

Evaluation of filtering methods for use on high-frequency measurements of landslide displacements

Sohrab Sharifi¹, Michael T. Hendry¹, Renato Macciotta¹, Trevor Evans²

¹*Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada*

²Canadian National Railway, Kamloops, BC, Canada

Abstract

9 Displacement monitoring is a critical control for risks associated with potentially sudden slope
10 failures. Instrument measurements are, however, obscured by the presence of scatter. Data
11 filtering methods aim to reduce the scatter and therefore enhance the performance of early
12 warning systems (EWSs). The effectiveness of EWSs depends on the lag time between the onset
13 of acceleration and its detection by the monitoring system, such that a timely warning is issued
14 for implementation of consequence mitigation strategies. This paper evaluates the performance
15 of three filtering methods (simple moving average, Gaussian-weighted moving average, and
16 Savitzky-Golay), and considers their comparative advantages and disadvantages. The evaluation
17 utilized six levels of randomly generated scatter on synthetic data as well as high-frequency global
18 navigation satellite system (GNSS) displacement measurements at the Ten-mile landslide in
19 British Columbia, Canada. The simple moving average method exhibited significant
20 disadvantages compared to the Gaussian-weighted moving average and Savitzky-Golay
21 approaches. This paper presents a framework to evaluate the adequacy of different algorithms
22 for minimizing monitoring data scatter.

23 **Keywords:** Landslide; Early Warning System; Scatter; Filter; Gaussian-Weighted Moving
24 Average, Savitzky-Golay

26 **1. Introduction**

27 Landslides are associated with significant losses in terms of mortality and financial consequences
28 in countries all over the world. In Canada, landslides have cost Canadians approximately \$10
29 billion since 1841 (Guthrie, 2013) and more than \$200 million annually (Clague and Bobrowsky,
30 2010). Essential infrastructure, such as railways and roads that play vital roles in the Canadian
31 economy, can be exposed to damage if it transverses landslide-prone areas. Attempting to
32 completely prevent landslides is typically infeasible, as stabilizing options and realignment may
33 be cost-prohibitive or lead to environmental damage. This accentuates the significance of
34 adopting strategies that require constant monitoring to mitigate the consequences of sudden
35 landslide collapses (Vaziri et al., 2010; Maciotta and Hendry, 2021).

36 In recent years, detailed studies have addressed the use of early warning systems (EWSs) as a
37 robust approach to landslide risk management (Intrieri et al., 2012; Thiebes et al., 2014; Atzeni et
38 al., 2015; Hongtao, 2020). The United Nations defines an EWS as “a chain of capacities to provide
39 adequate warning of imminent failure, such that the community and authorities can act
40 accordingly to minimize the consequences associated with failure” (UNISDR, 2009). Although an
41 EWS comprises various components acting interactively, the core of its performance relies on its
42 ability to detect the magnitude and rate of landslide displacement (Intrieri et al., 2012). Given that
43 the timely response of an EWS determines its effectiveness, an accurate sense of landslide
44 velocity and acceleration is necessary. Monitoring instruments able to provide real-time or near
45 real-time readings such as global navigation satellite systems (GNSSs) and some remote sensing
46 techniques are, satisfactory for this purpose (Yin et al., 2010; Tofani et al., 2013; Benoit et al.,
47 2015; Maciotta et al., 2016; Casagli et al., 2017; Chae et al., 2017; Rodriguez et al., 2017, 2018,
48 2020; Huntley et al., 2017; Intrieri et al., 2018; Journault et al., 2018; Carlà et al., 2019; Deane,
49 2020; Woods et al., 2020, 2021). These instruments can record the displacement of locations at
50 the surface of the landslide with high temporal resolution, which allows the monitoring system to
51 track movements on the order of a few millimeters per year. In practice, the results are usually

52 obscured by the presence of scatter, also known as noise, and outliers that affect the quality of
53 observations. These unfavorable interferences do not reflect the true behavior of the ground
54 motion and stem from sources such as the external environment and the quality of the
55 communication signals and wave propagation in the case of remote sensing techniques (Wang,
56 2011; Carlà et al., 2017b).

57 Scatter can be defined as measurement data that are distributed around the “true” displacement
58 trend, such that the average difference between the scatter and the displacement trend is zero
59 and has a finite standard deviation. Scatter in displacement measurements can significantly
60 impact the evaluation of slope movements performed on unfiltered data and decrease the
61 reliability of an EWS. This can lead to false warnings of slope acceleration or unacceptable time
62 lags between the onset of slope failure and its identification, and therefore a loss of credibility for
63 an EWS (Lacasse and Nadim, 2009). As a result, scatter should be reduced as much as possible
64 without removing the true slope displacement trends. The application of algorithms that work as
65 filters aims to minimize the amplitude of measured scatter around the displacement trend.

