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Abstract. There are distinctive methodological and conceptual challenges in rare and severe event (RSE) forecast-verification,

that is, in the assessment of the quality of forecasts involving natural hazards such as avalanches or tornadoes. While some

of these challenges have been discussed since the inception of the discipline in the 1880s, there is no consensus about how to

assess RSE forecasts. This article offers a comprehensive and critical overview of the many different measures used to capture

the quality of an RSE forecast and argues that there is only one proper skill score for RSE forecast-verification. We do so5

by first focusing on the relationship between accuracy and skill and show why skill is more important than accuracy in the

case of RSE forecast-verification. Subsequently, we motivate three adequacy constraints for a proper measure of skill in RSE

forecasting. We argue that the Peirce Skill Score is the only score that meets all three adequacy constraints. We then show

how our theoretical investigation has important practical implications for avalanche forecasting by discussing a recent study

in avalanche forecast-verification using the nearest neighbour method. Lastly, we raise what we call the “scope challenge”10

that affects all forms of RSE forecasting and highlight how and why the proper skill measure is important not only for local

binary RSE forecasts but also for the assessment of different diagnostic tests widely used in avalanche risk management and

related operations. Finally, our discussion is also of relevance to the thriving research project of designing methods to assess

the quality of regional multi-categorical avalanche forecasts.

1 Introduction15

In this paper, we draw on insights from the rich history of tornado forecast-verification to locate important theoretical debates

that arise within the context of binary rare and severe event (RSE) forecast-verification. Since the inception of this discipline

many different measures have been used to assess the quality of an RSE forecast. However, not only do these measures

disagree in their respective evaluation of a given sequence of forecasts, there is also no consensus about which one is the best

or the most relevant measure for RSE forecast-verification in particular. The diversity of existing measures not only creates20

uncertainty when performing RSE forecast-verification but, worse, can lead to the adoption of qualitatively inferior forecasts

with major practical consequences.

This article offers a comprehensive and critical overview of the different measures used to assess the quality of an RSE

forecast and argues that there really is only one proper skill score for binary RSE forecast-verification. Using these insights, we
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then show how our theoretical investigation has important consequences for practice, such as in the case of nearest neighbour25

avalanche forecasting, in the assessment of more localised slope stability tests, and other forms of avalanche management.

We proceed as follows: first, we show that RSE forecasting faces, in contrast to other forms of forecasting, the so-called

accuracy paradox which, although only recently so-named, was pointed out at least as far back as 1884. In the next section,

we present this ‘paradox’, explain why it is specific to RSE forecasting, and argue that its basic lesson—to clearly separate

merely successful forecasts from genuinely skillful forecasts—raises the challenge of identifying adequacy constraints on a30

proper skill measure.

In the third section, we motivate three adequacy constraints for a proper measure of skill in rare and severe event forecasting

and assess a variety of widely used skill measures in forecast-verification in relation to these three constraints. Ultimately, we

argue that the Peirce Skill Score is the only score that meets all three adequacy constraints and it should thus be considered the

skill measure for rare and severe event forecasting (with an important proviso).35

To highlight the practical implications of our theoretical investigation, we discuss, in the fourth section, a recent study in

nearest neighbour avalanche forecast-verification and explain how our theoretical discussion has important practical conse-

quences in choosing the best avalanche forecast model.

In the final section, we highlight a wider conceptual challenge for binary rare and severe forecast-verification by consider-

ing what we call the “scope-problem”. We apply this problem to the special case of avalanche forecasting and conclude by40

highlighting how our results are of relevance to different aspects of avalanche operations and management.

2 Accuracy Paradox: setting the stage

2.1 Sgt. Finley’s tornado predictions

The discipline of forecast-verification sprang into existence in 1884. In July of that year, Sergeant John Park Finley of the

U.S. Army Signal Corps published the article ‘Tornado Predictions’ in the third issue of the American Meteorological Journal45

(Finley, 1884). Finley reported remarkable success in his predictions of the occurrence and non-occurrence of tornadoes in the

contiguous United States east of the Rockies during the three-month period from March to May of 1884. Consolidating his

monthly figures, we summarise Finley’s successes in Table1.

From the totals in the bottom row, we find that the base rate of tornado occurrence is just under 2%, i.e. 51 observations of

tornadoes and 2752 observations of non-tornadoes, and thus well below the 5% base rate used to classify rare and severe event50

forecasting (Murphy, 1991, p. 303). Further, combining the figures of the top left and bottom right entries we obtain the total

number of verified predictions (of both occurrence and of non-occurrence) in the three-month period. Out of a total of 2,803

predictions, 2,708 were correct, which is an impressive success rate of 96.61%. This figure goes by many names: among the

more common, it is known as the percentage-correct (when multiplied by 100), the proportion-correct, the hit rate, or simply

accuracy. In a table laid out as in Table 2—commonly referred to as a 2x2 contingency table—it is the proportion
a + d

a + b + c + d
,55

which gives us the proportion of predictions that are successful (or ‘verified’, in the jargon of forecasting literature). The
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Observed

Tornado No tornado totals

Predicted
Tornado 28 72 100

No tornado 23 2,680 2,703

totals 51 2,752 2,803
Table 1. Finley’s consolidated tornado predictions March–May 1884 according to Gilbert (1884, p. 167).

Observed

+ − totals

Predicted
+ a b a + b

− c d c + d

totals a + c b + d a + b + c + d

Table 2. Standard characterisation of a 2x2 contingency table.

questions we will focus on are (1) what does this type of accuracy tell us about forecast performance or forecasting skill in the

specific case of rare event forecasting and (2) how best to measure and compare different RSE event forecast performances.

2.2 The accuracy paradox: accuracy vs skill

A feature of tornadoes and also, as we will see later, of avalanches, is that they are rare events, that is a+c� b+d. As a result,60

one will do well, i.e. one will exhibit high accuracy or attain a high proportion correct, if one simply predicts ‘No tornado’ or

‘No avalanche’ all the time. This trivial (but often overlooked) observation is nowadays blessed with the name the accuracy

paradox (e.g., Bruckhaus, 2007; Thomas and Balakrishnan, 2008; Fernandes, 2010; Valverde, 2014; Akosa, 2017). The issue

was neatly summed up in a letter to the editor in the 15th August, 1884 issue of Science, a correspondent named only as

‘G.’ writing, “An ignoramus in tornado studies can predict no tornadoes for a whole season, and obtain an average of fully65

ninety-five per cent” (G, 1884).

Indeed, since Finley makes more incorrect predictions of tornadoes (72) than correct ones (28), i.e., b > a in Table 2, it

was quickly pointed out that he would have done better by his own lights if he had uniformly predicted ‘No tornado’ (Gilbert,

1884)—he would then have caught up with the skill-less ignoramus whose accuracy, all else equal, would have been an even

more impressive 98.2%, i.e.
b + d

a + b + c + d
in Table 2. Where the prediction of rare events is concerned, what this suggests is70

that accuracy or the proportion-correct measure is not an appropriate measure of the skill involved. After all, as we will see
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below, Finley was far from lacking in skill in the prediction of tornadoes. Now, while we will argue for this in more detail in

the next subsections, two concerns counting against the proportion-correct measure can be noted here already.

First, focusing on accuracy in rare event forecasting often rewards skill-less performances and incentivizes “no-occurrence”

predictions. Second, where the prediction of severe events is concerned such an incentive is hugely troubling, since a failure to75

predict occurrence is usually far more serious than an unfulfilled prediction of occurrence. As Allan Murphy observes,

Since it is widely perceived that type 2 errors [failures to predict occurrences, c in Table 2] are more serious than

type 1 errors [unfulfilled predictions of occurrence, b in Table 2], forecasts of RSEs generally are characterised

by overforecasting. That is, over a set of forecasting occasions, more RSEs are usually forecast to occur than are

subsequently observed to occur [i.e., in terms of Table 2, a + b > a + c]. (Murphy, 1991, pp. 303–4)80

As a result, we believe that the proportion-correct measure is doubly unsuitable when it comes to assessing the skill involved

in rare and severe event forecasting.

