies anargjet the right beneficiaries of government interventions

6. Conclusion

Top-down interventionsproviding drought and adaptation information as well as supporting the capacity to act
on the basis ahisinformation are needed tmcrease the resilience of smallholder farmers to current and future
drought risk. However, to which extent t ihtentor to iadopt ermkte nt i on s
adaptation measureBence how effective they are in reducing the farm household droughtfteskremains
unknown.In this studythe agentbased drought riskdaptation modelADOPT is applied toevaluatethe effect

of potential future scenarios regarding climate changepafidy interventionson agricultural drought risk in
southeastern KenyaThe smallholder farmers in this region face barriers to adopt drought adaptation measures
such as mulching;anyaJuuterraces, shallow welland drip irrigation, to stabilize production anddame.

ADOPT simulates their adaptive behaviour, influend®d drought occurrences under changing climate
conditions Adaptive behaviour is alssfluenced by top-down (non)governmentdrought risk reduction
interventionsuch ashe introduction oéx-ante cash transfers, affordable credit schemes, improved early warning
systems and tailored extension servic&8e demonstratéhat the investigatedinterventions all increasethe

uptake ofadaptatiormeasureas compared to the readigcenariainder no climate changbusinessasusual)
Extension service$+27% uptake)multiply adaptation knowledgand thus increase sadfficacy among the
smallholdes, whichraisesthe adoption ofess ppulardrought adaptation measuréscessible edit schemes
(+30% uptake) alleviating a financial barriegre effective especiallffor more expensivelrought adaptation
measuregEarly warning system@22% uptake)creating riskawarenessare more effective in climate scenarios

with less frequent droughEx-ante cash transfe($25% uptakehpllow the least endowed household<limb
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out of the poverty trap bsdoping low-costdrought adaptation measurasd thus reducing future shocl$he

effect of climate change on the adoption of adaptation measures is limited.

Moreover, his studyprovesthat alleviatingonly one barrier to adoption has a limited result ondtteeight risk

of the farm househotdUnder the po-active scenari¢+40% uptake)combining early warning with eante cash
transfes, smallholder farmers alettersupported t@adopt drought adaptation measuaad to create, on average,

more wealthHowever the effect of climate change éarm householdssk differs significant under this proactive
scenario While for wetter conditions, this scenario is abldrterease food security and redymeverty, this is

not sufficient todiminish the need for external food aighder every evaluated climate sceaa®nly by
combining all four interventioné+139% uptakd, a strong increase in the adoption of measures is estimated.
Simultaneously increasm risk perception, reducing investment cosiad elevating seléfficacy, creates
nonlinear synergiesJnder suctprospectiveggovernment approacDOPT implies significantly reduced food
insecurity, decreased poverty levedsd drastically lower drought emergency aid nesftesr 10 to 20 years,

under all investigated climate change scenarios.

This studysuggestshat, in order taeachthe current targets of the Sendai Framework for Disaster Risk, which
aims at building a culture of resiliencand toac hi eve Sustainabl e Development
Afsustainabl e water management 0 a fisdeededWhilerme ppresenta@ si | i en
proof-of-concept rather than predictive mbadthe results improve the understanding of future agricultural
drought disaster risk under so@aeonomic, policy and climate trend&le provide evidence that agefitased

models such as ADOPT can serve as decision support tools to tailor drought risk reduction interventions under
uncertain future climateonditions More research into the heterogeneous effect of the investigataetbtap

i nterventi ons oiandéacsions antd drdughtsrik can gravide iafarmation foeffective and

efficient tailoring of thepolicy interventions. Howevefrom this study, it is clear that maltiple interventions-

both (risk andadaptatioh information provision anthe creation ofiction perspectiveshould be combinetb

build asustainabléuture forsmallholderfarmersin Kenya&d s dr.y |l and s
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Appendices

Appendix A: Description of the ADOPT model following the ODD+D protocol(Laatabi et al., 2018; Mller et al., 2013)

I. Overview
l.i Purpose

What is the purpose of the model?

The purpose of ADOPT is to improve agricultural drought disaster risk assessments by including the complex

adaptive behaviour of smallholder farmers. The ADOPT model simulates the welfare (poverty level, food security

& aid needs) of smallholder farm hohsdds over time as a function of climate effects on agricultural production,

mitigated by implemented adaptation measures, and simulates the adoption of such measures as a function of

economic, social and psychological household characteristics. Undéngtahd twoway feedback between

househol dsd adaptation decisions and

mai z e

yield

under climatend policy change®ADOPT can be used to evaluate daoption rate of adaptation measures under

different climate andoolicy scenaris hence contrast their effemt the drought disaster riskapproximated by

food security and wére- of smallholder farmers.

For whom is the model designed?

The ADOPT model can allow scientists to increase theitetstanding of the socioydrological reality of

drought disaster risk and drought adaptation in a smallholder farming context. It can also help decision makers to

design drought policies that target specific farm household and evaluate the effect qfolfess on their

drought vulnerability.

l.ii Entities, state variables, and scales

What kinds of entities are in the model?

The agents in ADOPT are individual farm households that have a farm of varying size and potentiaitgram off

incomesource. Two other entities exist: the crop land (multiple fields) that yields maize production and is owned

by the farm households, and the market (one) where maize is sold and bought.

By what attributes are these entities characterized?

Farm householdsése UML, figureA.1) have a farni characterised by its farm size and the adaptation measures

implemented on it They also have a family size, a household head (male/female) with a certain age and education

level, financial assets (wealth, expressed in YSif-farm employment, and farm, food and other expenses.

