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Abstract. Analyses of future agricultural drought impacts require a multidisciplinary approach in which both 7 

human and environmental dynamics are studied. In this study, we applied used the socio-hydrologic, agent-based 8 

drought risk adaptation model ADOPT. This  model simulates the decisions of smallholder farmers regarding on-9 

farm drought adaptation measures, and the resulting dynamics in household vulnerability and drought impact over 10 

time. We applied ADOPT to assess the effect of four top-down disaster risk reduction interventionsvarious top-11 

down drought risk reduction interventions  on smallholder farmers’ drought risk in the Kenyan drylands:. 12 

Moreover, Tthe robustness of additional extension services, ex-ante rather than ex-post cash transfers, improved 13 

early warnings and lowered credit rates these (non-)governmental interventions under different climate change 14 

scenarios was evaluated under different climate change scenarios. ADOPT simulates water management decisions 15 

of smallholder farmers, and evaluates household food insecurity, poverty and emergency aid needs due to drought 16 

disasters. Model dynamics were informed by extensive field surveys and interviews from which decision rules 17 

were distilled based on bounded rational behaviour theories.  18 

Model results suggest that extension services increase the adoption of low-cost, newer drought adaptation 19 

measures while credit schemes are useful for cost-effective but expensive measures with a high investment cost, 20 

and ex-ante cash transfers allow the least wealthy households to adopt low-cost well-known measures. Improved 21 

eEarly warning systems show more effective in climate scenarios with less frequent droughts. Combining all four 22 

interventions displays a mutually-reinforcing effect with a sharp increase in the adoption of on-farm drought 23 

adaptation measures resulting in reduced food insecurity, decreased poverty levels and drastically lower need for 24 

emergency aid, even under hotter and drier climate conditions. These nonlinear synergies indicate that a holistic 25 

perspective is needed to support smallholder resilience in the Kenyan drylands. 26 
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1 Introduction 31 

Droughts, defined as below-normal meteorological or hydrological conditions, are a pressing threat to the food 32 

production in the drylands of Sub-Saharan Africa (Brown et al., 2011; Cervigni & Morris, 2016; UNDP et al., 33 

2009). Over the last decades, increasing temperatures and erratic or inadequate rainfall have already intensified 34 

drought disasters (Khisa, 2017). Climate change, population growth and socio-economic development will lead 35 

to additional pressures on water availability resources (Erenstein, Kassie, & Mwangi, 2011; Kitonyo et al., 2013). 36 

In Kenya, three quarters of the population depends on smallholder rain-fed agricultural production and nearly half 37 

of the population is annually exposed to re-occurringrecurring drought disasters causing income insecurity, 38 

malnutrition and health issues (Alessandro et al., 2015; Khisa, 2018; Mutunga et al., 2017; Rudari et al., 2019; 39 

UNDP, 2012). Reducing drought risk is imperative to enhance the resilience of the agriculture sector, to protect 40 

the livelihoods of the rural population, and to avoid food insecurity and famine in Kenya’s drylands (Khisa, 2017; 41 

Shikuku et al., 2017).  42 

Drought risk models are important tools to inform policy makers about the effectiveness of adaptation policies 43 

and enable the design of customized drought adaptation strategies under different future climate scenarios (Carrao 44 

et al., 2016; Stefano et al., 2015). Traditionally, such models express disaster risk as the product of hazard, 45 

exposure and vulnerability, and are based on historical risk data. Recent disaster risk models have dealt with 46 

climate change adaptation in a two-stage framework; first describing a few scenarios regarding the adaptation 47 

choices of representative households, then estimating the impacts of adaptation on (future-) welfare while 48 

assuming climate change scenarios (di Falco, 2014). However, most existing research does not account for more 49 

complex dynamics in  adaptation and vulnerability dynamics(Conway et al., 2019), for the heterogeneity in human 50 

adaptive behaviour (Schrieks et al 2021Aerts et al. 2018) or, and for the feedback between risk dynamics and 51 

adaptive behaviour dynamics its feedbacks on drought risk(Di Baldassarre et al., 2017). Though,  while it are 52 

these these are the aspects that determine, for a large part, the actual risk (Eiser et al., 2012). 53 

Uncertainties in adaptive behaviour are often addressed by using different adaptation scenarios, but this approach 54 

fails to capture the two-way interaction between risk dynamics and adaptive behaviour dynamics (Elshafei, 2016). 55 

It appears that farmers often act boundedly rational towards drought adaptation rather than economically rational: 56 

their economic rationality isn limited bounded in terms of cognitive capability, information available, perceptions, 57 

heuristics and biases (Schrieks et al., 2021; Wens et al., 2021). To account for such individual adaptive behaviour 58 

in drought risk assessments, an agent-based modelling technique can be applied (Berger & Troost, 2014; Blair & 59 

Buytaert, 2016; Filatova et al., 2013; Kelly et al., 2013; Matthews et al., 2007; Smajgl et al., 2011; Smajgl & 60 

Barreteau, 2017). Agent-based models allow explicitly simulation of the bottom-up individual human adaptation 61 

decisions, anddecisions and capture the macro-scale consequences that emerge from the interventions interactions 62 

between individual agents and their environments. Combining risk models with an agent- based approach is thus 63 

a promising way to analyse drought risk, and the evolution of it through time, in a more realistic way (Wens et 64 

al., 2019). 65 

Here we present how an n innovative dynamic agent-based drought risk adaptation model, ADOPT (designed in 66 

Wens et al 2020), can increase our understanding of the effect of drought policies on community-scale drought 67 
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risk for smallholder farmers in Kenya’s drylands. ADOPT combines drought risk and agent-based modelling 68 

approaches by coupling the FAO crop model AquacropOS with a decision making model, which is parameterized 69 

following the Protection Motivation theory (PMT. .The design of ADOPT as an agent-based drought risk 70 

adaptation model is described in Wens et al., 2020. Moreover, Wens et al. (2021) detail the empirical data on past 71 

adaptive behaviour (used to calibrate the model), as well as empirical data on adaptation intentions that can be 72 

used to compare with the model outputs.   73 

In this study, we apply the ADOPT model, to test the variation in household drought risk under different drought 74 

management policies: (i) a reactive government only providing emergency aid, (ii) a pro-active government, 75 

which provides sufficient drought early warnings and supports ex-ante cash transfer in the face of droughts and 76 

sufficient drought early warnings, and (ii) a strategicprospective government that, in addition to early warnings 77 

and ex-ante transfers, supports subsidises adaptation credit schemes and provides regular drought adaptation 78 

extension services to farmers. In addition, future ADOPT is used to evaluate drought risk and the robustness of 79 

these policies are evaluated under different climate change scenarios. Moreover, ()al ()alWe acknowledge that 80 

ADOPT should be subject to additional validation steps in order to more accurately and precisely predict future 81 

drought risk. Yet, in this study we elaborate the potential of this proof-of-concept model by showcasing the trends 82 

in drought risk under risk reduction interventions and climate change for a case study in semi-arid Kenya.  83 

2 Case study description 84 

The ADOPT model has been applied to the context ofof smallholder maize production in the dryland communities 85 

in the areas such as Kitui, Makueni or and Machakos in south-eastern Kenya (fig. 1). This semi-arid to sub-humid  86 

region is drought-prone, being hit by drought disasters in 1983/84, 1991/92, 1995/96, 1998/2000, 2004/2005, and 87 

2008-11, 2014-2018 (data from Em-DATEm-Dat and DesInventar). While Tthe majority of the population in this 88 

dry transitional and dry mid-altitude maize farming zone is directly or indirectly employed through agriculture. 89 

However. , technology adoption and production level remain rather low, making the region very vulnerable to 90 

droughts and climate change (Khisa & Oteng, 2014; Mutunga et al., 2017).  91 

In Kenya, 75% of the countryie’s’ maize is produced by smallholder farms. Maize is grown in the two rainy 92 

seasons, with the aim to meet household food needs (subsistence farming) (Erenstein, Kassie, & Mwangi, 2011; 93 

Erenstein, Kassie, Langyintuo, et al., 2011; Speranza et al., 2008). While during the long rainy season (March-94 

April-May) multiple crops are planted, the short rainy season (October-November-December) is considered the 95 

main growing season for maize in the region (Rao et al., 2011).  96 

Reported smallholder maize yields often do not exceed 0.7 ton/ha. However, with optimal soil water management, 97 

maize yields can easily be around 1.3 ton/ha in the semi-arid medium potential maize growing zone in south-98 

eastern Kenya (Omoyo et al., 2015). Few farmers use pesticides or improved seeds or other adaptation strategies 99 

(Tongruksawattana & Wainaina, 2019) . In Kitui, Makueni and Machakos, the most preferred seed-variety is the 100 

high yielding but less drought resistant Kikamba/Kinyaya variety (120 growing days) with a potential yield of 101 

only 1.1 tons per hectare (Speranza, 2010; Recha et al., 2012). Trend analysis (1994-2008) shows that yields are 102 

declining due to the increasing pace of recurring droughts (Nyandiko, 2014). 103 
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Over 97% of the smallholder farmers in this area grow itmaize, mainly for own consumption or local markets 104 

(Brooks et al., 2009; Kariuki, 2016; Nyariki & Wiggins, 1997). It is the main staple food for the people, providing 105 

more than a third of the caloric intake, and is also the primary ingredient used in animal feeds in Kenya (Adamtey 106 

et al., 2016; FAO, 2008).   107 

In the south-eastern Kenyan dry mid-altitude farming zone, smallholder farmers produce ten to twenty 90kg bags 108 

of maize per year. grown in the two rainy seasons to ensure adequate supplies to meet household food needs 109 

(Erenstein, Kassie, & Mwangi, 2011; Erenstein, Kassie, Langyintuo, et al., 2011; Speranza et al., 2008). While 110 

during the long rainy season (March-April-May) multiple crops are planted, the short rainy season (October-111 

November-December) is considered the main growing season for maize in the region (Rao et al., 2011). Only 112 

about 20% of the farmers is are able to sell their excess crops, while 66% haves to buy maize to complement their 113 

own production (Muyanga, 2004). Few farmers use pesticides or improved seeds or other adaptation stragegies 114 

(Tongruksawattana & Wainaina, 2019)  115 

 116 
Figure 1: Study area: dry transitional South Eastern Kenya maize agro-ecological zones (right) located in South-117 
Eastern Kenya (centre) in the Horn of Africa (left). Area of where the survey data (Wens 2021) is collected is indicated 118 
with a star on the right map. Map adjusted from Barron and Okwach (Barron & Okwach, 2005) 119 

3 Model and scenario description 120 

ADOPT (fig. 2, Wens et al 2020, adjusted ODD+D (Overview, Design concept, Details + Decision) protocol in 121 

Appendix A) is an agent-based model that links a crop production module to a behavioural module evaluating the 122 

two-way feedback between drought impacts and drought adaptation decisions. For this study, ADOPT was 123 

parameterized with information from expert interviews, a farm household survey with 2650 households including 124 

a semi-structured questionnaire and a discrete choice experiment executed in the Kitui Region, Kenya (Wens et 125 

al. 2021). Moreover, a discrete choice experiment (a quantitative method to elicit preferences from participants 126 

without directly asking them to state their preferred options) was executed to get information on changes in 127 

adaptation intentions under future top-down DRR interventions (Wens et al. 2021). This empirical data-set feeds 128 
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the decision rules in ADOPT , which enables describing farm households’ adaptive behaviour in the face of 129 

changing environmental conditions (drought events), social networkscircumstances (actions of neighbouring 130 

farmersfarmer networks), and top-down (non-)governmental interventions (drought management policies) 131 

conditions. In ADOPT, crop production is modelled using AquacropOS (Foster & Brozović, 2018), simulating 132 

crop growth on a daily basis and producing crop yield values at harvest time twice per year. Calibrated for the 133 

Kenyan dryland conditions (Ngetich et al., 2012; Wamari et al., 2007), ADOPT AquacropOS takes into 134 

accountconsiders the current water management of the farm (i.e., the applied drought adaptation measures) and 135 

yields vary with weather conditions. The adaptive behaviour of the farm households (agents) is modelled based 136 

on the Protection Motivation theory (PMT, Rogers 1975). This theory, which was derived as most suitable 137 

promising in an earlier study (Wens et al, 2020) and has proved to best describincludese multiple relevant factors 138 

that drive the observed behaviour of farm households (Wens et al 2021). In this application of ADOPT, the model 139 

was run over 30 historical years as baseline then followed by 30 years of future scenarios (combinations of policy 140 

interventions) and climate changes; the start of these changes is indicated as “year 0”)scenarios. Through a 141 

sensitivity analysis, both the average effect of individual adaptation decisions and its endogenous model 142 

variability are analysed (similar to Wens et al 2020). We used, using 12 different initialisations per scenario to 143 

include variations in model initialisation, the stochasticity that determines the individual adaptation decisions, 144 

and the relative weights of factors influencing behaviour to allow for uncertainty in the relative importance of the 145 

behavioural factors(See 3.1).  146 
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 148 
Fig. 2: ADOPT model overview, adjusted from Wens et al., 2020. Description of the model (Overview, , Design concepts 149 
& Details) in Appendix A. 150 

3.1 Individual adaptive behaviour in ADOPT 151 

Various soil water management practices, further called drought adaptation  canmeasures, can be adopted by 152 

smallholder farmers in ADOPT. There are shallow wells to provide irrigation water, the option to connect these 153 

to drip irrigation infrastructure, and Fanya Juu terraces as on-farm water harvesting techniques. Moreover, a soil 154 

protection measure reducing the evaporative stress,  such as mulching, is included. These measures are beneficial 155 

in most – if not all – of the years and have a particularly good effect on maize yields in drought years. Nonetheless,, 156 

but current adoption rates of these measures are quite varied and often remain rather low (Gicheru, 1990; Kiboi 157 

et al., 2017; Kulecho & Weatherhead, 2006; Mo et al., 2016; S. Ngigi, 2019; S. N. Ngigi et al., 2000; Rutten, 158 

2004; Zone, 2016). 159 

Applying the PMT and using the empirical regression and correlation results of the households dataset, ADOPT 160 

applies the Protection Motivation Theory, a psychological theory often used to model farmer’s bounded rational 161 

adaptation behaviour (Schrieks et al 2021). It describes how individuals adapt to shocks such as droughts and are 162 
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motivated to react in a self-protective way towards a perceived threat (Grothmann & Patt, 2005; Maddux & 163 

Rogers, 1983).  models Ffour main factors determining farmers’ adaptation intention under risk are modelled: (1) 164 

risk perception is modelled through the number of experienced droughts and number of adopted measures, 165 

household vulnerability, and experienced impact severity. Moreover, thrust in early warnings is added, which can 166 

influence the risk appraisal if a warning is sentd out. Coping appraisal is modelled through a (2) farmers’ self-167 

efficacy (household size / labour power, belief in godGod, vulnerability), (3) adaptation efficacy (perceived 168 

efficiency, cost and benefits, seasons in water scarcity, choices of neighbours, number of measures), and (4) 169 

adaptation costs (farm income, off-farm income, adaptation spending, access to credit). These four PMT factors 170 

receive a value between 0 and 1 and define a farmer’s intention to adopt. Which smallholder farmers adopt which 171 

measures in which years is then stochastically determined based on this adaptation intention. More information 172 

regarding the decision making can be found in Appendix A.  173 

3.2 Drought risk indicators in ADOPT 174 

In ADOPT, aAnnual maize yield influences the income and thus assets of the self-sufficient(largely) subsistence 175 

farm households. This influence is indirect, because the farm households are assumed to be both producers and 176 

consumers, securing their own food needs. And The influence is alsoit is a direct one, because they these farm 177 

households sell their excess maize on the market at a price sensitive to demand and availability. Farm households 178 

who cannot satisfy their food needs by their own production, go turn to this same market. They and buy the needed 179 

maize – if they can afford it and if there is still maize available on the market. If they cannot do not have the 180 

financial capacity or if there is a market shortage, they are deemed to be food insecure. T, and their food shortage 181 