However, if not by accuracy, how then should we assess the quality of a rare and severe event forecast? Immediately after the

publication of Finley’s article, a number of U.S. government employees rose to the challenge and introduced different so-called

“skill”-measures. Of most interest here are G. K. Gilbert of the U.S. Geological Survey and C. S. Peirce of the U.S. Coastal85

and Geodetic Survey, the latter better remembered nowadays, at least amongst philosophers, for his contributions to logic and

the school of thought called pragmatism. In the following section, we trace the history of some of these skill measures, and in

doing so we motivate three adequacy constraints that have to be met for a measure to be considered a proper skill measure in

RSE forecasting.

3 What is skill? Three adequacy constraints on skill measures for RSE forecasting90

3.1 First adequacy constraint: Better than chance

Gilbert (1884) responded immediately to Finley’s article and in doing so made two lasting contributions to forecast-verification.

His thought was straightforward. Anybody making a sequence of forecasts, whether skilled or unskilled, is likely to get some

right by chance. How many? In Table 2, there are a + c occurrences of tornadoes in the sequence of a + b + c + d forecasting

occasions. The forecaster makes a + b forecasts of occurrence. If these a + b forecasts were made “randomly”, we should95

expect a fraction
a + c

a + b + c + d
of them to be correct. So the number, ar, of predictions of occurrence that we might expect

the skill-less forecaster to get right by luck or chance is
a + c

a + b + c + d
× (a+ b), i.e., the number in proportion to the base rate.

Likewise, in parallel fashion, we work out the number, dr, of predictions of non-occurrence we might expect the skill-less

forecaster to get right by chance, the number, br, of predictions of occurrence we might expect the skill-less forecaster to get

wrong by chance, and the number, cr, of predictions of non-occurrence we might expect the skill-less forecaster to get wrong100

by chance keeping fixed the marginal totals a + b, c + d, a + c and b + d. We find:

ar =
(a + b)(a + c)
a + b + c + d

, dr =
(b + d)(c + d)
a + b + c + d

,
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br =
(a + b)(b + d)
a + b + c + d

, cr =
(a + c)(c + d)
a + b + c + d

.

a− ar is then the number of successful predictions of occurrence that we credit to the forecaster’s skill, d− dr the number105

of successful predictions of non-occurrence. As Gilbert noted,

a− ar = d− dr =
ad− bc

a + b + c + d
.

The forecaster does better than chance if a > ar, equivalently, if d > dr, i.e., if ad > bc. (If one finds the reasoning in arriving

at ar, br, cr and dr intuitively appealing but not sufficiently rigorous, see Appendix A.)

It is also the case that110

br − b = cr − c =
ad− bc

a + b + c + d
.

What do br−b and cr−c represent? When the forecaster does better than chance, they are the improvements over chance, thus

decreases, in, respectively, the making of Type I and the making of Type II errors.

Given these considerations, we can now substantiate our earlier claim that Finley exhibited genuine skill, in contrast to the

ignoramus, in in issuing his predictions. While Finley’s 28 correct out of 100 predictions of occurrence made may not seem115

impressive, his score is a fraction over fifteen times more than he could have expected to get right by chance, by “random

prognostication” as Gilbert called it, given Table 1’s numbers.

That was Gilbert’s first contribution. Although the next step we take is not exactly Gilbert’s, the idea behind it is his second

lasting contribution. Our forecaster makes a + b + c + d predictions. How many do we credit to her skill? Gilbert’s suggestion

is (a−ar)+b+c+(d−dr), a suggestion in effect taken up by Glenn Brier and R. A. Allen (1951) when they give this general120

form for a skill score:

actual score− score attainable by chance

total number of forecasts − score attainable by chance
.

Here, in both numerator and denominator, the score attainable by chance is ar + dr. So, instead of accuracy’s
successes

predictions
as

a measure that doesn’t take into account skill, we instead take

successes owed to skill
predictions credited to skill

, i .e.,
(a− ar) + (d− dr)

(a− ar) + b + c + (d− dr)
.125

This is

2(ad− bc)
(a + b)(b + d) + (a + c)(c + d)

.

This is a skill score that, in contrast to accuracy, meets our first adequacy constraint as it controls for chance and aims at

genuinely skillful predictions. In the forecasting literature, this measure is known as the special case of the Heidke Skill

Score (Heidke, 1926) applicable to binary categorical forecasting, though it was first mentioned by M. H. Doolittle (1888), he130

dismissing it as not having any scientific value. (As we will explain, we have some sympathy with Doolitte’s judgement.)
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We can rewrite the Heidke Skill Score as:

(br − b) + (cr − c)
br + cr

.

The score is, then, the proportional improvement (decrease) over chance in the making of errors (of both Type I and Type II).

Now, if we take it that the best a forecaster can do is have all her predictions, both of occurrence and non-occurrence, fulfilled135

then, following Woodcock (1976), we can present the Heidke Skill Score in an interestingly different way:

actual score− score attainable by chance

best possible score − score attainable by chance
.

Here, as said, we equate the “best possible score” with correctly predicting all occurrences and non-occurrences—a+c correct

predictions of occurrence, b+d correct predictions of non-occurrence (Table 3). Substituting into the above equation, we obtain

Observed

+ − totals

Predicted
+ a + c 0 a + c

− 0 b + d b + d

totals a + c b + d a + b + c + d

Table 3. Best possible score relative to Table 2’s data on occurrence.

the Heidke Skill Score, for the actual score, the actual number of successful predictions is a + d, the number attributable to140

chance is ar + dr, and the best possible score is a + b + c + d.

Focusing on the notion of a best possible score, though, gives us a different way to think about skill. On the model of what

we did above, someone randomly making a + c predictions of occurrence could expect to get
(a + c)(a + c)
a + b + c + d

of them right by

chance and, likewise, someone randomly making b+d forecasts of non-occurrence could expect to get
(b + d)(b + d)
a + b + c + d

of them

right by chance. So in the case of perfect prediction, in which there are no Type I or Type II errors, the number of successes we145

credit to the forecaster’s skill is

(a + b + c + d)− (a + c)2 + (b + d)2

a + b + c + d
=

2(a + c)(b + d)
a + b + c + d

.

Now, putting a different reading on our rewriting of Brier and Allen’s conception of a skill score,

actual score− score attainable by chance (relative to actual performance)
best possible score− score attainable by chance (relative to best possible performance)

,

we get150

2(ad− bc)
2(a + c)(b + d)

=
a

a + c
− b

b + d
,
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which is known as the Peirce Skill Score (Peirce, 1884), the Kuipers Skill Score (KSS, (Hanssen and Kuipers, 1965)) and the

True Skill Statistic (TSS, (Flueck, 1987)). Note that Peirce’s own way of arriving at the Peirce Skill Score is somewhat different

to our presentation and examined in detail in (Milne, submitted).

We can also think of the Peirce Skill Score as being this ratio:155

successes due to skill in actual performance

successes due to skill in perfect performance
,

and we will discuss this way of thinking of the Peirce Skill Score further in what follows.

To summarise, one of the earliest responses to the challenge to identify the skill involved in RSE forecasting was to highlight

the need to take into account—in some way or another—the possibility of getting predictions right “by chance” and thus present

the skill exhibited in a sequence of forecasts as relativized to what a “chancy” forecaster would predict. As we have just seen,160

this can be done in different ways which motivate different measures of skill. At this stage, we don’t have much to say on

whether Gilbert’s and Brier and Allen’s reading or our rewrite is preferable, i.e. whether the Heidke or Peirce Skill Score is

preferable. However, we can note that this first requirement rules out simple scores such as accuracy (proportion-correct) as

capturing anything worth calling skill in forecasting.

3.2 Second adequacy constraint: Direction of fit165

M. H. Doolittle (1885a, b) introduced a measure of “that part of the success in prediction which is due to skill and not to

chance” that is the product of two measures now each better known in the forecasting literature than Doolittle’s own, the

Peirce Skill Score, which we have just introduced, expressed in terms of Table 2 as
a

a + c
− b

b + d
, and the Clayton Skill Score

(Clayton, 1927, 1934, 1941), expressed in the same terms as
a

a + b
− c

c + d
. Even before publication, Doolittle was criticised

by Henry Farquhar (1884): Doolittle had, said Farquhar, combined a measure that tests occurrences for successful prediction,170

the Peirce Skill Score, with a measure that tests predictions for fulfilment, the Clayton Skill Score. Now, Doolittle’s measure

is indeed the product of the indicated measures and Farquhar has a point in his claim regarding what those measures measure.

