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Abstract. The main purpose of this article is to emphasize the importance of clarifying the probabilistic framework adopted 

for volcanic hazard and eruption forecasting. Eruption forecasting and volcanic hazard analysis seek to quantify the deep 

uncertainties that pervade the modeling of pre-, sin- and post-eruptive processes. These uncertainties can be differentiated 

into three fundamental types: (1) the natural variability of volcanic systems, usually represented as stochastic processes with 

parameterized distributions (aleatory variability); (2) the uncertainty in our knowledge of how volcanic systems operate and 15 

evolve, often represented as subjective probabilities based on expert opinion (epistemic uncertainty); and (3) the possibility 

that our forecasts are wrong owing to behaviors of volcanic processes about which we are completely ignorant and, hence, 

cannot quantify in terms of probabilities (ontological error). Here we put forward a probabilistic framework for hazard 

analysis recently proposed by Marzocchi & Jordan (2014), which unifies the treatment of all three types of uncertainty. 

Within this framework, an eruption forecasting or a volcanic hazard model is said to be complete only if it (a) fully 20 

characterizes the epistemic uncertainties in the model’s representation of aleatory variability and (b) can be unconditionally 

tested (in principle) against observations to identify ontological errors. Unconditional testability, which is the key to model 

validation, hinges on an experimental concept that characterizes hazard events in terms of exchangeable data sequences with 

well-defined frequencies. We illustrate the application of this unified probabilistic framework by describing experimental 

concepts for the forecasting of tephra fall from Campi Flegrei. Eventually, this example may serve as a guide for the 25 

application of the same probabilistic framework to other natural hazards.   

1 Introduction  

Hazards associated with major eruptions and their consequences are highly uncertain owing to the stochastic behaviors of 

volcanic systems (aleatory variability) as well as our lack of knowledge about these behaviors (epistemic uncertainty). 

Because such complexity hampers the deterministic prediction of hazards, our goal is to describe them probabilistically 30 

(Sparks, 2003; Marzocchi and Bebbington, 2012; Poland and Anderson, 2020). Here we use the term probabilistic volcanic 
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hazard analysis (PVHA) to indicate the probabilistic forecast of any volcanological event of interest (eruption occurrence, 

ash fall loading, arrival of a pyroclastic flow, etc).   

PVHA outcome may be generally described by the exceedance probability of a positive random variable X (Martin et al., 

2004, Selva et al., 2018; Rougier and Beven, 2013; Sandri et al., 2016; Bear-Crozier et al., 2016) 35 

𝑓(𝑥) = Pr(𝑋 > 𝑥	|	𝑯),			𝑥 ∈ (0,∞)            (1) 

where H is the PVHA model used, 𝑓(𝑥) is called the hazard curve (not to be confused with the hazard function commonly 

used to describe failure rate; from a statistical point of view 𝑓(𝑥) is a survival function). 𝑋 is the (continuous or discrete) 

hazard intensity of interest in one specific time interval, for example, the tephra fall loading in one specific site, the dynamic 

pressure of a pyroclastic flow in one sector of the volcano, or the occurrence of an eruption, etc. Ideally, since we never 40 

know the true hazard curve, we may include an additional level of uncertainty considering a set of PVHA models; in this 

case, we have  {𝑓!(𝑥), 𝜋!}	(𝑖 = 1, . . . , 𝑁), where 𝜋! is the weight of the ith PVHA model Hi, 𝑓!(𝑥) ≡ 𝑓(𝑥|𝐻!) (Rougier and 

Beven 2013).  

The way in which we use the set of hazard curves 𝑓!(𝑥) to estimate PVHA and the meaning of the weights depend on the 

probabilistic framework adopted. The importance of establishing the probabilistic framework to calculate PVHA cannot be 45 

overstated, because the framework implicitly defines the type of uncertainties, the meaning of probability, and consequently 

the possibility to validate (at least in principle) the PVHA model. Indeed, the qualitative difference between the objective 

probabilities of what we can see and count and the subjective probabilities of what we think we know has been recognized 

for 300 years, separating, for example, the frequentist and Bayesian approaches to probabilistic inference (Hacking 1965). 