66 Several approaches have been proposed to filter displacement measurements based on either
67 the frequency or time domain. Fourier and wavelet transformations aim to find the frequency
68 characteristics of the data, then attenuate or amplify certain frequencies. These approaches are
69 discussed in Karl (1989), who suggests they are generally unsuitable for non-stationary data such
70 as monitoring data time series. Filters that work on the time domain can be classified as recursive,
71 kernel, or regression filters. Recursive filters, such as the exponential filtering function, calculate
72 the filtered value at a given time based on the previous filtered value. Kernel filters, which include
73 simple moving average (SMA) and Gaussian-weighted moving average (GWMA), calculate the
74 filtered values as the weighted average of neighbouring measurements. Of these two kernel
75 filters, SMA is frequently used in the literature largely due to its simplicity (Dick et al., 2015;
76 Macchiotta et al., 2016, 2017b; Carlà et al., 2017a,b, 2018, 2019; Bozzano et al., 2018; Intrieri et
77 al., 2018; Kothari and Momayez, 2018; Chen and Jiang, 2020; Zhou et al., 2020; Deng et al.,

78 2021; Desrues et al., 2021; Grebby et al., 2021; Zhang et al., 2021a,b). Regression filters
79 calculate the filtered values by means of regression analysis on unfiltered values (e.g., Savitzky-
80 Golay, or S-G) (Savitzky and Golay, 1964; William, 1979; Cleveland, 1981; Cleveland and Devlin,
81 1988; Reid et al., 2021). Carlà et al., (2017b) studied both SMA and exponential filtering on
82 multiple failed landslide cases and concluded the latter is inferior in terms of accuracy of failure
83 time prediction. On the other hand, Carri et al. (2021) cautioned the designers and users of EWSs
84 against the use of SMA when rapid movements are expected. However, published applications
85 of filters other than SMA for landslide monitoring are scarce, and studies dedicated to comparing
86 the functionality of other filters to that of SMA are limited.

87 This paper presents an approach to detect and remove outliers, evaluates the performance of
88 three filters (SMA, GWMA, and S-G), and assesses their suitability to be utilized in an EWS. We
89 evaluated three filters against the following criteria: 1) scatter is minimized, 2) true underlying
90 displacement trends are kept with as little modification as possible, and 3) filtered displacement
91 trends detect acceleration episodes in a timely manner. Moreover, the paper investigates the
92 significance of the time lag between a landslide acceleration event and its identification by a
93 monitoring system for the three filters evaluated.