Household heads have a memory regarding past drought impacts, have a perception about their own capacity,

and, in varying degrees, have information about potential adaptation measures.
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Crop land farms) (see UML, figuréA.1), belonging to households, produce maize under changing weather
conditions, influenced by potential adaptation measures affecting water management conditions. The market (see
UML, figure A.1) is influenced by local production éiconsumption, which results in a variable maize price

depending on the balance between supply and demand. In the presented case study, we consider relatively isolated

areas, less subjected to globalized market systems: maize price is variable foll@ntotgltamount of locally

produced maize to replicate the observed price volatiifigh(minimum and maximum prices derivéidm

FEWSnet) during years of reduced production.

Farm households

amount-measures
aid-needed

poverty

tood-secure
household-size
food-needs

crop-land
age-householdhead
gender-householdhead
education-householdhead
afffarm-income
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assets stock
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current-yield
average-yield
ACCESS-Lraining
access-credit

Ioan

perceived-risk
perceived self efficacy
perceived-adapt-cost
perceived-adapt-efficacy
harvest()

buy-maize()

sell-maize{)
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update-riskperception()
update-adaptationperception()
update-adaptationintention(}
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Figure A1. UML diagram
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What are the exogenous factors / drivers of the model?

Two exogenous factors influence the farm household systeaily: weather(influenced bygradual climate
change) and drought disaster risk reduction policies-dtiypn policy interventionssupporting smallholder
farmers). The first factor might alter the frequency and severity of drougitich may lead to failed crop yields,
while the latter affects the knowledge, access to credit, and risk perception of households who are rebipient of t

policies.

How is space included in the model?

ADOPT runs on the scale of farm fields (size adjusted to the case study area). On this field scale, agricultural
water management decisions (adaptation) interact with rainfall variability (drought hatandver, spatially

explicit fields are used only in the initialisation phase so neighbouring farms ¢dertiéied butdoes not play

any further role: space is only represented in a spatialbjicit way, all farms (crop land) receive the same
amount ofrain and sun, have the same soil type with a similar slope and differ only in their farm size and

management applied.

What are the temporal resolution and extent of the model?

One time step of ADOPT represents one year. The crop model part runs onlaadei) producing maize crop

yield in every cropping season, but decisions by the farm households to eventually adopt new adaptation measures
are only made once a year. Each year, the poverty status, food security situation, and potential food did needs o
all farm households are evaluated. The model runs 30 years labbaseline (+ 10 initialisation years) and 30

scenario years.

L.iii Process overview and scheduling
What entity does what, and in what order?

Every year, farm income of the househokligpdated with the maize harvest sold at the current market price (see
centre of the flowchart in FigA.2). This harvest depends on the farm size of the household, the maize yields
(defined by AquacropOS) which may be affected by a drought potentialigateit! by implemented drought
adaptation measures, and on the food needs of the own household (subsistence is prioritized over selling;
household members can die or be born (stochastically determined, based on birth and mortality rates in the study
area).This farm income, together with a potential (fixed) off farm income, and with-&zedependent farm
expenses, famikgizedependent household expenses, and potentially extra food expenses (if the own production
was not sufficient to fulfil householdfdo needs), alters the assets of the
memory of drought impacts (risk perception) is updated, and they interact (in random order) with their network
of neighbours exchanging information on adaptation measures.

Once a yearthe household head decides whether they want to adopt a new drought adaptation measure. They
make this decision based on their memory of past drought impacts, their perception of the adaptation costs, the

knowledge on adaptation measures through theivaré&s and training, and their perception of their own capacity.
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587  The adoption of a new measure changes the farm management of those farmers, directly changes their wealth
588  (implementation costs) and the farm expenses for the following years (maintenasgearasinfluences crop

589 yield and crop vulnerability to droughtthus potential farm incomeduring the following years.

590

v

AquaaopOS simulates maize aop growth
based on weather conditions and
adaptation measures adopted

h 4
fHarvest maize\ Compare with

\ / neighbours

A 4

Yes ;
No Neighbours
l l Consum e needs Yes Hareinore?

Risk perception Risk perception Accessto
decreases increases with training?
gradually yield loss Yes

— 1
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Yes 1
l Update knowledge
about adaptation
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efficacy
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Y
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» adaptation measures based on Protection <
Moativation Theory (or others)
591 I Fig.

592  Figure A2: Flowchart showing process overview

593
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594 |lI. Design Concepts
595 Il.i Theoretical and Empirical Background

596 Whichgeneraloncepts, theories or hypotheses are underl ying
597 the level(s) of the submodel(s) ?

598 The multidisciplinary modelling approach of ADOPT is rooted in sewyalrology (Sivapalan et al., 2012)

599  where the human system both influences and adapts to the changinglgmysioament (in this case agricultural

600 drought), and applies an agdrased approach to deal with heterogeneity in adaptive behaviour of smallholder

601  households.

602  The setup / design of the model (the drought disaster risk system) is a result of participatory concept mapping

603  with researchers and students of SEKU University, technical advisors of Kitui County Department of Water,

604  Agriculture, Livestock and Fishing, p&rts from SASOL foundation, and five pilot households that have example

605 farms for agricultural extension. This information informed the decision context of ADOPT.

606 On what assumptions is/are the agentsd decision model

607 In the first design of AD®T, three adaptive behaviour scenarios were analysed, with increasing complexity. A

608 O6business as usualdéd scenario with no changing drought
609 adaptationd approach. The rydvorv Mearhanno ané Morgénsterre 944 d Ut i
610 represents the widelysed economist assessment of choice under risk and uncertainty. Simulating bounded

611 rational rather than economic rational adaptation decisions, the Protection Motivation Theory (Rogers, 1983) is

612 used as a way to include psychological factors in the heterogeneous adaptive behaviour of smallholders.