But why is this ground for complaint? Doolittle saw none. Apparently taking on board Farquhar’s observation, he says,

Prof. C. S. Peirce (in Science. Nov. 14, 1884, Vol. IV., page 453), deduces the value

i =
a(a + b + c + d)− (a + c)(a + b)

(a + c)(b + d)
[=

a

a + c
− b

b + d
],175

by a method which refers principally to the proportion of occurrences predicted, and attaches very little importance

to the proportion of predictions fulfilled. (Doolittle, 1885b, p. 328, with a change of notation)

Farquhar allows that ‘either of these differences [i.e., the Peirce Skill Score and the Clayton Skill Score] may be taken alone,

with perfect propriety.’ By multiplying the Peirce Skill Score and the Clayton Skill Score, one is multiplying a measure that

tests occurrences for successful prediction by a measure that tests predictions for fulfilment. The resulting quantity is neither180

of these things—but that, in itself, does not formally prevent it being, as Doolittle took it to be, a measure of the skill exhibited

in prediction. Why, then, should one not multiply them, or put differently: what is wrong with Doolittle’s measure?
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The answer, we suggest, lies in a notion that philosophers are familiar with in a very different setting but whose first

appearances are very much to the point here—direction of fit. The idea, but not the term, is usually credited to Elizabeth

Anscombe who introduced it thus:185

Let us consider a man going round a town with a shopping list in his hand. Now it is clear that the relation of this

list to the things he actually buys is one and the same whether his wife gave him the list or it is his own list; and

that there is a different relation where a list is made by a detective following him about. If he made the list itself, it

was an expression of intention; if his wife gave it him, it has the role of an order. What then is the identical relation

to what happens, in the order and the intention, which is not shared by the record? It is precisely this: if the list190

and the things that the man actually buys do not agree, and if this and this alone constitutes a mistake, then the

mistake is not in the list but in the man’s performance (if his wife were to say: “Look, it says butter and you have

bought margarine”, he would hardly reply: “What a mistake! we must put that right” and alter the word on the list

to “margarine”); whereas if the detective’s record and what the man actually buys do not agree, then the mistake

is in the record. (Anscombe, 1963, §32)195

As Anscombe’s observation regarding butter and margarine makes clear, the ideal performance for the husband is to have

the contents of his shopping basket match his shopping list; the ideal performance for the detective is for his list to match

the contents of the shopping basket. The difference lies in whether list or basket sets the standard against which the other is

evaluated—this is the difference in direction of fit. Put crudely, then, Peirce has the sequence of weather events set the standard

and evaluates sequences of predictions against that standard; Clayton has the sequence of actual predictions set the standard200

and evaluates sequences of weather events against that standard. This difference in direction of fit is beautifully pointed out by

Doolittle himself. Contrasting Peirce’s measure with the other component of his own, the Clayton Skill Score as we now know

it, he says,

Prof. C. S. Peirce (in Science, Nov. 14, 1884, Vol. IV., page 453), deduces the first of these factors as the unqualified

value of i [the inference-ratio or that part of the success which is due to skill and not to chance] . . . . He obtains his205

result by the aid of the supposition that part of the predictions are made by an infallible prophet, and the others by

a man ignorant of the future. If Prof. Peirce had called on omnipotence instead of omniscience, and supposed the

predictions to have been obtained from a Djinn careful to fulfill a portion of them corresponding to the data, the

remainder of the occurrences being produced by an unknown Djinn at random, he would have obtained by parallel

reasoning the second factor. (Doolittle, 1885a, p. 124)210

Thus when measuring occurrences for successful prediction, the aim is to match predictions to the world, something which an

omniscient being succeeds in doing; in measuring predictions for fulfilment, the ideal is to have the world match the predictions

made, something which an omnipotent being can arrange to be the case.

In considering improvements on the forecasting performance recorded in Table 2, what are kept fixed are the numbers of

actual occurrences and non-occurrences, the marginal totals a+c and b+d, not the numbers of actual predictions of occurrence215

and predictions of non-occurrence, the marginal totals a+ b and c+d. It is, after all, only a poor joke to say, ‘I would have had
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a higher skill score if more tornadoes had occurred,’ even though it may well be true. Thus, as Doolittle has, despite himself,

made clear for us, forecasters are like Anscombe’s detective and not like the husband with the shopping list. Forecasters try to

fit their predictions to the world, not the world to their predictions.

Let’s go back to this form for a skill score:220

actual score− score attainable by chance (relative to actual performance)
best possible score− score attainable by chance (relative to best possible performance)

.

Peirce’s conception of the best possible performance, presented above in Table 3, keeps the marginal totals for actual observed

occurrences and non-occurrences from Table 2, a + c and b + d, respectively. The actual numbers of occurrence and non-

occurrence provide the standard against which performances are measured; so-constrained, the best possible performance is

that of the as-it-were omniscient being who correctly predicts all occurrences and all non-occurrences (Table 3).225

Clayton’s conception of the best possible performance, presented below in Table 4, keeps the marginal totals for actual

predictions of occurrence and predictions of non-occurrence from Table 2, a+b and c+d, respectively. The actual numbers of

predictions of occurrence and predictions of non-occurrence provide the standard against which performances are measured;

so-constrained, the best possible performance is that of the omnipotent being who fashions occurrences and non-occurrences

to fit her predictions (Table 4). This, as we have argued, embodies the wrong direction of fit. And so, returning to our original230

question, it should now be clear what is wrong with Doolittle’s measure: it incorporates Clayton’s measure which has the wrong

direction of fit for a measure of skill in prediction.

Observed

+ − totals

Predicted
+ a + b 0 a + b

- 0 c + d c + d

totals a + b c + d a + b + c + d

Table 4. Omnipotent forecaster’s score relative to Table 2’s data on prediction.

What of the Heidke Skill Score? How does it fare with respect to direction of fit? What conception of best performance

does it employ? In its denominator, the Heidke score takes the best possible performance to be one in which all a + b + c + d

predictions are correct but corrects that number for chance using Table 2’s marginal totals for both predictions and occurrences.235

This is, quite simply, incoherent—unless, fortuitously, we are in the special case when the numbers of Type I and Type II errors

are equal. Keeping Table 2’s marginal totals, the highest attainable number of correct predictions is a+d+2×min{b,c} (Table

5).

Using the marginal totals in Table 5, which are, by design, those of Table 2, to correct a + d + 2×min{b,c} for chance, we

obtain this skill score:240

ad− bc

(a + min{b,c})(min{b,c}+ d)
.
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Observed

+ − totals

Predicted
+ a +min{b,c} b−min{b,c} a + b

- c−min{b,c} d +min{b,c} c + d

totals a + c b + d a + b + c + d

Table 5. Highest number of correct predictions relative to Table 2’s marginal totals

It has been used to assess forecasting performances not in tornado forecasting nor in avalanche forecasting but in assessing

predictions of juvenile delinquency and the like in criminology where it is known as RIOC, Relative Improvement Over Chance

(Loeber and Dishion, 1983; Loeber and Stouthamer-Loeber, 1986; Farrington, 1987; Farrington and Loeber, 1989; Copas and

Loeber, 1990).245

Now, this measure has the following feature: when there are successes in predicting occurrences and non-occurrence, i.e.,

a > 0 and d > 0, it awards a maximum score of 1 to any forecasting performance in which there are either no Type I errors

(b = 0) or no Type II errors (c = 0) or both. This is a feature it shares with Stephenson (2000)’s Odds Ratio Skill Score (ORSS)

(for which see Appendix D). In agreement with Woodcock (1976), we hold that a maximal score should be attained when, and

only when, b and c are both zero.250

That’s one problem with the RIOC measure. The other is this. Like Anscombe’s detective, the scientific forecaster’s aim is to

match her predictions to what actually happens. That is why we keep the column totals fixed when considering the best possible

performance. Why on earth should we also keep the row totals, the numbers of predictions of occurrence and non-occurrence

fixed? — There is, we submit, no good reason to do so. The Heidke Skill Score embodies no coherent conception of best

possible performance. Loeber et al.’s RIOC does at least embody a coherent notion of best possible performance but it is a255

needlessly hamstrung one, restricting the range of possible performances to those that make the same number of predictions of

occurrence and of non-occurrence as the actual performance. On the one hand, this makes a “best possible performance” too

easy to achieve and, on the other, sets our sights so low as to only compare a forecaster with others who make the same number

of forecasts of occurrence and of non-occurrence—but forecasting is a scientific activity, not a handicap sport.

