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Abstract 8 

Displacement monitoring is a critical control for risks associated with potentially sudden slope 9 

failures. Instrument measurements are, however, obscured by the presence of scatter. Data 10 

filtering methods aim to reduce the scatter and therefore enhance the performance of early 11 

warning systems (EWSs). The effectiveness of EWSs depends on the lag time between the onset 12 

of acceleration and its detection by the monitoring system, such that a timely warning is issued 13 

for the implementation of consequence mitigation strategies. This paper evaluates the 14 

performance of three filtering methods (simple moving average, Gaussian-weighted moving 15 

average, and Savitzky-Golay), and considers their comparative advantages and disadvantages. 16 

The evaluation utilized six levels of randomly generated scatter on synthetic data as well as high-17 

frequency global navigation satellite system (GNSS) displacement measurements at the Ten-mile 18 

landslide in British Columbia, Canada. The simple moving average method exhibited significant 19 

disadvantages compared to the Gaussian-weighted moving average and Savitzky-Golay 20 

approaches. This paper presents a framework to evaluate the adequacy of different algorithms 21 

for minimizing monitoring data scatter. 22 
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1. Introduction 26 

Landslides are associated with significant losses in terms of mortality and financial consequences 27 

in countries all over the world. In Canada, landslides have cost Canadians approximately $10 28 

billion since 1841 (Guthrie, 2013) and more than $200 million annually (Clague and Bobrowsky, 29 

2010). Essential infrastructure, such as railways and roads that play vital roles in the Canadian 30 

economy, can be exposed to damage if it transverses landslide-prone areas. Attempting to 31 

completely prevent landslides is typically infeasible, as stabilizing options and realignment may 32 

be cost-prohibitive or lead to environmental damage. This accentuates the significance of 33 

adopting strategies that require constant monitoring to mitigate the consequences of sudden 34 

landslide collapses (Vaziri et al., 2010; Macciotta and Hendry, 2021). 35 

In recent years, detailed studies have addressed the use of early warning systems (EWSs) as a 36 

robust approach to landslide risk management (Intrieri et al., 2012; Thiebes et al., 2014; Atzeni et 37 

al., 2015; Hongtao, 2020). The United Nations defines an EWS as “a chain of capacities to provide 38 

adequate warning of imminent failure, such that the community and authorities can act 39 

accordingly to minimize the consequences associated with failure” (UNISDR, 2009). Although an 40 

EWS comprises various components acting interactively, the core of its performance relies on its 41 

ability to detect the magnitude and rate of landslide displacement (Intrieri et al., 2012). Given that 42 

the timely response of an EWS determines its effectiveness, an accurate sense of landslide 43 

velocity and acceleration is necessary. Monitoring instruments able to provide real-time or near 44 

real-time readings such as global navigation satellite systems (GNSSs) and some remote sensing 45 

techniques are, satisfactory for this purpose (Yin et al., 2010; Tofani et al., 2013; Benoit et al., 46 

2015; Macciotta et al., 2016; Casagli et al., 2017; Chae et al., 2017; Rodriguez et al., 2017, 2018, 47 

2020; Huntley et al., 2017; Intrieri et al., 2018; Journault et al., 2018; Carlà et al., 2019; Deane, 48 

2020; Woods et al., 2020, 2021). These instruments can record the displacement of locations at 49 

the surface of the landslide with a high temporal resolution, which allows the monitoring system 50 

to track movements on the order of a few millimeters per year. In practice, the results are usually 51 
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obscured by the presence of scatter, also known as noise, and outliers that affect the quality of 52 

observations. These unfavorable interferences do not reflect the true behavior of the ground 53 

motion and stem from sources such as the external environment and the quality of the 54 

communication signals and wave propagation in the case of remote sensing techniques (Wang, 55 

2011; Carlà et al., 2017b).  56 

Scatter can be defined as measurement data that are distributed around the “true” displacement 57 

trend, such that the average difference between the scatter and the displacement trend is zero 58 

and has a finite standard deviation. Scatter in displacement measurements can significantly 59 

impact the evaluation of slope movements performed on unfiltered data and decrease the 60 

reliability of an EWS. This can lead to false warnings of slope acceleration or unacceptable time 61 

lags between the onset of slope failure and its identification, and therefore a loss of credibility for 62 

an EWS (Lacasse and Nadim, 2009). As a result, scatter should be reduced as much as possible 63 

without removing the true slope displacement trends. The application of algorithms that work as 64 

filters aims to minimize the amplitude of measured scatter around the displacement trend.  65 

Several approaches have been proposed to filter displacement measurements based on either 66 

the frequency or time domain. Fourier and wavelet transformations aim to find the frequency 67 

characteristics of the data, then attenuate or amplify certain frequencies. These approaches are 68 

discussed in Karl (1989), who suggests they are generally unsuitable for non-stationary data such 69 

as monitoring data time series. Filters that work on the time domain can be classified as recursive, 70 

kernel, or regression filters. Recursive filters, such as the exponential filtering function, calculate 71 

the filtered value at a given time based on the previous filtered value. Kernel filters, which include 72 

simple moving average (SMA) and Gaussian-weighted moving average (GWMA), calculate the 73 

filtered values as the weighted average of neighboring measurements. Of these two kernel filters, 74 

SMA is frequently used in the literature largely due to its simplicity (Dick et al., 2015; Macciotta et 75 

al., 2016, 2017b; Carlà et al., 2017a,b, 2018, 2019; Bozzano et al., 2018; Intrieri et al., 2018; 76 

Kothari and Momayez, 2018; Chen and Jiang, 2020; Zhou et al., 2020; Deng et al., 2021; Desrues 77 
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et al., 2021; Grebby et al., 2021; Zhang et al., 2021a,b). Regression filters calculate the filtered 78 

values by means of regression analysis on unfiltered values (e.g., Savitzky-Golay, or S-G) 79 

(Savitzky and Golay, 1964; William, 1979; Cleveland, 1981; Cleveland and Devlin, 1988; Reid et 80 

al., 2021). Carlà et al., (2017b) studied both SMA and exponential filtering on multiple failed 81 

landslide cases and concluded the latter is inferior in terms of accuracy of failure time prediction. 82 