613 I ndeed, it is often stated that househol dsd adaptive
614  technological, social, and climaticrext of the farmefAdger, 2006) Knowingthe risk is not enough to adapt;

615 farmers should also believe the adaptation measure will be effective, be convinced that they have the ability to
616 implement the measure, and be able to reasonably pay thévemsBuinen et al., 20150Financial or knowledge

617  constraints may limit economic rational decisions. Also age, gender and ediidatidmsic factors- can play a

618 role (Burton, 2014) The perceived ability to do something (Coping Appraisal) influences the decision making

619  proceséEiser et al., 2012)This coping appraisal cae Bubject to intrinsic factors such as education level, sources

620 of income, farm size, family size, gender, confidence and beliefsavisision, and agée Dang et al., 2014,

621  Okumu, 2013; Shikuku et al., 2017; Zhang et al., 2019)

622  In order to understand the observed adaptive behaviour of smallholder householdstichigaiincorporate

623  such sociakconomic factors in the decisionaking framework of drought adaptation mod@&syan et al., 2009,

624  2013; Deressa el.a2009; Gbetibouo, 2009; Gebrehiwot & van der Veen, 2015; Keshavarz & Karami, 2016;

625 Lal ani et al ., 2016 ; Mandl eni & Ani m, 2011; O6 BRI EN
626  2017; van Duinen et al., 2015b, 2015a, 2016; Wheeler et al3).28fter we had promising results running

627  ADOPT with the bounded rational scenario, it is assumed that farmers show a bounded rationality in the further

628  application of ADOPT.
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Why is a/are certain decision model(s) chosen?

Analysis of the past and #nded behaviour of farm households in the region provided support for the choice of
theory, but also showed the need to include network influencing risk perception and capacity of the households.
Besides helping to parameterize the model, it also helpdibwate the influence of the different factors affecting

the decision making process of the farm household. Showing the effect of different assumptions about decision
making in the first exploration of ADOP{M. Wens et al., 2020)nd with empiric evidence on the adaptive
behavioui(M. L. K. Wens et al., 2021}he decision rules in ADOPT are assumed be a good enough representation

of the decision making process regarding drought adaptation.

If the model / a submodel (e.g.,the decision model) is based on empirical data, where does the data come
from?

ADOPT is designed/initialised with data from existing longitudinal household sufVegemeo Institute, 2000,
2004, 2007, 201nd from a fuzzy cognitive map of key informants, and parameterized/partially calibrated with
data from a serstructured household questionnaire among 260 smallholder faBuersy reports can be found
here:

- https://research.vu.nl/en/publications/surreportkitui-kenyaexpertevaluationof-modelsetupandpr
- https://research.vu.nl/en/publications/surreportkitui-kenyaresultsof-a-questionairaegardingsus

At which level of aggregaion were the data available?

Data from the surveys are available on individual household level.

ILii Individual Decision Making

What are the subjects and objects of decisiemaking? On which level of aggregation is decisiemaking
modelled?

In ADOPT, individual farm households make individadaptatiordecisions about their farm water management
(in the case study in Kenya: muing, FanyaJuu terraces, drip irrigation or shallow wet) reduce their

production vulnerability to ughts There are no multiple levels of decision making included.

Wh a't i s the basic r at i omakihgiinty mbdelh Donagentsamursue tirse@plicd e ci si o
objective or have other success criteria?

Farmers generally try to reduce their drought disaistie (achieve food security, evade poverty and avoid needing
emergency aid) and thus try to maximise crop yiéttisiinish yield reduction under watémited conditions)

given the capacity they have to adopt adaptation measures.

How do agents make theiidecisions?

The Protection Motivation TheorfMaddux & Rogers, 1983(see Il.i) is used to explain the dgicin making
process of the household®MT consists of two underlying cognitive mediating processes that cause individuals

to adopt protective behaviours when faced with a haffldoyd et al., 2000)It suggests that thatentionto
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protect (in this studythef ar mer sd® i ntenti on t o )d&sddiypatedbay me w ea dsaomtsadt ir
appraish and the perceived options to cope with riskee former depends offor examplef ar mer s & r i sk
perception,on their own experiences with drought disasters and memory thereof, agpetences of risk

events in their social networkBhe latter is related to different factors suclpasceived setefficacy (.e. assets

and sources of income, education leaid family size, adaptation efficacy (land size, adaptation measure
characteristics) and adaptation costs (expenses in relation to their in€asheghiwot & van der Veen, 2015;

Keshavarz & Karami, 2016; van Duinen et al., 2015, 2Q18ayseholds do not have any other objective or

success criteridh detailed description of how PMT is modellgéhcluding the sensitivity analysis regarding the

relative weights of the PMT factorscan be found in Wens et al. (2018):ADOPT, farm households develop

an intention to adapt (proteddr each potential adaptation measure (mmich changes every year.(ff a

household has the financial capacity to pay for a considered measure (Stefanovi, 2015), the intention to adapt is
translated into the likelihood the household will adopt this measure in the following (fdasscan be influenced

by having access to credit.h&@ actual adoption is stochastically derived fromlikedihood toadopt a measure