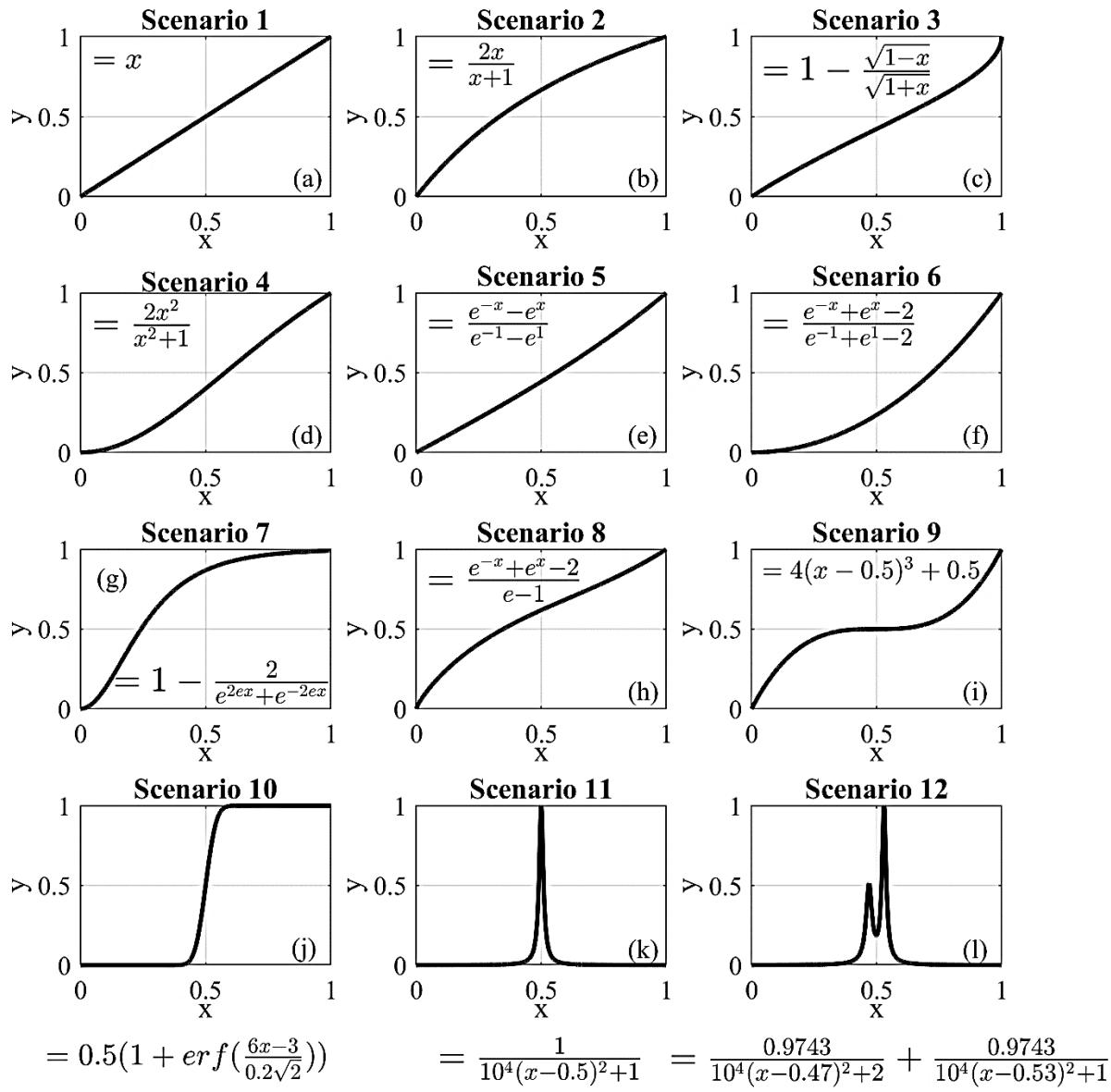
94 **2. Methodology**

95 **2.1. Synthetic Data Generation**

96 A numerical analysis on a synthetic dataset approach was adopted, which consists of synthetic
97 dataset scenarios generated to resemble typical landslide displacement measurements, including
98 acceleration and deceleration periods. These scenarios are idealizations based on observations
99 of typical landslide displacements published in the literature (Leroueil, 2001; Intrieri et al., 2012;
100 Macchiotta et al., 2016; Schafer, 2016; Carlà et al., 2017a; Scoppettuolo et al., 2020). A total of 12
101 dimensionless scenarios were built, with all data between the coordinates $x=0$, $y=0$ and $x=1$, $y=1$.
102 The x value represents time, and normalization between 0 and 1 allows for extrapolation of the

103 findings for variable displacement measurement frequencies (e.g., the full range of x could
104 represent a week, a month, a year). The analysis of synthetic data focuses on the ability of
105 different algorithms to minimize scatter and identify changes in measured trends; therefore, y
106 represents any of the displacement measurement metrics of interest, e.g., displacement,
107 cumulative displacement, velocity, inverse velocity, etc. Mathematical equations and graphical
108 illustrations of the 12 scenarios are shown in Fig. 1.

109 Nine of the scenarios are referred to as harmonic scenarios, which are characterized by gradual
110 changes in the trend of parameter y . The remaining three scenarios show sudden variations at or
111 near $x=0.5$, and are referred to as instantaneous scenarios. Considering the discrete nature of
112 instrument measurements, and to account for different ranges in measurement frequencies, each
113 scenario was generated several times, each time with a different number of points (Table 1).

**Fig. 1** Configuration of all synthetically generated scenarios

117 **Table 1** Number of points used to generate scenarios and examples of their corresponding time spans
118 represented by the range of x from 0 to 1 if the measurement frequency is known (1-h and 1-m readings
119 for illustrative purposes).

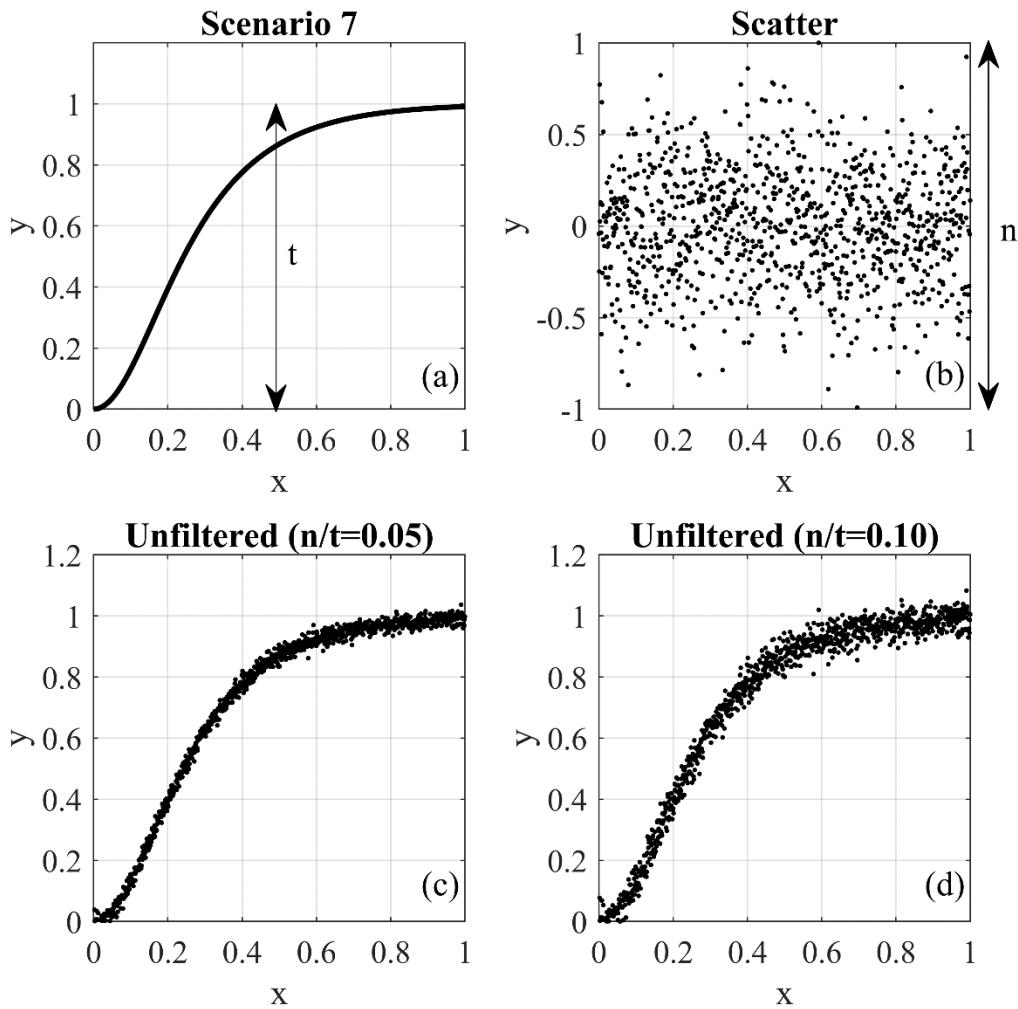
Number of points	Example monitoring frequency			
	1-h readings		1-m readings	
1000	41.7	Days	16.7	Hours
3000	4.1	Months	2.1	Days
9000	1.0	Years	6.3	Days