On the other hand, Carri et al. (2021) cautioned the designers and users of EWSs against the use 83 

of SMA when rapid movements are expected. However, published applications of filters other 84 

than SMA for landslide monitoring are scarce, and studies dedicated to comparing the 85 

functionality of other filters to that of SMA are limited. 86 

This paper presents an approach to detect and remove outliers, evaluates the performance of 87 

three filters (SMA, GWMA, and S-G), and assesses their suitability to be utilized in an EWS. We 88 

evaluated three filters against the following criteria: 1) scatter is minimized, 2) true underlying 89 

displacement trends are kept with as little modification as possible, and 3) filtered displacement 90 

trends detect acceleration episodes in a timely manner. Moreover, the paper investigates the 91 

significance of the time lag between a landslide acceleration event and its identification by a 92 

monitoring system for the three filters evaluated. 93 

2. Methodology 94 

2.1. Synthetic Data Generation 95 

A numerical analysis on a synthetic dataset approach was adopted, which consists of synthetic 96 

dataset scenarios generated to resemble typical landslide displacement measurements, including 97 

acceleration and deceleration periods. These scenarios are idealizations based on observations 98 

of typical landslide displacements published in the literature (Leroueil, 2001; Intrieri et al., 2012; 99 

Macciotta et al., 2016; Schafer, 2016; Carlà et al., 2017a; Scoppettuolo et al., 2020). A total of 12 100 

dimensionless scenarios were built, with all data between the coordinates x=0, y=0 and x=1, y=1. 101 

The x value represents time, and normalization between 0 and 1 allows for extrapolation of the 102 
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findings for variable displacement measurement frequencies (e.g., the full range of x could 103 

represent a week, a month, a year). The analysis of synthetic data focuses on the ability of 104 

different algorithms to minimize scatter and identify changes in measured trends; therefore, y 105 

represents any of the displacement measurement metrics of interest, e.g., displacement, 106 

cumulative displacement, velocity, inverse velocity, etc. Mathematical equations and graphical 107 

illustrations of the 12 scenarios are shown in Fig. 1.  108 

Nine of the scenarios are referred to as harmonic scenarios, which are characterized by gradual 109 

changes in the trend of parameter y. The remaining three scenarios show sudden variations at or 110 

near x=0.5, and are referred to as instantaneous scenarios. Considering the discrete nature of 111 

instrument measurements, and to account for different ranges in measurement frequencies, each 112 

scenario was generated several times, each time with a different number of points (Table 1). 113 
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 114 

 115 
Fig. 1 Configuration of all synthetically generated scenarios 116 

Table 1 Number of points used to generate scenarios and examples of their corresponding time spans 117 
represented by the range of x from 0 to 1 if the measurement frequency is known (1-h and 1-m readings 118 
for illustrative purposes). 119 

Number of points 
Example monitoring frequency 

1-h readings 1-m readings 

1000 41.7 Days 16.7 Hours 

3000 4.1 Months 2.1 Days 

9000 1.0 Years 6.3 Days 
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20000 2.3 Years 2.0 Weeks 

40000 4.6 Years 4.0 Weeks 

86000 9.8 Years 2.0 Months 

250000   5.8 Months 

500000   0.9 Year 

750000   1.4 Years 

1.00E+6   1.9 Years 

 120 

The next step was adding random scatter to the scenarios to represent unfiltered displacement 121 

measurements. Macciotta et al. (2016) show the scatter in displacement monitoring for a GNSS 122 

used in their analyses fitted a Gaussian distribution. We validated the scatter distribution fit 123 

approximates a Gaussian distribution for the displacement data scatter of the case study in this 124 

paper. This assumption, however, has an underpinning theoretical base established by the central 125 

limit theorem in probability theory. It states that the mathematical summation of independent 126 

variables (such as scatter) goes toward a Gaussian distribution (Smith, 2013). As a result, the 127 

scatter was randomly produced from a normal distribution centered at zero, with extreme values 128 

truncated between −1 and 1 and a standard deviation of 0.20. Random generation of the scatter 129 

followed the techniques outlined in Clifford (1994) known as the acceptance-rejection method, 130 

which generates scatter values through a series of iterations until the algorithm generates the 131 

initial normal distribution. The amplitude of the scatter around the trend in parameter y was defined 132 

for each scenario by scaling the randomly generated scatter. This allowed for the investigation of 133 

the effect of different scatter magnitudes on the performance of the filters. Scaling was done by 134 

defining the ratio n/t, which is the ratio of scatter amplitude (maximum deviation around the trend, 135 

termed n) to the range of values of the trend (t) in each scenario. Six levels of n/t (0.001, 0.005, 136 

0.010, 0.050, 0.100, and 0.150) were considered when performing the analysis to cover a range 137 

of possible levels of scatter in unfiltered measurements. Fig. 2 shows two samples of synthetic 138 



8 
 

unfiltered scenarios that are the result of superimposing scatter with n/t values of 0.05 and 0.10, 139 

respectively, on scenario No. 7. 140 

 141 

Fig. 2 The procedure of generating a scenario with scatter: (a) generated scenario trend, (b) randomly 142 
generated scatter, and two scenarios with scatter based on n/t values of (c) 0.05 and (d) 0.10 143 

2.2 Data Processing Approaches 144 

2.2.1. Simple moving average 145 

SMA is a well-known method for scatter reduction that attempts to reduce scatter by calculating 146 

the arithmetic mean of neighboring points’ values. A constant-length interval (window or 147 

bandwidth) is used for the calculation for each point; this is also termed a “running” average. 148 

Equation 1 is the formulation of this method, which was used by Macciotta et al. (2016) to analyze 149 

GNSS data scatter: 150 
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where yi
ෝ  is the filtered value, yj is the unfiltered value, and p is the window length. The window 152 

length is constant across the dataset except for regions near the boundaries where fewer points 153 

are available. Accordingly, p will be adjusted to the number of available points that are indeed 154 

less than the value set by the user. This will cause variation in the effectiveness of the method at 155 

the extremes, which needs to be considered when evaluating the results of this approach. 156 

2.2.2. Gaussian-weighted moving average  157 

Varying the weights of the measurements within the calculation window in SMA can be used to 158 

develop different filtering methods. The largest weight can be given to the measurement at the 159 

time for which the calculation is being done, with weights decreasing for measurements farther 160 

away in time. One simple weighting function that can be adopted is the Gaussian (normal) 161 

distribution. Eq. 2 is the formulation of the Gaussian-weighted moving average (GWMA):  162 