(the kilogram maize short to meet household food demand) is multiplied by the market price  to estimate their 182 

food aid needs. Adding the farm income of the household with their income from potential other sources of 183 

income, it is estimated whether they fall below the poverty line of 1.9 USD per day. As climate and weather 184 

variability let causes maize yields to fluctuate over time, so do the prevalence of poverty, the share of households 185 

in food insecurity and the total food aid needs. These factors can be seen as proxies for drought risk and were 186 

evaluated over time.  187 

3.3 Climate change scenarios 188 

Multiple climate change scenarios – all accounting for increased atmospheric carbon dioxide levels - were tested: 189 

a rising temperature of 10%, a drying trend of 15%, and a wetting trend of 15%, and various combinations of 190 

these. The warming and drying trends were based on a continuation of the trends existing observed in the last 30 191 

years of daily NCEP temperature (Kalnay et al., 1996) and CHIRPS precipitation (Funk et al., 2015) data (authors’ 192 

calculations; similar trends found in (Gebrechorkos et al., 2020)). The wetting trend was based inspired byon the 193 

projections from most climate change models which predict an increase of in precipitation in the long rain season 194 

– a phenomenon known as the ‘East African Climate Paradox’(Gebrechorkos et al., 2019; Lyon & Vigaud, 2017; 195 

Niang et al., 2015). The no change scenario was a repetition of the baseline period, without changing precipitation 196 

or temperature hence only elevated carbon dioxide levels. Reference evaporation was calculated for each scenario 197 
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using the Penman-Monteith model and thus influenced by temperature changes (Allen, 2005; Droogers & Allen, 198 

2002). 199 

 200 

Table 1: Average (daily temperature, annual precipitation) weather conditions (1980-2010) in ADOPT  201 
 min temperature max temperature precipitation reference evaporation 

No change 16.3 (+- 0.8) *C 26.9 (+- 0.9) *C 888 (+-319) mm 1547 (+-298) mm 

Wet 16.3 (+- 0.8) *C 26.9 (+- 0.9) *C 1021 (+-367) mm  1547 (+-298) mm 

Hot 17.9 (+- 0.9) *C 29.6 (+- 0.9) *C 888 (+-319) mm 1659 (+-320) mm 

Dry 16.3 (+- 0.8) *C 26.9 (+- 0.9) *C 755 (+-271) mm 1547 (+-298) mm 

 202 

These trends were added to time series of 30 years of observed data., so as to simulate credible events and have a 203 

realistic day-to-day, month-to-month and even decadal variability. While such approach does not account for an 204 

increased variability, it allows to account for the temporal coherence in the data and the interrelationships among 205 

different weather variables (weather generators – another option to downscale projected climate - have still some 206 

progress to make in order to accurately account for extreme events (Ailliot et al., 2015; Mehan et al., 2017)). This 207 

resulted of 30 years of synthetic ‘future’ data, for each of the six - wet, hot-wet, hot, dry, hot-dry and no change 208 

- scenarios . While such scenarios mightthey not have a known probability of occurring , as a possible change in 209 

frequency and extremeness of events is ignored, they occurring, they enableallowed  testing the robustness of the 210 

on-farm adaptationser and government top-down drought adaptation disaster risk reduction strategies under 211 

changing average hydro-meteorological conditions. This application of ADOPT ran over thirty years of baseline 212 

and then thirty years of climate change scenarios; its change indicated as “Year 0”. 213 

 214 

 215 
Fig. 3: Probability of having a year with three or more consecutive months under a SPEI < -1, for the climate change 216 
scenarios. 217 

Droughts, here defined as at least three months with standardized precipitation index (SPEI) values below – 1 , 218 

have a different rate of occurrence under these different future climate scenarios (Fig. 3). SPEI is calculated 219 

through standardizing a fitted GEV distribution over the historical monthly time series, andseries and 220 

superimposing this onto the climate scenario time series. Under the no change scenario, 25%59  of the months 221 
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thirty simulated years between 2015-2045 fall below this  threshold. Under the wet scenario, less suchfewer 222 

droughts occur (15% of the years), but, this is lowered to 34 months under the wet scenario. U under the hot dry 223 

conditionsscenario, the number of droughtdroughts months years more than doubles to 123 months(54% of the 224 

years). Temperature is dominant over precipitation is determining drought conditions, as under the hot-wet 225 

scenario, 97 41% drought months years are recorded, and even 157 under hot-dry conditions, 78% of the years 226 

can be considered drought years.  227 

3.4 Drought risk reduction intervention scenarios 228 

Farmers’ adaptive behaviour can be influenced by external policies and (non-)governmental drought risk 229 

reduction interventions. Kenya Vision 2030 for the ASAL promotes drought management through extension 230 

services, andservices and aims to increase access to financial services such as affordable credit schemes 231 

(Government of Kenya, 2012; Kenya, 2016). FurthermoreBesides, building on the Ending Drought Emergencies 232 

plan, the National Drought Management Authority prioritizes the customization, improvement and dissemination 233 

of drought early warning systems. It, and aims to establish trigger levels for ex-ante cash transfer so as to upscale 234 

drought risk financing (Government of the Republic of Kenya, 2013; National Drought Management Authority, 235 

2015; Republic of Kenya, 2017). Improved extension services tailored to the changing needs of farm households 236 

(Muyanga & Jayne, 2006), . a better early warning system with longer lead times (Deltares, 2012; van Eeuwijk, 237 

n.d.), ex-ante cash transfers to the most vulnerable when a drought is expected (Guimarães Nobre et al., 2019) 238 

and access to credit-markets (Berger et al., 20175; Fan et al., 2013), are all assumed to increase farmers’ intention 239 

to adopt new measures.  240 

As shown in Wens et al (2021), extension services are best offered to younger, less rich and less educated people, 241 

or to those who already adopted the most common measures, to have a big influence on the adoption intentions. 242 

Similarly, early warning systems are appreciated more by less educated, less rich farmers, or those not part of 243 

farmer knowledge exchange groups. The ex-ante cash transfer instigates those who spend already a lot of money 244 

on adaptation, to adopt more expensive measures the most. Access to credit is preferred by less rich farmers, how 245 

who have a larger land size, are members of a farm group, went to extension trainings, have easy access to 246 

information and/or are highly educated (Wens et al. 2021).   247 

In this application of ADOPT, the effect of these four interventions - extension services, early warning systems, 248 

ex-ante cash transfer and credit schemes - were tested individually. Additionally, three scenarios, combining 249 

different types of interventions, were evaluated, all initiated in year “0” in the model run.: 250 

  251 
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 252 

1. Reactive (non-)governmentalpolicy intervention “supporting drought recovery”: Emergency aid is given to 253 

farmers who lost their livelihoods after drought disasters; this food aid is distributed to farmers who are on 254 

the verge of poverty to avoid famine. 255 

2. Pro-active (non-)governmentalpolicy intervention plan “preparing for drought disasters”: Early warnings are 256 

sent out each season if a drought is expected. This is assumed to raise all farmers’ risk appraisal with 20%. 257 

Ex-ante cash transfers are given to all smallholder farmers (those without income off-farm  and without 258 

commercialisation) to strengthen resilience in the face of a drought. This is done when severe and extreme 259 

droughts (SPEI <-1, and <-1.5) are expected that could lead to crop yield lower than respectively 500kg/ha 260 

and 300kg/ha. Money equivalent to the food insecurity following these yields is paid out to farmers with low 261 

external income sources. LastlyMoreover, like in the reactive government scenario, emergency aid is given to 262 

farmers who need it. 263 

3. StrategicProspective (non-)governmentalpolicy intervention plan (UNDRR 2021) “mitigating (future) 264 

drought disasters”: Credit rates are lowered so that it is affordable to people to take a loan for adaptation 265 

measures, at an interest rate of 2% and a pay-back period of five years. Besides, frequent trainings are given 266 

in communities with poor practices to improve their human capacity related to drought adaptation practices 267 

for agriculture. Moreover, like in the pro-active government scenario, an improved early warnings system is 268 

set up and ex-ante cash transfer is given. Lastly, emergency aid is given to farmers who need it. 269 

4. Results  270 

4.1 Maize yield under different adaptation measures and future climate scenarios 271 

The annual average maize yields under the different climate scenarios, for all of the four on-farm water 272 

managementdrought adaptation measures that can be adopted by the smallholder farmersimplemented in ADOPT  273 

- mulch, fanyaFanya juuJuu bunds, shallow wells and drip irrigation -, were calculated using AquacropOS (Fig. 274 

4). Under wetter future climate conditions, maize yields are expected to increase under all management scenarios, 275 

with mulch having a particular positive effect on the soil moisture conditions throughout the full growing season. 276 

Hotter climate conditions reduce yields slightly: , and the assumptions in this model on the frequency and amount 277 

of manual irrigation or drip irrigation water are not sufficient to diminish this effect, even under wetter conditions. 278 

Paired with drier conditions, this hotter future has dramatically negative effects on yields, showing on average 279 

28% lower yields compared to the no climate change scenario over all management scenarios.  280 
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 281 

Fig. 4: Average maize yield under different agricultural water managementdrought adaptation measures conditions 282 
and different future climate scenarios.  283 

4.2 The adoption of adaptation measures over time 284 

In ADOPT, all evaluated (non-)governmental top-down (?)  interventions  increased the adoption rate of the 285 

evaluated adaptation measures compared to the reactive “no intervention” scenario (Fig.5):.  This means that 286 

adaptation intention is indeed limited by a low risk perception, high (initial) adaptation costs, a limited knowledge 287 

of the adaptation efficacy or a low self-efficacy. These barriers are alleviated through the different government 288 

interventionsreduced credit rates;, improved early warning systems, tailored extension services, and ex-ante cash 289 

transfers, as well as the proactive and prospective scenarios ,  leading to various increases in adoption as compared 290 

to the reactive scenario (colours in Fig. 5).  291 
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 292 

 293 

Fig. 5: Total amount of measures adopted per 1000 initialized households under no climate change, averaged over all 294 
runs. The shaded area indicates the variation - uncertainty introduced by different model initialisations and by 295 
different relative importance of the PMT factors on the decisions of households (sensitivity analysis). Year 0 initiates 296 
climate change scenarios (indicated with different marker shapes), and (non-)governmentalpolicy drought risk 297 
reduction interventions (indicated with different line colours). 298 

 299 

Looking into detail to the effect of possible (non-)governmentalpolicy interventions (Fig. 5, table B2 in Appendix 300 

B), affordable credit schemes had the is highest effect on the adoption rate of drought adaptations measures. 301 

Furthermore, ex-ante cash transfers (which cannot be seen as large sums of investment money but as a mere 302 

means to keep families food secure) were more effective to increase adoption of the more affordable measures. 303 
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Indeed, – richer families mostly had already adopted these measures before (non-)governmentalpolicy 304 

interventions were in place. Extended extension service training increased the adoption of less popular measures 305 

and decreased the adoption of the popular but not as cost-effective fanyaFanya juuJuu terraces. Early Warning 306 

Systems surprisingly had more effect in the more wetwetter climate conditions. T, as the dry-hot scenario had has 307 

so many drought episodes that risk perception is automatically high while the alert lowers when droughts become 308 

more scarcescarcer in the less dry scenarios.  309 

Overall, although the processes through which the interventions support households to adapt differ significantly, 310 

the differences in eventual adoption rate under the different interventions were small (they overlap in uncertainty 311 

interval). Also, the effect of climate change on the adoption rate (Figure B1 in Appendix B,  table B2 in Appendix 312 

)  was rather small when evaluating the reactive (no intervention) scenario. However, with interventions, the 313 

climate change scenarios differed more.  314 

When examining the effect of the three intervention scenarios (Figure B2 in Appendix B; table B2 in Appendix 315 

B), it is clear that implementing multiple interventions policies at once  resulted  in an stronger increase in 316 

adoption: – which can be explained by the alleviation of various adoption barriers at once. Averaging over all 317 

adaptation measures,  a proactive and strategicprospective intervention plan would increased adaptation the 318 

adoption of different adaptation measures with respectively 40% and 140% more than under the “no 319 

interventionreactive, no climate change” scenario where no intervention takes place. Both a proactive and 320 

strategicprospective (non-)government approach increased the adoption of cheaper adaptation measures to close 321 

to 100% of the farm households. For the more expensive measures, the proactive scenario showed to be less 322 

effective while the strategicprospective scenario reached quite high adoption rates in the more extreme climate 323 

scenarios. 324 
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325 

 326 
Fig. 6: Household maize harvest (kg/year, sum of two growing seasons) over 30 ‘scenario years’ under different climate 327 
change and (non-)governmentalpolicy intervention scenarios. The shaded area indicates the variation - uncertainty 328 
introduced by different model initialisations and by different relative importance of the PMT factors on the decisions 329 
of households (sensitivity analysis) The shaded area shows the uncertainty range introduced by adding a sensitivity 330 
test on the parameterisation of variables describing the adaptive behaviour of the households (i.e. the relative weights 331 
of the different determinants of the protection motivation theory).  332 

The adoption of adaptation measures by households influenced their maize yield and thus affected the average 333 

and median maize harvest  under the different future climates and drought risk reduction interventions (Fig. 6). 334 

This is becomes clear comparing the first thirty baseline years with the following thirty scenario years:  When no 335 

(non-)governmentalpolicy interventions were in place, average maize yields increased with almost 30% under a 336 

wet-hot future and decreased over 25% under a dry-hot climate. Under a strategicprospective government 337 

supporting the adoption of adaptation measures, average maize yields increased up to 100% under a wet-hot future 338 
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and increased with over 60% under dry-hot future conditions. Clearly, an increased uptake of measures under this 339 

intervention scenario did offset a potentially harmful drying climate trend.  340 