20000	2.3	Years	2.0	Weeks
40000	4.6	Years	4.0	Weeks
86000	9.8	Years	2.0	Months
250000			5.8	Months
500000			0.9	Year
750000			1.4	Years
1.00E+6			1.9	Years

120

121 The next step was adding random scatter to the scenarios to represent unfiltered displacement
 122 measurements. Macciotta et al. (2016) show the scatter in displacement monitoring for a GNSS
 123 used in their analyses fitted a Gaussian distribution. We validated the scatter distribution fit
 124 approximates a Gaussian distribution for the displacement data scatter of the case study in this
 125 paper. This assumption, however, has an underpinning theoretical base established by the central
 126 limit theorem in probability theory. It states that mathematical summation of independent variables
 127 (such as scatter) goes toward a Gaussian distribution (Smith, 2013). As a result, the scatter was
 128 randomly produced from a normal distribution centred at zero, with extreme values truncated
 129 between -1 and 1 and a standard deviation of 0.20 . Random generation of the scatter followed
 130 the techniques outlined in Clifford (1994) known as the acceptance-rejection method, which
 131 generates scatter values through a series of iterations until the algorithm generates the initial
 132 normal distribution. The amplitude of the scatter around the trend in parameter y was defined for
 133 each scenario by scaling the randomly generated scatter. This allowed for investigation of the
 134 effect of different scatter magnitudes on the performance of the filters. Scaling was done by
 135 defining the ratio n/t , which is the ratio of scatter amplitude (maximum deviation around the trend,
 136 termed n) to the range of values of the trend (t) in each scenario. Six levels of n/t ($0.001, 0.005,$
 137 $0.010, 0.050, 0.100$, and 0.150) were considered when performing the analysis to cover a range
 138 of possible levels of scatter in unfiltered measurements. Fig. 2 shows two samples of synthetic

139 unfiltered scenarios that are the result of superimposing scatter with n/t values of 0.05 and 0.10,
 140 respectively, on scenario No. 7.



141

142 **Fig. 2** The procedure of generating a scenario with scatter: (a) generated scenario trend, (b) randomly
 143 generated scatter, and two scenarios with scatter based on n/t values of (c) 0.05 and (d) 0.10

144 2.2 Data Processing Approaches

145 2.2.1. Simple moving average

146 SMA is a well-known method for scatter reduction that attempts to reduce scatter by calculating
 147 the arithmetic mean of neighbouring points' values. A constant-length interval (window or
 148 bandwidth) is used for the calculation for each point; this is also termed a "running" average.
 149 Equation 1 is the formulation of this method, which was used by Maciotta et al. (2016) to analyze
 150 GNSS data scatter:

151

$$\hat{y}_i = \frac{\sum_{j=\frac{i-p}{2}}^{\frac{i+p-1}{2}} y_j}{p}, \quad (1)$$

152 where \hat{y}_i is the filtered value, y_j is the unfiltered value, and p is the window length. The window
 153 length is constant across the dataset except for regions near the boundaries where fewer points
 154 are available. Accordingly, p will be adjusted to the number of available points that are indeed
 155 less than the value set by the user. This will cause variation in the effectiveness of the method at
 156 the extremes, which needs to be considered when evaluating the results of this approach.