IntentionToAdapt; ., = o * RiskAppraisal;
+ B * CopingAppraisal; m

Although Stefanovi (2015), Van Duinen et al. (2015a), and Keshavarz and Karami (2016) have found positive
relationships between the factors of PMT and observed protéetheyviour a level of uncertainty exists related
to the relative importance of riskpraisal and coping appraisal in the specific context of smallholder households'
adaptation decisions in semir i d Kenya. Therefore, the U and b par am
two cognitive processes. To address the associated uncertaietyyt wer e wi dely varied (U,
a sensitivityanalysis.
Risk appraisal is formed by combining the perceived risk probability and perceived risk severity, shaped by
rational and emotional factors (Deressa et al., 2009, 2011; Van Duinler2étldb).Whereagisk perception is
based in part on past experiences, several studies have suggested that households place greater emphasis on recent
harmful events (Gbetibouo, 2009; Rao et al., 2011; Eiser et al., 2012). To include this cognitigktappraisal
is seen as a sort of subjective, persanalight disaster memory, defined as follows (Viglione et al., 2014)
RiskAppraisal; — RiskAppraisal;, , + (Drought; * Damage; )

—0.125 = RiskAppraisal; | with Damage,

= 1 — exp(—harvestloss; )
The drought occurrence in year tis a binary value with avalue of 1L iftheSPEBMal ue f all s bel ow T 1
damage ba household is related to their harvest loss during the drought year, which is defined as the difference
between their current and average harvest over the last 10 years.

Coping Appraisal represents a househol ds subjective

given the adaptation measures efficiency ilnsareducin

combination of the househis' self-efficacy, adaptation efficacy of the measure, and its adaptation costs:
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CopingAppraisaly;, = v * SelfEf ficacy, + 0 * AdaptationEf ficacy, .,
+ e * (1 — Adaptationcosts;)

Although Stefanovi (2015), Van Duinen et al. (2015b), and Keshavarz and Karami (2016) quantified the

relationships between the factors driving the subjective coping agpoéisalividuals, a level of uncertainty

remains related to the relative importance of these drivers in the context of smallholder households' adaptation

decisionsinsemar i d Kenya. Therefore, weights (o, asdsitvity ¢

analysis using different ADOPT model runs.

[ 0. 2

The Adaptation Costs of the possible measaregxpressed in terms of a percentage of the households' assets.

The Adaptation Efficacys calculated as the percentage of yield ggnmeasuresompared to the current yield.

This can be influenced by access to extension services (which gives an olyjetdigain based on future climate

rather than an estimate based on current practices of neighbours)

Self-efficacy is assumed to be influenced by education level (capacity), household size (labour force), age and

gender;all socialfactors found to influence risk aversion and adaptation decisoanto, 2013Charles et al.,

2014 Tongrukawattana, 201Muriu et al., 201Y.

Do the agents adapt their behaviour to changing endogenous and exogenous state variables? And if yes,

how?

Exogenous factors influencing adaptation decisions in ADOPT include the climate and the policy context in which

households exists. Drought (a feature of

the cli

of the drought disaster riskbey face (Risk Appraisal). For example, experiences of histadimughts or

receiving early warnings about upcoming

drought

to a personal drought disaster risk judgement {geghavarz et al., 2014; Singh & Chudasama, 20B&3ides,

mat e

af fec

access to extension services (a feature of the climate context) can have profound effect on whether or not

individuals take proactive actiditinya et al., 2012; Shikuku et al., 201 Bndogenous factors, as explained

above, include age, household size, education level, maize yield variability and assets (and the potential access to

credit market).

Do spatial aspects play a role in the decision process?

Farmer networks (connections with nigiigurs)exist,and information is passed through this social network.

Do temporal aspects play a role in the decision process?

Yes, risk memory is based on the crop yield variability of the accumulated past years and gives farm households

an expectationtaout the upcoming crop yield.

Do social norms or cultural values play a role in the decisiemaking process?

No (only implicitly included, see I1.ix)
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725 To which extent and how is uncertainty included in t

726  No

727 [Liii Learning

728 Isindividual learning included in the decision process? How do individuals change their decision rules over

729 time as consequence of their experience?

730 Decision rules follow the PMT and are thus fixed, but some rules differ among type of housdbakkholds

731 that do not regularly receive extension services, are limited to only implement measures that their neighbours
732  have installed as they are not aware of the existence of others. Besides, farmers who receive training will form
733  their perception abduhe adaptation efficacy in a more objective way (as they have knowledge of average yield
734  results under the adaptation measures while other farmers estimate this based on yield of their peers with such

735 measure).

736 Is collective learning implemented in the nodel?

737 No

738 ILiv Individual Sensing

739  What endogenous and exogenous state variables are individuals assumed to sense and consider in their

740  decisions? Is the sensing process erroneous?

741  Households are aware of their assets, past yields, income sources asthHility, and household food needs

742  (Fig. Al). Following the socidydrologic setup of the model, households with bounded rational behaviour are

743 embedded in and interact with their social and natural environment. Changes in rainfall patterns during the

744 growing season will change householdsé risk perceptio
745 influence the adaptive behaviour of these households. Besides, there is a diffusion of technology due to

746  interactions and knowledge exchanges agnfanm households as discussed above.

747  What state variables of which other individuals can an individual perceive?

748  Households know their own but also theire i g h kcuwrent yéefils and management practices. They make
749  assumptions about the adaptationceffly based on this.

750 What is the spatial scale of sensing?

751 Individual sensing happens on household level, but also through the individual social network that the farmers

752  have, containing 3 to 30 other farmers.
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Are the mechanisms by which agents obtain infonation modelled explicitly, or are individuals simply

assumed to know these variables?

Households can get information about early warnings and through extension training. Households also have a

simulated information transfer moment with the farmers iir theighbourhood to exchange information on risk

and yields.