Despite recent attempts to unify these two approaches (e.g., Box 1980; Rubin 1984; Bayarri and Berger 2004; Berger, 2004; 50 

Gelman and Shalizi 2013), controversy remains over how aleatory variability can be separated from epistemic uncertainty 

and whether such a dichotomy is actually useful in hazard analysis. For example, in the Bayesian view adopted by many 

researchers, the only type of uncertainty is epistemic (e.g., NRC, 1997; Bedford and Cooke, 2001; Lindley, 2000; Jaynes, 

2003), whereas in the traditional frequentist framework, the only type of uncertainty is aleatory (Hacking, 1965). 

Most practitioners recognize that distinguishing between different types of uncertainties can be useful in the interpretation of 55 

hazard estimates (e.g., Abrahamson and Bommer 2005; IAEA, 2012; Rougier 2013), but the confusion surrounding the topic 

is evident in the wide variety of schemes proposed for classifying uncertainties: shallow and deep (Stein and Stein, 2013), 

intra- and inter-model, external and internal (Rougier and Beven 2013), inter- and intra-model (Selva et al., 2013), value and 

structural uncertainty (e.g., Solomon et al., 2007), quantified measure of uncertainty and confidence on the validity of a 

finding (IPCC, 2013), model parameters and initial/boundary conditions, and many others (Reilly et al. 2021). It has been 60 

unclear whether these classifications are profound categories that must be reflected in the probabilistic framework or merely 

convenient, model-based divisions (e.g., NRC, 1997; Rougier and Beven, 2013).  

The subject of this paper is to underline the importance of the probabilistic framework in PVHA and its practical 

implications. This framework must be able to (1) establish a coherent and clear hierarchy of different kinds of uncertainty 
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(aleatory variability, epistemic uncertainty, and ontological error), (2) assimilate subjective expert judgment into 65 

probabilistic models, and (3) unconditionally test complete probabilistic models against data. In the next sections, through a 

toy example and an application to the Campi Flegrei tephra-fall hazard, we describe the unified probabilistic framework 

developed by Marzocchi and Jordan (2014, 2017, 2018), which satisfies these requirements. To facilitate the reading and 

comprehension of the paper, we describe the notation and the new terminology both within the manuscript and in a glossary 

at the end of the paper.    70 

2 A tutorial example to describe a unified probabilistic framework for PVHA 

We consider the case in which 𝑓(𝑥) is the annual probability to exceed a specific tephra fall threshold 𝑥 in one site of 

specific interest around a volcano (the probability of exceedance, or PoE). The results can be generalized in a straightforward 

way to other time windows and other types of volcanic threats, as well as to eruption forecasting.  

The unified probabilistic framework is rooted in the definition of an experimental concept, which allows us to define a 75 

hierarchy of uncertainties. Here we introduce it with a tutorial example, which may be easily generalized to more complex 

cases. We collect the sequence of annual observations for a particular value of the tephra fall loading 𝑥", which we denote by 

the binary variable 𝑒!. That is, 𝑒! = 0 when there is no exceedance in the ith year  (𝑥	 < 	𝑥"), and 𝑒! = 1 when there is at least 

one exceedance (𝑥 ≥ 	𝑥"	). The experimental concept is the judgment of stochastic exchangeability of the sequence 𝑒!, i.e., 

the joint probability distributions is invariant to data ordering when conditioned on a set of explanatory variables (Draper et 80 

al. 1993). This definition of the experimental concept has implications on the assumptions made about the eruptive process. 

With the above definition, we are assuming that, at the target volcano, eruptions (or the paroxysmal explosive phases) 

usually last less than one year (the time window used to define the experimental concept) and the inter-event times between 

consecutive eruptions (or paroxysmal explosive phases) are conditionally independent and mostly larger than one year. Of 

course, if we are interested in volcanoes that behave differently, we have to define another more suitable experimental 85 

concept. This example has been chosen because it applies to volcanic systems like Campi Flegrei (the real example of the 

next section), and it presents similarities with seismic hazard to facilitate the comparison.  

A theorem by de Finetti (1974) states that a set of events that is judged to be exchangeable (i.e., the events may come or not 

from different unknown distributions) can be modeled as identical and independently distributed random variables with a 

well-defined frequency of occurrence, 𝜙>. The frequentist interpretation applied to a set of exchangeable events and the use of 90 

the Bayesian mathematical apparatus to handle uncertainties of different kind is the reason for use the term “unified” to 

characterize the probabilistic framework described in this paper.  