157 *2.2.2. Gaussian-weighted moving average*

158 Varying the weights of the measurements within the calculation window in SMA can be used to
 159 develop different filtering methods. The largest weight can be given to the measurement at the
 160 time for which the calculation is being done, with weights decreasing for measurements farther
 161 away in time. One simple weighting function that can be adopted is the Gaussian (normal)
 162 distribution. Eq. 2 is the formulation of the Gaussian-weighted moving average (GWMA):

163

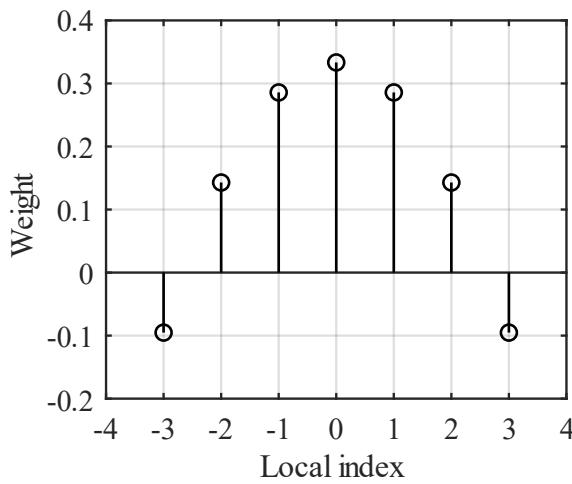
$$\hat{y}_i = \sum_{j=\frac{i-p}{2}}^{\frac{i+p-1}{2}} w_j y_j, \quad (2)$$

164 where w_j is the weight coefficient based on the Gaussian distribution and the other terms follow
 165 the same definition as per SMA.

166 *2.2.3. Savitzky-Golay*

167 S-G fits a low-degree polynomial equation to the unfiltered measurements within a window and
 168 defines the filtered measurements using the fitted curve (Schafer, 2011). Although this procedure
 169 seems dissimilar from the weighted averaging as discussed for GWMA, its function can be
 170 transformed into a kernel concept using the least-squares method if the data points are evenly
 171 spaced. The detailed procedure is presented in Appendix A. Fig. 3 shows the weight kernel over
 172 a window of seven points attained by fitting a quadratic polynomial. An immediate observation is

173 that some points are given negative weights. If points are not evenly spaced, the weighting kernel
174 cannot be used and a local regression analysis should be periodically conducted for each point.
175 Such filtering is known as locally estimated scatterplot smoothing (LOESS). This decreases the
176 computational efficiency of filter performance and exponentially increases the execution time.

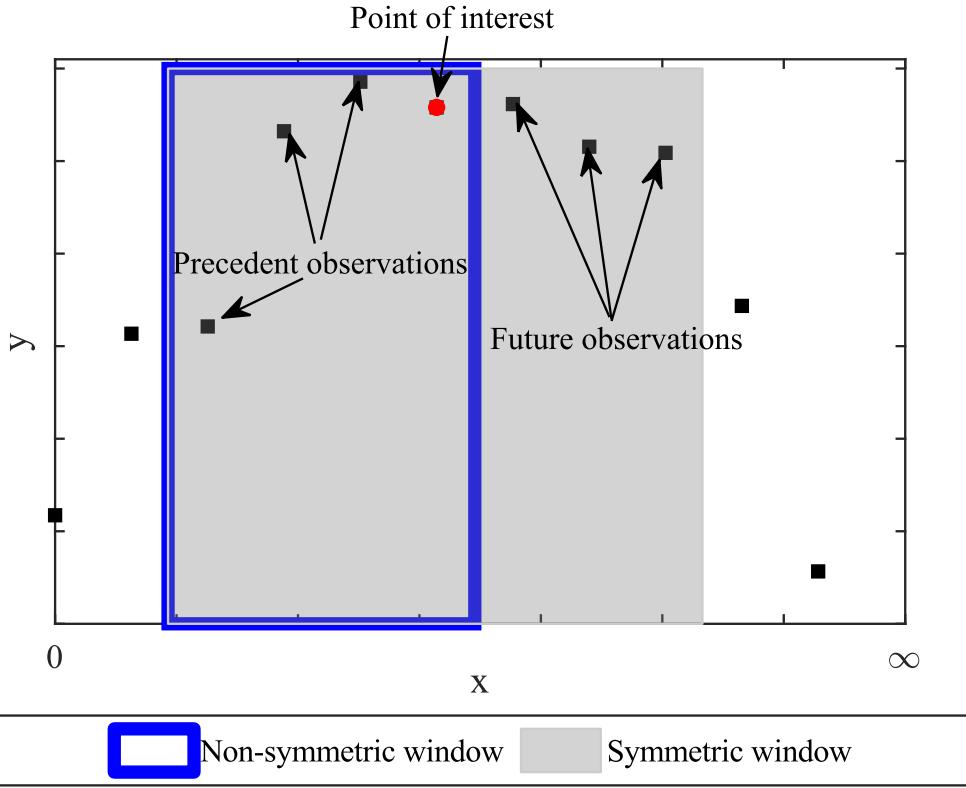


177

178 *Fig. 3 The weighting kernel of the Savitzky-Golay filter for seven points*

179 **2.3 Evaluation of Processing Algorithms**

180 The synthetic monitoring data and data from the case studies were filtered using SMA, GWMA,
181 and S-G techniques. The filters were applied with different lengths of moving windows, from 0.01
182 (1%) to 0.1 (10%) of all monitoring points, referred to as the bandwidth ratio. These limits for the
183 bandwidth ratio were selected based on literature reports for SMA. In the filtration process, we
184 only used the points prior to the time for which the calculation is being made (point of interest,
185 Fig. 4). This is to reflect the reality of displacement monitoring information as applied to EWSs.
186 To this end, filters used the first half of their kernels, but the weights were multiplied by 2 in
187 comparison to a symmetric window in order to keep the sum of weights equal to 1.