4.3 Drought risk dynamics under policy and climate change 341 

Assuming off-farm income to fluctuate randomly but not steadily increasing or decreasing, the changing harvests 342 

over time directly affected the poverty rate and the share of households in food insecurity (Fig. 7). Both trends in 343 

yield caused by droughts – and thus climate change - or by the adoption of new adaptation measures - potentially 344 

instigated by (non-)governmental interventions- , could drive farm household depended on agricultural income 345 

in or out of poverty. Running ADOPT with a reactive and no climate change scenario, a slight increase of 5 346 

percentage points (pp)% in poverty levels was visible. Poverty levels increased up to 15pp% compared to the 347 

baseline situation, when a dryer and/or hotter climate scenario was run. A proactive intervention plan reduced 348 

poverty with by 11pp% under no climate change. I, and in the dry-hot climate scenario this combination of 349 

improved early warning systems and ex-ante cash transfers lead to reductions of 20-30pp% compared to the 350 

baseline years. However, the strategicprospective government scenario showed the most prominent results, 351 

projecting reductions of 45pp% under no climate change and around 60pp%  under dryer and hotter climate 352 

conditions. 353 
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354 

 355 

Fig. 7: Share of households in poverty (earning under the 2USD/day income line, under different climate and (non-356 
)governmentalpolicy intervention scenarios). The shaded area indicates the variation - uncertainty introduced by 357 
different model initialisations and by different relative importance of the PMT factors on the decisions of households 358 
(sensitivity analysis)The shaded area shows the uncertainty range introduced by adding a sensitivity test on the 359 
parameterisation of variables describing the adaptive behaviour of the households (i.e. the relative weights of the 360 
different determinants of the protection).  361 

Food insecurity is partly caused by a lack of income or assets, but also by the farm market mechanism. Droughts, 362 

climate change and adaptation levels influence the availability of maize on this market. Farm households which 363 

do not produce enough to be self-sufficient, buy maize on the market if they have the money and if there is maize 364 

locally available. Households are assumed to be in food shortage if they have to rely on food aid to fulfil their 365 

caloric needs. While oOn average in the ‘no climate change’ and ‘no (non-)governmentalpolicy interventions’ 366 
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scenarios, food security rates were predicted to remain stable compared to the baseline period (fig. 8). However, 367 

(non-)governmentalpolicy interventions and climate change can alter this balance.  368 

Improving extension services or providing ex-ante cash transfers individually showed on average 7.5% more 369 

reduction in food insecurity than the reactive government scenario. Improved early warning systems showed on 370 

average - over all climate scenarios- an increased reduction of 4.5%. It should be kept in mind that ADOPT does 371 

not take into accountconsider (illicit) coping activities in the face of droughts such as food stocking or charcoal 372 

burning. However,  – both of them might reduce the food security threat. Credit schemes at 2%, individually, lead 373 

to more than 8% reduction in food insecurity levels as compared to the reactive scenario; but even thenthen, on 374 

average net food insecurity rates increase due to climate change. A proactive intervention resulted in a food 375 

insecurity rate which is 6 percent points lower than under the reactive scenario; but still showed increases in the 376 

prevalence of food insecurity under hotter and drier conditions. A strategicprospective intervention, combining 377 

all four interventions, was able to consistently reduce the food insecurity levels over time, even under the dry-hot 378 

climate scenario. This scenario was able to counteract the increase in food insecurity, achieving a reduction of 379 

households in food insecurity shortage over time with on average 7128% compared to the reactive scenario, all 380 

climate scenarios considered.  381 

 382 

 383 

Fig. 8: Percent Absolute cchange (average and standard deviation introduced by sensitivity analysis - variation caused 384 
by different model initialisations and by different relative importance of the PMT factors on the decisions of 385 
households) in average share of households in food shortage of the 230 last years of scenario run, compared to the first 386 
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230 years of baseline run before “year 0“, under different climate and (non-)governmentalpolicy intervention 387 
scenarios. ADOPT model output. 388 

Expressing drought impacts in average annual food aid required (in USD) (in USD, assuming a maize price for 389 

shortage markets, as price volatility is taken into account – see ODD+D in Appendix A) can help to evaluate the 390 

effect of different climate change scenarios or different (non-)governmentalpolicy intervention scenarios on the 391 

drought risk of the community. These estimations are translated to USD, assuming a maize price for shortage 392 

markets, as price volatility is considered. Table 2 shows the change in aid needs compared to the no-climate 393 

change, no-governmental top-down intervention baseline period (based on the 1980-2000 situation). When 394 

assuming no climate change, it seemed that the community is stable, only slightly increasing the share in 395 

vulnerable households. More measures were adopted as information is disseminated thought the farmer networks, 396 

but those who stay behind will face lower sell prices as markets get more stable and have a harder time 397 

accumulating assetsaccumulating assets. Under wetter conditions, reductions in drought emergency aid did 398 

reduce. However, drier, hotter climates had a detrimental effect on the food needs, with more vulnerable people 399 

crossing the food shortage threshold.  400 

Under the no climate change scenario, each of the four (non-)governmentalpolicy interventions did cause a 401 

reduction in aid needs, with credit schemes having the largest effect. Under wetter conditions, they also increased 402 

the reduction of aid needs compared to the reactive scenario. However, no individual measure, was able to offset 403 

the effect of hotter and drier climate conditions. Even under a proactive intervention, there would still be an 404 

increase in aid needs under such climate conditions. Only under the strategicprospective intervention scenario, a 405 

decrease in aid needs was visible under all possible climate change scenarios. 406 

Table 2: Change in aid needs (%) in 2030-2050 compared to 1980-2000 (average and standard deviation introduced by 407 
sensitivity analysis - variation caused by different model initialisations and by different relative importance of the PMT 408 
factors on the decisions of households) under different climate and (non-)governmentalpolicy intervention scenarios. 409 
ADOPT model output.  410 

 No change  Wet Wet Hot Hot Dry Hot Dry 

Reactive scenario 4 (+-4)% -29(+-20)% -11(-+6)% 37(+-6)% 117(+-6)% 94(+-24)% 

Ex ante cash transfer -2(+-4)% -31(+-15)% -20(+-5)% 24(+-5)% 92(+-3)% 76(+-17)% 

Early warning system -6(+-6)% -42(+-18)% -24(+-6)% 25(+-5)% 109(+-8)% 86(+-25)% 

Extension services -20(+-7)% -49(+-17)% -33(+-6)% 15(+-4)% 96(+-9)% 71% 

Credit at 2% rate -24(+-10)% -50(+-18)% -33(+-8)% 10(+-12)% 86(+-12)% 62(+-28)% 

Proactive scenario -15(+-6)% -48(+-12)% -37(+-3)% 13(+-5)% 73(+-6)% 58(+-17)% 

Prospective scenario -80(+-1)% -81(+-1)% -82%(+-1) -78(+-2)% -68(+-3)% -66(+-4)% 

  411 
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5. Discussion   412 

5.1 The effect of early warning, extension services, ex-ante transfers and low interest rates 413 

Under a reactive strategy (“no intervention”) and assuming no climate change, a slow but steady adoption of 414 

mulch, fanyaFanya juuJuu, shallow well and irrigation practices is estimated. This is a result of an ever increasing 415 

information diffusion through the farmer networks and existing extension services, as also found in (Hartwich et 416 

al., 2008a; van Duinen et al., 2016a; Villanueva et al., 2016; Wossen et al., 2013). Yet, multiple smallholder 417 

households still suffer from the effects of droughts, indicated by the elevated food insecurity rates and poverty 418 

rates. While many some can break the cycle of drought and subsequent income losses, others are trapped by 419 

financial or other barriers and end up in poverty and recurring food insecurity. This is, as also found in by e.g.e.g., 420 

Enfors & Gordon, (2008); Mango et al., (2009); Mosberg & Eriksen, (2015); Sherwood, (2013).  In the reactive 421 

scenario, it is clear that adaptation intention is limited by factors such as a low risk perception, high (initial) 422 

adaptation costs, a limited knowledge of the adaptation efficacy or a low self-efficacy. Some of these barriers are 423 

alleviated through the different government interventions. 424 

As compared to this reactive scenarioUnder all policy interventions,  anan increased rate of adoption is observed 425 

for all policy interventions. This translates into a comparatively lower drought risk  (expressed by the indicators: 426 

community poverty rate, food security and aid needs)as compared to the “no intervention” assumptiontrend 427 

confirms the results by . , but the positive effect on household resilience varies. designedinfluence , and of 428 

measures by communities to expressed by the indicators: While initially extension services have the largest effect 429 

on the adoption of on-farm drought adaptation measures, over time access to credit results in the highest adoption 430 

rates and is also estimated to decrease emergency aid the most. While Tthe former, alleviating the knowledge 431 

(self-efficacy) barrier, increases adoption under no climate change with 27% as compared to no intervention. It is 432 

indeed widely recognized as an innovation diffusion tool in different contexts (e.g.e.g., Aker, 2011; Hartwich et 433 

al., 2008b; Wossen et al., 2013)., Tthe latter, alleviation the financial (adaptation costs) barrier, increases adoption 434 

under no climate change with 30% as compared to no intervention. It is is alsoonly found to be an effective policy 435 

to reduce poverty in Ghana by Wossen and Berger (Wossen & Berger, 2015). Ex-ante cash transfers also tackle 436 

the financial barrier but less effectively (the cash sum is small and fixed – only significant for less wealthy 437 

households), increasing adoption under no climate change with 25% as compared to no intervention. This matches 438 

eEmpirical evidence for on thethe positive effects of ex-ante cash transfers exists (Asfaw et al., 2017; Davis et 439 

al., 2016; Pople et al., 2021). However, ADOPT, and the model estimations might be an underestimation as 440 

ADOPT the model does not account for many preparedness strategies of households such as stocking up food 441 

while the price is still low, fallowing land to reduce farm expenses, or searching for other sources of income 442 

(Khisa & Oteng, 2014). Seasonal early warning systems,  andwhich  raise awareness of upcoming droughts, 443 

increase the adoption of measures with  22% as compared to no intervention. Early warnings have a stronger 444 

effect on the adoption of mulching or Fanya Juu (cheaper measures, lower financial barrier) than on drip irrigation. 445 

Clearly, , but the positive effect of the interventions on household resilience varies, which is confirmed by the 446 

empirical findings of Wens et al. 2021. 447 
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Comparing these results to the discrete choice model results of Wens et al. 2021 (Wens et al 2021, table 7) in 448 

more detail, we see an underrepresentation of the effects of early warning systems (people estimate that receiving 449 

a seasonal warning for drought will highly steer them to adapt). Affordable and accessible credit does show a 450 

significant effect in Wens et al 2021, especially when considering is the effect per percentage reduction in interest 451 

rate. Also similar to the model runs, ex-ante cash has a less significant and smaller effect – especially when 452 

controlling for covariance (Wens et al 2021, table C).   453 

The proactive government scenario, “preparing for drought disasters” by improving early warning systems and 454 

supporting ex-ante cash transfers, is estimated to level poverty and food security under most climate change 455 

scenarios but not under dry conditionshas a larger effect on drought risk. However, this effect is not as much as 456 

the sum of the effect of the two interventions.  Empirical evidence for the positive effects of ex-ante cash transfers 457 

exists (Asfaw et al., 2017; Davis et al., 2016; Pople et al., 2021), and the model estimations might be an 458 

underestimation as ADOPT does not account for many preparedness strategies of households such as stocking up 459 

food while the price is still low, fallowing land to reduce farm expenses, or searching for other sources of income 460 

(Khisa & Oteng, 2014).   461 

In contrast, tThe prospective government scenario “mitigating drought disasters” by combining all four 462 

interventions, alleviates multiple barriers to adoption at once. This, createsing a significant, non-linear increase 463 

in adoption. ,  matching the significant positive correlation between the preferences for extension, credit, early 464 

warning in Wens et al. 2021. Consequently, this scenario results in a clear growth in resilience of the farm 465 

households, shown in more stable income, lower poverty rates and less food insecurity.   466 

5.2 The robustness of drought risk reduction interventions under climate change 467 

Climate change influences the effectivity of the measures as well as farm households’ experience with droughts. 468 

Under all climate change scenarios, a lower adoption of adaptation measures compared to the “no climate change” 469 

assumption is observed. . It showsThis could be explained by the fact that the perceived need to adapt, or risk 470 

appraisal, is lower under wet conditions and the financial strength to adapt, or coping appraisal, is lower under 471 

dry or hot conditions. This highlights – showing two different barriers to adoption: risk appraisal lowers when the 472 

occurrence of drought impacts is less frequent, while coping appraisal lowers due to experiencing more drought 473 

impacts. This link between drought experiences,  or poverty and adaptation was also found in other studies 474 

(e.g.e.g., Gebrehiwot & van der Veen, 2015; Holden, 2015; Makoti & Waswa, 2015; Mude et al., 2007; Oluoko-475 

Odingo, 2011; Winsen et al., 2016) 476 

While their effect on the adoption rates seems rather small, tThe differentdiverse climate change scenarios portray 477 

have a distinctly different effect on the development evolution of drought risk inof the rural communities. Due to 478 

the adaptation choices of the farm households, average maize harvests are estimated to slightly increase under the 479 

“no climate change” scenario. A, and a major increase is estimated under wet and wet-hot conditions where both 480 

increased adoption and reduced droughtsbetter maize producing weather conditions play a role. Under hot, dry 481 

and dry hot conditions, the average household harvests are estimated to decrease (also found in Wamari et al., 482 

2007).  Increases in median and mean assets (household wealth) are estimated slightly increase under the no 483 
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climate change scenario. In this case, adaptation efforts are able to reducing the drought disaster risk. Drier 484 

climates might lead to decreases in median and mean assets, if farm households are not supported through top-485 

down interventions, Hand hotter climates are estimated to result decreased median but increased average assets 486 

of the households. In this case, adaptation rates are not high enough to avoid increasing drought risk for the 487 

.median households Clearly, the potential future climates very much influence the potential future socio-economic 488 

development of smallholder farm households. 489 

The proactive government scenario, “preparing for drought disasters” is estimated to level poverty and food 490 

security under most hotter or drier climate change scenarios but not under dry conditions. The prospective 491 

government scenario  is the only scenario estimated to reduce emergency aid under all possible future climates. 492 

However, it should be noted that it takes one to two decades to make a significant difference between the reactive 493 

stance and prospective intervention plan. In other words: with climate change effects already visible through an 494 

increased frequency of drought disasters, and more to be expected within the following 10-20 years, – prospective 495 

interventions should be taken started now in order to be benefit from the increased resilience in time under any 496 

of the evaluated futures. 497 

5.3 ADOPT as a dynamic drought risk adaptation model 498 

While ABMs have the potential to represent full ‘closed-loop’ couplings of environmental and social subsystems, 499 

this has long not been the standard practice (Filatova et al., 2013). However, in  In the past decade, the use of 500 

ABMs in ex-post and ex-ante evaluations of agricultural policies and agricultural climate mitigation has been 501 

progressively increasing (Huber et al., 2018; Kremmydas et al., 2018). A pioneer in agricultural ABM is Berger 502 

(2001) who couples economic and hydrologic components into a spatial multi-agent system . This is followed 503 

more recently by for example Berger and Troost (2011), Van Oel and Van Der Veen (2011),  Mehryar et al. 504 

(2019) and Zagaria et al. (2021). The socio-hydrological, agent-based ADOPT model follows this trend in that it 505 

fully couples a biophysical model—AquacropOS—and a social decision model—simulating adaptation decisions 506 

using behavioural theories—through both impact and adaptation interactions.  507 

Moreover, tThe initial  ADOPT model setup was created through interviews with stakeholders (Wens et al. 2020), 508 

and the adaptive behaviour is based on both existing economic – psychological theory and on empirical household 509 

data (Wens et al. 2021). The assumption of heterogeneous, bounded rational behaviour is precedentedaddressed 510 

yet only by a few risk studies (e.g. Van Duinen et al. 2015, 2016; Hailegiorgis et al. 2018, Keshavarz and Karami 511 