Finally, for completeness, let’s briefly consider the measure we started out with, proportion correct,
a + d

a + b + c + d
. How does260

it fare with respect to the second adequacy constraint? While it may be true to say that it doesn’t evaluate a performance in

relation to the wrong direction of fit, this is the case only because the measure doesn’t properly engage with the issue of fit.

Here, the evaluation is in relation to a+ b+ c+d and so the performance is not evaluated in relation to any relevant proportion

(neither of occurrences nor of predictions). So, in summary, we can say that while the Peirce score evaluates performances

in relation to the correct proportions (occurrences, i.e., features of the world), the Clayton score evaluates it in relation to265

the wrong proportions (predictions fulfilled), the Heidke score—badly—and RIOC—properly—in relation to both proportions
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(occurrences and predictions), the accuracy score doesn’t evaluate the performance in relation to either of these proportions,

and just as the latter three scores, it fails to meet the second adequacy constraint.

3.3 Third adequacy constraint: Weighting errors

We think there is a third feature of skill that is specific to rare and extreme forecasting that a proper skill measure has to account270

for. Broadly speaking, it consists in being sensitive, in the right kind of way, to one’s own fallibility. While the omniscient

forecaster need not worry about mistakes, actual forecasters need to be aware of the different kinds of consequences of an

imperfect forecast. To motivate our third constraint, consider the two forecasts in Table 6. While forecasts A and B issue the

Forecast A

Observed

+ −

Predicted
+ 5 5

− 1 500

Forecast B

Observed

+ −

+ 5 1

− 5 500
Table 6. Example of two forecasts (A, B) that agree on the correct predictions and the total number of false predictions, but differ in the kinds

of false predictions (Type I vs Type II).

same total number of forecasts and both score an excellent 98.8% on a proportion correct measure, they disagree on the kinds

of errors they make. Forecast A makes fewer Type II errors (1) than Type I errors (5), while in forecast B this error distribution275

is reversed. However, is there a reason to think that one forecast is more skillful than the other?

Given the context of our discussion, i.e. rare and severe event forecasting, we believe there is. We saw Allan Murphy saying

that “it is widely perceived that type 2 errors [erroneous predictions of non-occurrence] are more serious than type 1 errors

[unfulfilled predictions of occurrence]”. A skillful forecaster of rare and severe events should take this observation into account

and consider, as it were, the effects of their mistakes. As a result a skill measure should incorporate—in a principled way—the280

different effects of Type I and Type II errors and judge forecast A as more skillful than forecast B, at least when the forecast is

evaluated in the context of rare and severe event forecasting.

Importantly, the Peirce Skill Score does just that. We can re-write it as

1− c

a + c
− b

b + d
,

and read it as making a deduction from 1, the score for a perfect omniscient performance, for each Type II and each Type I285

error, respectively. Now, when we are concerned with rare events, i.e., when a + c� b + d, the “deduction per unit” is greater

for Type II errors than for Type I errors. As a result, it is built into the Peirce Skill Score, in a principled way, that Type II

errors count for more than Type I errors when we are dealing with rare events. This is borne out in the Peirce Skill Score for
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our two forecasts above: forecast A receives a score of .823 while forecast B receives a score of .498. Note that this feature of

the Peirce score would turn into a liability if we were to consider very common but nevertheless severe events.290

Now, when d is large, as it often is in the case of rare events forecasts, it is likely to be the case that a + b� c + d. When

this is the case the Clayton Skill Score, which we may write as

1− b

a + b
− c

c + d
,

turns the good behaviour of the Peirce Skill Score on its head, giving a greater “deduction per unit” for Type I errors than

for Type II errors. According to the Clayton Skill Score, we should regard forecast B (.823) as more skillful than forecast A295

(.498). So, not only does the Clayton Skill Score fail to meet the direction of fit requirement, it also fails—in quite a spectacular

way—our third requirement of weighting errors. Disregarding, if one can, its failure with respect to direction of fit, the Clayton

Skill Score might be an appropriate score for common and severe events. In this case c+d� a+ b and the above reasoning is

turned the right way up.

Formally, the Heidke Skill Score treats Type I and Type II errors equally in that interchanging b and c, i.e., Type I and Type300

II errors, in

2(ad− bc)
(a + b)(b + d) + (a + c)(c + d)

leaves the measure unchanged. To wit, according to the Heidke Skill Score, forecasts A and B are equally skillful with a

measure of .619.

In fact all measures known to us in the forecasting literature other than the Peirce Skill Score and the Clayton Skill Score305

behave like the Heidke Skill Score on this issue: interchanging b and c leaves the measure unchanged and Type I and Type

II errors are on a par (see Appendix D for a list of other skill scores for each of which this claim can easily be confirmed.

Nonetheless, we can say in favour of the Heidke score that it provides the right incentive: in an application in which b+d > a+c,

as it is in the case of rare event forecasting, an increase in Type II errors would lower the actually attained score by more than

the same number of Type I errors and a decrease in Type II errors would increase the actually attained score by more than the310

same number fewer Type I errors (see Appendix B for the formal details).

To summarise, we argued that a proper skill score for RSE forecasting should penalize Type II errors more than Type I

errors. Amongst measures in the forecasting literature, only the Peirce Skill Score can truly capture this aspect of skill in

RSE forecasting. The Heidke score fails to weigh errors differentially in a static comparison between two forecasts as in our

example above. As we observed, however, both Forecaster A and Forecaster B would be incentivized to reduce Type II errors315

in preference to Type I errors, which is good news for the Heidke score. The Clayton “Skill” Score proved to not merely fail

to meet the requirement but actually to turn it on its head, ascribing more skill to Forecast B over Forecast A—clearly an

undesirable result!

By way of summary, consider Table 7 which collates our main claims made so far and consider the status of each adequacy320

constraint. The first constraint was motivated by the early insight by Gilbert in his response to Finley’s predictions and makes
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Better than chance Direction of Fit Weighting errors

Accuracy Score No no preferred direction no weights

Heidke Skill Score Yes incoherent no weights

RIOC Yes no preferred direction no weights

Peirce Skill Score Yes correct direction correct weights

Clayton Skill Score Yes wrong direction wrong weights
Table 7. Summary comparison of skill measures in relation to the three adequacy constraints for rare and severe event forecasting.

a strong case that the skill involved in a sequence of predictions can only be captured by a measure which takes account of

chance. It thus identifies skill as that aspect that renders a forecasts better than a random one. While this requirement applies

to any form of forecasting including rare and severe events it renders more simplistic measures such as the proportion correct

one as inappropriate.325

The second constraint focuses on the direction of fit and requires of a skill measure that it measure the correct aspect

of a skillful forecasting performance, i.e. it has to focus on the occurrences of successful predictions and not of successful

fulfillments. Given its generality, it is also a requirement that applies to all forms of forecasting including rare and severe event

forecasting. Interestingly, some of the most widely used skill measures do not meet this constraint.

Lastly, our third constraint is of a different kind. It is directly motivated by the specific challenge of rare and severe event330

forecasting which, we argued, requires to weigh differently the different types of errors. Overforecasting rare and severe events

is to be expected and should be penalised less when it comes to assessing the skill of an RSE forecaster, than underforecasting

(all else equal). While the Peirce measure is the only one that directly meets the constraint, we are open to the idea of accounting

for this adequacy constraint by introducing additional weights on the different errors. So, e.g. one may be able to use the Heidke

Score, and add appropriate weights on b and/or c to reflect the seriousness in these errors so to get the right result in a static335

comparison in our toy example of Figure 6. We leave it to the proponent of the Heidke Score (or any other score) to develop

these details further.