 𝑦పෝ = ∑ 𝑤௝𝑦௝

௜ା
೛షభ

మ

௜ି
೛షభ

మ

 , (2) 163 

where wj is the weight coefficient based on the Gaussian distribution and the other terms follow 164 

the same definition as per SMA. 165 

2.2.3. Savitkzy-Golay  166 

S-G fits a low-degree polynomial equation to the unfiltered measurements within a window and 167 

defines the filtered measurements using the fitted curve (Schafer, 2011). Although this procedure 168 

seems dissimilar from the weighted averaging as discussed for GWMA, its function can be 169 

transformed into a kernel concept using the least-squares method if the data points are evenly 170 

spaced. The detailed procedure is presented in Appendix A. Fig. 3 shows the weight kernel over 171 

a window of seven points attained by fitting a quadratic polynomial. An immediate observation is 172 
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that some points are given negative weights. If points are not evenly spaced, the weighting kernel 173 

cannot be used, and local regression analysis should be periodically conducted for each point. 174 

Such filtering is known as locally estimated scatterplot smoothing (LOESS). This decreases the 175 

computational efficiency of filter performance and exponentially increases the execution time. 176 

 177 

Fig. 3 The weighting kernel of the Savitzky-Golay filter for seven points 178 

2.3 Evaluation of Processing Algorithms 179 

The synthetic monitoring data and data from the case studies were filtered using SMA, GWMA, 180 

and S-G techniques. The filters were applied with different lengths of moving windows, from 0.01 181 

(1%) to 0.1 (10%) of all monitoring points, referred to as the bandwidth ratio. These limits for the 182 

bandwidth ratio were selected based on literature reports for SMA. In the filtration process, we 183 

only used the points prior to the time for which the calculation is being made (point of interest, 184 

Fig.  4). This is to reflect the reality of displacement monitoring information as applied to EWSs. 185 

To this end, filters used the first half of their kernels, but the weights were multiplied by 2 in 186 

comparison to a symmetric window in order to keep the sum of weights equal to 1. 187 
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 188 
Fig.  4. Concept of symmetric and non-symmetric window types in the filtration process 189 

All of these filters require the definition of the bandwidth. A roughness factor was defined to aid 190 

in the evaluation of the effect of bandwidth in reducing scatter. This factor is defined as:  191 

𝐽ଶ =
∫(𝑦ො ᇱᇱ)ଶ𝑑𝑥

𝑅௔
 , 

(3) 

𝑅௔ = න(𝑦′′)ଶ 𝑑𝑥 , 
(4) 

where J2 is the roughness factor, yො'' is the second derivative of filtered measurements, Ra is the 192 

absolute roughness computed by Eq. 4, and y'' is the second derivative of unfiltered 193 

measurements. The second derivative measures how much the slope of the line connecting two 194 

consecutive points changes, which itself is an indication of fluctuation. The greater this second 195 

derivative, the greater the variation. J2 was normalized to the overall curvature of the unfiltered 196 

scenario to determine the relative scatter reduction after the application of a filter, eliminating any 197 

roughness associated with the real trend in the scenario. In limit states, a value of 1 means that 198 

fluctuations are similar to the unfiltered dataset, and therefore no improvement has been 199 

achieved; a value of 0 suggests the slope of a scenario remains unchanged and indicates a linear 200 
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trend. Because all the scenarios, except the first, include trends showing concavity or convexity, 201 

a residual value for the roughness factor would be expected in the lowest limit state, meaning that 202 

a value of 0 is not necessarily a goal. J2 was used to infer the minimum value of bandwidth ratio 203 

after which no significant change in the fluctuation of results is achieved. Considering the second 204 

power in the formulation of J2, all observations are valid if the scenarios are mirrored (when they 205 

vary from 1 to 0, instead of 0 to 1). 206 

The filters are not expected to remove all scatter, and the error attributed to the residual scatter 207 

can be calculated using the root mean square error (RMSE). Given that velocity values are usually 208 

used as thresholds in an EWS, one concern is whether the filter should be applied to displacement 209 

values or velocity values derived from unfiltered displacements. To address this issue, two 210 

different approaches to filtering were investigated: direct and indirect. As a result, two different 211 

approaches using the RMSE were also utilized here. 212 

2.3.1. Direct scatter filtration 213 

Direct filtration means the filter is applied to the diagram of interest. If the filtered displacement 214 

values are the goal, and the filter is applied to unfiltered displacement values, then the filtering 215 

process is called direct filtration. The same concept applies when velocity values are derived 216 

using unfiltered displacements and the filters are then directly applied to the velocity values. In 217 

this approach, the RMSE follows Eq. 5:  218 

 𝑅𝑀𝑆𝐸𝑑 = ට
ଵ

௠
∑ (𝑦పෝ − 𝑦௜)ଶ௠

௜ୀଵ , (5) 219 

where RMSEd is the measurement of error in direct filtration, yi is the value of the true trend (for 220 

the synthetic scenario), yiෝ is the filtered value, and m is the total number of points. This approach 221 

is often used in the literature (e.g., Macciotta et al., 2016; Carlà et al., 2017a,b, 2018, 2019; Intrieri 222 

et al., 2018). 223 

2.3.2. Indirect scatter filtration 224 
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Some EWSs can apply the filter to the displacements but use velocity trends as the metric for 225 

evaluation. In this case, the filtered velocity values will be computed using the filtered 226 

displacements. Indirect filtration indicates the diagram of interest is the first derivative of the 227 

diagram to which the filter is applied. The RMSE, in this case, is defined as: 228 

 𝑅𝑀𝑆𝐸𝑖 = ට
ଵ

௠
∑ (𝑦ො௜

ᇱ − 𝑦௜
ᇱ)ଶ௠

௜ୀଵ , (6) 229 

where RMSEi is the measurement of error in indirect filtration, yi
' is the first derivative of the true 230 

trend, yොi
' is the first derivative of filtered data (derived velocity after the filter is applied to the 231 

displacements), and m is the total number of points. Similar to J2, all observations are valid for 232 

the mirrored scenarios of those presented in Fig. 1. This is a consequence of using the second 233 

power in the definition of RMSEi and RMSEd. 234 

2.4 Lag Quantification 235 

Only antecedent measurements are fed into the filters, which is expected to result in a lag between 236 

the true trend and its identification by the filters. This lag means the calculated value of velocity 237 

or displacement occurred sometime in the past. Consequently, reducing this lag means less time 238 

is lost with respect to providing an early warning. To quantify the induced lag, the filtered diagrams 239 

of all scenarios at all n/t ratios and bandwidth ratio values were shifted backwards a number of 240 

points equivalent to 0.001 (0.1%) to 0.1 (10%) of all generated points. We refer to this as the shift 241 

ratio in the rest of this paper. This shift of filtered diagrams is expected to increase their similarity 242 

with the true trend until the best correlation is achieved. The R2 test was used to determine how 243 

well the shifted and filtered results replicate the underlying trend.  244 

2.5. Geocubes Differential GNSS System 245 

A Geocubes system is a network of differential global navigation satellite system (GNSS) units 246 

that work with a single frequency (1572.42 MHz), making it cost-effective (Dorberstein, 2011; 247 
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Benoit et al., 2014; Rodriguez et al., 2018). Geocubes communicate with each other through radio 248 

frequency, and a reference unit outside the boundaries of the landslide is assumed as static for 249 

differential correction to increase the poor accuracy associated with single frequency GNSSs 250 