2016, and Pouladi et al. 2019). These studies  which have also implemented empirically supported and complex 512 

behavioural theories in ABMs similarly to ADOPT (Schrieks et al. 2021; Jager, 2021; Taberna et al., 2020; 513 

Waldman et al., 2020). 514 

ADOPT differs from these models, however, through ’sits specific aim to evaluate households and community 515 

drought disaster risk beyond the number of measures adopted, crop yield, or water use. Rarely (except e.g., Dobbie 516 

et al 2018) do innovation diffusion ABM use socio-economic metrics to evaluate drought impacts over time – 517 

while such risk proxies are of great social relevance. Another novel aspect of the ADOPT model is the evaluation 518 

of drought impacts . See also As such, ADOPT evaluates the heterogeneous changes in drought risk for farm 519 
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households, influenced by potential top-down drought disaster risk reduction (DRR) interventions. It does so 520 

through simulating their influence on individual bottom-up drought adaptation decisions by these farm households 521 

and their effect on socio-economic proxies for drought risk (poverty rate, food security and aid needs). To our 522 

knowledge, this is rather novel in the field of DRR and drought risk assessments. 523 

5.4 Uncertainties in ADOPT and limitations in investigated measures and interventions 524 

The initial  ADOPT model setup was created through interviews with stakeholdersWhile, yield data has been 525 

validated over the historical period (Wens et al. 2020), and the adaptive behaviour was based on empirical 526 

household data (Wens et al.2021). Still, the model output  cannot be used as a predicting tool. This would require 527 

more extensive validations for which, currently, data is not available. (For example Such data would include 528 

longitudinal information on household vulnerability and adaptation choices from areas where certain policies are 529 

being implemented,; or detailed data on aid needs for the case study area). The past average poverty and food 530 

insecurity rates matched observations (Wens et al. 2020). , but However, aabsolute amounts of emergency aid 531 

needs are sensitive to the averages and fluctuations of household assets which proved harder to verify. Besides, 532 

p, and pooverty and food insecurity depend also on external, food or labour market and other influences which 533 

might change towards the future. MoreoverBesides, the probability of the simulated climate scenarios are not 534 

entirely realistic (because variability changes are ignored and because the synthetic future data is created based 535 

on statistics rather than physical climate and weather system changes)unknown. Moreover, , as the East African 536 

Climate Paradox (Funk et al., 2021) creates its own set of challenges predicting future weather conditions in the 537 

study area. Yet, the relative differences in the risk indicators are informative for the comparison of government 538 

interventions under different potential future climates.  539 

UndoubtedlyUnavoidably, multiple possible smallholder adaptation measures are omitted in this study. For 540 

example:, many other more agricultural water management measures,, agronomic measuresactions, and other 541 

options under the umbrella of and other climate-smart agriculture, al water management options exist. Besides, 542 

only four different (non-)governmentalpolicy  interventions are evaluated while various other exists. Costs of 543 

these top-down government interventions are unknown, making cost-benefit estimates regarding drought risk 544 

reduction strategies not possible for this study. Also only a small set of potential future climates are evaluated, no 545 

full set linked with probabilities is evaluated. While all ofStudying additional measures or interventions these 546 

would is be possible using the ADOPT model, they but requires (the collection of) more data for parametrization 547 

and calibration.  548 

Another future improvement to the model could be to directly sample the empirical household survey data (Wens 549 

et al 2020) to create a synthetic agent set. Now, the creation of agents (households) with different characteristics 550 

is drawn from distribution functions based on frequencies in the empirical data. Such one-to-one data-driven 551 

approach is similar to microsimulation and gaining popularity among ABMs (Hassan et al 2010). Lastly, the 552 

model application does assume no shifts in the processes underlying weather and human decision making: both 553 

the synthetic future weather situation and the decision making processes are based on past observations. To avoid 554 

the effect of systemic changes and black swan effect, only 30 “future” years are modelled.  555 
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Because the model setup could not be fully validated, and scenarios results of the future scenario runs cannot be 556 

falsified or verifieddo not provide a complete overview of all possibilities, this study does not claimsclaim not to 557 

provide a prediction of the future for south-eastern Kenya. However, ADOPT is meant to – rather than forecast 558 

drought impact -  increase understanding of the differentiated effect of adaptation policies: the relative differences 559 

in the risk indicators are informative for the comparison of these top-down interventions under different changes 560 

in temperature and precipitation. This studyRather, it showcases the application of ADOPT as a decision support 561 

tool. It while evaluatesing the robustness of a few, dedicatedly chosen (non-)governmentalpolicy interventions 562 

on farm household drought riskadaptation measures under climate scenarios that are deemed to be relevant for 563 

the specific area. Future research can use ADOPT to study the differentiated effect of these interventions on 564 

different types of households, in order to tailor strategies and target the right beneficiaries of government 565 

interventions. .   566 
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6. Conclusion  567 

To increase the resilience of smallholder farmers to droughts, (non-)governmentalTop- interventionsdown 568 

interventions, providing drought and adaptation information as well as supporting the capacity to act on the basis 569 

of this information,  might are be needed to alleviate barriers to adaptation, increasing farmers’ intention to adopt 570 

drought adaptation measuresare needed to increase the resilience of smallholder farmers to current and future 571 

drought risk. However, to which extent these interventions will steer farmers’ intention to adopt drought 572 

adaptation measuresadaptive behaviour, hence how effective they are in reducing the farm household drought 573 

risk, often remains unknown. The agent-based drought risk model ADOPT is used to evaluate the effectivity and 574 

robustness of various (non-)governmental interventions under different climate change scenarios. ADOPT 575 

captures the feedbacks between agricultural water management decisions by smallholder farmers and seasonal 576 

weather conditions, and explicitly models adoption constraints and social interactions among farmers.  577 

In this study, the agent-based drought risk adaptation model ADOPT is applied to evaluate the effect of potential 578 

future scenarios regarding climate change and (non-)governmentalpolicy interventions on agricultural drought 579 

risk in south-eastern Kenya. The smallholder farmers in this region face barriers to adopt drought adaptation 580 

measures such as mulching, fanyaFanya juuJuu terraces, shallow wells, and drip irrigation, to stabilize production 581 

and income. ADOPT simulates their adaptive behaviour, influenced by drought occurrences under changing 582 

climate conditions. Adaptive behaviour is also, and influenced by top-down (non-)government drought risk 583 

reduction interventions such as the introduction of ex-ante cash transfers, affordable credit schemes, improved 584 

early warning systems and tailored extension services., which results in a changing individual and community 585 

drought risk over time.   586 

WeWe show demonstrate that all the investigated interventions have a positive effect all increase on the uptake 587 

of adaptation measures as compared to the reactive scenario under no climate change (business-as-usual) by xx 588 

to xx pp., reducing the drought-related shocks in maize production and increasing the average yields, thus 589 

reducing the need for external food aid.  Extension services (+27% uptake) multiply adaptation knowledge and 590 

thus increase self-efficacy among the smallholders, which increase raises the adoption of low-cost, unknown less 591 

popular drought adaptation measures. Accessible c while credit schemes (+30% uptake), alleviating a financial 592 

barrier, are useful effective especially for more expensive cost-effective but expensive drought adaptation 593 

measures. Early warning systems (+22% uptake), creating risk awareness, are more effective in climate scenarios 594 

with less frequent drought if used as a tool to create awareness and risk perception. Ex-ante cash transfers (+25% 595 

uptake) allow the least endowed households to climb out of the poverty trap by adopting low-cost popular drought 596 

adaptation measures and thus reducing future shocks. The effect of climate change on the adoption of adaptation 597 

measures is limited. Early warning systems are more effective in climate scenarios with less frequent drought if 598 

used as a tool to create awareness and risk perception.  599 

An increased uptake of adaptation measures by smallholder farmers can offset a potentially harmful drying 600 

climate trendMoreover, t, but this study shows proves that alleviating only one barrier to adoption has a limited 601 

result on the resilience drought risk of the farm households. Under the pro-active scenario (+40% uptake), 602 

combining early warning with ex-ante cash transfers, smallholder farmers are better supported to adopt drought 603 
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adaptation measures and to create, on average, more wealth. However the effect of climate change on farm 604 

households risk differs significant under this proactive scenario. While for wetter conditions, this scenario is able 605 

to increase food security and reduce poverty, this is not sufficient to diminish the need for external food aid under 606 

every evaluated climate scenario. Only by combining all four interventions (+139% uptake), a strong increase in 607 

the adoption of measures is estimated. Ssimultaneously increasing risk perception, reducing investment costs, and 608 

elevating self-efficacy, creates nonlinear synergies arise resulting in a strong increase in the adoption of measures. 609 

Under such strategicprospective government approach, ADOPT estimates implies significantly reduced food 610 

insecurity, decreased poverty levels, and drastically lower drought emergency aid needs after 10 to 20 years, 611 

under all investigated climate change scenarios.  612 

This study proves suggests that, in order to achieve reach the current targets of the Sendai Framework for Disaster 613 

Risk, which aims at building a culture of resilience, and to a achieve Sustainable Development Goals “zero 614 

hunger”,  “sustainable water management” and “climate resilience”, a holistic approach is needed. While we 615 

present a proof-of-concept rather than predictive model, the results improve the understanding of future 616 

agricultural drought disaster risk under socio-economic, policy and climate trends. We provide evidence that 617 

agent-based models such as ADOPT can serve as decision support tools to tailor drought risk reduction 618 

interventions under uncertain future climate conditions:combining  More research into the heterogeneous effect 619 

of the investigated top-down interventions on households’ adaptation decisions and drought risk can provide 620 

information for the effective and efficient tailoring of the policy interventions. However, from this study, it is 621 

clear that mmultiple interventions is needed now - both (risk and adaptation) information provision and the 622 

creation of action perspective - should be combined to build a sustainable future for smallholder farmers in 623 

Kenya’s drylands. Besides, it provides evidence that agent-based models such as ADOPT can serve as decision 624 

support tools to tailor drought risk reduction interventions under uncertain future climate conditions.   625 
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Appendices 626 

Appendix A: Description of the ADOPT model following the ODD+D protocol for ABM ((Laatabi et al., 2018; Müller et 627 
al., 2013)): 628 

Outline  ADOPT Model description 

O
v

er
v

ie
w

 

I.i Purpose What is the purpose of the study? The purpose of this study is evaluating the 

effect of possible climate change and (non-)governmental policies on drought 

risk of smallholder farmers. The ADOPT model is capable of simulating the 

farm conditions and adaptation decisions of these farm households, and 

designed to include different climate and policy scenarios and their effect on 

the livelihoods of these last. : The model is designed to disentangle complex 

adaptive behaviour in an agricultural drought risk context. The multi-

disciplinary modelling approach is rooted in quantitative socio-hydrology 

framework’, where the human system both influences and adapts to the 

changing physical agricultural drought environment, and adopts an agent-

based approach to deal with heterogeneity in adaptive behaviour of smallholder 

households. Understanding the two-way feedback between households’ 

adaptation decisions and maize yield losses over time will help optimize future 

drought impact estimations and allow for the testing of drought management 

policies 

For whom is the model designed? The adopt model can allow scientists to 

increase understanding of the socio-hydrological reality of drought risk and 

drought adaptation, while it can help decision makers to design drought 

policies that target the right farm household and evaluate their effect on their 

drought vulnerability. 

I.ii Entities, state 

variables, and 

scales 

What kinds of entities are in the model? The agents in ADOPT are individual 

farm households that have a farm of varying size and potentially an off farm 

income source. Farm households are connected to their neighbours in a 

network setting, ADOPT runs on the farm scale, modelling yield per household 

farm. 

By what attributes are these entities characterized? Farm households have, 

other than a farm with a specific farm size, a family size; a household head 

(male/female), a stock of assets, income sources and farm experience. 

Household heads have a memory regarding past drought impacts, have a 

perception about their own capacity and in varying degrees, have information 

about potential adaptation measures.  

Farms, belonging to households, are assumed to be producing maize under 

certain fixed and changing water management conditions. They are exposed to 

daily weather conditions and produce maize harvest twice a year. 

What are the exogenous factors of the model? Two exogenous factors influence 

the farm household systems: climate change and (non-)governmental policies. 

The first alter the frequency of droughts – potential failed crop yields – while 

the latter affects the knowledge, access to credit and risk perception of 

households who are recipient of the policies. 

How is space included in the model? As the space is spatially implicit, all farm 

household farms receive the same amount of rain and sun, differentiating only 

in their size an management applied.  

What are the temporal resolution and extent of the model? One time step of 

ADOPT represents one year. The crop model part runs on a daily basis, 

producing seasonal maize crop yield, but decisions by the farm households to 

eventually adopt new adaptation measures are only made in the long dry 

season, once every year. Each year, the poverty status, food security situation 

and potential food aid needs of all farm households are evaluated. The model 

runs 30 years historic baseline and 30 scenario years. 
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I.iii Process 

overview and 

scheduling 

What entity does what, and in what order? The farm income (harvest) – 

whether or not affected by a drought – influences the annual income of the farm 

household; the household head decides  based on her/his memory of past 

droughts, on the knowledge through her/his network and its own capacity, 

whether or not he/she want and is able to adopt a new drought adaptation 

measure. The decision to adopt a new measures changes the farm management 

of the next years, hence crop yields for the following seasons.  
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II.i Theoretical and 

Empirical 

Background 

Which general concepts, theories or hypotheses are underlying the model’s 

design at the system level or at the level(s) of the submodel(s) ? The crop water 

model assumes that, with knowing the soil and crop characteristics and the 

farm management practices, crop yield can be predicted based on the weather 

conditions. The FAO crop water model, simulates the daily growth of biomass 

/ roots of crops  

On what assumptions is/are the agents’ decision model(s) based? The 

PROTECTION MOTIVATION THEORY has been applied to predict and 

understand protective behaviour (Rogers 1983). PMT consists of two 

underlying cognitive mediating processes that cause individuals to adopt 

protective behaviors when faced with a hazard (Rogers 1983; Rogers and 

Prentice-Dunn 1997). These are the Risk-appraisal process forming a risk 

perception and the coping-appraisal process forming a perception of the 

adaptation-efficacy. 

Why is a/are certain decision model(s) chosen? Analysis of the past and 

intended behaviour of farm households in the region (Wens 2021?) provided 

support for the choice of theory, but also showed the need to include network 

influencing risk perception and capacity of the households. Besides helping to 

parameterize the model, it also helped to calibrate the influence of the different 

factors affecting the decision making process of the farm household. Showing 

the effect of different assumptions about decision making in Wens et al 2020, 

and with empiric evidence on the adaptive behaviour (Wens 2021), the 

decision rules in ADOPT are assumed be a good enough representation of the 

processes that matters in the decision making on drought adaptation.  

If the model / a submodel (e.g. the decision model) is based on empirical data, 

where does the data come from? ADOPT is calibrated with data from existing 

longitudinal household surveys (TEGEMEO 2000 2004 2007 2010) and from 

a fuzzy cognitive map of key informants, and a semi-structured household 

questionnaire among 260 smallholder farmers (Wens 2018, 2019, 2021) 
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II.ii Individual 

Decision Making 

What are the subjects and objects of decision-making? On which level of 

aggregation is decision-making modeled? Are multiple levels of decision 

making included? What is the basic rationality behind agents’ decision-making 

in the model? Do agents pursue an explicit objective or have other success 

criteria? How do agents make their decisions? Do the agents adapt their 

behavior to changing endogenous and exogenous state variables? And if yes, 

how?    