In our example, 𝜙> = 𝑓?(𝑥"), where 𝑓?(∙)	is the true hazard curve, and the unknown frequency 𝜙> of the exchangeable sequence 

𝑒! is the aleatory variability. The estimation of the unknown true aleatory variability is the target of PVHA, and its estimation 
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is often possible with different models, {𝜙! , 𝜋!}, where 𝜋! is the weight of the ith PVHA model 𝑓!(𝑥), and 𝜙! = 𝑓!(𝑥"). The 95 

existence of such alternative models for the aleatory uncertainty reflects the existence of a known uncertainty on the true 

frequency of the experimental concept (the aleatory variability), usually referred to as “epistemic uncertainty”. The definition 

of the weight 𝜋! has an unavoidably subjective nature. The weight of one model may be related in some ways to the hindcast 

performance of that model and/or through expert judgments. In the usual application of the Bayesian framework to hazard 

analysis, the set of models is considered complete and exhaustive, and the weight of a model is the probability to be the one 100 

that should be used (Scherbaum and Kuehn, 2011); a similar interpretation is often adopted when using the Logic Trees 

(Bommer and Scherbaum, 2008). In the unified framework the weight represents a measure of the forecasting skill of a 

model with respect to the others (see Marzocchi and Jordan, 2017, for a deep description of this important issue). Then, from 

the set {𝜙! , 𝜋!} we estimate the PoE distribution 𝑝(𝜙) (hereafter we use 𝑝(∙) and 𝑃(∙) to indicate the probability density 

function and the cumulative distribution, respectively). This procedure is non-unique, it contains a degree of subjectivity, but 105 

it is unavoidable; for example, choosing only one estimation 𝜙!, or the weighted average assumes that 𝑝(𝜙)	follows a Dirac 

distribution centered to this value. We call 𝑝(𝜙)	the "Extended Experts' Distribution (EED)", which describes the full PVHA 

(Marzocchi and Jordan, 2014). 

In contrast to the Bayesian framework, for which all models are "wrong" and model validation is pointless (Lindley, 2000), 

the unified framework allows model validation. Specifically, we can define an ontological null hypothesis, which states that 110 

the true aleatory representation of future occurrence of natural events—the data generating process—mimics a sample from 

the EED that describes the model’s epistemic uncertainty. According to the ontological null hypothesis, the true unknown 

frequency 𝜙> of the experimental concept cannot be distinguished from a realization of the EED, i.e., 𝜙>	~	𝑝(𝜙). If the data 

are inconsistent with the EED, the ontological null hypothesis can be rejected, which identifies the existence of an 

ontological error (Marzocchi and Jordan, 2014). In other words, the “known unknowns” (epistemic uncertainty) do not 115 

necessarily completely characterize the uncertainties, presumably due to effects not captured by the EED—“unknown 

unknowns” associated with ontological errors. 

In practice, collecting sufficient data for this kind of model validation is only feasible for specific sites surrounding active 

volcanoes with a high frequency of eruptions. For a specific site near a high-risk volcano with a low eruptive frequency, the 

data are usually insufficient for formal ontological testing. In probabilistic seismic hazard analysis (PSHA), the problem is 120 

overcome trading time with space, i.e., considering many sites simultaneously for one or more time windows. This approach 

requires that exceedances recorded at different sites can be considered statistically independent; although this may become 

attainable in PSHA under some specific considerations, it clearly does not hold for sites surroundings a single volcano. In 

volcanology, trading time with space is useful in validating models for global PVHA (e.g., Jenkins et al., 2015), which 

consider the eruptive activity of all volcanoes of a specific type. In this case, it is possible to select sites that are far enough 125 

to consider the observed exceedances conditionally independent one from each other, and the exchangeable sequence 𝑒! 	(𝑖 =

1, . . . , 𝑁) is given by the annual exceedances observed at different N sites. In summary, although the possibility to validate a 
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PVHA model is conceptually feasible through the unified probabilistic framework (whereas it is not in the Bayesian 

framework), it is currently often not practically feasible. In fact, the test of an ontological hypothesis (model validation) 

requires i) the definition of a proper experimental concept, ii) a complete PVHA including aleatory variability and epistemic 130 

uncertainty, and iii) enough independent data for testing. We are not aware of cases in which these three requirements are 

presently satisfied. But we argue that they could be achievable in future dedicated efforts, for example adopting procedures 

to standardize variables and group “analogue” and exchangeable volcanoes to increase the available data for testing (Tierz et 

al., 2019).     