(Benoit et al., 2014; Rodriguez et al., 2018). The ability of this system to achieve real-time 251 

positioning, remote data collection, and processing makes it a suitable candidate for incorporation 252 

into an EWS. As a result, Geocube data are used in this study to evaluate the performance of the 253 

three mentioned filters. 254 

2.6. Outlier Detection 255 

Outliers are defined herein as abnormal inconsistencies (e.g., displacement directions, 256 

magnitudes) when compared to the majority of observations in a random sampling of data (Zimek 257 

and Filzmoser, 2018). Techniques for outlier detection have been proposed based on the 258 

statistical characteristics of datasets. One common example is the Z-score method, which 259 

calculates the mean and standard deviation of data within a defined interval and identifies outlier 260 

data as those beyond three standard deviations from the mean (Rousseeuw and Hubert, 2011). 261 

A limitation of this kind of approach is the sensitivity of the mean and standard deviation to the 262 

outlier data points, which has led to the development of other methods that use other indices such 263 

as the median (Salgado et al., 2016). One such technique that was adopted in this study is the 264 

Hampel filter (Hampel, 1971). In this method, the median of the displacement measurements 265 

within a running bandwidth is calculated and data outside a defined threshold from the median 266 

are identified as outliers. The threshold is defined as a constant (threshold factor) multiplied by 267 

the median absolute deviation. An asymmetric window with a bandwidth ratio of 0.004 (0.4%) and 268 

a threshold factor of three were adopted following previous studies (Davies and Gather, 1993; 269 

Pearson, 2002; Liu et al., 2004; Yao et al., 2019). The data identified as outliers were then 270 

removed from the dataset. 271 

3. Study Site – Ten-mile Landslide 272 
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The Ten-mile landslide is located in southwestern British Columbia (BC), in the Fraser River 273 

Valley north of Lillooet (Fig. 5a). It is a reactivated portion of a post-glacial earthflow (Bovis, 1985) 274 

that was first recognized in the 1970s. The landslide velocity has increased from an average of 1 275 

mm/day in 2006 to 6 mm/day in 2016, with a maximum measured velocity of 10 mm/day (Gaib et 276 

al., 2012; BGC Engineering Inc., 2016). The movement of this landslide impacts the integrity of 277 

BC Highway 99 and a section of railway operated by Canadian National Railway (CN) (Carlà et 278 

al., 2018), with most movement limited to the volume downslope from the railway due to the 279 

installation of a retaining wall (Macciotta et al., 2017a). Despite the stabilization work done to date, 280 

the uppermost tension crack has retrogressed approximately 200 m in 45 years and is now 281 

situated 60 m upslope of the railway track (Macciotta et al., 2017b). The landslide lateral extents 282 

have not expanded since 1981 according to the aerial photographs Macciotta et al., 2017b). The 283 

Ten-mile landslide is currently approximately 200 m wide, 140 m high, and has a volume of 0.75 284 

to 1 million m3, moving towards the Fraser River on a continuous rupture surface with a dip of 285 

about 22 to 24°, which is sub-parallel to the ground surface (Rodriguez et al., 2017; Donati et al., 286 

2020). The elevation of the shear surface and mechanism of the landslide have been inferred 287 

from the readings of multiple slope inclinometers installed in 2015 (BGC Engineering Inc., 2015). 288 

The bedrock in this region consists of volcanic rocks, such as andesite, dacite, and basalt, and is 289 

overlain by Quaternary deposits (Donati et al., 2020; Carlà et al., 2018; Macciotta et al., 2017a). 290 

The thickness of the landslide varies between 20 and 40 m and the ground profile from the surface 291 

to depth comprises medium to high plastic clays and silts overlying colluvium material and glacial 292 

deposits, overlying bedrock (BGC Engineering Inc., 2015). The stratigraphy of the sedimented 293 

soils in the landslide area notably varies from one borehole to another and reflects the complex 294 

stratigraphy of the earthflow. 295 

A total of 11 Geocubes were installed at the Ten-mile landslide in 2016. Fig. 5b is a front view of 296 

the landslide showing the locations of the Geocube units. Units 44 and 50 are installed near the 297 

uppermost tension crack identified as the current landslide backscarp, unit 69 is 30 m above the 298 
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backscarp, and unit 39 is used as the reference point. Please note that unit 69 is used as the fixed 299 

Geocube, and is not shown in Fig. 5b. The other units are located within the boundaries of the 300 

landslide, with a maximum distance between units of 310 m (Rodriguez et al., 2018). The time 301 

step between every two consecutive measurements is 60 s. Fig. 6 shows the displacements of 302 

units 46 and 47, which were the largest in comparison to other Geocubes.  303 

304 
Fig. 5 (a) Location of the Ten-mile landslide (© Google Earth) and (b) front view of the Ten-mile landslide 305 
and distribution of Geocubes on its surface (Rodriguez et al., 2018; Macciotta et al., 2017b)  306 
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 307 
Fig. 6 Cumulative horizontal displacement of Geocube units No. 46 and 47 308 

4. Results 309 

4.1. Synthetic Analysis 310 

Fig. 7 shows the roughness value (J2) of scenario 6 for SMA, GWMA, and S-G on a semi-311 

logarithmic scale. This figure illustrates how, regardless of the n/t ratio, J2 substantially decreases 312 

as the bandwidth ratio increases to 0.01 and then asymptotically approaches a final value. This 313 

means that increasing the bandwidth ratio drastically reduces scatter; however, its effectiveness 314 

is restricted as the bandwidth ratio increases above 0.01. This observation was consistent for 315 

other scenarios. J2 values (including scenario 6 in Fig. 7) indicate that J2 approaches its minimum 316 

at bandwidth ratio values of 0.03 to 0.04, regardless of the filter selected.  317 
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 318 

Fig. 7 Variation of roughness factor for scenario 6 with respect to the applied filter on a semi-log scale 319 

4.1.1. Effect of filters on trend distortion  320 

Scenarios 11 and 12 were first analyzed to evaluate the degree to which the trend was preserved 321 

by these filters, as peaks made it easier for visualization. Fig. 8a shows the true trend of scenario 322 