188
189 **Fig. 4.** Concept of symmetric and non-symmetric window types in the filtration process

190 All of these filters require the definition of a bandwidth. A roughness factor was defined to aid in
191 the evaluation of the effect of bandwidth in reducing scatter. This factor is defined as:

192

$$J_2 = \frac{\int (y'')^2 dx}{R_a}, \quad (3)$$

193

$$R_a = \int (y'')^2 dx, \quad (4)$$

194 where J_2 is the roughness factor, \hat{y}'' is the second derivative of filtered measurements, R_a is the
195 absolute roughness computed by Eq. 4, and y'' is the second derivative of unfiltered
196 measurements. The second derivative measures how much the slope of the line connecting two
197 consecutive points changes, which itself is an indication of fluctuation. The greater this second
198 derivative, the greater the variation. J_2 was normalized to the overall curvature of the unfiltered
199 scenario to determine the relative scatter reduction after the application of a filter, eliminating any
200 roughness associated with the real trend in the scenario. In limit states, a value of 1 means that

201 fluctuations are similar to the unfiltered dataset, and therefore no improvement has been
202 achieved; a value of 0 suggests the slope of a scenario remains unchanged and indicates a linear
203 trend. Because all of the scenarios, except the first, include trends showing concavity or convexity,
204 a residual value for the roughness factor would be expected in the lowest limit state, meaning that
205 a value of 0 is not necessarily a goal. J_2 was used to infer the minimum value of bandwidth ratio
206 after which no significant change in the fluctuation of results is achieved. Considering the second
207 power in the formulation of J_2 , all observations are valid if the scenarios are mirrored (when they
208 vary from 1 to 0, instead of 0 to 1).

209 The filters are not expected to remove all scatter, and the error attributed to the residual scatter
210 can be calculated using the root mean square error (RMSE). Given that velocity values are usually
211 used as thresholds in an EWS, one concern is whether the filter should be applied to displacement
212 values or to velocity values derived from unfiltered displacements. To address this issue, two
213 different approaches to filtering were investigated: direct and indirect. As a result, two different
214 approaches using the RMSE were also utilized here.

215 *2.3.1. Direct scatter filtration*

216 Direct filtration means the filter is applied to the diagram of interest. If the filtered displacement
217 values are the goal, and the filter is applied to unfiltered displacement values, then the filtering
218 process is called direct filtration. The same concept applies when velocity values are derived
219 using unfiltered displacements and the filters are then directly applied to the velocity values. In
220 this approach, the RMSE follows Eq. 5:

$$221 \quad \text{RMSEd} = \sqrt{\frac{1}{m} \sum_{i=1}^m (\hat{y}_i - y_i)^2}, \quad (5)$$

222 where RMSEd is the measurement of error in direct filtration, y_i is the value of the true trend (for
223 the synthetic scenario), \hat{y}_i is the filtered value, and m is the total number of points. This approach

224 is often used in the literature (e.g., Macciotta et al., 2016; Carlà et al., 2017a,b, 2018, 2019; Intrieri
225 et al., 2018).

226 *2.3.2. Indirect scatter filtration*

227 Some EWSs can apply the filter to the displacements but use velocity trends as the metric for
228 evaluation. In this case, the filtered velocity values will be computed using the filtered
229 displacements. Indirect filtration indicates the diagram of interest is the first derivative of the
230 diagram to which the filter is applied. The RMSE in this case is defined as:

231
$$RMSEi = \sqrt{\frac{1}{m} \sum_{i=1}^m (\hat{y}'_i - y'_i)^2}, \quad (6)$$

232 where $RMSEi$ is the measurement of error in indirect filtration, y'_i is the first derivative of the true
233 trend, \hat{y}'_i is the first derivative of filtered data (derived velocity after the filter is applied to the
234 displacements), and m is the total number of points. Similar to J_2 , all observations are valid for
235 the mirrored scenarios of those presented in Fig. 1. This is a consequence of using the second
236 power in the definition of $RMSEi$ and $RMSEd$.

237 **2.4 Lag Quantification**

238 Only antecedent measurements are fed into the filters, which is expected to result in a lag between
239 the true trend and its identification by the filters. This lag means the calculated value of velocity
240 or displacement occurred sometime in the past. Consequently, reducing this lag means less time
241 is lost with respect to providing an early warning. To quantify the induced lag, the filtered diagrams
242 of all scenarios at all n/t ratios and bandwidth ratio values were shifted backwards a number of
243 points equivalent to 0.001 (0.1%) to 0.1 (10%) of all generated points. We refer to this as the shift
244 ratio in the rest of this paper. This shift of filtered diagrams is expected to increase their similarity
245 with the true trend until the best correlation is achieved. The R^2 test was used to determine how
246 well the shifted and filtered results replicate the underlying trend.