Future applications may also take advantage from the fact that the exchangeability judgment can be generalized beyond the 135 

stationarity of the process (implicit in our example) to more complex situations. For example, we may distinguish ash fall 

exceedances in the winter and summer seasons, because ash fall loading may be markedly affected by the seasonal dominant 

winds blowing in different directions. In this case, the data-generating process provides two sequences, {𝑒!($):	𝑖 = 1, . . . . , 𝑁$}  

for the N1 winter seasons, and {𝑒!("):	𝑖 = 1, . . . . , 𝑁"}  for the N0 summer seasons. Both are judged to be Bernoulli sequences 

and they are observed to sum to k0 and k1 respectively. If the site is located downwind in the winter season, then the expected 140 

frequency of 𝜙>($) = 𝑘$/𝑁$  might be greater than that of 𝜙>(") = 𝑘"/𝑁" . As this example makes clear, it is neither the 

aleatory variability intrinsic to the model that matters in testing, nor the undisciplined randomness of the physical world, but 

rather the aleatory variability is defined by the exchangeability judgments of the experimental concept. In other words, 

aleatory variability is an observable behavior of the data-generating process conditioned by the experimental concept to have 

well-defined frequencies (Marzocchi and Jordan, 2014).  145 

3 Accounting for epistemic uncertainty and aleatory variability: the unified framework applied to the tephra fall 

PVHA at Campi Flegrei 

In this section we apply the probabilistic framework outlined in section 2 to the tephra fall PVHA at Campi Flegrei. 

Although the low eruption frequency of this volcano makes model validation unrealistic in the human time frame, the 

probabilistic framework has the advantage of providing a full description of the PVHA, accounting for all uncertainties; this 150 

may be of particular importance for decision-makers because, for example, they can immediately appreciate the level of 

uncertainty over the probabilistic assessment made by volcanologists. 

Most (if not all) of the studies available for tephra fall PVHA at Campi Flegrei are based on Event Trees (ET; see Newhall 

and Hoblitt, 2002; Marzocchi et al., 2004; 2008; 2010; Marti et al., 2008; Sobradelo and Marti, 2010). The ET is a popular 

tree graph representation of events in which individual branches at each node point to different possible events, states, or 155 

conditions through increasingly specific subsequent events (intermediate outcomes) to final outcomes; in this way, an ET 

shows all relevant possible outcomes of volcanic unrest at progressively higher degrees of detail. The probability of each 

outcome is calculated combining the conditional probability of each branch belonging to the path from the first node to the 
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final outcome through classical probability theorems. By construction, ET is meant to describe only the intrinsic variability 

of the process (aleatory variability) and not the epistemic uncertainty, hence it may produce only one single probabilistic 160 

assessment 𝑓(𝑥).  The ET has been generalized to account for uncertainties of different kind replacing the probability at each 

node with a distribution of probability (Bayesian Even Tree, BET; Marzocchi et al., 2004; 2008; 2010; Neri et al., 2008; 

Sobradelo and Marti, 2010), which aims at accounting for experts' judgment, different conceptual or physical models, data 

from analog volcanoes, as well as data from the target or analog volcanoes (Marzocchi et al., 2004; Tierz et al., 2019). 

The BET approach fits quite well the unified probabilistic framework that we advocate in this paper. If we consider an 165 

experimental concept given by an exchangeable sequence 𝑒! of annual tephra fall exceedances, the outcome of the BET code 

may be seen as an EED, i.e., the distribution of probability 𝑝(𝜙)	  mimics where the true unknown frequency of the 

exchangeable sequence may be. In the first paper that describes BET (Marzocchi et al., 2004), the use of a distribution of 

probability at each node was generically advocated to account for the aleatory variability and epistemic uncertainty, using 

the loose definition of irreducible randomness and limited knowledge of the process, respectively. This paper provides a 170 

formal probabilistic background to justify the BET feature of considering the probability at each node as a distribution 

(𝑝(𝜙)) instead of a single number; at each node of the event tree, the central value of the distribution is the best guess of the 

(unknown) long-term frequency of the experimental concept for that specific node (aleatory variability), and the dispersion 

mimics the uncertainty over this unknown frequency.    