11 along with two SMA-filtered scenarios at bandwidth ratios of 0.04 and 0.10, respectively. This 323 

figure shows that, as the SMA filter bandwidth increases, the peak in measurements is identified 324 

at a later time than the true trend (x=0.5) and the magnitude of the peak is reduced (more than 325 

70% reduction at a bandwidth ratio of 0.10). Furthermore, as the bandwidth ratio increases, the 326 

“instantaneous” nature of the peak is lost to a more transitional variation. This highlights a 327 

disadvantage of SMA when handling sudden changes in data trends. The calculated x value of 328 

the peak in scenario 11 is plotted for different bandwidth ratios and for all three filters in Fig. 8b. 329 

This figure shows the time at which the peak is identified lags as the bandwidth ratio increases 330 

for all filters; however, GWMA and S-G identify the peak with a much smaller lag, independent of 331 

the n/t ratio. As an example, for a year of monitoring data at a frequency of 30 s and bandwidth 332 

ratio of 0.10, SMA, GWMA, and S-G predict the peak point approximately 17, 3.5, and 2.7 days 333 

after the real peak, respectively. This lag can be attributed to the utilization of an asymmetric 334 

window, which leads to a lagged response of the filter. As more points are included in the filtering 335 
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procedure (increasing bandwidth ratio), this lag increases because the averaging process is 336 

sensitive to window type. The degree of sensitivity, however, depends on the filter. Fig. 8c shows 337 

the variation of the peak magnitude with respect to the bandwidth ratio for all three filters. SMA 338 

and GWMA both underestimate the peak value, and the difference between the calculated peak 339 

and real peak increases as the bandwidth ratio increases. SMA calculations underestimate the 340 

peak more than twice as much as GWMA. On the contrary, S-G intensifies the peak up to a 341 

bandwidth ratio of 0.04, with the impact tending to diminish at larger bandwidth ratios; it predicts 342 

the true value at a bandwidth ratio value of almost 0.09.  343 

 344 
Fig. 8 (a) An example of peak displacement by applying SMA, and variation of (b) peak position and (c) 345 

peak value with respect to the filter and bandwidth ratio used (original peak at 0.5) 346 

Scenario 12 was used for a detailed evaluation of the ability of these filters to conserve the 347 

underlying original trend.Error! Reference source not found. Fig. 9 shows scenario 12 and the 348 

filtered results for all three filters and an n/t ratio of 0.15. This scenario and these specific 349 

parameters were selected for illustration purposes as they allow visual identification of differences 350 

for discussion. The SMA filter considerably underestimates the magnitude of the peak at a 351 

bandwidth ratio of 0.04, which should be the minimum bandwidth ratio according to Fig. 7. At a 352 

bandwidth ratio of 0.10, the filtered diagram is distorted in comparison to the true trend and the 353 

initial peak is not identified. GWMA at a bandwidth ratio of 0.04 shows less underestimation of 354 
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the peak magnitude, and a slight lag is visually observed at a bandwidth ratio of 0.10. This 355 

indicates the significantly better performance of GWMA over SMA. S-G results for both bandwidth 356 

ratios closely identify the time and magnitude of both peaks, indicating yet better performance. 357 

However, the peak is artificially intensified at a bandwidth ratio of 0.04, and a significant drop 358 

occurs well beyond the true trend immediately after the second peak for both bandwidth ratios 359 

(pulsating effect), which was also observed in scenario 11. Increasing the degree of the 360 

polynomial fitted as part of the S-G methodology was not completely effective at eliminating this 361 

effect. The pulsating effect was also observed when a symmetrical window was utilized and is 362 

attributed to the negative weights in the S-G kernel.  363 

 364 

 365 
Fig. 9 Filtered results of Scenario 12 with scatter using SMA (a,d), GWMA (b,e), and S-G (c,f) at 366 

bandwidth ratios (BRs) of 0.04 (a-c) and 0.10 (d-f) 367 

4.1.2. Results of direct scatter filtration 368 

Fig. 10 shows the RMSEd of all three filters for all the harmonic synthetic scenarios. This figure 369 

shows that, for these numerical analyses on synthetic scenarios, the error depends linearly on 370 
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the bandwidth ratio for all of the filters and does not depend on the scenario or n/t ratio. SMA 371 

shows the greatest difference from the true trend, followed by GWMA (approximately 60% less 372 

difference than SMA). S-G, on the other hand, almost lies on the horizontal axis for all the 373 

bandwidth ratios, which means the filtered results yield near-zero error. Fig. 10 also shows how 374 

the error increases as the bandwidth ratio increases. This can be attributed to the utilization of an 375 

asymmetric window, which leads to a lagged response of the filter. As more points are included 376 

in the filtering procedure (increasing bandwidth ratio), this lag increases and, consequently, 377 

causes a larger error. The RMSEd of filters for the instantaneous synthetic scenarios are shown 378 

in Fig. 11. In scenario 10, the same behavior as noted for the harmonic scenarios can be seen 379 

for SMA and GWMA, whereas S-G is not as accurate. This is more noticeable in scenarios 11 380 

and 12 in which S-G becomes less accurate than GWMA at larger bandwidth ratios. This result 381 

shows that S-G cannot handle the instantaneous scenarios as satisfactorily as the harmonic ones. 382 

The errors related to SMA and GWMA for the instantaneous synthetic scenarios show non-linear 383 

behavior and are greater when compared to the harmonic scenarios. Fig. 11 clearly shows all 384 

filters are challenged by the instantaneous variations when compared to gradual ones in direct 385 

filtration. 386 

 387 
Fig. 10 RMSEd for the harmonic scenarios 388 
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 389 
Fig. 11 RMSEd for the instantaneous scenarios 390 

4.1.3. Results of indirect scatter filtration 391 

Fig. 12 shows the RMSEi results for the harmonic scenarios (when performing indirect filtration) 392 

on a semi-logarithmic scale. We observed that the error considerably decreases as the bandwidth 393 

ratio increases to 0.02; however, to highlight the variation of error in the range of interest for the 394 

bandwidth ratio, only RMSEi values corresponding to bandwidth ratios greater than 0.04 are 395 

plotted in Fig. 12 and 13. In Fig. 12, the error for the GWMA is either equal to or slightly less than 396 

the error for the SMA, and S-G shows the least error for the harmonic scenarios. The RMSEi 397 

results for the instantaneous scenarios (Fig. 13) are similar to those for the harmonic scenarios 398 

for large n/t ratios (0.05, 0.10 and 0.15). For small n/t ratios, the GWMA is superior at bandwidth 399 

ratios above 0.06, and S-G has the worst performance. 400 
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 401 
Fig. 12 RMSEi for the harmonic scenarios on a semi-logarithmic scale 402 