247 **2.5. Geocubes Differential GNSS System**

248 A Geocubes system is a network of differential global navigation satellite system (GNSS) units
249 that works with a single frequency (1572.42 MHz), making it cost-effective (Dorberstein, 2011;
250 Benoit et al., 2014; Rodriguez et al., 2018). Geocubes communicate with each other through radio
251 frequency, and a reference unit outside the boundaries of the landslide is assumed as static for
252 differential correction to increase the poor accuracy associated with single frequency GNSSs
253 (Benoit et al., 2014; Rodriguez et al., 2018). The ability of this system to achieve real-time
254 positioning, remote data collection, and processing makes it a suitable candidate for incorporation
255 into an EWS. As a result, Geocube data are used in this study to evaluate the performance of the
256 three mentioned filters.

257 **2.6. Outlier Detection**

258 Outliers are defined herein as abnormal inconsistencies (e.g., displacement directions,
259 magnitudes) when compared to the majority of observations in a random sampling of data (Zimek
260 and Filzmoser, 2018). Techniques for outlier detection have been proposed based on the
261 statistical characteristics of datasets. One common example is the Z-score method, which
262 calculates the mean and standard deviation of data within a defined interval and identifies outlier
263 data as those beyond three standard deviations from the mean (Rousseeuw and Hubert, 2011).
264 A limitation of this kind of approach is the sensitivity of the mean and standard deviation to the
265 outlier data points, which has led to the development of other methods that use other indices such
266 as the median (Salgado et al., 2016). One such technique that was adopted in this study is the
267 Hampel filter (Hampel, 1971). In this method, the median of the displacement measurements
268 within a running bandwidth is calculated and data outside a defined threshold from the median
269 are identified as outliers. The threshold is defined as a constant (threshold factor) multiplied by
270 the median absolute deviation. An asymmetric window with a bandwidth ratio of 0.004 (0.4%) and
271 a threshold factor of three were adopted following previous studies (Davies and Gather, 1993;

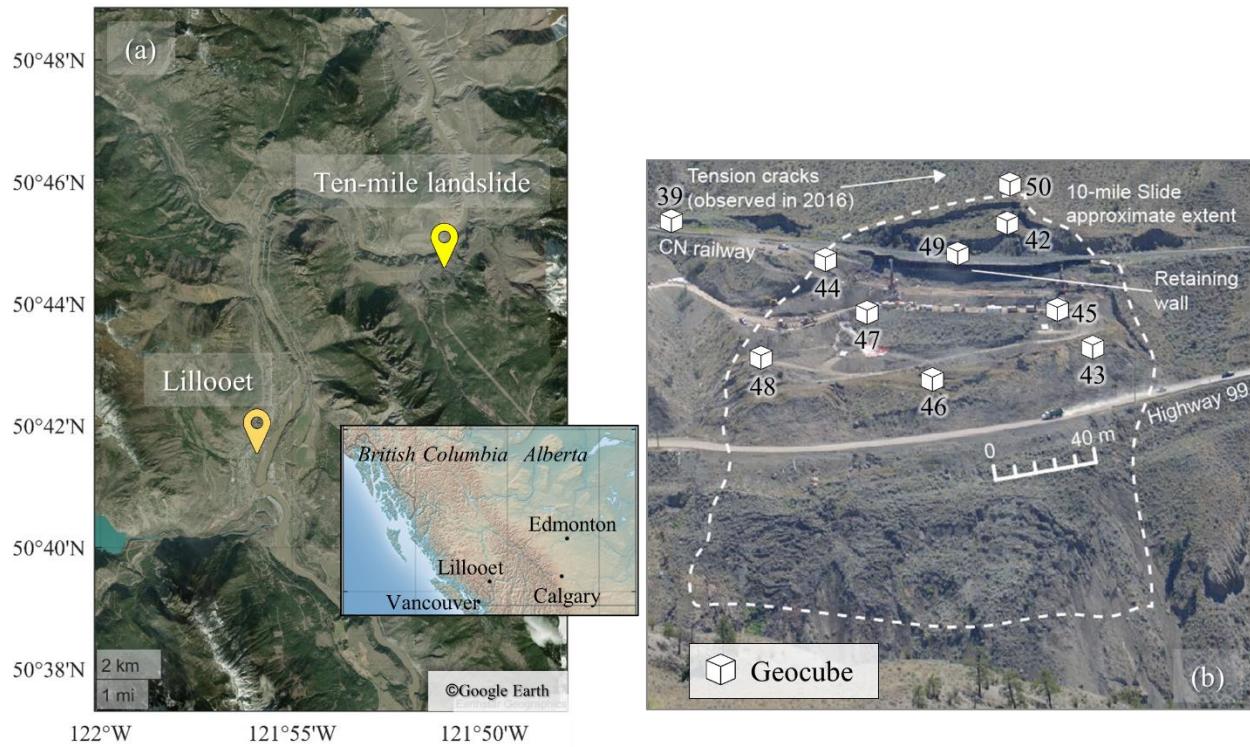
272 Pearson, 2002; Liu et al., 2004; Yao et al., 2019). The data identified as outliers were then
273 removed from the dataset.