The BET approach has been widely investigated for tephra fall PVHA at Campi Flegrei, adopting different choices, 175 

hypotheses, and models (Selva et al., 2010; 2018; Sandri et al., 2016). For instance, Selva et al (2018) show the outcomes of 

five different BET configurations (Figure 1) for one specific site inside the caldera (Figure 2), which differ in the 

implementation of the tephra fall dispersion model (aggregation and granulometry). In Figure 3 we show the PoE 

distribution 𝑝(𝜙)	of each configuration for the tephra loading threshold of 300 kg/m2. Each one of the five EED distributions 

allows for a formal testing of the ontological hypothesis. Note that in this specific case, the EEDs do not account for seasonal 180 

variabilities and are relative to the conditional PVHA (conditioned to the occurrence of an eruption). The generalization to 

an unconditional PVHA can be straightforwardly made, for example, convolving all these distributions with the distribution 

of the annual eruption probability.   

When all EEDs are significantly overlapping (as for many points inside the Campi Flegrei caldera), it means that each BET 

configuration describes the epistemic uncertainty in a consistent manner. Instead, for the site in Figure 2, we infer that 185 

inconsistent BET outcomes (Figure 3) may be due to an underestimation of the epistemic uncertainty in each EED. For this 

reason, in the example of Figure 3 we consider only the weighted average of each EEDs and then we build a new EED which 

describes more satisfactorily the overall epistemic uncertainty given by the five BET configurations. This is equivalent to the 

case of using alternative implementations of the classical ET (Newhall and Pallister, 2015), which produces a set of hazard 

curves like in the upper panels of Figure 1. In the specific case of Figure 3, the reason for which the epistemic uncertainty is 190 
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underestimated in each EED may be due to the BET set up and/or to limitations of BET model to handle some sources of 

epistemic uncertainty. 

The way in which we can build a single EED from a set of point forecasts {𝜙& , 𝜋&} (lower panels of Figure 1), or from a set of 

inconsistent EEDs (Figure 3), is what we call ensemble modeling. The terms ensemble modeling and ensemble forecasts 

have been used in many disciplines in different ways since early seventies (e.g., Leith, 1974). The book by Nate Silver 195 

(Silver, 2012) gives a wide range of successful applications and uses of ensemble modeling. The common feature across all 

these different flavors of ensemble modeling/forecasting is the attempt to account for the aleatory variability and the 

epistemic uncertainty by merging the forecasts of different models or parametrization of the same model in a proper way. 

Standard methods are available for the induction of the EED 𝑝(𝜙) from the set {𝜙! , 𝜋!}. Regardless the details of the 

procedure, we underline that the nonunique extrapolation of {𝜙! , 𝜋!} onto the continuous distribution 𝑝(𝜙)	can contribute to 200 

ontological errors in the EED. Nonetheless, any reasonable procedure is not more subjective, and certainly less critical, than 

either not considering the epistemic uncertainty (for example, when using the weighted average 𝜙G), or assuming that the set 

of forecasts explore completely and exhaustively the epistemic uncertainty. In the first case, it is assumed that 𝑝(𝜙) 	≡

𝛿(Φ − 𝜙G) is the Dirac distribution; in the latter case, it is assumed that the proper distribution for the epistemic uncertainty is 

fully described by the set of forecasts (Marzocchi et al., 2015).  205 

Although ensemble modeling does not prescribe any specific procedure to estimate 𝑝(𝜙), in statistics random variables 

bounded in the range [0,1] are often modeled by means of the Beta distribution (Gelman et al., 2003). Hence, we assume that 

Φ~Beta(α, β), where the parameters α and β are related to the weighted average 𝐸(𝜙) and variance var(𝜙)	of {𝜙! , 𝜋!} 

through: 

𝐸(𝜙) = '
('())

            (2) 210 

and 

var(𝜙) = ')
('())!('()($)

           (3) 