Are the costs for cognition and the costs for gathering information explicitly included in the model?

No

Il.v Individual Prediction

Which data uses the agent to predict future conditions?

By extrapolating from historad yield experiences, farmers have expectations about their maize yield every year.

If an early warning system is in place, farmers know about upcoming droughts that can influence their crop yield.

What internal models are agets assumed to use to estimate future conditions or consequences of their

decisions?

Households receiving extension services have knowledge about the average (future) yield gain of adopting a new

adaptation measure, which will influence their coping aippta

Might agents be erroneous in the prediction process, and how is it implemented?

Households without this access to training will predict the yield gain based on the extra yield of their neighbours

who have already adopted the considered adaptatéasure.

Il.vi Interaction

Are interactions among agents and entities assumed as direct or indirect?

In ADOPT, households interact with their neighbostsaping risk awareness and response atti{Nttatha,

2017;0kumu, 2013; van Duinen et al., 2016uch networks can enhance social learning and knowkgalje

over, which influences peoplebds adapt a(Belawnet al.,n2016;nt i on

Tongruksawattana, 20145 mallholder households learn from the other households in their social network about

the implementationand berf i t s of drought adaptation

measur e

2010; Shikuku 2017). In ADOPT, exchanges with neighbours shape risk perdegtmimdividual perception

moves in the direction of the social network avefiagad also shaze perceived adaptation effectivity. Moreover,

households with no access to extension can only adopt measures already implemented by neighbours.

On what do the interactions depend?

Households are either more setiented, discussing matters with 10 neights, or grougoriented, sharing

knowledge within a group / collective of 30 neighbouring households.
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Spatial distance (neighbourhood) at initialisation is the key driver for networks; it is assumed that s(he) would
not walk more than 5km to reach peopider/his network.
If the interactions involve communication, how are such communications represented?

Communication is not explicitly modelled.

If a coordination network exists, how does it affect the agent behaviour? Is the structure of the network
imposed or emergent?

No coordination network exists.

Il.vii Collectives

Do the individuals form or belong to aggregations that affect, and are affected by, the individuals? How
are collectives represented?

No, no fixed collectives exist as the social netegahe agents have, are individual in nature.

Il.viii Heterogeneity
Are the agents heterogeneous? If yes, which state variables and/or processes differ between the agents?

Household agents are heterogeneous in terms of state variables (i.e. farmusebphd size, assets), and differ
in access to credit market, extension services and early warning beneficiaries, changing their adaptive behaviour
(Asfaw et al., 2017; Okumu, 2013; Shikuku et al., 2017)

Are the agents heterogeneous in their decisiemaking? If yes, which decision models or decision objects

differ between the agents?

Okumu (2013), Shikuku (2017), among others, found that state varisidd as age, beliefs. gender, education

of the household head, and the household size have significant effects on their risk attitude. These factors are

included in the model application of the Protection Motivation Theory through theffefcy facta.

Il.ix Stochasticity
What processes (including initialization) are modelled by assuming they are random or partly random?

The likelihood to adopt a measure of a household is directly derived from the intention to adapt of the measure
with the highestritention for that household. This is stochastically transferred into an actual decision whether or
not to adopt the measure. For every time step of the simulation, a random number belviedra®vn for each
household; if this is lower than their adapatintention (also betweenI) and the household is able to pay for

the measure, then the household adopts it. This probabilistic way of looking at adaptation intention and the
stochastic step to derive the actual decisions allow to account fancladed factors introducing uncertainty in
adaptive behaviour such as conservatism, social / cultural norms, physical health, ambitiousness etc. of the

households. Moreover, also a stochastic perturbation (multiplied with a random number with average 1 and SD
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0.1) is added to the maize yield per farm as calculated through AquacropOS. This additional heterogeneity
inducing step is done to include effects of pests and diseases on the income and food security of farming
households.

I1.x Observation

What data are collected from the ABM for testing, understanding and analysing it, and how and when are
they collected?

The adoption of adaptation measures and their effect on the total crop production (and food stock on the market)
and individual household wealthheatracked over the simulated years.
What key results, outputs or characteristics of the model are emerging from the individuals?

Drought disaster risk (the annual average of impacts over the run pegiqaessed in terms of average annual
poverty ratelevel of food security and total emergency aid neégdemerging from the model. They are defined
based on the socieconomic conditions of individual farm households.

[1l. Details
IL.i Implementation
How has the model been implemented?
The model is coded in R, which is able to link the two sub models in Netlogo (the adaptive behaviour sub model)
andMATLAB (AquacropOS).
Is the model accessible, and go,where?

No(t) yet

ILii Initialization
What is the initial state of the model wold, i.e., at time t=0 of a simulation run?

At the initial stage, households and their characteristics are randomly created based on the mean and standard
deviation (TableA1) derived from the household dataset, obtained from a survey on agriculturditdiisagter

risk with smallholders in the case study area (Wens, 2019). Income off féineady related to the household

size, education level and negatively related to the farm size. Food afidatbexpenditures alaearly related

to the householdize. Farm expenditures dieearly related to the farm size.
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841  Table Al: Initialisation parameters for farm households in ADOPT

Parameter | Explanation of initialization parameters for farm households Value

Age Age of the household head (based/dens 2019) 42 +9

Edu Years of education of the household head (based on Wens 201¢ 6 + 3

Sex Gender of the household head (male 1, female 0) 0.66

HH -size Family size of the households (people living under same roof) (V 6 + 2.5
2019)

Assets Household financial assets (USD) that can be spend (based on| 80% < 100
2012)