In ADOPT, decision making is coded assuming complex behaviour of 

individual farm households. Factors influencing the adoption of drought 

adaptation measures can generally be categorized into extrinsic factors and 

intrinsic factors. Extrinsic factors include the social and natural environment 

in which households exists. This steers a households’ perception of the drought 

risks they face (Risk Appraisal). For example, experiences of historic droughts 

affects individuals’ evaluation of drought risk leading to a biased drought risk 

judgement (e.g. Singh and Chudasama 2017; Keshavarz & Karami 2014). 

Generally, more vulnerable households have greater risk perceptions ( van 

Duinen et al. 2016). Besides, access to extension services (field 

demonstrations, farmer trainings) - used as primary source of information by 

30%-, and other sources of information sharing (i.e.  through the social network 

(18%) or NGOs (10%) can have profound effect on whether or not individuals 

take proactive action (Kitinya et al., 2012; Shikuku, 2017; Haer et al. 2016). 

Also age, gender and education can play a role (Burton 2014) 

Knowing the risk and knowing how to or being able to respond to the risk are 

not the same, as one should believe a measure will be effective, be convinced 

that one has the ability to implement the measure and be able to pay reasonable 

costs (Van duinen). Financial or knowledge constraints may limit economic 

rational decisions. Also the perceived ability to do something (Coping 

Appraisal) influences the decision making process (Esner 2012, Eiser 2012). 

This coping appraisal can be subject to intrinsic factors such as education level, 

sources of income, farm size, family size, gender, confidence and beliefs, risk-

aversion, and age (Shikuku, 2017; Okumu, 2013; Eisner 2012, Van duinen, 

Dang et al 2014; Zhang et al 2019). In order to understand the observed 

adaptive behaviour of Kenya’s smallholder households, it is critical to 

incorporate such social-economic  factors in the decision-making framework 

of drought adaptation models (Van duinen et al 2015; Keshavarz & Karami 

2014; SRezael salmani 2017; ingh and Chudasama 2017;  O’Brien et al., 2006; 

Maddison, 2007; Adger et al., 2009; Jones and Boyd, 2011; lalani et al 2016; 

Maddison 2007; Gbet- ibouo 2009; Deressa et al. 2011; Mandleni and Anim 

2011; Wheeler et al. 2013; Gebrehiwot van der veen, Keshavarsz 2016). 

II.iii Learning  

Is individual learning included in the decision process? How do individuals 

change their decision rules over time as consequence of their experience? 

Often, initial decisions, made by a few, can grow into large collective 

interventions, either through government incentive or social networks (Willy 

et al 2013, Ertsen et al.,2013; Holman et al., 2018). In ADOPT, households 

interact with their neighbours through traditional forms of labour exchange, 

cooperatives, pioneer households’ and family ties; shaping risk awareness and 

response attitude (Okumu 2013, Shikuku 2017, Nkatha 2017). Such group 

membership can enhance social learning and knowledge spill over which 

influences people’s adaptation intention and choice of specific measures 

(Tongruksawattana 2014; Below et al 2010). In the model, this translates to 

individual risk perception changing in the direction of the mean risk perception 

within individuals’ social network (Haer?). Besides, households that do not 

regularly receive extension services, are limited to only implement measures 

that more than 2 of their neighbours have installed 
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II.iv Individual 

Sensing 

What endogenous and exogenous state variables are individuals assumed to 

sense and consider in their decisions? Is the sensing process erroneous? 

Following the socio-hydrologic setup of the model, households with bounded 

rational behaviour are embedded in and interact with their social and natural 

environment. Changes in rainfall patterns during growing season will change 

households’ risk perception; drought memory will influence the adaptive 

behaviour of these households. 

What state variables of which other individuals can an individual perceive? 

Households are aware of their assets, past yields, income sources and their 

stability, and household food needs Households know their own but also their 

neighbours current yields and management practices 

What is the spatial scale of sensing? Individual sensing happens on household 

level, but the model also produces overall statistics; like the average or median 

yield, the percentage of households in poverty or the total amount of food 

needed to cover all shortages. 

Are the mechanisms by which agents obtain information modeled explicitly, or 

are individuals simply assumed to know these variables? Sensing happens 

locally and households have a simulated “contact” with the farmers in their 

network to exchange info on risk and yields.  

II.v Individual 

Prediction 

  

Which data uses the agent to predict future conditions? By extrapolating from 

historic yield experiences, farmers have an expected yield every year.  

What internal models are agents assumed to use to estimate future conditions 

or consequences of their decisions? Households receiving extension services 

have the capacity to predict the average yield gain of adopting a new adaptation 

measure, which will influence their coping appraisal.  

Might agents be erroneous in the prediction process, and how is it  

implemented? Households without this access to training will predict the yield 

gain based on the extra yield of their neighbours with the considered adaptation 

measure 

II.vi Interaction 

Are interactions among agents and entities assumed as direct or indirect? 

Smallholder households learn from the other households in their social network 

about the implementation and benefits of drought adaptation measure through 

pioneer households’ and family ties (Below et al 2010; Shikuku 2017). In 

ADOPT, social interaction is explicitly modelled. Interventions with 

neighbours shape risk perception – the individual perception moves in the 

direction of the social network average – and also shape response attitude – 

households with no access to extension can only adopt measures already 

implemented by neighbours 

On what do the interactions depend? Spatial distance (neighbourhood) is the 

main driver for networks; it is assumed a farmer cannot have more than 30 

other farmers in her/his close, influential network, and it is assumed that s(he) 

would not walk more than 5km to reach persons in her/his network 

II.vii Collectives 

Do the individuals form or belong to aggregations that affect, and are affected 

by, the individuals?  Households are either more self-oriented, discussing 

matter with 10 neighbours, or group-oriented, sharing knowledge within a 

group / collective of 30 neighbouring households. Group membership ( 

traditional forms of labour exchange, cooperatives, …) can enhance social 

learning and knowledge spill over; Often, initial decisions, made by a few, can 

grow into large collective interventions, either through government incentive 

or social networks (Ertsen et al.,2013; Holman et al., 2018). 

How are collectives represented? Group membership and network size are set 

at the initialization phase and do not change over time 

II.viii 

Heterogeneity 

Are the agents heterogeneous?  Household agents are heterogeneous in terms of 

state variables (i.e. farm size, household size, assets), and agent categorization 

(certain- knowledgeable or uncertain) (Shikuku 2017, Asfaw et al 2012 
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Are the agents heterogeneous in their decision-making?  Households can be inclined 

to adopt new technology or can be conservative (attitude-towards-change). 

Okumu (2013), Shikuku (2017) – among others - found that state variables 

such as age, gender, education of the household head and the household size 

have significant effects on this risk- attitude. 

II.ix Stochasticity 

II.x Observation 

What processes (including initialization) are modeled by assuming they are 

random or partly random? During the initialization, the household attribute 

values are derived stochastically within the uncertainty range values based on 

the survey data. For every subsequent time loop of the simulation, a random 

number between 0-1 is drawn for each household; if this is lower than their 

adaptation intention (also between 0-1) and the household is able to pay for the 

measure; then the household adopts it. This way, we account for non-included 

factors introducing uncertainty in adaptive behaviour such as beliefs, physical 

health, ambitiousness etc. of the households. Moreover, also a stochastic 

perturbation is added to the Maize yield per farm as calculated through 

Aquacrop – this to include effects of pests and diseases on the income and food 

security of farming households. 
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II.i Implementation 

Details 

How has the model been implemented? The model is coded in R, which is able 

to link the two sub models in Netlogo (the adaptive behaviour sub model) and 

Matlab (AquacropOS). 

 

III.ii Initialization 

What is the initial state of the model world, i.e. at time t=0 of a simulation run? 

At the initial stage, households and their characteristics are randomly created 

based on the mean and standard deviation derived from the household dataset. 

Is initialization always the same, or is it allowed to vary among simulations? 

The weather situation from 1980-2010 is used as initialization phase where 

households initialize their risk perception and coping appraisal in the. 

Are the initial values chosen arbitrarily or based on data? The initial setup 

values are based on reports / surveys from the area (Tegemeo Dataset 

2000,2004,2007,2010, and own surveys from 2019 (250 farmers)). The socio-

economic household characteristics are summarized in table A, while the bio-

physical field characteristics are summarized in table B 

 III.iii Input Data 

Does the model use input from external sources such as data files or other models to 

represent processes that change over time? The setup of the model is a result of 

participatory concept mapping with researchers and students of SEKU 

University, technical advisors of Kitui County department of water, 

agriculture, livestock and fishing, experts from SASOL foundation and 5 pilot 

households that have example farms for agricultural extension. The input data 

for the decision model was obtained from a survey on agricultural drought risk 

to smallholders in the case study area (Wens, 2019). Survey data includes a 

short questionnaire among employees of the Kenyan national disaster 

coordination units (n=10), semi-structured expert interviews (n=8) with NGOs, 

governmental water authorities and pioneer farmers in the Kitui district in 

Kenya, and an in-depth questionnaire among 250 smallholder farmers in the 

central Kitui. Extra information is derived from a household surveys in 2000, 

2004, 2007 and 2010, conducted by the Tegemeo Agricultural Policy Research 

Analysis (TARAA) Project of the Tegemeo Institute. The project collects 

comprehensive information on rural households including, among others, 

demographic information, information on agricultural practices, business and 

informal labour practices, decision making, household assets and consumption 

in different counties in Kenya. Besides, the model initialization draws heavily 

from reports of CIAT (Climate-Smart Agriculture in Kenya), FAO (The 

economic lives of smallholder households), IFPRI and the government of 

Kenya (County integrated development plans), CCAFS (Baseline Survey 

Indicators for Makueni/Wote, Kenya.), and from research (characterization of 

Maize producing households in Machakos and Makueni Districts) of Muhamad 

et al. (2010). 
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III.iv Submodels 

 

What, in detail, are the submodels that represent the processes listed in 

‘Process overview and scheduling’? The FAO crop-water model Aquacrop OS 

(coded in Matlab© by Tim Foster (Foster et al.)) calculates seasonal crop 

production, based on hydro-climatologic conditions provided by the climate 

data and based on the agricultural management of the households. The agent-

based model in which farming households decide on their drought adaptation 

measures, is coded in Netlogo®, a language specialized in ABMs. 

How were submodels designed or chosen, and how were they parameterized 

and then tested? AquacropOS was applied following Ngetich and Omyo, who 

both analyzed and approved the functioning of this model to simulate maize 

yield under different climates in Kenya. 

 629 

  630 
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Table A: Initialisation parameters for farm households in ADOPT  631 

Parameter Explanation of initialization parameters for farm households Value 

Age Age of the household head (based on Wens 2019) 42 +- 9 

Edu Years of education of the household head (based on Wens 2019) 6 +- 3 

Sex Gender of the household head (male 1, female 0)  0.66 

HH-size Family size of the households (people living under same roof) (Wens 2019) 6 +- 2.5 

Assets Household financial assets (USD) that can be spend (based on IFPRI 2012) 80% < 100 

Farm-size Size of the farm (in hectare) used for planting crops (Wens 2019) 0.7 +- 0.6 

Off-farm Income from activities not on the own farm in USD (Wens 2019) 1200 +- 500 

Foodneeds Kilogram of maize to fulfil daily caloric intake needs, per adult 125 

Exp-farm Farm expenditures made by the household (USD/hectare/year) (Wens 2019) 118 +- 146 

Exp-food Food expenditures made by the household (USD/year) (Wens 2019) 567 +- 655 

Exp-nonf Other expenditures made by the household (USD/year) (Wens 2019) 446 +- 500 

 632 

 633 

 634 

 635 

 636 

Table B: Initialisation parameters for AQUACROPOS in ADOPT  637 

Value Explanation of calibration parameters for AquacropOSv6.0 maize 

60 / 80 Curve number value under fanya juu bunds or under absence of such bunds 

06 Bund height (m) 

50 Area of surface covered by mulches (50%) 

0.5 Soil evaporation adjustment factor due to effect of mulches 

SMbased Irrigation method 

7 / 3 Interval irrigation in days under manual / automated irrigation 

40 Soil moisture target (% of TAW below which irrigation is triggered) 

12 Maximum irrigation depth (mm/day) 

50 / 75 Application efficiency under manual / automated irrigation 

50 Soil surface wetted by irrigation (%) 

 638 
  639 
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Table C: Crop parameters for maize AQUACROPOS in ADOPT  640 

Value  Crop parameters for AquaCropOS  641 

3           : Crop Type (1 = Leafy vegetable, 2 = Root/tuber, 3 = Fruit/grain) 642 

1           : Planting method (0 = Transplanted, 1 =  Sown) 643 

1           : Calendar Type (1 = Calendar days, 2 = Growing degree days) 644 

0           : Convert calendar to GDD mode if inputs are given in calendar days (0 = No; 1 = Yes) 645 

16/03    : Planting Date (dd/mm) 646 

31/08    : Latest Harvest Date (dd/mm) 647 

5           : Growing degree/Calendar days from sowing to emergence/transplant recovery 648 

40         : Growing degree/Calendar days from sowing to maximum rooting 649 

80         : Growing degree/Calendar days from sowing to senescence 650 

90         : Growing degree/Cale ndar days from sowing to maturity 651 

40         : Growing degree/Calendar days from sowing to start of yield formation 652 

5           : Duration of flowering in growing degree/calendar days (-999 for non-fruit/grain crops) 653 

65         : Duration of yield formation in growing degree/calendar days 654 

3           : Growing degree day calculation method 655 

8           : Base temperature (degC) below which growth does not progress 656 

30         : Upper temperature (degC) above which crop development no longer increases 657 

1           : Pollination affected by heat stress (0 = No, 1 = Yes) 658 

35         : Maximum air temperature (degC) above which pollination begins to fail 659 

40         : Maximum air temperature (degC) at which pollination completely fails 660 

1           : Pollination affected by cold stress (0 = No, 1 = Yes) 661 

10         : Minimum air temperature (degC) below which pollination begins to fail 662 

5           : Minimum air temperature (degC) at which pollination completely fails 663 

1           : Transpiration affected by cold temperature stress (0 = No, 1 = Yes)  664 

12         : Minimum growing degree days (degC/day) required for full crop transpiration potential 665 

0           : Growing degree days (degC/day) at which no crop transpiration occurs 666 

0.3        : Minimum effective rooting depth (m) 667 

0.8        : Maximum rooting depth (m) 668 

1.3        : Shape factor describing root expansion 669 

0.0105  : Maximum root water extraction at top of the root zone (m3/m3/day) 670 

0.0026  : Maximum root water extraction at the bottom of the root zone (m3/m3/day) 671 

6.5        : Soil surface area (cm2) covered by an individual seedling at 90% emergence 672 

37000   : Number of plants per hectare 673 

0.89      : Maximum canopy cover (fraction of soil cover) 674 

0.1169  : Canopy decline coefficient (fraction per GDD/calendar day) 675 

0.2213   : Canopy growth coefficient (fraction per GDD) 676 

1.05       : Crop coefficient when canopy growth is complete but prior to senescence 677 