Finally, should we consider these constraints as jointly sufficient? Of course, further debate may generate other constraints

on a proper skill measure, and we are open to such a development at this stage of the discussion. However, we take ourselves

to have shown that there really is only one skill measure that meets the three constraints and so there is only one true candidate340

for a measure of skill in rare and severe event forecasting.

4 Application: the relevance of skill scores in avalanche forecast-verification

In this section, we will show how our theoretical discussion about proper skill measures has consequences for the practice

of avalanche forecast-verification. We focus on the use of the “nearest neighbour” (NN) method of avalanche forecasting as

discussed in Heierli et al. (2004). The idea of NN forecasting for avalanches dates back to the 1980’s (Buser, 1983; Buser345
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et.al., 1987; Buser, 1989) and has been widely used for avalanche forecasting in Canada, Switzerland, Scotland, India, and

the US (e.g. Brabec and Meister, 2001; Gassner et.al., 2001; Gassner and Brabec, 2002; Purves et.al., 2003; Heierli et al.,

2004; Roeger et.al, 2004; Singh and Ganju, 2004; Singh et.al., 2005; Purves and Heierli, 2006; Singh et.al., 2015). In order to

evaluate the quality of this forecasting techniques, forecast-verification is an indispensable tool. However, there is currently no

consensus in the literature about which measure to use in the verification process for NN forecasts. Most studies simply present350

a list of different measures without providing principled reasons as to which measure is the most relevant one (an exception

is Singh et.al. (2015) who opt for the Heidke score). This section offers a discussion as to how the many different measures

should be used and ranked in their relevance for avalanche forecast-verification in the context of NN forecasting. It’s worth

noting, however, that broadly similar considerations will be applicable to the verification used in other avalanche forecasting

techniques, or indeed to other kinds of binary RSE forecasts and their verification.355

The basic assumption of the NN forecasting approach is that similar initial conditions with respect to external conditions,

such as the snow-pack, temperature, weather, etc., will likely lead to similar outcomes and so historical data—weighted by

relevance and ordered by similarity—is used to inform forecasting. More specifically, NN forecasting is a non-parametric

pattern classification technique where data is arranged in a multi-dimensional space and a distance measure (usually the Brier

score) is used to identify the most similar neighbours. NN forecasting can be used for categorical or probabilistic forecasts. In360

the case of the former, which is relevant to our current discussion, a decision boundary k is set and an avalanche is forecast,

i.e. a positive prediction is issued, when the number of positive neighbours (i.e. nearest neighbours on which an avalanche was

recorded) is greater than or equal to that decision boundary k.

Heierli et al.’s study on avalanche forecast-verification uses two data sets, one focused on Switzerland and the other on

Scotland. Figure 1 summarises their results and shows how changes in the decision boundary k affect a variety of measures,365

such as accuracy and other skill measures. In what follows, we will investigate their finding through a more “methodological”

lens. Using an actual study will help us explain differences in behaviour of the skill measures given variations in the decision

boundary, and highlight how our discussion has practical consequences. One core issue for NN forecasting is which decision-

boundary k should be chosen, i.e. for which k do we get the “best” forecast. Naturally, this choice should depend, crucially,

on how we assess the goodness of the different forecasts given variations in k. Our proposal is that the choice of k should be370

settled by establishing which value of k issues in the most skillful forecast.

Let’s start our discussion by noting two immediate consequences of NN avalanche forecasting. Remember that a positive

prediction is issued when the number of positive neighbours is equal or greater than k. From this follows that:

(i) the number of positive predictions (a + b) is greater the lower k.

(ii) the number of correct predictions made, a, is greater, the lower k.375

Given that a + c and b + d are fixed, and given (i) and (ii), we can also note that
a

a + c
, i.e. the probability of detection (POD)

varies inversely with k, as is evident in the graphs in Heierli et al.’s Figure 1. With these observations in place, let’s look at

how the measures we discussed earlier, fare with respect to variations in k.
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Figure 1. Dependence of accuracy and skill measures on the choice of decision boundary (number of positive neighbours of the forecast

day). (a) Swiss dataset; (b) Scottish dataset. From (Heierli et al., 2004) and reprinted from the Annals of Glaciology with permission of the

International Glaciological Society and the lead author.

4.1 Accuracy measure: its shortcomings exemplified

Our earlier discussion about the disadvantages of using accuracy as a measure of skill are nicely borne out in Heierli et al.’s380

study, which renders the measure unsuitable as the main criterion when deciding on the decision-boundary k.

Accuracy or proportion correct,
a + d

a + b + c + d
is what Heierli et al. call the hit rate, HR in Figure 1. From Heierli et al.

(2004)’s graphs, we see that it increases as k increases in both datasets but also tends to level off: at 90% and over for k ≥ 4 in

the Swiss dataset, at about 80% for k ≥ 5 in the Scottish dataset.

Given (ii), we know that a decreases as k increases, so this improvement in accuracy is entirely due to an increase in the385

number of correct negative predictions d achieved at the expense of a drop in the number of correct positive predictions. Of

course that drop in the number of correct positive predictions goes hand-in-hand with a proportionally greater drop in the

number of mistaken positive predictions (Type I errors). But that is accompanied by an increase in Type II errors, mistaken

negative predictions, i.e avalanches that were not predicted.

In short, as k increases more Type II errors are committed than Type I errors. However this “trading off” of errors is, as390

we discussed in section 3.3, a seriously bad trade in the context of RSE forecasting. Now, maybe to some extent the absolute

numbers should matter here, but generally in the context of RSE forecasting, we do want to minimise Type II errors and have

Type II errors weigh more than Type I errors. As we showed earlier, the accuracy measure fails to do that.

Moreover, and as to be anticipated given our discussion in section 2.2, if really all we want to achieve is to improve accuracy

then we have also to consider the “ignoramus in avalanche studies” who uniformly makes negative predictions, i.e., uniformly395

forecasts non-occurrence. They have an accuracy score of
b + d

a + b + c + d
. This is exceeded by the accuracy score of the skilled

employer of the nearest-neighbour method only when a > b, i.e., just when the success rate (SR)
a

a + b
> 0.5. But as we can

see, in the Swiss dataset SR never gets above 0.3 and in the Scottish dataset it rises to about 0.5 and more or less plateaus.
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Hence, if all that mattered was accuracy—Heierli et al.’s hit rate—then the lessons from this study for forecasting in Switzerland

is to set the decision-boundary k to∞, making it impossible to issue any positive predictions and in doing so increase accuracy.400

Hence accuracy really isn’t a good measure to assess a professional avalanche forecaster’s performance. We hope they agree

not merely due to concerns about job security.

To be clear, these considerations do not imply that there’s no role for accuracy. Accuracy is not an end in itself, that much

we take as established. Nevertheless, we think accuracy may well play a secondary role in “forecast-choice”: if two sets of

predictions are graded equally with respect to genuine skill, we should prefer or rate more highly the one which has the greater405

accuracy. After all, it is making a greater proportion of correct predictions. So a view we are inclined to adopt is one where all

things considered, accuracy can be a tie-breaker between sets of predictions that exhibit the same degree of skill according to the

Peirce skill measure. Technically, our view amounts to a lexicographic all-things-considered ordering for forecast-verification:

first rank by skill using the Peirce score, next rank performances that match in skill by accuracy. Let’s next have a look at the

behaviour of our favourite skill score.410

4.2 The Peirce Skill Score and NN avalanche forecasting

The Peirce Skill Sscore is called the Kuipers Skill Score, KSS, by Heierli et al.. Notice that it initially increases as k increases

but then falls away, quite dramatically so, as k increases. The fall-off starts when k exceeds 2 and is immediately dramatic

in Heierli et al.’s Swiss dataset; it starts when k exceeds 3 and is initially quite gentle in their Scottish dataset. Given our

previous discussion, we think that the most skilled forecasts are issued when the decision-boundary is set at 2 (Switzerland)415

and 3 (Scotland).

Let’s investigate a little further the behaviour of KSS. As said, a + c and b + d are fixed, hence the base rate BR is fixed.