Inverting equations 2 and 3, we can get the parameters of the Beta distribution 𝑝(𝜙), which describes the ontological 

hypothesis. Using the weights reported in Figure 1, we get the Beta distribution reported in Figure 4.  As expected, this 

global EED is wider than each single EED of the BET configurations reported in Figure 3, and it aims at describing more 215 

realistically the complete uncertainty in PVHA. Although the choice of the Beta distribution is subjective, we advocate the 

use of a unimodal distribution (the Beta distribution is almost always unimodal), which describes more realistically, in most 

cases, the epistemic uncertainty over the true (unknown) frequency. (See the discussion of Figure 6 in Marzocchi et al., 

2015.) 
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4 Discussion and conclusions 220 

In this paper we have described a unified probabilistic framework which allows volcanologists to provide a complete 

description of PVHA, to define a clear taxonomy of uncertainties (aleatory variability, epistemic uncertainty, and ontological 

errors), and to account for experts' judgments preserving the possibility to unconditionally test PVHA against data, at least 

for high-frequency erupting volcanoes, or for global forecasting models. Although in this paper we focus entirely on PVHA, 

we think that this approach may potentially inspire other scientists working on different natural hazards. 225 

One remarkable and distinctive feature of this probabilistic framework is that the mathematical description of PVHA is given 

by a distribution of probability (see, e.g., Marzocchi et al., 2004; 2008; 2010; Neri et al., 2008; Sobradelo and Marti, 2010; 

Bevilacqua et al., 2015), or, equivalently, through a bunch of hazard curves 𝑓!(𝑥)	(𝑖 = 1, . . . , 𝑁) (Rougier and Beven, 2013). 

The use of a distribution of probability instead of single numbers mark the main difference with probabilistic frameworks 

that are more commonly used in PVHA (Marzocchi and Bebbington, 2012), i.e., the frequentist (e.g., Bebbington, 2010; 230 

Deligne et al., 2010), and subjective Bayesian (Aspinall et al., 2003). Although these probabilistic frameworks are both 

legitimate because they are coherent with the Kolmogorov's axioms, they cannot provide a complete description of PVHA, 

because they cannot unambiguously distinguish and handle properly uncertainties of different kind, which are likely 

pervasive in natural systems (Marzocchi and Jordan, 2017; 2018).  

Making explicit the probabilistic framework in PVHA is important. In the past, loose definitions of the probabilistic 235 

framework have provoked critiques of natural hazard analysis (see, e.g., Castanos and Lomnitz, 2002; Mulargia et al., 2017). 

For example, a vague definition of the nature of uncertainties and the role of subjective judgments brought some scientists to 

assert that (Stark, 2017) “what appears to be impressive ‘science’ is in fact an artificial amplification of the opinions and ad 

hoc choices built into the model, which has a heuristic basis rather than a tested (or even testable) scientific basis.” This 

criticism is implicitly rooted in the (false) syllogism: science is objective, natural hazard analysis relies on subjective experts' 240 

judgment, hence natural hazard analysis is not science.   

The unified probabilistic framework proposed here emphasizes the importance of model validation (at least in principle) as 

cornerstone of science; pure objectivity is a myth even in science and the presence of unavoidable subjectivity in PVHA 

cannot be used to dismiss its scientific nature. In an extreme case, experts' can behave like "models" expressing their 

subjective measure of the frequency of one defined experimental concept; mutatis mutandis, the same applies to the famous 245 

case of farmers who subjectively guess the weight of an ox (Galton, 1907), whose similarities and differences with natural 

hazard analysis has been discussed in Marzocchi and Jordan (2014).  Conversely, the Bayesian framework, which is a full 

legitimate probabilistic framework to be used in PVHA, does not allow model validation; in this framework all models are 

wrong (hence, why waste time to validate them?), and we can only evaluate the relative forecasting performance of one 

model against the others (Lindley, 2000; Jaynes, 2003). 250 
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Besides the scientific aspects, the use of a PoE distribution has remarkable practical merits, because it shows to the decision 

makers both our best guess and the associated uncertainty. In plain words, if two PVHA have the same average, but with 

quite different variance, this may affect significantly the way in which PVHA could be used by decision-makers. For 

example, let us consider a case in which there is a critical threshold in PVHA that triggers a specific mitigation action when 

overcome (this is just a simplified example, because the decision-making has to be based on risk, not on hazard); both 255 

averages may be lower of such a critical threshold (hence, both suggesting no action), but, when considering the variance, 

one of the EED shows a significant part of the distribution above the threshold (suggesting to take action). In this case, the 

decision-makers may take into consideration the epistemic uncertainty deciding, for the sake of precautionary reasons, to use 

one specific high percentile of the EED, instead of the average; for example, the Ministry of Civil Defence & Emergency 

Management in New Zealand (MCDEM, 2008) uses 84th percentile of the tsunami hazard analysis as a threshold for taking 260 

actions.     