0.3         : Decline of crop coefficient due to ageing (%/day) 678 

33.7       : Water productivity normalized for ET0 and C02 (g/m2) 679 

100        : Adjustment of water productivity in yield formation stage (% of WP) 680 

50          : Crop performance under elevated atmospheric CO2 concentration (%) 681 

0.48       : Reference harvest index 682 

0            : Possible increase of harvest index due to water stress before flowering (%) 683 

7            : Coefficient describing positive impact on harvest index of restricted vegetative growth during yield 684 

formation  685 
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3            : Coefficient describing negative impact on harvest index of stomatal closure during yield formation  686 

15          : Maximum allowable increase of harvest index above reference value 687 

1            : Crop Determinancy (0 = Indeterminant, 1 = Determinant)  688 

50          : Excess of potential fruits 689 

0.02       : Upper soil water depletion threshold for water stress effects on affect canopy expansion  690 

0.20       : Upper soil water depletion threshold for water stress effects on canopy stomatal control 691 

0.69       : Upper soil water depletion threshold for water stress effects on canopy senescence  692 

0.80       : Upper soil water depletion threshold for water stress effects on canopy pollination  693 

0.35       : Lower soil water depletion threshold for water stress effects on canopy expansion  694 

1            : Lower soil water depletion threshold for water stress effects on canopy stomatal control  695 

1            : Lower soil water depletion threshold for water stress effects on canopy senescence  696 

1            : Lower soil water depletion threshold for water stress effects on canopy pollination  697 

1            : Shape factor describing water stress effects on canopy expansion  698 

2.9         : Shape factor describing water stress effects on stomatal control  699 

6            : Shape factor describing water stress effects on canopy senescence  700 

2.7         : Shape factor describing water stress effects on pollination 701 

 702 

 703 
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Appendix A: Description of the ADOPT model following the ODD+D protocol (Laatabi et al., 2018; Müller et al., 2013): 719 

I. Overview 720 

I.i Purpose 721 

What is the purpose of the model?  722 

The purpose of ADOPT is to improve agricultural drought disaster risk assessments by including the complex 723 

adaptive behaviour of smallholder farmers. The ADOPT model simulates the welfare (poverty level, food security 724 

& aid needs) of smallholder farm households over time as a function of climate effects on agricultural production, 725 

mitigated by implemented adaptation measures, and simulates the adoption of such measures as a function of 726 

economic, social and psychological household characteristics. Understanding the two-way feedback between 727 

households’ adaptation decisions and maize yield losses over time can help optimize drought impact estimations 728 

under climate and policy changes. ADOPT can be used to evaluate the adoption rate of adaptation measures under 729 

different climate and policy scenarios hence contrast their effect on the drought disaster risk – approximated by 730 

food security and welfare - of smallholder farmers.  731 

For whom is the model designed?  732 

The ADOPT model can allow scientists to increase their understanding of the socio-hydrological reality of 733 

drought disaster risk and drought adaptation in a smallholder farming context. It can also help decision makers to 734 

design drought policies that target specific farm household and evaluate the effect of these policies on their 735 

drought vulnerability. 736 

I.ii Entities, state variables, and scales 737 

What kinds of entities are in the model?  738 

The agents in ADOPT are individual farm households that have a farm of varying size and potentially an off-farm 739 

income source. Two other entities exist: the crop land (multiple fields) that yields maize production and is owned 740 

by the farm households, and the market (one) where maize is sold and bought. 741 

By what attributes are these entities characterized? 742 

Farm households (see UML, figure A.1) have a farm – characterised by its farm size and the adaptation measures 743 

implemented on it-. They also have a family size, a household head (male/female) with a certain age and education 744 

level, financial assets (wealth, expressed in USD), off-farm employment, and farm, food and other expenses. 745 

Household heads have a memory regarding past drought impacts, have a perception about their own capacity, 746 

and, in varying degrees, have information about potential adaptation measures.  747 

Crop land (farms) (see UML, figure A.1), belonging to households, produce maize under changing weather 748 

conditions, influenced by potential adaptation measures affecting water management conditions. The market (see 749 

UML, figure A.1) is influenced by local production and consumption, which results in a variable maize price 750 
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depending on the balance between supply and demand. In the presented case study, we consider relatively isolated 751 

areas, less subjected to globalized market systems: maize price is variable following the total amount of locally 752 

produced maize to replicate the observed price volatility (with minimum and maximum prices derived from 753 

FEWSnet) during years of reduced production. 754 

 755 

Figure A1. UML diagram 756 

What are the exogenous factors / drivers of the model?  757 

Two exogenous factors influence the farm household systems: daily weather (influenced by gradual climate 758 

change) and drought disaster risk reduction policies (top-down policy interventions supporting smallholder 759 

farmers). The first factor might alter the frequency and severity of droughts – which may lead to failed crop yields, 760 
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while the latter affects the knowledge, access to credit, and risk perception of households who are recipient of the 761 

policies. 762 

How is space included in the model?  763 

ADOPT runs on the scale of farm fields (size adjusted to the case study area). On this field scale, agricultural 764 

water management decisions (adaptation) interact with rainfall variability (drought hazard). However, spatially-765 

explicit fields are used only in the initialisation phase so neighbouring farms can be identified but does not play 766 

any further role: space is only represented in a spatially-implicit way, all farms (crop land) receive the same 767 

amount of rain and sun, have the same soil type with a similar slope and differ only in their farm size and 768 

management applied. 769 

What are the temporal resolution and extent of the model?  770 

One time step of ADOPT represents one year. The crop model part runs on a daily basis, producing maize crop 771 

yield in every cropping season, but decisions by the farm households to eventually adopt new adaptation measures 772 

are only made once a year. Each year, the poverty status, food security situation, and potential food aid needs of 773 

all farm households are evaluated. The model runs 30 years historical baseline (+ 10 initialisation years) and 30 774 

scenario years. 775 

I.iii Process overview and scheduling 776 

What entity does what, and in what order?  777 

Every year, farm income of the households is updated with the maize harvest sold at the current market price (see 778 

centre of the flowchart in Fig. A.2). This harvest depends on the farm size of the household, the maize yields 779 

(defined by AquacropOS) which may be affected by a drought potentially mitigated by implemented drought 780 

adaptation measures, and on the food needs of the own household (subsistence is prioritized over selling; 781 

household members can die or be born (stochastically determined, based on birth and mortality rates in the study 782 

area). This farm income, together with a potential (fixed) off farm income, and with farm-size-dependent farm 783 

expenses, family-size-dependent household expenses, and potentially extra food expenses (if the own production 784 

was not sufficient to fulfil household food needs), alters the assets of the farm household. The farm household’s 785 

memory of drought impacts (risk perception) is updated, and they interact (in random order) with their network 786 

of neighbours exchanging information on adaptation measures. 787 

Once a year, the household head decides whether they want to adopt a new drought adaptation measure. They 788 

make this decision based on their memory of past drought impacts, their perception of the adaptation costs, the 789 

knowledge on adaptation measures through their networks and training, and their perception of their own capacity. 790 

The adoption of a new measure changes the farm management of those farmers, directly changes their wealth 791 

(implementation costs) and the farm expenses for the following years (maintenance costs), and influences crop 792 

yield and crop vulnerability to drought – thus potential farm income - during the following years. 793 

 794 
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 Fig. 795 
Figure A2: Flowchart showing process overview 796 

  797 
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II. Design Concepts 798 

II.i Theoretical and Empirical Background 799 

Which general concepts, theories or hypotheses are underlying the model’s design at the system level or at 800 

the level(s) of the sub-model(s) ?  801 

The multi-disciplinary modelling approach of ADOPT is rooted in socio-hydrology (Sivapalan et al., 2012), 802 

where the human system both influences and adapts to the changing physical environment (in this case agricultural 803 

drought), and applies an agent-based approach to deal with heterogeneity in adaptive behaviour of smallholder 804 

households. 805 

The setup / design of the model (the drought disaster risk system) is a result of participatory concept mapping 806 

with researchers and students of SEKU University, technical advisors of Kitui County Department of Water, 807 

Agriculture, Livestock and Fishing, experts from SASOL foundation, and five pilot households that have example 808 

farms for agricultural extension. This information informed the decision context of ADOPT.  809 

On what assumptions is/are the agents’ decision model(s) based?  810 

In the first design of ADOPT, three adaptive behaviour scenarios were analysed, with increasing complexity. A 811 

‘business as usual’ scenario with no changing drought adaptation measures was tested, characterizing the ‘fixed 812 

adaptation’ approach. The conventional Expected Utility Theory (von Neumann and Morgenstern, 1944) 813 

represents the widely-used economist assessment of choice under risk and uncertainty. Simulating bounded 814 

rational rather than economic rational adaptation decisions, the Protection Motivation Theory (Rogers, 1983) is 815 

used as a way to include psychological factors in the heterogeneous adaptive behaviour of smallholders.  816 

Indeed, it is often stated that households’ adaptive behaviour is bounded rational and embedded in the economic, 817 

technological, social, and climatic context of the farmer (Adger, 2006). Knowing the risk is not enough to adapt; 818 

farmers should also believe the adaptation measure will be effective, be convinced that they have the ability to 819 

implement the measure, and be able to reasonably pay the costs (van Duinen et al., 2015b). Financial or knowledge 820 

constraints may limit economic rational decisions. Also age, gender and education – intrinsic factors - can play a 821 

role (Burton, 2014). The perceived ability to do something (Coping Appraisal) influences the decision making 822 

process(Eiser et al., 2012). This coping appraisal can be subject to intrinsic factors such as education level, sources 823 

of income, farm size, family size, gender, confidence and beliefs, risk-aversion, and age (Le Dang et al., 2014; 824 

Okumu, 2013; Shikuku et al., 2017; Zhang et al., 2019) .  825 

In order to understand the observed adaptive behaviour of smallholder households, it is critical to incorporate 826 

such social-economic factors in the decision-making framework of drought adaptation models (Bryan et al., 2009, 827 

2013; Deressa et al., 2009; Gbetibouo, 2009; Gebrehiwot & van der Veen, 2015; Keshavarz & Karami, 2016; 828 

Lalani et al., 2016; Mandleni & Anim, 2011; O’BRIEN et al., 2007; Rezaei et al., 2017; Singh & Chudasama, 829 

2017; van Duinen et al., 2015b, 2015a, 2016; Wheeler et al., 2013). After we had promising results running 830 

ADOPT with the bounded rational scenario, it is assumed that farmers show a bounded rationality in the further 831 

application of ADOPT.  832 
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Why is a/are certain decision model(s) chosen?  833 

Analysis of the past and intended behaviour of farm households in the region provided support for the choice of 834 

theory, but also showed the need to include network influencing risk perception and capacity of the households. 835 

Besides helping to parameterize the model, it also helped to calibrate the influence of the different factors affecting 836 

the decision making process of the farm household. Showing the effect of different assumptions about decision 837 

making in the first exploration of ADOPT (M. Wens et al., 2020), and with empiric evidence on the adaptive 838 

behaviour (M. L. K. Wens et al., 2021), the decision rules in ADOPT are assumed be a good enough representation 839 

of the decision making process regarding drought adaptation.  840 

If the model / a sub-model (e.g., the decision model) is based on empirical data, where does the data come 841 

from?  842 

ADOPT is designed/initialised with data from existing longitudinal household surveys (Tegemeo Institute, 2000, 843 

2004, 2007, 2010) and from a fuzzy cognitive map of key informants, and parameterized/partially calibrated with 844 

data from a semi-structured household questionnaire among 260 smallholder farmers Survey reports can be found 845 

here: 846 

- https://research.vu.nl/en/publications/survey-report-kitui-kenya-expert-evaluation-of-model-setup-and-pr 847 

- https://research.vu.nl/en/publications/survey-report-kitui-kenya-results-of-a-questionaire-regardings-us  848 

At which level of aggregation were the data available?  849 

Data from the surveys are available on individual household level. 850 

II.ii Individual Decision Making 851 

What are the subjects and objects of decision-making? On which level of aggregation is decision-making 852 

modelled?  853 

In ADOPT, individual farm households make individual adaptation decisions about their farm water management 854 

(in the case study in Kenya: mulching, Fanya Juu terraces, drip irrigation or shallow well) to reduce their 855 

production vulnerability to droughts. There are no multiple levels of decision making included. 856 

What is the basic rationality behind agents’ decision-making in the model? Do agents pursue an explicit 857 

objective or have other success criteria?  858 

Farmers generally try to reduce their drought disaster risk (achieve food security, evade poverty and avoid needing 859 

emergency aid) and thus try to maximise crop yields (diminish yield reduction under water-limited conditions) 860 

given the capacity they have to adopt adaptation measures. 861 

How do agents make their decisions?  862 

The Protection Motivation Theory (Maddux & Rogers, 1983) (see II.i) is used to explain the decision making 863 

process of the households. PMT consists of two underlying cognitive mediating processes that cause individuals 864 

to adopt protective behaviours when faced with a hazard (Floyd et al., 2000): It suggests that the intention to 865 

https://research.vu.nl/en/publications/survey-report-kitui-kenya-expert-evaluation-of-model-setup-and-pr
https://research.vu.nl/en/publications/survey-report-kitui-kenya-results-of-a-questionaire-regardings-us
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protect (in this study, the farmers’ intention to adopt a new adaptation measure) is motivated by a persons’ risk 866 

appraisal and the perceived options to cope with risks. The former depends on, for example, farmers’ risk 867 

perception, on their own experiences with drought disasters and memory thereof, and on experiences of risk 868 

events in their social networks. The latter is related to different factors such as perceived self-efficacy (i.e. assets 869 

and sources of income, education level, and family size), adaptation efficacy (land size, adaptation measure 870 

characteristics) and adaptation costs (expenses in relation to their income) (Gebrehiwot & van der Veen, 2015; 871 

Keshavarz & Karami, 2016; van Duinen et al., 2015, 2016a). Households do not have any other objective or 872 

success criteria. A detailed description of how PMT is modelled – including the sensitivity analysis regarding the 873 

relative weights of the PMT factors - can be found in Wens et al. (2019): In ADOPT, farm households develop 874 

an intention to adapt (protect) for each potential adaptation measure (m) which changes every year (t). If a 875 

household has the financial capacity to pay for a considered measure (Stefanovi, 2015), the intention to adapt is 876 

translated into the likelihood the household will adopt this measure in the following years. (This can be influenced 877 

by having access to credit.) The actual adoption is stochastically derived from this likelihood to adopt a measure.   878 

 879 

Although Stefanovi (2015), Van Duinen et al. (2015a), and Keshavarz and Karami (2016) have found positive 880 

relationships between the factors of PMT and observed protective behaviour, a level of uncertainty exists related 881 

to the relative importance of risk appraisal and coping appraisal in the specific context of smallholder households' 882 

adaptation decisions in semi-arid Kenya. Therefore, the α and β parameters were introduced as weights for the 883 

two cognitive processes. To address the associated uncertainty, they were widely varied (α, β ϵ [0.334:0.666]) in 884 

a sensitivity analysis. 885 

Risk appraisal is formed by combining the perceived risk probability and perceived risk severity, shaped by 886 

rational and emotional factors (Deressa et al., 2009, 2011; Van Duinen et al., 2015b). Whereas risk perception is 887 

based in part on past experiences, several studies have suggested that households place greater emphasis on recent 888 

harmful events (Gbetibouo, 2009; Rao et al., 2011; Eiser et al., 2012). To include this cognitive bias, risk appraisal 889 

is seen as a sort of subjective, personal drought disaster memory, defined as follows (Viglione et al., 2014): 890 