Farm-size Size of the farm (in hectare) used for planting crops (Wens 201¢ 0.7 + 0.6
Off-farm Income from activities not on the own farm in USD (Wens 2019) 1200 + 500
Food-needs | Kilogram of maize to fulfil daily caloric intake needs, per adult | 125
Exp-farm Farm expenditures made by the household (USD/hectare/year) ( 118 + 146
2019)

Exp-food Food expenditures made by the household (USD/year) (@G&t®) 567 + 655
Exp-nonf Other expenditures made by the household (USD/year) (Wens Z 446 + 500
Network Neighbouring farmers creating the social network of the farmer | 10-30

842

843 Isinitialization always the same, or is it allowed to vary amongimulations?

844  In ADOPT,multiple climate change scenarios and policy scenarios were initialtbéxichanged the exogeneous

845 variables in the model. Moreovezach initialization creates another synthetic agent set based on the average
846  household charactstics, Besides, a sensitivity analysis is done to evaluate assumptions on the relative weights
847  of the PMT factors (ll.ii).Eachcombination of climate and policy scenario is runtii?es (3 possibé U ; 4

848  possible combinations o , i accallnt fothe endogenous variabilignd uncertainty

849  Are initial values chosen arbitrarily or based on data?

850  The initialisation values are based on observed household data. Survey data includes a short questionnaire among
851 employees of the Kenyan national disasteordination units (n=10), serstructured expert interviews (n=8)

852  with NGOs, governmental water authorities and pioneer farmers in the Kitui district in Kenya, andegthin

853  questionnaire among 250 smallholder farmers in the central Kitui. Extramiafiom is derived from household

854  surveysof 2000, 2004, 2007 and 2010, conducted by the Tegemeo Agricultural Policy Research Analysis
855 (TARAA) Project of the Tegemeo Institute. Besides, the model initialization draws heavily from reports of CIAT

856  (CIAT & World Bank, 2015) FAO (Rapsomanikis, 2010)FPRI(Erenstein et al., 201B8nd the government of

857 Kenya (Kitui County Integrated report 2013017, 2017) CCAFS (CCAFS, 2015) and from researcle.g.,

858 Muhammad et al., 2010)
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[Liii Input Data

Does the model use input from external sources such as data files or otlmeodels to represent processes
that change over time?
The daily weather conditions from 192010 (from CHIRPS and CFSR} used as input time series; for the
future climate scenarios, the same data but with temperature and/is used.
Besidessurvey datan household behaviour and drought risk contertused. Raw reporting can be foumd
1 Wens, M. (2019). Survey report Kitui, Kenya: Results gliastionnaireegardingsubsistence
farmers'drought risk and adaptation behawviou
https://research.vu.nlsiportalfiles/portal/98864069/MissionRapport.pdf
1 Wens, M (2018Furvey report Kitui, Kenya: Expert evaluation of model setup and preparations of

future fieldwork https://research.vu.nl/ws/portalfiles/portal/98863978/MissionRapport2018.pdf

Where does data come from? How is it collected? What is the level of available data? How is iustiured?

Data (also discussed in Wens et al. D02 collected in the field using a muttiethod dataurvey approach
(key informant interviews, fuzzy cognitive map, household questionnaire and choice experiment). This data is

used to design the moded, validate the use of PMT, to initialitlee agent sednd to calibrate model outputs.

What are the variables, entities and classes available in data? What do they represent?

A full set of behavioural factors were evaluated through the household questionnaire, and these were linked to
their actubbehaviour and to their behavioural intemisp as well as to the results of the choice experiment
investigating future behaviour (Wens et al. 20BBsides, soci@conomic and farm characteristics were

questioned.

How are data selected to form the agent entities? How is agent population generatetl synthesized?

As discussed above, the data is used to create a representative set of agents. Harsablelcheansand
standard deviationgere used tareate distribution functions and a synthetic agent set was created based on

random draw$rom these functiongMoreover, correlation between different variables were maintained.

What are the relationships and patterns that exist in data?

As discussed above, relationship between househotinme and household head education level or farm size
exist Next to corelations between so@oonomic or agricultural characteristicscorrelations between
psychological factors and actual or prospective adaptation decisions westigated and used to design the
behavioural module of ADOPT.
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I1l.iv Sub -models

What, in detail, are the submodel s t hat represent the processes

scheduling6?

The FAO cropwater model AquacropOS (codedMATLAB © by Tim Foster(Foster et al., 201Yxalculates
seasonal crop production, based on hyaimatologic conditions providedytthe climate data and based on the
agricultural management of the households. The aggsed model in which farming households decide on their
drought adaptation measures, is coded in Netlogo®, a language specialized in ABMs. This contaisitige
decision module, which is a modapplication of the Protection Motivation theory as explained in section Il.i.

More detailed explanation about how this is done can be found in Wens et al 2020.

How were sub models designed or chosen, and how were they paeterized and then tested?

AquacropOS was appliggarameterized and calibrated followingetich (2011) and Omyo (2015), who both

analysed and approved the functioning of this model to simulate maize yield under different climates in Kenya.

The decision dormodel is described above in the sections about deeisaking and theoretical foundations

(I1.ii). A more detailed description can be found in Wens et al 2020.

What are the model parameters, their dimensions and reference values?

For AquacropOS, Tabla3 andA4 give an overview of the parameters that are used. For the derisking
module, TableA2 gives an overview of the factors used.