 403 

Fig. 13 RMSEi for the instantaneous scenarios 404 
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4.1.4. Lag quantification 405 

The non-symmetric inclusion of points causes the identification of a lag in the trend of filtered 406 

data. Fig. 14 shows Scenario 10 with respect to the original trend, with scatter added (at an n/t 407 

value of 0.15), and the results after filtering with each of the three methods at a bandwidth ratio 408 

of 0.04. This figure clearly shows the lag between the results filtered by SMA and GWMA and the 409 

true trend. S-G results do not have as severe a lag as that resulting from the other filters; we 410 

attribute this to the negative weights in its kernel that anchor the filtered values and prevent a 411 

lagged response. A minor pulsating effect can be observed in the S-G filtered data, decreasing 412 

the calculated values at a much earlier time than the true trend. This suggests that S-G is robust 413 

with respect to identifying initial changes in monitoring trends but overcorrects subsequent 414 

changes; SMA grossly lags with respect to the identification of any change, and GWMA has a 415 

reduced lag when compared to SMA. 416 

 417 

Fig. 14 Scenario 10 with and without scatter, and with scattered results filtered by SMA, GWMA, and S-G 418 
for an n/t value of 0.15 and a bandwidth ratio of 0.04. 419 

Fig. 15a shows an example of the R2 correlation for scenario 7, comparing the original trend and 420 

the results filtered by SMA at an n/t value of 0.01 and bandwidth ratio of 0.04. The shift ratio is 421 
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the shift of filtered trends (in the horizontal axis – parameter x) relative to the range of x values. 422 

R2 calculations are shown for the filtered data (shift ratio of 0) and as the filtered trends are shifted 423 

backwards in time (negative shift ratio values). In this analysis, the peak R2 value (largest 424 

correlation between the shifted filtered results and original trend) indicates the shift required to 425 

minimize the lag in identifying the original trend changes, therefore providing a quantitative 426 

approach to calculating the lag in parameter x. In the example in Fig. 15a, the lag corresponded 427 

to 0.018 (1.8%) of the total points. 428 

 429 
Fig. 15 (a) R2 values for scenario 7 with filtered and shifted results at an n/t value of 0.01 and bandwidth 430 

ratio of 0.04 and (b) shift ratio at peak R2 for all scenarios and n/t ratios, with the mean (solid line) 431 
bounded by one standard deviation (dashed lines) 432 

Peak R2 values for all scenarios and n/t values are closely correlated with the bandwidth ratio. 433 

The lag, quantified by the shift ratio, is larger when the trend change is more pronounced; 434 

therefore, the correlation between the shift ratio and bandwidth ratio is different for different 435 

scenarios. Fig. 15b shows the mean correlation between the shift ratio and bandwidth ratio, for 436 

all scenarios and n/t values, bounded by one standard deviation, for GWMA and SMA. Table 2 437 

shows linear and quadratic regressions of this correlation and the strength of the correlation in 438 

terms of R2 and RMSE. Fig. 15b quantitatively shows that GWMA lags less than SMA with respect 439 

to identifying changes in measurement trends. Moreover, the uncertainty associated with lag for 440 

SMA is greater than for GWMA because of the larger standard deviation. Fig. 15b quantifies how 441 

increasing the bandwidth ratio increases the lag with respect to identifying true measurement 442 
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trends and, although large bandwidth ratios decrease the scatter in data, the bandwidth ratio 443 

should carefully balance minimizing both scatter (J2) and lag (shift ratio). S-G is not included in 444 

this analysis as the method resulted in no significant lag in identifying changes in measurement 445 

trends; however, it had the disadvantages previously noted including pulsating effects and 446 

overestimating peak values. 447 

Table 2 Regression correlations between shift ratio (SR) and bandwidth ratio (BR) with the strength of the 448 
correlation in terms of R2 and RMSE 449 

 Linear regression Quadratic regression 

S
M

A
 

SR=-0.5087(BR) 
R2=0.9940 

RMSE=0.0014 
SR=-1.323൫BR2

൯-0.4049(BR) 
R2=0.9997 

RMSE=3.24E-4 

G
W

M
A

 

SR=-0.1783(BR) 
R2=0.9996 

RMSE=1.2963E-4 
SR=-0.1171൫BR2

൯-0.1691(BR) 
R2=0.9999 

RMSE=3.5672E-5 

4.2. Results on the Ten-mile landslide 450 

Unfiltered results reported by Geocubes 46 and 47 installed on the Ten-mile landslide were 451 

processed by all three filters. To illustrate to the reader through visual inspection the difference 452 

between the performance of SMA, GWMA, and S-G, only a 200-day window of displacement data 453 

from Geocube 46 and filtered points produced by direct filtration are shown in Fig. 16. Fig. 16a 454 

also features an inset showing scaled scenario 4, which resembles the general trend of Geocube 455 

46 data for the period from day 200 to 400. Fig. 16 shows that increasing the bandwidth ratio 456 

reduces the scatter, but increases the lag in the filtered results, consistent with observations on 457 

the synthetic datasets. For bandwidth ratios larger than 0.04, SMA becomes insensitive to some 458 

short-scale (20- to 30-day) trends in the data (qualitative visual inspection). As an example, at a 459 

bandwidth ratio of 0.10, SMA suggests the displacement of Geocube 46 follows a bi-linear trend 460 

with an inflection point at day 240, while unfiltered points and other filters suggest other periods 461 



27 
 

of acceleration and deceleration. Importantly, S-G is sensitive to even subtle variation and does 462 

not show significant lag. 463 

 464 
Fig. 16 Unfiltered displacement of Geocube 46 data vs. time and data filtered by SMA, GWMA, and S-G 465 

for bandwidth ratios (BRs) of (a) 0.04, (b) 0.07, and (c) 0.10. 466 

Fig. 17 shows the filtered velocity values obtained by directly filtering the calculated velocities and 467 

by indirectly filtering the displacement values before calculating the velocity from Geocube 46 468 
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data. The direct and indirect filtering approaches demonstrated similar performance in terms of 469 

scatter reduction for Geocube 46 data. As the bandwidth ratio increases, SMA tends to 470 

significantly attenuate the local maximum and minimum points in comparison to results at smaller 471 

bandwidth ratios, indicating a probable loss of information about the landslide behavior and 472 

sensitivity of this filter to the bandwidth ratio, as also noted in Fig. 16 (curvature loss in SMA 473 

results). Indirect filtration by SMA seems to be limited near the boundary at time zero, resulting in 474 