As k increases, a and b both decrease (or, strictly speaking, at least fail to increase but in practice decrease). Obviously, as a

decreases,
a

a + c
decreases; but as b decreases,− b

b + d
increases.

b

b + d
is sometimes called the false alarm rate and sometimes

the probability of false detection, i.e. PFD. Now, why does KSS so dramatically decrease? The answer should be clear given420

our discussion of how Type I and II errors are weighted: as k increases, a and b both decrease and c and d both increase. Given

that a + c and b + d are fixed the number of Type II errors increases when k increases. As discussed in section 3.3, the KSS

score penalises Type II errors more heavily than Type I errors when a + c� b + d. Hence a decrease in the latter is unable to

outweigh the increase in the former. In addition, given that the KSS measure penalises Type II errors more heavily the rarer

the to-be-forecasted event, the lower base rate in the Swiss data set—7% compared to 20% in the Scottish data set—explains425

the more dramatic fall in the KSS value in the Swiss data set compared to the Scottish one.

4.3 The Heidke Skill Score and NN forecasting

We previously noted our reservations about the Heidke Score; it is, however, an often used skill score in forecast-verification

(compare Singh et.al. (2015) who uses it in their evaluation of nearest neighbor models for operational avalanche forecasts in

India). Interestingly, the Heidke score arrives at a different choice of k for the two data sets, yet the behaviour of the Heidke430
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Skill Score, HSS (Heidke, 1926; Doolittle, 1888),

2(ad− bc)
(a + b)(b + d) + (a + c)(c + d)

,

is broadly similar to that of KSS in that it initially rises and then falls off. For the Swiss data set, HSS provides the highest skill

rating for a decision boundary k = 3 and for the Scottish data k = 5. So, it really does matter which skill measure we choose

when making NN forecast evaluations with important practical consequences. Why do we get such different assessments of435

the forecast performances?

In both graphs, KSS > HSS for low values of k but not for larger values of k. This is intriguing. When the forecasting

performance is better than chance, i.e., when ad > bc in Table 2, and occurrence of the positive event is rarer than its non-

occurrence, a+ c < b+d, KSS exceeds HSS if, and only if, Type I errors, mistaken predictions of occurrence of the positive

event, exceed Type II errors, failure to predict occurrence of the positive event (= mistaken predictions of its non-occurrence)—440

see Appendix C. In other words, in the stated circumstances, KSS exceeds HSS if, and only if, b > c, hence a+b > a+c and

there is “over-forecasting” which, as noted earlier, is penalised less heavily in the case of KSS than “under-forecasting”. Now,

we quoted Murphy earlier noting that given the seriousness of Type II errors overforecasting is, as it were, a general feature of

RSE forecasting. However, Murphy goes on to say,

The amount of overforecasting associated with forecasts of some RSEs is quite substantial, and efforts to reduce445

this overforecasting—as well as attempts to prescribe an appropriate or acceptable amount of overforecasting—

have received considerable attention. (Murphy, 1991, p. 304)

Now, how “bad” too much overforecasting is and when it is too much is a separate issue that depends on the kind of event that is

to be forecast and may also depend on the behavioural effects overforecasting has on individual decision and the public’s trust

in forecasting agencies. But this much is clear: we have to acknowledge that KSS encourages more overforecasting when450

compared to HSS. Naturally, this phenomenon just is the other side of the coin to penalising Type II errors more heavily,

which we argued previously is a feature and not a defect of KSS. This is also something we identify in the graphs: with larger

values of k HSS starts to exceed KSS, as Type II errors begin to exceed Type I errors.

4.4 The (ir)relevance of the Success Rate for NN forecasting

Heierli et al. also provide what they call the success rate, SR,
a

a + b
in Table 2, which is also known as the positive predictive455

value. What, however, is its relevance for RSE forecasting and should it have any influence on our choice of k?

Let’s first look at its behaviour. In the case of the Scottish dataset, SR more or less plateaus from k = 5 onwards. As a,

hence the POD, is decreasing, b must be decreasing too and “in step”. In the Swiss dataset, something else is going on. After

k = 4, SR falls dramatically, indicating that while the number of verified positive predictions drop, the number of mistaken

positive predictions does not drop in step. Moreover, in neither dataset does SR tend to 1 as k increases, meaning that a460

sizeable proportion of positive predictions are mistaken even when a comparatively high decision boundary is employed. In

the Scottish case, SR plateaus at 0.5, meaning that while the number of positive predictions decreases as k increases, the
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proportion of such predictions that are mistaken falls to 50% and stays there. In the Swiss case, after improving up to k = 5,

the SR drops dramatically, meaning that while the number of positive predictions has decreased between k = 5 and k = 6, the

proportion of predictions that are mistaken has increased. Notice too that in the Swiss case, the SR never gets above 0.3, so a465

full 70% of positive predictions are mistaken, no matter the value of k—at least two out of three predictions of avalanches are

mistaken.

So in both data sets SR might seem initially quite low. But as we know, forecasting rare events is difficult, and we should

not be too surprised that the success rate of predicting rare events is less than 50%. In fact, given that rare event forecasting

involves, by definition, low base rates of occurrence, and given our limited abilities in forecasting natural disasters such as470

avalanches, we should expect a low success rate (see also Ebert (2019); Techel et.al. (2020)). But there are stronger reasons not

to consider SR when assessing the “goodness” of an RSE forecast. SR fails all three adequacy constraints: it does not correct

for chance, it has the wrong direction of fit since it is a ratio with denominator a + b, and it in effect only takes into account

Type I errors. Given this comprehensive failure to meet our criteria of adequacy, we think that, in contrast to accuracy, SR is

not even a suitable candidate to break a tie between two equally skillful forecasts.475

So, then what are the main lessons from this practical interlude? Simply put: having the appropriate skill measure really does

matter and has consequences for high-stakes practical decisions. Forecasters have to make an informed choice in the context of

NN forecasting about which decision boundary to adopt. That choice has to be informed by an assessment of which decision

boundary issues in the best forecast. Our discussion highlighted that the best forecast cannot simply be the most accurate one,

rather it has to be the most skillful one. The Peirce skill measure (KSS) is, as we argued earlier, the only commonly used480

measure that captures the skill involved in rare and severe event forecasting. Finally, if different k’s are scored equally on the

Peirce score, then we think that accuracy considerations should be used to break the tie: amongst the most skillful we may well

use the most accurate forecast.

5 Conceptual challenges for RSE forecasting: the scope problem.

In this last section, we discuss a conceptual challenge for the viability of RSE forecasting (for a general overview of the other485

conceptual, physical, and human challenges in avalanche forecasting specifically, see (McClung, 2002, a)). Once again, we can

draw on insights from the early pioneers of RSE forecast-verification to guide our discussion. In his annual report for 1887, the

Chief Signal Officer, Brigadier General Adolphus Greely, noted a practical difficulty facing the forecasting of tornadoes; more

specifically:

So almost infinitesimal is the area covered by a line of tornado in comparison with the area of the state in which490

it occurs, that even could the Indications Officer say with absolute certainty that a tornado would occur in any

particular state or even county, it is believed that the harm done by such a prediction would eventually be greater

than that which results from the tornado itself. (Greely, 1887, pp. 21-2)

Now, there are two issues to be distinguished. First, there is the behavioural issue of how the public reacts to forecasts of

tornadoes or other rare and severe events. In particular, there is a potential for overreaction which, in turn, led for many years495
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in the United States to the word ‘tornado’ not being used when issuing forecasts (cf. Abbe, 1899; Bradford, 1999)! This policy

option, to decide not to forecast rare events, is quite radical and no longer reflects current practice.

The other issue is the “almost infinitesimal” track of a tornado compared to the area for which warning of a tornado is given.

A broadly similar issue faces avalanche forecasting: currently such forecasts are given for a wide region of at least 100km2,

yet avalanches usually occur on fairly localised slopes of which there are many in each region. And, while avalanches are500

different to many other natural disasters in that they are usually triggered by humans (Schweizer and Lütschg (2001) suggest

that roughly 9 out of 10 avalanche fatalities involve a human trigger), RSE forecasts quite generally face what we call the scope

challenge: The greater the area covered by the binary RSE forecast the less informative it is. Conversely, the smaller the size

of the forecast region, the rarer the associated event and the more over-forecasting we can expect.