Table A2: Initialisation parameters for the behavioural module in ADOPT

Factor Explanation of the PMT factors
Current Yield Average yield of last 5 years
Potential Yield Expected / perceived yield when adopting a new adaptation measure

Either based on yield of neighbours with that measure or on training i
Adaptation costs Perception of the costs néw measures as percentage of assets
Knowledge-measures | 1 if attending trainings, else the percentage of people in network

measure
Risk perception Drought memory, 1 if last harvest there was 0 yield, 0 if never impact
Adaptation efficacy Yield gain as percentage of current yield, based on potential yield
Selfi efficacy Belief in own capacity, based on gender, age, HH size and access to ti
Adaptive capacity Product of sekefficacy, adaptation efficacy antl * adaptation costs
Adaptation intention | Product of adaptive capacity and risk perception, O if one of the undel

factors is O or if assets are smaller than costs of measure
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Table A3: Initialisation parameters for AquacropOS in ADOPT

Value Explanation of calibration parameters for AquacropOSv6.0 maize

60 /80 Curve number value undéanyaJuubunds or under absence of such bunds
06 Bund height (m)

50 Area of surfaceovered by mulches (50%)

0.5 Soil evaporation adjustment factor due to effect of mulches

SMbased | Irrigation method

713 Interval irrigation in days under manual / automated irrigation
40 Soil moisture target (% of TAW below which irrigationtigggered)
12 Maximum irrigation depth (mm/day)

50/75 Application efficiency under manual / automated irrigation

50 Soil surface wetted by irrigation (%)

Table A4: Crop parameters for maize AQUACROPOS in ADOPT

Value

3
1
1
0
16/03
31/08

40
80
90

40

65

30

35
40

10

12

0.3
0.8

Crop parameters fakquacropOS
: Crop Type (1 = Leafy vegetable, 2 = Root/tuber, 3 = Fruit/grain)
: Planting method (0 = Transplanted, 1 = Sown)
:Calendar Type (1 = Calendar days, 2 = Growing degree days)
: Convert calendar to GDD mode if inputs are given in calendar days (0 = No; 1 = Yes)
: Planting Date (dd/mm)
: Latest Harvest Date (dd/mm)
: Growing degegCalendar days from sowing to emergence/transplant recovery
: Growing degree/Calendar days from sowing to maximum rooting
: Growing degree/Calendar days from sowing to senescence
: Growing degree/Calendar days fsmwing to maturity
: Growing degree/Calendar days from sowing to start of yield formation
: Duration of flowering in growing degree/calendar d&89(for nonfruit/grain crops)
: Duration of yield formation in growinggtee/calendar days
: Growing degree day calculation method
: Base temperature (degC) below which growth does not progress
: Upper temperature (degC) above which crop development no longer increases
: Pollinatin affected by heat stress (0 = No, 1 = Yes)
: Maximum air temperature (degC) above which pollination begins to fail
: Maximum air temperature (degC) at which pollination completely fails
: Pollination affected by coldess (0 = No, 1 = Yes)
: Minimum air temperature (degC) below which pollination begins to fail
: Minimum air temperature (degC) at which pollination completely fails
: Transpiration affected by cold temperature stres$\( % = Yes)
: Minimum growing degree days (degC/day) required for full crop transpiration potential
: Growing degree days (degC/day) at which no crop transpiration occurs

: Minimum effective rooting depth (m)

: Maximum rooting depth (m)
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938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969

13
0.0105
0.0026
6.5
37000
0.89
0.1169
0.2213
1.05
0.3
33.7
100

50
0.48

15

50
0.02
0.20
0.69
0.80
0.35
1

1

1

1
2.9
6
2.7

: Shape factor describing root expansion

: Maximum root water extraction at top of the root zone (m3/m3/day)

: Maximum root water extraction at the bottom of the root zone (m3/m3/day)

: Sdisurface area (cm2) covered by an individual seedling at 90% emergence
: Number of plants per hectare

: Maximum canopy cover (fraction of soil cover)

: Canopy decline coefficient (fraction per GDD/calendar day)

‘Canopy growth coefficient (fraction per GDD)

: Crop coefficient when canopy growth is complete but prior to senescence

: Decline of crop coefficient due to ageing (%/day)

: Water productivity normalized for ETO and COEn@y/

: Adjustment of water productivity in yield formation stage (% of WP)

: Crop performance under elevated atmospheric CO2 concentration (%)

: Reference harvest index

: Possible increase of harvest indextdweater stress before flowering (%)

: Coefficient describing positive impact on harvest index of restricted vegetative growth during yield formation
: Coefficient describing negative impact on harvest index of stomatal closngeydeld formation
: Maximum allowable increase of harvest index above reference value

: CrofDeterminacy(0 = Indeterminant, 1 = Determinant)

: Excess of potential fruits

: Upper soil water depletiondékhold for water stress effects on affect canopy expansion

: Upper soil water depletion threshold for water stress effects on canopy stomatal control
: Upper soil water depletion threshold for water stress effects on canopy senescence

: Upper soil water depletion threshold for water stress effects on canopy pollination

: Lower soil water depletion threshold for watesss effects on canopy expansion

: Lower soil water depletion threshold for water stress effects on canopy stomatal control
: Lower soil water depletion threshold for water stress effects on canopy senescence

: Lover soil water depletion threshold for water stress effects on canopy pollination

: Shape factor describing water stress effects on canopy expansion

: Shape factor describing water stress effects on stomatal control

: Shape factor describing water stress effects on canopy senescence

: Shape factor describing water stress effects on pollination
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970
Appendix B: Adoption rates of adaptation measures

Table B1 Adoption ratio (in share of population) at run year 30 under different climate and intervention scenarios. Note that the
model showed an adoption rate of 25% for mulch, 70% foFanya Juu, 9% for well and X% for irrigation at run year O (start of

975

climate change and policy scenarios) .