a subdued replica of direct filtration. The length of this region is found to be governed by the 475 

bandwidth ratio, as the necessary number of points for filtering in this portion has not been 476 

provided to the filter. This is also observed in S-G results. This problem was not found in GWMA 477 

results, as direct and indirect filtration both follow the same pattern. GWMA and S-G are both able 478 

to preserve the velocity variation even at the most intense filtration (bandwidth ratio of 0.10); 479 

however, variations between local maxima and minima are more extreme in S-G than GWMA 480 

results. This is attributed to peak overestimation (Fig. 8 and 9) or a pulsating effect superimposing 481 

on the peaks/troughs. Moreover, the S-G results still demonstrate relatively large fluctuations 482 

even at the largest bandwidth ratio. This means that the application of S-G might still trigger false 483 

alarms in an EWS if the landslide is moving at a faster rate or experiencing different episodes of 484 

acceleration and deceleration. To avoid this, a larger bandwidth ratio should be used but this can 485 

be problematic due to the higher computational effort required and issues that might follow, such 486 

as the pulsating effect. 487 

Results for Geocube 47 confirm the same observations made for Geocube 46 but also allow for 488 

an evaluation of the significance of outliers on the filtered results. Fig. 18a displays the outliers 489 

detected in the displacement diagram of Geocube 47 data along with the threshold established 490 

by the Hampel algorithm using an asymmetric window, a bandwidth of 0.4% and a threshold factor 491 

of 3. Fig. 18b-d shows a magnified portion of the displacement measurements for Geocube 47 492 

filtered by each of the three filters at three different bandwidth ratios before the elimination of 493 

outliers. This highlights the necessity of outlier elimination before the application of any scatter 494 



29 
 

filter. These plots show that detecting and removing outliers significantly impacts the performance 495 

of S-G, as the presence of the outlier generates a peak that follows the outlier measurement and 496 

is followed by a sudden decrease that drops well beyond the data trend. SMA tends to widen the 497 

time range affected by the outlier more than GWMA but, for the most part, the SMA-filtered results 498 

are almost parallel to the underlying trend. All filters appear to be significantly impacted by the 499 

outlier value, suggesting a pre-processing filter is required to remove outliers regardless of the 500 

use of SMA, GWMA, or S-G to reduce scatter. The outliers were successfully identified and 501 

removed after the application of the Hampel algorithm, and the above-mentioned effects were no 502 

longer observed in the filtered results. 503 
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 504 
Fig. 17 Indirect and direct filtration results of Geocube No. 46 velocity values for bandwidth ratio (BR) 505 

values of (a) 0.04, (b) 0.07, and (c) 0.10. 506 
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 507 

 508 

Fig. 18 Unfiltered and filtered displacement measurements for Geocube 47 at bandwidth ratios (BRs) of 509 
(a) 0.04, (b) 0.07 and (c) 0.10 510 

4.2.1. Lag minimization in filtered Geocube results 511 

The lag between unfiltered and filtered data for Geocube 46 (Fig. 16) is consistent with the 512 

synthetic database results. The lag quantification results (Fig. 15b) were used to provide a 513 

correction value for the filtered Geocube results. The shift ratios used for this purpose with respect 514 
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to each filter and bandwidth ratio are tabulated in Table 3. To determine whether the results of 515 

lag correction using the mean correlations derived from the synthetic scenarios (Table 2) were 516 

acceptable, the filtered diagrams were shifted (using the mean line for GWMA and values 517 

between the mean and lower boundary for SMA) and different portions of the displacement 518 

diagrams for Geocubes 46 and 47 were examined. Some examples are shown in Fig. 19. The 519 

mean and standard deviation of the scatter around the trend (error distribution) were calculated 520 

by assuming a linear trend within the short periods of analysis (considered an approximation of 521 

the true displacement trend for the short time interval). These were also calculated for the filtered 522 

and shifted diagrams. The closer the mean and standard deviation of the filtered and shifted data 523 

are to that obtained from the linear trend, the better the performance of the lag correction based 524 

on the results from the synthetic scenarios. As an example, for the period from day 250 to 260, 525 

the GWMA resulted in a standard deviation of 0.001 to 0.0015 for bandwidth ratios from 0.04 to 526 

0.10, respectively; corresponding values for SMA to 0.0018 to 0.0021. This illustrates that shifted 527 

GWMA results are closer to the true (scatter-free) displacements because the standard deviations 528 

of scatter inferred by this filter are closer to the true scatter, although both have good agreement 529 

with the true scatter. The means of inferred scatter by both filters are also close enough to the 530 

mean of the true scatter (almost zero). The results show the statistical indices of scatter inferred 531 

from the filtered shifted displacement measurements closely agree with that considered to be true 532 

scatter, and therefore the filtered displacement measurements are corrected for lag. This 533 

suggests the correlations stated in Fig. 15b and Table 2 based on the synthetic scenarios are 534 

applicable to minimize the lag for the Geocube system at the Ten-mile landslide.  535 
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Table 3. Shift ratios used for lag minimization of Geocube 46 displacements 536 

Bandwidth ratio 
Shift ratio 

SMA GWMA 

0.04 -0.02 -0.007 

0.07 -0.035 -0.012 

0.10 -0.06 -0.018 

 537 

 538 
Fig. 19. Mean and standard deviation of scatter inferred by SMA and GWMA in comparison with true 539 

scatter in the displacement of Geocube 46 540 

 541 

5. Discussion 542 

Previous studies dedicated to landslide monitoring consistently adopt SMA for scatter 543 

minimization in displacement data. However, the adequacy of this filter and the effect of bandwidth 544 

selection were not well understood. Analyzes conducted on synthetic databases in this study 545 
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using a roughness factor (J2) demonstrate that at least 4% of the total observations should be fed 546 

into the filter to ensure fluctuations are sufficiently reduced.  547 

The results of this study show that SMA tends to considerably distort the underlying trend at a 548 

bandwidth ratio of 0.10 (Fig. 8 and 9), and its lagged response with respect to real-time monitoring 549 

is almost three times that of GWMA results. As a result, a bandwidth ratio between 0.04 and 0.07 550 

is suggested. However, we caution that the bandwidth should be selected with complete 551 

awareness that SMA is highly sensitive to bandwidth, and sensitivity analyses on bandwidth are 552 

recommended when defining an EWS. Corresponding observations were made during the 553 

analysis of displacement data from Geocubes installed on the Ten-mile landslide.  554 