This type of trade-off applies equally to probabilistic and binary categorical forecasts. One consequence of the scope chal-505

lenge, alluded to in the above quote, is that once the region is sufficiently large, forecasters may rightly be highly confident that

one such event will occur. This means that on a large-scale level, we are not—technically speaking—dealing with rare event

forecasts anymore, while on a more local level, the risk of such an event is still very low.

Now, in a recent discussion, Statham et.al. (2018) in effect appeal to a version of the scope problem—with an added twist

of how to interpret verbal probabilities given variations in scope—as one reason why probabilistic (or indeed binary) forecasts510

are rarely used in avalanche forecasting. They write:

The probability of an avalanche on a single slope of 0.01 could be considered likely, while the probability of an

avalanche across an entire region of 0.1 could be considered unlikely. This dichotomy, combined with a lack of

valid data and the impracticality of calculating probabilities during real-time operations, is the main reasons fore-

casters do not usually work with probabilities, but instead rely on inference and judgment to estimate likelihood.515

Numeric probabilities can be assigned when the spatial and temporal scales are fixed and the data are available,

but given the time constraints and variable scales of avalanche forecasting, probability values are not commonly

used. (Statham et.al., 2018, p. 682)

It might well be these kinds of problems that led in 1993 to the introduction of the European Avalanche Danger scale which

involves a multi-categorical five point danger rating: low, moderate, considerable, high, very high. The danger scale itself is a520

function of snow-pack stability, its spatial distribution, and potential avalanche size and it applies to a region of at least 100

km2. The danger scale, at least on the face of it, focuses more on the conditions (snow pack and spatial variation) that render

avalanches more or less likely than on issuing specific probabilistic forecasts or predicting actual occurrences.

Given this development, verification of avalanche forecast has become more challenging. What makes it even more difficult

is that each individual danger level involves varied and complex descriptors that are commonly used to communicate and525

interpret the danger levels. For example, the danger level high is defined as:

Triggering is likely, even from low additional loads [i.e. a single skier, in contrast to high additional load, i.e. group

of skiers], on many steep slopes. In some cases, numerous large and often very large natural avalanches can be

expected. (EAWS, 2018)
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The descriptor involves verbal probability terms—such as likely—that are left undefined, it contains conditional probabilities530

with nested modal claims [given a low load trigger, it’s likely there will be an avalanche on many slopes]. And finally, it involves

a hedged expectation statement of natural avalanches (i.e. those that are not human triggered) and their predicted size—in some

cases, numerous large or very large natural avalanches can be expected. Noteworthy here is that while the forecasts are intended

for large forecast areas only, the actual descriptors aim to make the regional rating relevant to local decisions. The side effect

of making regional forecasts more locally relevant is that it makes verifying them a hugely complex, if not impossible, task.535

Naturally, the verification of avalanche forecasts using the five point danger scale is an important and thriving research field

and numerous inventive ways to verify multi-categorical avalanche forecasts have since been proposed (Föhn and Schweizer,

1995; Cagnati et.al., 1998; McClung, 2000; Schweizer et.al., 2003; Jamieson et al., 2008; Sharp , 2014; Techel and Schweizer,

2017; Techel et.al., 2018; Statham et.al., 2018; Schweizer et.al., 2020; Techel et.al., 2020; Techel, 2020). Here, we have to

leave a more detailed discussion of which measure to use for multi-categorical forecasts for another occasion. Nonetheless, the540

now widespread use of multi-categorical forecasts may instead raise the question whether, and if so how, our the assessment of

the proper skill scores for binary RSE forecast-verification is of more than just historical interest.

There are numerous reasons why we think our discussion is still important with potentially significant practical implications.

First, while regional forecasts are usually multi-categorical, there are many avalanche forecasting services that, in effect, have

to provide localised binary RSE forecasts. Consider, for example, avalanche forecasting to protect large scale infrastructure545

such as the Trans Canada Highway along Rogers Pass where over a 40km stretch more than 130 avalanche paths threaten the

highway. Ultimately, a binary decision has to be made whether to open or to close the pass and a wrong decision has huge

economic impact in the case of both Type I and Type II errors; in the case of Type II errors there is in addition potential loss

of life. Similarly so on a smaller scale: while regional multi-categorical forecasts usually inform and influence local decision-

making, ultimately operational decisions in ski resorts or other ski operations are binary decisions—whether to open or to close550

a slope—that are structurally similar to binary RSE forecasts. These kinds of binary forecasting decisions will benefit from

using forecast-verification methods that adopt the proper skill measure.

Second, our discussion is relevant to the assessment of different localised slope specific stability tests widely used by pro-

fessional forecasters, mountain guides, operational avalanche risk managers, and recreational skiers, mountaineers, and snow-

mobilers. A recent large scale study by Techel et.al. (2020) compared two different slope specific stability tests—the Extended555

Column Test and the so-called Rutschblock Test—and assessed their accuracy and success rate. Our discussion suggests that

when assessing the “goodness” of what are in effect local diagnostic stability tests, or indeed when assessing the performance

of individuals who use such tests, we should treat them as binary rare and severe event forecasts. Using the correct skill score

will be crucial to settle which type of stability test is the better test from a forecasting perspective.

Lastly, there are, as we noted above, numerous research projects to design manageable forecast-verification procedures560

for multi-categorical regional forecast. Assuming that the methodological and conceptual challenges we raised earlier can be

overcome, we still require the right kind of measures to assess the “goodness” of multi-categorical forecasts. The Heidke,

Peirce, and the other measures we discussed can be adapted for these kinds of forecasts. Moreover, given that the danger

rating of high and very high are rarely used, and involve high stakes with often major economic consequences, our discussion
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may once again help to inform future discussions about how best to verify regional multi-categorical forecast. However, an565

in-depth discussion of multi-categorical skill measures for regional avalanche forecasts has to wait for another occasion as it

will crucially depend on the details of the verification procedure.

6 Conclusions

In his classic 1993 article “What is a good forecast?” Murphy distinguished three types of goodness in relation to weather

forecasts generally; all three apply to evaluations of RSE forecasts.570

Type 1 goodness: consistency a good fit between the forecast and the forecasters best judgement given their evidence.

Type 2 goodness: quality a good fit between forecast and the matching observations.

Type 3 goodness: value the relative benefits for end-user’s decision-making.

Our discussion has focused exclusively on what Murphy labelled the issue of quality and how to identify a good fit between

binary forecasts and observations, though the quality of a forecast has—obviously—knock-on effects on the value of a forecast575

(Murphy, 1993, p. 289). Historically, a number of different measures have been used to assess the quality—the goodness of

fit—of individual RSE forecasts and to justify comparative judgements about different RSE forecasts (such as in the case of

NN-forecasting), however, there has not been any consensus about which measure is the most relevant in the context of binary

RSE forecasts. In this article, we motivated three adequacy constraints that any measure has to meet to properly be used in

an assessment of the quality of a binary RSE forecast. We offered a comprehensive survey of the most widely used measures580

and argued that there is really only one skill measure that meets all three constraints. Our main conclusion is that goodness

(i.e. quality) of a binary RSE forecast should be assessed using the Peirce skill measure, possibly augmented with consideration

of accuracy. Moreover, we argued that the same considerations apply to the assessment of slope specific stability tests and other

forecasting tools used in avalanche management. Finally, our discussion raises important theoretical questions for the thriving

research project of verifying regional multi-categorical avalanche forecasts that we plan to tackle in future work.585

Appendix A: Numbers of predictions correct and incorrect “by chance”

We model the actual presences and absences (e.g., occurrence and non-occurrence of avalanches) as constituting the sequence

of outcomes produced by n = a + b + c + d independent, identically-distributed random variables X1, X2 . . . , Xn; each Xi

takes two possible values, 1 (= presence) and 0 (= absence); each random variable takes value 1 with (unknown) probability p.

The probability of producing the actual sequence of a + c presences and b + d absences is590

pa+c(1− p)b+d.