 891 

The drought occurrence in year t is a binary value with a value of 1 if the SPEI-3 value falls below −1. The disaster 892 

damage of a household is related to their harvest loss during the drought year, which is defined as the difference 893 

between their current and average harvest over the last 10 years. 894 

Coping Appraisal represents a households' subjective “ability to act to the costs of a drought adaptation measures, 895 

given the adaptation measures' efficiency in reducing risk” (Stefanovi, 2015; Van Duinen et al., 2015a). It is a 896 

combination of the households' self-efficacy, adaptation efficacy of the measure, and its adaptation costs: 897 
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 898 

Although Stefanovi (2015), Van Duinen et al. (2015b), and Keshavarz and Karami (2016) quantified the 899 

relationships between the factors driving the subjective coping appraisal of individuals, a level of uncertainty 900 

remains related to the relative importance of these drivers in the context of smallholder households' adaptation 901 

decisions in semi-arid Kenya. Therefore, weights (γ, δ, ε ϵ [0.25:0.50]) were introduced and varied in a sensitivity 902 

analysis using different ADOPT model runs. 903 

The Adaptation Costs of the possible measures are expressed in terms of a percentage of the households' assets. 904 

The Adaptation Efficacy is calculated as the percentage of yield gain per measures compared to the current yield. 905 

This can be influenced by access to extension services (which gives an objective yield gain based on future climate 906 

rather than an estimate based on current practices of neighbours) 907 

Self-efficacy is assumed to be influenced by education level (capacity), household size (labour force), age and 908 

gender; all social factors found to influence risk aversion and adaptation decision (Oremo, 2013; Charles et al., 909 

2014; Tongruksawattana, 2014; Muriu et al., 2017). 910 

 911 

Do the agents adapt their behaviour to changing endogenous and exogenous state variables? And if yes, 912 

how? 913 

Exogenous factors influencing adaptation decisions in ADOPT include the climate and the policy context in which 914 

households exists. Drought (a feature of the climate context) induced crop losses steer a households’ perception 915 

of the drought disaster risks they face (Risk Appraisal). For example, experiences of historical droughts or 916 

receiving early warnings about upcoming drought affects individuals’ evaluation of drought disaster risk, leading 917 

to a personal drought disaster risk judgement (e.g. Keshavarz et al., 2014; Singh & Chudasama, 2017). Besides, 918 

access to extension services (a feature of the climate context) can have profound effect on whether or not 919 

individuals take proactive action (Kitinya et al., 2012; Shikuku et al., 2017). Endogenous factors, as explained 920 

above, include age, household size, education level, maize yield variability and assets (and the potential access to 921 

credit market). 922 

Do spatial aspects play a role in the decision process?  923 

Farmer networks (connections with neighbours) exist, and information is passed through this social network. 924 

Do temporal aspects play a role in the decision process?  925 

Yes, risk memory is based on the crop yield variability of the accumulated past years and gives farm households 926 

an expectation about the upcoming crop yield.  927 

Do social norms or cultural values play a role in the decision-making process?  928 

No (only implicitly included, see II.ix) 929 

https://www.frontiersin.org/articles/10.3389/frwa.2020.00015/full#B128
https://www.frontiersin.org/articles/10.3389/frwa.2020.00015/full#B23
https://www.frontiersin.org/articles/10.3389/frwa.2020.00015/full#B23
https://www.frontiersin.org/articles/10.3389/frwa.2020.00015/full#B153
https://www.frontiersin.org/articles/10.3389/frwa.2020.00015/full#B106
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To which extent and how is uncertainty included in the agents’ decision rules  ? 930 

No 931 

II.iii Learning  932 

Is individual learning included in the decision process? How do individuals change their decision rules over 933 

time as consequence of their experience?  934 

Decision rules follow the PMT and are thus fixed, but some rules differ among type of households. Households 935 

that do not regularly receive extension services, are limited to only implement measures that their neighbours 936 

have installed as they are not aware of the existence of others. Besides, farmers who receive training will form 937 

their perception about the adaptation efficacy in a more objective way (as they have knowledge of average yield 938 

results under the adaptation measures while other farmers estimate this based on yield of their peers with such 939 

measure). 940 

Is collective learning implemented in the model?  941 

No 942 

II.iv Individual Sensing 943 

What endogenous and exogenous state variables are individuals assumed to sense and consider in their 944 

decisions? Is the sensing process erroneous?  945 

Households are aware of their assets, past yields, income sources and their stability, and household food needs 946 

(Fig. A1). Following the socio-hydrologic setup of the model, households with bounded rational behaviour are 947 

embedded in and interact with their social and natural environment. Changes in rainfall patterns during the 948 

growing season will change households’ risk perception through fluctuations in crop yield; drought memory will 949 

influence the adaptive behaviour of these households. Besides, there is a diffusion of technology due to 950 

interactions and knowledge exchanges among farm households as discussed above. 951 

What state variables of which other individuals can an individual perceive?  952 

Households know their own but also their neighbours’ current yields and management practices. They make 953 

assumptions about the adaptation efficacy based on this. 954 

What is the spatial scale of sensing?  955 

Individual sensing happens on household level, but also through the individual social network that the farmers 956 

have, containing 3 to 30 other farmers. 957 
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Are the mechanisms by which agents obtain information modelled explicitly, or are individuals simply 958 

assumed to know these variables? 959 

Households can get information about early warnings and through extension training. Households also have a 960 

simulated information transfer moment with the farmers in their neighbourhood to exchange information on risk 961 

and yields.  962 

Are the costs for cognition and the costs for gathering information explicitly included in the model?  963 

No 964 

II.v Individual Prediction  965 

Which data uses the agent to predict future conditions?  966 

By extrapolating from historical yield experiences, farmers have expectations about their maize yield every year. 967 

If an early warning system is in place, farmers know about upcoming droughts that can influence their crop yield. 968 

What internal models are agents assumed to use to estimate future conditions or consequences of their 969 

decisions?  970 

Households receiving extension services have knowledge about the average (future) yield gain of adopting a new 971 

adaptation measure, which will influence their coping appraisal.  972 

Might agents be erroneous in the prediction process, and how is it  implemented?  973 

Households without this access to training will predict the yield gain based on the extra yield of their neighbours 974 

who have already adopted the considered adaptation measure. 975 

II.vi Interaction  976 

Are interactions among agents and entities assumed as direct or indirect?  977 

In ADOPT, households interact with their neighbours, shaping risk awareness and response attitude (Nkatha, 978 

2017; Okumu, 2013; van Duinen et al., 2016). Such networks can enhance social learning and knowledge spill 979 

over, which influences people’s adaptation intention and choice of specific measures (Below et al., 2010; 980 

Tongruksawattana, 2014).  Smallholder households learn from the other households in their social network about 981 

the implementation and benefits of drought adaptation measure through neighbouring households’ (Below et al 982 

2010; Shikuku 2017). In ADOPT, exchanges with neighbours shape risk perception – the individual perception 983 

moves in the direction of the social network average – and also shape perceived adaptation effectivity. Moreover, 984 

households with no access to extension can only adopt measures already implemented by neighbours. 985 

On what do the interactions depend? 986 

Households are either more self-oriented, discussing matters with 10 neighbours, or group-oriented, sharing 987 

knowledge within a group / collective of 30 neighbouring households. 988 
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Spatial distance (neighbourhood) at initialisation is the key driver for networks;  it is assumed that s(he) would 989 

not walk more than 5km to reach people in her/his network. 990 

If the interactions involve communication, how are such communications represented? 991 

 Communication is not explicitly modelled. 992 

If a coordination network exists, how does it affect the agent behaviour? Is the structure of the network 993 

imposed or emergent?  994 

No coordination network exists. 995 

II.vii Collectives 996 

Do the individuals form or belong to aggregations that affect, and are affected by, the individuals?  How 997 

are collectives represented?  998 

No, no fixed collectives exist as the social networks the agents have, are individual in nature.  999 

II.viii Heterogeneity 1000 

Are the agents heterogeneous? If yes, which state variables and/or processes differ between the agents?  1001 

Household agents are heterogeneous in terms of state variables (i.e. farm size, household size, assets), and differ 1002 

in access to credit market, extension services and early warning beneficiaries, changing their adaptive behaviour 1003 

(Asfaw et al., 2017; Okumu, 2013; Shikuku et al., 2017) 1004 

Are the agents heterogeneous in their decision-making? If yes, which decision models or decision objects 1005 

differ between the agents?  1006 

Okumu (2013), Shikuku (2017), among others, found that state variables such as age, beliefs. gender, education 1007 

of the household head, and the household size have significant effects on their risk attitude. These factors are 1008 

included in the model application of the Protection Motivation Theory through the self-efficacy factor. 1009 

II.ix Stochasticity  1010 

What processes (including initialization) are modelled by assuming they are random or partly random?  1011 

The likelihood to adopt a measure of a household is directly derived from the intention to adapt of the measure 1012 

with the highest intention for that household. This is stochastically transferred into an actual decision whether or 1013 

not to adopt the measure. For every time step of the simulation, a random number between 0-1 is drawn for each 1014 

household; if this is lower than their adaptation intention (also between 0-1) and the household is able to pay for 1015 

the measure, then the household adopts it. This probabilistic way of looking at adaptation intention and the 1016 

stochastic step to derive the actual decisions allow to account for non-included factors introducing uncertainty in 1017 

adaptive behaviour such as conservatism, social / cultural norms, physical health, ambitiousness etc. of the 1018 

households. Moreover, also a stochastic perturbation (multiplied with a random number with average 1 and SD 1019 
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0.1)  is added to the maize yield per farm as calculated through AquacropOS. This additional heterogeneity-1020 

inducing step is done to include effects of pests and diseases on the income and food security of farming 1021 

households. 1022 

II.x Observation  1023 

What data are collected from the ABM for testing, understanding and analysing it, and how and when are 1024 

they collected?  1025 

The adoption of adaptation measures and their effect on the total crop production (and food stock on the market) 1026 

and individual household wealth are tracked over the simulated years. 1027 

What key results, outputs or characteristics of the model are emerging from the individuals? 1028 

Drought disaster risk (the annual average of impacts over the run period) - expressed in terms of average annual 1029 

poverty rate, level of food security and total emergency aid needs - is emerging from the model. They are defined 1030 

based on the socio-economic conditions of individual farm households.  1031 

  1032 
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III. Details 1033 

II.i Implementation 1034 

How has the model been implemented?  1035 

The model is coded in R, which is able to link the two sub models in Netlogo (the adaptive behaviour sub model) 1036 

and MATLAB (AquacropOS). 1037 

Is the model accessible, and if so, where?  1038 

No(t) yet  1039 

III.ii Initialization 1040 

What is the initial state of the model world, i.e., at time t=0 of a simulation run?  1041 

At the initial stage, households and their characteristics are randomly created based on the mean and standard 1042 

deviation (Table A1) derived from the household dataset, obtained from a survey on agricultural drought disaster 1043 

risk with smallholders in the case study area (Wens, 2019). Income off farm is linearly related to the household 1044 

size, education level and negatively related to the farm size. Food and non-food expenditures are linearly related 1045 

to the household size. Farm expenditures are linearly related to the farm size.  1046 

 1047 

Table A1: Initialisation parameters for farm households in ADOPT  1048 

Parameter Explanation of initialization parameters for farm households Value 

Age Age of the household head (based on Wens 2019) 42 +- 9 

Edu Years of education of the household head (based on Wens 2019) 6 +- 3 

Sex Gender of the household head (male 1, female 0)  0.66 

HH-size Family size of the households (people living under same roof) (Wens 

2019) 

6 +- 2.5 

Assets Household financial assets (USD) that can be spend (based on IFPRI 

2012) 

80% < 100 

Farm-size Size of the farm (in hectare) used for planting crops (Wens 2019) 0.7 +- 0.6 

Off-farm Income from activities not on the own farm in USD (Wens 2019) 1200 +- 500 

Food-needs Kilogram of maize to fulfil daily caloric intake needs, per adult 125 

Exp-farm Farm expenditures made by the household (USD/hectare/year) (Wens 

2019) 

118 +- 146 

Exp-food Food expenditures made by the household (USD/year) (Wens 2019) 567 +- 655 

Exp-nonf Other expenditures made by the household (USD/year) (Wens 2019) 446 +- 500 

Network Neighbouring farmers creating the social network of the farmer 10-30 

 1049 
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Is initialization always the same, or is it allowed to vary among simulations?  1050 

In ADOPT, multiple climate change scenarios and policy scenarios were initialised – this changed the exogeneous 1051 

variables in the model. Moreover, each initialization creates another synthetic agent set based on the average 1052 

household characteristics,  Besides, a sensitivity analysis is done to evaluate assumptions on the relative weights 1053 

of the PMT factors (II.ii). Each combination of climate and policy scenario is run 12 times  (3 possible α; 4 1054 

possible combinations of  γ, δ, ε) to account for the endogenous variability and uncertainty.  1055 

Are initial values chosen arbitrarily or based on data?  1056 

The initialisation values are based on observed household data. Survey data includes a short questionnaire among 1057 

employees of the Kenyan national disaster coordination units (n=10), semi-structured expert interviews (n=8) 1058 

with NGOs, governmental water authorities and pioneer farmers in the Kitui district in Kenya, and an in-depth 1059 

questionnaire among 250 smallholder farmers in the central Kitui. Extra information is derived from household 1060 

surveys of 2000, 2004, 2007 and 2010, conducted by the Tegemeo Agricultural Policy Research Analysis 1061 

(TARAA) Project of the Tegemeo Institute. Besides, the model initialization draws heavily from reports of CIAT 1062 

(CIAT & World Bank, 2015), FAO (Rapsomanikis, 2010), IFPRI (Erenstein et al., 2011) and the government of 1063 

Kenya (Kitui County Integrated report 2013-2017, 2017), CCAFS (CCAFS, 2015), and from research (e.g., 1064 

Muhammad et al., 2010). 1065 

III.iii Input Data 1066 

Does the model use input from external sources such as data files or other models to represent processes 1067 

that change over time?  1068 

The daily weather conditions from 1980-2010 (from CHIRPS and CFSR) is used as input time series; for the 1069 

future climate scenarios, the same data but with temperature and/is used.  1070 

Besides, survey data on household behaviour and drought risk context are used. Raw reporting can be found in:  1071 

• Wens, M. (2019). Survey report Kitui, Kenya: Results of a questionnaire regarding subsistence 1072 

farmers' drought risk and adaptation behaviour.  1073 

https://research.vu.nl/ws/portalfiles/portal/98864069/MissionRapport.pdf 1074 

• Wens, M (2018) Survey report Kitui, Kenya: Expert evaluation of model setup and preparations of 1075 

future fieldwork  https://research.vu.nl/ws/portalfiles/portal/98863978/MissionRapport2018.pdf 1076 