Error calculations show that GWMA and S-G outperform SMA in both direct and indirect filtration 555 

and are more successful in preserving the true displacement trend. The near-zero lagged 556 

response of S-G makes it a notable candidate for developing an EWS. Nonetheless, its intrinsic 557 

shortcoming in handling peaks, leading to a pulsating effect, will pose challenges for its utilization. 558 

The bandwidth range used for SMA is also suggested to be applied with the S-G filter.  559 

GWMA results suggest a proper trade-off can be achieved between minimizing the lag time and 560 

scatter and avoiding the pulsating effect. Compared to SMA and S-G, GWMA is less sensitive to 561 

changes in the bandwidth. Analyses focused on the Geocube data also confirm that GWMA is 562 

capable of constraining the fluctuations in the velocity diagram while not attenuating variations in 563 

the displacement rate diagram. Moreover, the lag quantification chart proposed could reliably 564 

capture the required shift with a greater degree of confidence in comparison to SMA even at the 565 

largest bandwidth ratio studied here (0.10). The bandwidth for GWMA can therefore range from 566 

0.04 to 0.10. Moreover, we observed consistency between direct and indirect filtration results 567 

using GWMA but greater differences when using SMA or S-G results. This was especially the 568 

case in the early parts of the datasets and at some locations where outlier elimination was likely 569 

ineffective. 570 
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Filter and bandwidth selections should not be arbitrarily or purely empirical, as differences in 571 

outcomes can be substantial. An automated surveillance system for landslides demands stability 572 

in filter performance for a variety of circumstances, considering the ground can experience 573 

irregular sequences of acceleration and deceleration. The results here suggest practice moves 574 

away from the adoption of SMA due to the limitations discussed. S-G demonstrates some 575 

inconsistent or erratic performance for certain displacement trends, which is detrimental although 576 

overall the error is smaller than for SMA. On the balance of its strengths and limitations as 577 

evaluated in this study, GWMA appears to be the more robust approach. 578 

6. Conclusions 579 

This study evaluated the suitability of SMA, GWMA, and S-G filters for scatter reduction of 580 

datasets targeted for use in an EWS. A total of different 12 scenarios with harmonic and 581 

instantaneous changes were synthetically generated and random variations with Gaussian 582 

distribution were then added to produce unfiltered results. The three filters considered were then 583 

each applied with different bandwidths and the error computed. These filters were also 584 

successfully applied to the records from two Geocubes installed on the Ten-mile landslide. The 585 

results led to the following conclusions: 586 

 When used for direct filtration of harmonic scenarios, the error resulting from the GWMA 587 

approach is approximately one-third that of the SMA approach. The S-G approach results 588 

in near-zero error regardless of the values of the bandwidth ratio and n/t. When used for 589 

direct filtration of instantaneous scenarios, the superiority of S-G is no longer unconditional 590 

and depends on the bandwidth ratio; this reflects the fact that S-G cannot appropriately 591 

handle peaks in the velocity diagram. 592 

 When used for indirect filtration of harmonic scenarios, S-G again outperforms the other 593 

methods. The error associated with GWMA is marginally less than for SMA. These 594 
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observations are not valid when the filters are applied to instantaneous scenarios, as 595 

GWMA results in less error than S-G at bandwidth ratios above 0.03.  596 

 Detailed investigations with scenarios 11 and 12 demonstrate that SMA distorts the 597 

underlying trend by displacing and sometimes neglecting peak(s), while GWMA and S-G 598 

tend to preserve them somewhat similarly. 599 

 Due to the presence of negative weights in the S-G kernel, some artificial smaller troughs 600 

and peaks are created after major peaks. This phenomenon, referred to herein as a 601 

pulsating effect, results in an unfavorable performance of S-G on the velocity and 602 

displacement diagrams, especially in the presence of outliers. 603 

 Investigations on the roughness factor reveal the bandwidth ratio should be at least 0.04. 604 

Taking this into account, GWMA seems to be the most reasonable option as the related 605 

uncertainties are much smaller than for S-G and the error is acceptable and less than for 606 

SMA.  607 

 A consequence of using asymmetric windows in the filtering process is a lag in the SMA 608 

and GWMA results that increases with increasing bandwidth ratio. Lag quantification 609 

suggests a correlation between the needed shift and bandwidth ratio that can be used to 610 

eliminate the lag. SMA requires approximately three times the shift of GWMA on average. 611 

 Application of these filters to displacement data reported by Geocubes shows SMA and 612 

S-G are unable to properly handle data points at the beginning of the dataset (i.e., near 613 

the boundary) in indirect filtration of the velocity diagram. Moreover, SMA and S-G are 614 

inclined to respectively underestimate and overestimate peaks and fluctuations in the 615 

velocity diagram. Overall, GWMA provides the most reliable filtered values for velocity with 616 

no distinct difference between direct and indirect filtration. 617 

Appendix A 618 
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Consider a polynomial of degree k that is intended to be fitted over an odd number of points 619 

denoted as z. The weighting coefficients of the Savitzky-Golay filter can be extracted from the first 620 

row of matrix C (Eq. 7): 621 

 𝐶 = (𝐽்𝐽)ିଵ𝐽், (7) 622 

where T operator is the transpose of a matrix and J is the Vandermonde matrix, with elements at 623 

the ith row and jth column (1≤i≤z and 1≤j≤k+1) that can be achieved as follows: 624 

 𝐽௜௝ = 𝑚௜
௝ିଵ, (8) 625 

where m is the local index of points (- (z+1) 2⁄ ≤m≤ (z+1) 2⁄ ). As an example, the kernel of an S-G 626 

filter that fits a quadratic polynomial (k=2) over seven points (z=7) is attained here. In the first 627 

step, J is set up as follows: 628 

 𝐽 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 (−3)ଵ (−3)ଶ

1 (−2)ଵ (−2)ଶ

1 (−1)ଵ (−1)ଶ

1 (0)ଵ (0)ଶ

1 (1)ଵ (1)ଶ

1 (2)ଵ (2)ଶ

1 (3)ଵ (3)ଶ ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

. (9) 629 

Then, using Eq. 1, matrix C is computed as Eq. 10: 630 

 𝐶 = ൥
−0.0952 0.1429 0.2857 0.3333 0.2857 0.1429 −0.0952
−0.1070 −0.0714 −0.0357 0 0.0357 0.0714 0.1071
−0.0595 0 −0.0357 −0.0476 −0.0357 0 0.0595

൩. (10) 631 

The second and third rows of C are the coefficients to find the filtered values’ first and second 632 

derivations at the point of interest, respectively. 633 

Data availability 634 

The synthetic database can be generated through the comprehensive steps provided here. The 635 

Geocube measurements of the Ten-mile landslide displacement are not publicly available. 636 
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