Mulch No Change Wet Wet Hot Hot Dry Hot Dry
Reactive 50.2% 47.8% 45.6% 42.1% 35.9% 38.5%
Proactive 83.8% 83.6% 89.4% 90.1% 90.7% 88.1%
Prospective | 100% 100% 100% 100% 100% 100%
Fanya Juu No Change Wet Wet Hot Hot Dry Hot Dry
Reactive 71.1% 70.9% 69.1% 68.8% 60.7% 63.3%
Proactive 87.2% 88.1% 90.7% 90.9% 91.9% 90.1%
Prospective | 93.7% 93.5% 94.7% 94.8% 95.1% 94.9%
Well No Change Wet Wet Hot Hot Dry Hot Dry
Reactive 9.4% 9.6% 9.4% 9.2% 9.1% 9.0%
Proactive 11.7% 12.7% 13.4% 12.0% 12.1% 11.4%
Prospective | 79.4% 82.6% 92.1% 92.9% 95.0% 91.1%
Irrigation No Change Wet Wet Hot Hot Dry Hot Dry
Reactive 3.7% 3.7% 3.5% 3.4% 3.3% 3.4%
Proactive 5.2% 5.6% 5.6% 5.3% 5.2% 4.8%
Prospective | 48.7% 59.6% 73.3% 75.8% 82.0% 71.8%
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980 Table B2 Difference in adoption RATIO (in share of population) under different climate and intervention scenarios compared to
the reactive government scenario under no climate change (the BAU scenario).

mulch No Change Wet Wet Hot Hot Dry Hot Dry
Reactie 0 -2.5% -4.6% -8.1% -14.3% -11.6%
Proactive 33.7% 33.4% 39.3% 39.9% 40.5% 38.0%
Prospective 49.4% 49.4% 49.8% 49.8% 49.8% 49.8%
EWS 18.0% 19.7% 18.8% 13.5% -4.5% 1.2%
transfer 23.2% 14.4 19.6% 24.6% 23.8% 18.4%
Credit2 19.5% 16.6% 14.7% 8.5% 5.4% 9.1%
training 30.1% 27.6% 24.9% 20.4% 10.8% 15.1%
Fanya Juu NC Wet Wet Hot Hot Dry Hot Dry
Reactive 0% -0.2% -2% -2.3% -10.3% -7.7%
Proactive 16.2% 17.0% 19.6% 19.8% 20.8% 19.1%
Prospective 22.6% 22.4% 23.6% 23.8% 24.1% 23.8%
EWS 8.2% 9.2% 8.5% 6.0% -0.2% 1.3%
transfer 9.0% 5.9% 6.9% 10.3% 10.1% 8.4%
Credit2 8.0% 7.3% 5.1% 6.0% -0.1% 1.5%
training -1.7% -2.9% -5.1% -5.5% -11.2% -9.9%
Well NC Wet Wet Hot Hot Dry Hot Dry
Reactive 0% 0.2% -0.1% -0.3% -0.4% -0.4%
Proactive 2.4% 3.2% 3.9% 2.6% 2.7% 2.0%
Prospective 69.9% 73.2% 82.7% 83.4% 85.5% 81.6%
EWS 1.7% 2.% 1.4% 1.1% -0.4% 0.2%
transfer 10.% 1.0% 1.1% 0.2% 0.4% 0.2%
Credit2 9.4% 9.1% 7.4% 6.9% 4.2% 5.1%
training 5.2% 5.5% 4.4% 3.2% 1.5% 1.9%
Irrigation NC Wet Wet Hot Hot DRY Dry Hot
Reactive 0% 0% -0.1% -0.3% -0.4% -0.3%
Proactive 1.5% 1.9% 1.9% 1.6% 1.5% 1.2%
Prospective 45.1% 56.0% 69.6% 72.1% 78.3% 68.1%
EWS 1.3% 1.6% 1.6% 1.4% 0.5% 0.7%
transfer 0.6% 0.3% 0.1% -0.2% -0.4% -0.4%
Credit2 3.7% 3.7% 2.8% 2.4% 1.2% 1.7%
training 2.8% 3.3% 2.2% 1.7% 0.9% 1.3%
% change tov 1343 adopted measures under NC reactive
Total NC Wet Wet Hot Hot DRY Dry Hot
Reactive 0% -1.8% -5.0% -8.2% -18.9% -15.0%
Proactive 40.0% 41.2% 48.2% 47.6% 48.8% 44.8%
Prospective 139.2% 149.6% 167.9% 170.5% 176.9% 166
2%
EWS 21.7% 24.2% 22.6% 16.4% -3.4% 2.5%
transfer 25.1% 16.1% 20.7% 25.9% 25.2% 19.8%
Credit2 30.2% 27.3% 22.3% 17.7% 7.9% 12.9%
training 27.0% 24.9% 09.7% 14.8% 1.6% 6.2%
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Figure B1: Total amount of measures adopted per 1000 initialized households under the reactive scenario, averaged over all runs.
The shaded area indicates the uncertainty introduced by different model initialisations and by different relative importancef the
985 PMT factors on the decisions of households. Year 0 initiates policy drought risk reduction interventions (indicated with diffent

line colours).

Figure B2: Total amount of measures adopted per 1000 initialized households und#re three intervention scaarios and three

990 climate change scenarigsaveraged over all runs. The shaded area indicates the uncertainty introduced by different model
initialisations and by different relative importance of the PMT factors on the decisions of haeholds. Year 0 initiaes policy drought
risk reduction interventions (indicated with different line colours).
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