Where does data come from? How is it collected? What is the level of available data? How is it structured?  1077 

Data (also discussed in Wens et al. 2021) is collected in the field using a multi-method data survey approach 1078 

(key informant interviews, fuzzy cognitive map, household questionnaire and choice experiment). This data is 1079 

used to design the model, to validate the use of PMT, to initialise the agent set and to calibrate model outputs.  1080 

https://research.vu.nl/ws/portalfiles/portal/98863978/MissionRapport2018.pdf
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What are the variables, entities and classes available in data? What do they represent?  1081 

A full set of behavioural factors were evaluated through the household questionnaire, and these were linked to 1082 

their actual behaviour and to their behavioural intentions, as well as to the results of the choice experiment 1083 

investigating future behaviour (Wens et al. 2021). Besides, socio-economic and farm characteristics were 1084 

questioned.  1085 

How are data selected to form the agent entities? How is agent population generated and synthesized?  1086 

As discussed above, the data is used to create a representative set of agents. Household variable means and 1087 

standard deviations were used to create distribution functions and a synthetic agent set was created based on 1088 

random draws from these functions. Moreover, correlation between different variables were maintained. 1089 

What are the relationships and patterns that exist in data?  1090 

As discussed above, relationship between household income and household head education level or farm size 1091 

exist. Next to corelations between socio-economic or agricultural characteristics, correlations between 1092 

psychological factors and actual or prospective adaptation decisions were investigated and used to design the 1093 

behavioural module of ADOPT.   1094 

III.iv Sub-models 1095 

What, in detail, are the sub-models that represent the processes listed in ‘Process overview and 1096 

scheduling’?  1097 

The FAO crop-water model AquacropOS (coded in MATLAB© by Tim Foster (Foster et al., 2017)) calculates 1098 

seasonal crop production, based on hydro-climatologic conditions provided by the climate data and based on the 1099 

agricultural management of the households. The agent-based model in which farming households decide on their 1100 

drought adaptation measures, is coded in Netlogo®, a language specialized in ABMs. This contains the -making-1101 

decision module, which is a model-application of the Protection Motivation theory as explained in section  II.i. 1102 

More detailed explanation about how this is done can be found in Wens et al 2020. 1103 

How were sub models designed or chosen, and how were they parameterized and then tested?  1104 

AquacropOS was applied parameterized and calibrated following Ngetich (2011) and Omyo (2015), who both 1105 

analysed and approved the functioning of this model to simulate maize yield under different climates in Kenya. 1106 

The decision sub-model is described above in the sections about decision-making and theoretical foundations 1107 

(II.ii). A more detailed description can be found in Wens et al 2020. 1108 

What are the model parameters, their dimensions and reference values? 1109 

For AquacropOS, Table A3 and A4 give an overview of the parameters that are used. For the decision-making 1110 

module, Table A2 gives an overview of the factors used. 1111 

 1112 
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Table A2: Initialisation parameters for the behavioural module in ADOPT  1113 

Factor Explanation of the PMT factors 

Current Yield Average yield of last 5 years 

Potential Yield Expected / perceived yield when adopting a new adaptation measure 

Either based on yield of neighbours with that measure or on training info 

Adaptation costs Perception of the costs of new measures as percentage of assets 

Knowledge-measures 1 if attending trainings, else the percentage of people in network with 

measure 

Risk perception Drought memory, 1 if last harvest there was 0 yield, 0 if never impacted 

Adaptation efficacy Yield gain as percentage of current yield, based on potential yield 

Self – efficacy Belief in own capacity, based on gender, age, HH size and access to training 

Adaptive capacity Product of self-efficacy, adaptation efficacy and -1 * adaptation costs 

Adaptation intention Product of adaptive capacity and risk perception, 0 if one of the underlying 

factors is 0 or if assets are smaller than costs of measure 

 1114 

Table A3: Initialisation parameters for AquacropOS in ADOPT  1115 

Value Explanation of calibration parameters for AquacropOSv6.0 maize 

60 / 80 Curve number value under Fanya Juu bunds or under absence of such bunds 

06 Bund height (m) 

50 Area of surface covered by mulches (50%) 

0.5 Soil evaporation adjustment factor due to effect of mulches 

SMbased Irrigation method 

7 / 3 Interval irrigation in days under manual / automated irrigation 

40 Soil moisture target (% of TAW below which irrigation is triggered) 

12 Maximum irrigation depth (mm/day) 

50 / 75 Application efficiency under manual / automated irrigation 

50 Soil surface wetted by irrigation (%) 

  1116 
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Table A4: Crop parameters for maize AQUACROPOS in ADOPT  1117 

Value  Crop parameters for AquacropOS  1118 

3           : Crop Type (1 = Leafy vegetable, 2 = Root/tuber, 3 = Fruit/grain) 1119 

1           : Planting method (0 = Transplanted, 1 =  Sown) 1120 

1           : Calendar Type (1 = Calendar days, 2 = Growing degree days) 1121 

0           : Convert calendar to GDD mode if inputs are given in calendar days (0 = No; 1 = Yes) 1122 

16/03    : Planting Date (dd/mm) 1123 

31/08    : Latest Harvest Date (dd/mm) 1124 

5           : Growing degree/Calendar days from sowing to emergence/transplant recovery 1125 

40         : Growing degree/Calendar days from sowing to maximum rooting 1126 

80         : Growing degree/Calendar days from sowing to senescence 1127 

90         : Growing degree/Calendar days from sowing to maturity 1128 

40         : Growing degree/Calendar days from sowing to start of yield formation 1129 

5           : Duration of flowering in growing degree/calendar days (-999 for non-fruit/grain crops) 1130 

65         : Duration of yield formation in growing degree/calendar days 1131 

3           : Growing degree day calculation method 1132 

8           : Base temperature (degC) below which growth does not progress 1133 

30         : Upper temperature (degC) above which crop development no longer increases 1134 

1           : Pollination affected by heat stress (0 = No, 1 = Yes) 1135 

35         : Maximum air temperature (degC) above which pollination begins to fail 1136 

40         : Maximum air temperature (degC) at which pollination completely fails 1137 

1           : Pollination affected by cold stress (0 = No, 1 = Yes) 1138 

10         : Minimum air temperature (degC) below which pollination begins to fail 1139 

5           : Minimum air temperature (degC) at which pollination completely fails 1140 

1           : Transpiration affected by cold temperature stress (0 = No, 1 = Yes)  1141 

12         : Minimum growing degree days (degC/day) required for full crop transpiration potential 1142 

0           : Growing degree days (degC/day) at which no crop transpiration occurs 1143 

0.3        : Minimum effective rooting depth (m) 1144 

0.8        : Maximum rooting depth (m) 1145 

1.3        : Shape factor describing root expansion 1146 

0.0105  : Maximum root water extraction at top of the root zone (m3/m3/day) 1147 

0.0026  : Maximum root water extraction at the bottom of the root zone (m3/m3/day) 1148 

6.5        : Soil surface area (cm2) covered by an individual seedling at 90% emergence 1149 

37000   : Number of plants per hectare 1150 

0.89      : Maximum canopy cover (fraction of soil cover) 1151 

0.1169  : Canopy decline coefficient (fraction per GDD/calendar day) 1152 

0.2213   : Canopy growth coefficient (fraction per GDD) 1153 

1.05       : Crop coefficient when canopy growth is complete but prior to senescence 1154 

0.3         : Decline of crop coefficient due to ageing (%/day) 1155 

33.7       : Water productivity normalized for ET0 and C02 (g/m2) 1156 

100        : Adjustment of water productivity in yield formation stage (% of WP) 1157 

50          : Crop performance under elevated atmospheric CO2 concentration (%) 1158 

0.48       : Reference harvest index 1159 

0            : Possible increase of harvest index due to water stress before flowering (%) 1160 

7            : Coefficient describing positive impact on harvest index of restricted vegetative growth during yield formation  1161 

3            : Coefficient describing negative impact on harvest index of stomatal closure during yield formation  1162 
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15          : Maximum allowable increase of harvest index above reference value 1163 

1            : Crop Determinacy (0 = Indeterminant, 1 = Determinant)  1164 

50          : Excess of potential fruits 1165 

0.02       : Upper soil water depletion threshold for water stress effects on affect canopy expansion  1166 

0.20       : Upper soil water depletion threshold for water stress effects on canopy stomatal control 1167 

0.69       : Upper soil water depletion threshold for water stress effects on canopy senescence  1168 

0.80       : Upper soil water depletion threshold for water stress effects on canopy pollination  1169 

0.35       : Lower soil water depletion threshold for water stress effects on canopy expansion  1170 

1            : Lower soil water depletion threshold for water stress effects on canopy stomatal control  1171 

1            : Lower soil water depletion threshold for water stress effects on canopy senescence  1172 

1            : Lower soil water depletion threshold for water stress effects on canopy pollination  1173 

1            : Shape factor describing water stress effects on canopy expansion  1174 

2.9         : Shape factor describing water stress effects on stomatal control  1175 

6            : Shape factor describing water stress effects on canopy senescence  1176 

2.7         : Shape factor describing water stress effects on pollination 1177 
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Appendix B: Adoption rates of adaptation measures 

Table B1 Adoption ratio (in share of population) at run year 30 under different climate and intervention scenarios. Note that the 1180 
model showed an adoption rate of 25% for mulch,  70% for fanyaFanya juuJuu, 9% for well and X% for irrigation at run year 0 

(start of climate change and policy scenarios) . 

Mulch NoChangeNo 

Change  

Wet Wet Hot Hot Dry Hot Dry 

Reactive 50.2% 47.8% 45.6% 42.1% 35.9% 38.5% 

Proactive 83.8% 83.6% 89.4% 90.1% 90.7% 88.1% 

StrategicProspective 100% 100% 100% 100% 100% 100% 

FanyajuuFanya Juu NoChangeNo 

Change  

Wet Wet Hot Hot Dry Hot Dry 

Reactive 71.1% 70.9% 69.1% 68.8% 60.7% 63.3% 

Proactive 87.2% 88.1% 90.7% 90.9% 91.9% 90.1% 

StrategicProspective 93.7% 93.5% 94.7% 94.8% 95.1% 94.9% 

Well NoChangeNo 

Change  

Wet Wet Hot Hot Dry Hot Dry 

Reactive 9.4% 9.6% 9.4% 9.2% 9.1% 9.0% 

Proactive 11.7% 12.7% 13.4% 12.0% 12.1% 11.4% 

StrategicProspective 79.4% 82.6% 92.1% 92.9% 95.0% 91.1% 

Irrigation NoChangeNo 

Change  

Wet Wet Hot Hot Dry Hot Dry 

Reactive 3.7% 3.7% 3.5% 3.4% 3.3% 3.4% 

Proactive 5.2% 5.6% 5.6% 5.3% 5.2% 4.8% 

StrategicProspective 48.7% 59.6% 73.3% 75.8% 82.0% 71.8% 
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Table B21 Difference in adoption RATIO (in share of population) under different climate and intervention scenarios compared to 

the reactive government scenario under no climate change (the BAU scenario). 

mulch NoChangeNo 

Change  

Wet Wet Hot Hot Dry Hot Dry 

Reactive 0 -2.5% -4.6% -8.1% -14.3% -11.6% 

Proactive 33.7% 33.4% 39.3% 39.9% 40.5% 38.0% 

StrategicProspective 49.4% 49.4% 49.8% 49.8% 49.8% 49.8% 

EWS 18.0% 19.7% 18.8% 13.5% -4.5% 1.2% 

transfer 23.2% 14.4 19.6% 24.6% 23.8% 18.4% 

Credit2 19.5% 16.6% 14.7% 8.5% 5.4% 9.1% 

training 30.1% 27.6% 24.9% 20.4% 10.8% 15.1% 

       

Fanya Juu NC  Wet Wet Hot Hot Dry Hot Dry 

Reactive 0% -0.2% -2% -2.3% -10.3% -7.7% 

Proactive 16.2% 17.0% 19.6% 19.8% 20.8% 19.1% 

StrategicProspective 22.6% 22.4% 23.6% 23.8% 24.1% 23.8% 

EWS 8.2% 9.2% 8.5% 6.0% -0.2% 1.3% 

transfer 9.0% 5.9% 6.9% 10.3% 10.1% 8.4% 

Credit2 8.0% 7.3% 5.1% 6.0% -0.1% 1.5% 

training -1.7% -2.9% -5.1% -5.5% -11.2% -9.9% 

       

Well NC  Wet Wet Hot Hot Dry Hot Dry 

Reactive 0% 0.2% -0.1% -0.3% -0.4% -0.4% 

Proactive 2.4% 3.2% 3.9% 2.6% 2.7% 2.0% 

StrategicProspective 69.9% 73.2% 82.7% 83.4% 85.5% 81.6% 

EWS 1.7% 2.% 1.4% 1.1% -0.4% 0.2% 

transfer 10.% 1.0% 1.1% 0.2% 0.4% 0.2% 

Credit2 9.4% 9.1% 7.4% 6.9% 4.2% 5.1% 

training 5.2% 5.5% 4.4% 3.2% 1.5% 1.9% 

       

Irrigation NC  Wet Wet Hot Hot DRY Dry Hot 

Reactive 0% 0% -0.1% -0.3% -0.4% -0.3% 

Proactive 1.5% 1.9% 1.9% 1.6% 1.5% 1.2% 

StrategicProspective 45.1% 56.0% 69.6% 72.1% 78.3% 68.1% 

EWS 1.3% 1.6% 1.6% 1.4% 0.5% 0.7% 

transfer 0.6% 0.3% 0.1% -0.2% -0.4% -0.4% 

Credit2 3.7% 3.7% 2.8% 2.4% 1.2% 1.7% 

training 2.8% 3.3% 2.2% 1.7% 0.9% 1.3% 

       

% change tov 1343 adopted measures under NC reactive 

Total  NC  Wet Wet Hot Hot DRY Dry Hot 

Reactive 0% -1.8% -5.0% -8.2% -18.9% -15.0% 

Proactive 40.0% 41.2% 48.2% 47.6% 48.8% 44.8% 

StrategicProspective 139.2% 149.6% 167.9% 170.5% 176.9% 166 

2% 

EWS 21.7% 24.2% 22.6% 16.4% -3.4% 2.5% 

transfer 25.1% 16.1% 20.7% 25.9% 25.2% 19.8% 

Credit2 30.2% 27.3% 22.3% 17.7% 7.9% 12.9% 
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training 27.0% 24.9% 09.7% 14.8% 1.6% 6.2% 

 1190 

Figure B1: Total amount of measures adopted per 1000 initialized households under the reactive scenario, averaged over all runs. 

The shaded area indicates the uncertainty introduced by different model initialisations and by different relative importance of the 

PMT factors on the decisions of households. Year 0 initiates policy drought risk reduction interventions (indicated with different 

line colours). 

 1195 

 

Figure B2: Total amount of measures adopted per 1000 initialized households under the three intervention scenarios and three 

climate change scenarios, averaged over all runs. The shaded area indicates the uncertainty introduced by different model 

initialisations and by different relative importance of the PMT factors on the decisions of households. Year 0 initiates policy drought 

risk reduction interventions (indicated with different line colours). 1200 
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