As a final consideration, owing to the social implications, we think that only adopting a clear probabilistic framework to get 

a complete PVHA is the best way to defend probabilistic assessments against future scrutiny and criticism and to use these 

assessments in the most profitable way.  

Glossary and notation 265 

This glossary contains the statistical notation used in this paper, and the definitions of new and uncommon terms. 

Aleatory variability 
Intrinsic randomness of the data-generating process. In the uncertainty hierarchy, it is the event 

frequency defined by the experimental concept.  

Epistemic uncertainty 

Lack of knowledge about the data-generating process. In the uncertainty hierarchy, it is the 

modeling uncertainty in the event frequency, where the latter is defined by the experimental 

concept. 

Exchangeablility 
A property that the joint probability distribution of a data set is invariant with respect to 

permutations in the data ordering. 

Experimental concept 

Collections of data, observed and not yet observed, that are judged to be exchangeable when 

conditioned on a set of explanatory variables. The experimental concept defines the uncertainty 

hierarchy. 

Extended experts' 

distribution (EED) 

The continuous probability distribution sampled by the discrete experts' distribution, used to set 

up the ontological hypothesis. 
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Ontological error 
In the uncertainty hierarchy, an error in a model’s quantification of the aleatory variability and 

epistemic uncertainty, where the dichotomy is defined by the experimental concept.  

Ontological hypothesis 

A statistical null hypothesis that the event frequency defined by the experimental concept is a 

sample from the extended experts' distribution. The rejection of the ontological hypothesis 

exposes an ontological error. 

PoE 
Probability of exceedance, i.e., the probability that one specific parameter pf interest will be 

overcome in one specific time interval. 

PVHA 

Probabilistic volcanic hazard analysis; in this case it describes a forecast of the volcanic activity 

for any forecasting time window, and for different kind of events (eruption, magnitude, ash fall 

loading threshold, etc). 

Uncertainty hierarchy 
Levels of uncertainty, from aleatory variability to epistemic uncertainty to ontologic error, 

defined by the experimental concept.  

𝑓(𝑥) 
Hazard function or hazard curve; mathematically, it is a survivor function, as described by 

equation (1). 

𝜋! Weight of the ith model. 

Symbol Ù 
It indicates the true value of an unknown (e.g., 𝜙> is the true frequency of the experimental 

concept), or the true probability distribution (e.g.,  𝑓?(∙)	is the true hazard curve). 

𝑧~𝑝(𝑧) The random variable z is distributed according to the distribution 𝑝(𝑧). 

𝑝(∙) and 𝑃(∙) Probability density function and the cumulative distribution, respectively 

𝐸[𝑧] and var(𝑧) Expectation and variance of the random variable z, respectively 
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Figure 1: The left panel shows the mean tephra fall hazard curves relative to one point inside the Campi Flegrei (Figure 2) for each 

BET implementation described in Selva et al. (2018); colors indicate each implementation.  The right panel shows the PoE relative 390 
to the tephra load threshold of 300 kg/m2 (vertical dashed line in the upper panel), and the weight of each assessment. 
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 395 
 

Figure 2: The location reference site for this study (red star) along with the hazard map relative the probability of 5% of 

exceedance, conditional upon the occurrence of one eruption of whatever size and from whatever vent at Campi Flegrei (mean of 

the epistemic uncertainty). The figure has been obtained modifying the Figure 11 of the corrigendum to the paper Selva et al., 2018 

(available at doi.org/10.1016/j.jvolgeores.2018.07.008); the original maps have been obtained with the MATLAB software.  400 
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Figure 3: EED of each BET configuration relative to a tephra load threshold of 300 kg/m2 for the site in Figure 2. 
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Figure 4: The overall EED obtained from the average of the five distributions of Figure 3. The EED is a Beta distribution with 

parameters given by equations 2 and 3. The histogram (right y-axis) shows the weight of each one of the five distributions. 
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