The value of p which maximises this is
a + c

a + b + c + d
. We take this as the probability of presence on any forecasting occasion.

Call it p̂. p̂ is the maximum likelihood estimate of the (unknown) probability of presence.
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Putting the “random” into random prognostication, Step 1 We assume the actual forecasting performance to be produced

by n = a+ b+ c+d independent, identically-distributed random variables Y1, Y2 . . . , Yn; each Yi takes two possible values, 1595

(= prediction of presence) and 0 (= prediction of absence); each random variable takes value 1 with (unknown) probability q.

The probability of the actual sequence of a + b predictions of presence and c + d predictions of absence is

qa+b(1− q)c+d.

q̂, the maximum likelihood estimate of the unknown value q, is
a + b

a + b + c + d
. We take this as the probability of prediction of

presence on any forecasting occasion.600

Putting the “random” into random prognostication, Step 2 The probability of successful prediction of presence on the ith

trial is prob(Xi = 1 and Yi = 1). We suppose that Xi and Yj are independent, 1≤ i, j ≤ a + b + c + d. In particular, then, the

probability of successful prediction of presence on the ith trial is p̂q̂.

Let n = a + b + c + d. Let Zi = 1 if Xi = 1 and Yi = 1, Zi = 0 otherwise. The expected value of Z1 + Z2 + . . . + Zn is

n∑

i=0

i
n!

i!(n− i)!
(p̂q̂)i(1− p̂q̂)n−i.605

This is

np̂q̂, i.e.,
(a + c)(a + b)
a + b + c + d

.

This is ar, the “number” of successful predictions of presence we attribute to chance. (We put ‘number’ in scare quotes because
(a + c)(a + b)
a + b + c + d

need not take a whole number value. It’s a familiar fact that an expected value need not be a realisable value:

the expected value of the number of spots showing on the uppermost face when a fair die is rolled is 3.5 but no (undamaged)610

face has three and a half spots on it.)

In similar fashion, we obtain br, cr and dr.

Appendix B: The effect of increases and decreases in errors on the Heidke Skill Score

Keeping the marginal totals a+ c and b+d fixed, let us consider the score with an additional k Type I errors and again with an

additional k Type II errors, 0 < k ≤min{a,d} (Table B1). We have, by hypothesis, that 0 < a + c < b + d.615

With an additional k Type I errors, the Doolittle–Heidke Skill Score is:
2(a(d− k)− (b + k)c)

(a + b + k)(b + d) + (a + c)(c + d− k)

=
2(ad− bc)− 2(a + c)k

(a + b)(b + d) + (a + c)(c + d) + k[(b + d)− (a + c)]
.

With an additional k Type II errors, the Doolittle–Heidke Skill Score is:
2((a− k)d− b(c + k))

(a + b− k)(b + d) + (a + c)(c + d + k)
620

=
2(ad− bc)− 2(b + d)k

(a + b)(b + d) + (a + c)(c + d)− k[(b + d)− (a + c)]
.

For k in the range 0 to min{a,d}, the denominators are positive.
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Observed

+ - totals

Predicted
+ a b + k a + b + k

- c d - k c + d - k

totals a + c b + d a+b+c+d

Observed

+ - totals

a - k b a + b - k

c + k d c + d + k

a + c b + d a+b+c+d

Table B1. An increase of k Type I errors (left) and k Type II errors (right)

Let x = ad− bc, y1 = a + c, y2 = b + d, z = (a + b)(b + d) + (a + c)(c + d) and w = (b + d)− (a + c). The score for an

additional k Type II errors is no less than the score for an additional k Type I errors, if and only if,

2x− 2ky1

z + kw
≤ 2x− 2ky2

z− kw
iff (x− ky1)(z− kw)≤ (x− ky2)(z + kw)625

iff k2w(y1 + y2)≤ 2xkw− kz(y2− y1)

iff k(y1 + y2)≤ 2x− z as y2− y1 = w > 0 and k > 0

iff k(a + b + c + d)≤ 2(ad− bc)− [(a + b)(b + d) + (a + c)(c + d)]

=−(b + c)(a + b + c + d)≤ 0,

which is impossible.630

Let us consider next the score after a reduction of k Type I errors and after a reduction k Type II errors, 0 < k ≤min{b,c}
(Table B2).

Observed

+ - totals

Predicted
+ a b - k a + b - k

- c d + k c + d + k

totals a + c b + d a+b+c+d

Observed

+ - totals

a + k b a + b + k

c - k d c + d - k

a + c b + d a+b+c+d

Table B2. A decrease of k Type I errors (left) and k Type II errors (right)

By hypothesis, we have that 0 < a + c < b + d.
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With a reduction of k Type I errors, the Doolittle–Heidke Skill Score is:
2(a(d + k)− (b− k)c)

(a + b− k)(b + d) + (a + c)(c + d + k)
635

=
2(ad− bc) + 2(a + c)k

(a + b)(b + d) + (a + c)(c + d)− k[(b + d)− (a + c)]
.

With a reduction of k Type II errors, the Doolittle–Heidke Skill Score is:
2((a + k)d− b(c− k))

(a + b + k)(b + d) + (a + c)(c + d− k)

=
2(ad− bc) + 2(b + d)k

(a + b)(b + d) + (a + c)(c + d) + k[(b + d)− (a + c)]
.

For k in the range 0 to min{b,c}, the denominators are positive.640

In the notation introduced above, the score for a reduction of k Type II errors is no greater than the score for a reduction of

k Type I errors, if and only if,

2x + 2ky1

z− kw
≥ 2x + 2ky2

z + kw
iff (x + ky1)(z + kw)≥ (x + ky2)(z− kw)

iff k2w(y1 + y2) + 2xkw ≥ kz(y2− y1)

iff k(y1 + y2)≥ z− 2x as y2− y1 = w ≥ 0 and k ≥ 0645

iff k(a + b + c + d)≥ 2(ad− bc)− [(a + b)(b + d) + (a + c)(c + d)]

= (b + c)(a + b + c + d)

iff k ≥ b + c,

which is impossible, since 0≤ k ≤min{b,c}.
It’s clear that these results reverse when the forecasted events are common, i.e., when a + c > b + d.650

Appendix C: KSS and HSS

We assume that ad > bc and that b + d > a + c > 0. Then

a

a + c
− b

b + d
= KSS T HSS =

2(ad− bc)
(a + b)(b + d) + (a + c)(c + d)

iff
ad− bc

(a + c)(b + d)
T 2(ad− bc)

(a + b)(b + d) + (a + c)(c + d)

iff (a + b)(b + d) + (a + c)(c + d) T 2(a + c)(b + d) as ad > bc655

iff (b + d)[(a + b)− (a + c)] T (a + c)[(b + d)− (c + d)]

iff (b− c)[(b + d)− (a + c)] T 0

iff b T c as b + d > a + c.
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Appendix D: Skill scores in the literature

All scores are to be understood relative to Table 2. The root mean square contingency is the geometric mean of Clayton and660

Peirce Skill Scores. Its square is the measure proposed by Doolittle that attracted Farquhar’s censure as discussed in section

3.2. See also Wilks (2011) for a general overview of skill scores for binary forecast verification. Note that we disagree with

some aspects of his assessment.

name definition

accuracy
a + d

a + b + c + d

Threat Score/Critical Success Index
a

a + b + c

Dice co-efficient (Jolliffe, 2016)
2a

2a + b + c

Equitable Threat Score
ad− bc

(ad− bc)+ (a + b + c + d)(b + c)

Clayton Skill Score
ad− bc

(a + b)(c + d)

Heidke Skill Score
2(ad− bc)

(a + b)(b + d)+ (a + c)(c + d)

Peirce Skill Score
ad− bc

(a + c)(b + d)

root mean square contingency
ad− bc√

(a + b)(a + c)(b + d)(c + d)

R(elative) I(mprovement) O(ver) C(hance)
ad− bc

(a +min{b,c})(min{b,c}+ d)

The Skill Test (Woodcock, 1976)
ad− bc

(a + b + c + d)2

Odds Ratio Skill Score (Stephenson, 2000)
ad− bc

ad + bc

Table D1. Skill scores for binary, categorical forecasting
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