274 **3. Study Site – Ten-mile Landslide**

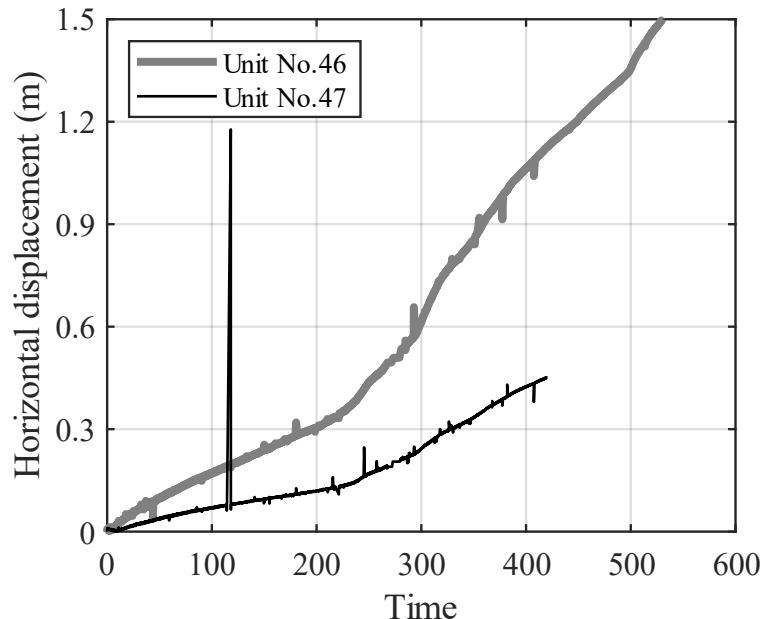
275 The Ten-mile landslide is located in southwestern British Columbia (BC), in the Fraser River
276 Valley north of Lillooet (Fig. 5a). It is a reactivated portion of a post-glacial earthflow (Bovis, 1985)
277 that was first recognized in the 1970s. The landslide velocity has increased from an average of 1
278 mm/day in 2006 to 6 mm/day in 2016, with a maximum measured velocity of 10 mm/day (Gaib et
279 al., 2012; BGC Engineering Inc., 2016). The movement of this landslide impacts the integrity of
280 BC Highway 99 and a section of railway operated by Canadian National Railway (CN) (Carlà et
281 al., 2018), with most movement limited to the volume downslope from the railway due to the
282 installation of a retaining wall (Macciotta et al., 2017a). Despite the stabilization work done to date,
283 the uppermost tension crack has retrogressed approximately 200 m in 45 years and is now
284 situated 60 m upslope of the railway track (Macciotta et al., 2017b). The landslide lateral extents
285 have not expanded since 1981 according to the aerial photographs Macciotta et al., 2017b). The
286 Ten-mile landslide is currently approximately 200 m wide, 140 m high, and has a volume of 0.75
287 to 1 million m³, moving towards the Fraser River on a continuous rupture surface with a dip of
288 about 22 to 24°, which is sub-parallel to the ground surface (Rodriguez et al., 2017; Donati et al.,
289 2020). The elevation of the shear surface and mechanism of the landslide have been inferred
290 from the readings of multiple slope inclinometers installed in 2015 (BGC Engineering Inc., 2015).
291 The bedrock in this region consists of volcanic rocks, such as andesite, dacite, and basalt, and is
292 overlain by Quaternary deposits (Donati et al., 2020; Carlà et al., 2018; Macciotta et al., 2017a).
293 The thickness of the landslide varies between 20 and 40 m and the ground profile from the surface
294 to depth comprises medium to high plastic clays and silts overlying colluvium material and glacial
295 deposits, overlying bedrock (BGC Engineering Inc., 2015). The stratigraphy of the sedimented

296 soils in the landslide area notably varies from one borehole to another and reflects the complex
297 stratigraphy of the earthflow.

298 A total of 11 Geocubes were installed at the Ten-mile landslide in 2016. Fig. 5b is a front view of
299 the landslide showing the locations of the Geocube units. Units 44 and 50 are installed near the
300 uppermost tension crack identified as the current landslide backscarp, unit 69 is 30 m above the
301 backscarp, and unit 39 is used as the reference point. Please note that unit 69 is used as the fixed
302 Geocube, and is not shown in Fig. 5b. The other units are located within the boundaries of the
303 landslide, with a maximum distance between units of 310 m (Rodriguez et al., 2018). The time
304 step between every two consecutive measurements is 60 s. Fig. 6 shows the displacements of
305 units 46 and 47, which were the largest in comparison to other Geocubes.



306
307 **Fig. 5** (a) Location of the Ten-mile landslide (© Google Earth) and (b) front view of the Ten-mile landslide
308 and distribution of Geocubes on its surface (Rodriguez et al., 2018; Macciotta et al., 2017b)

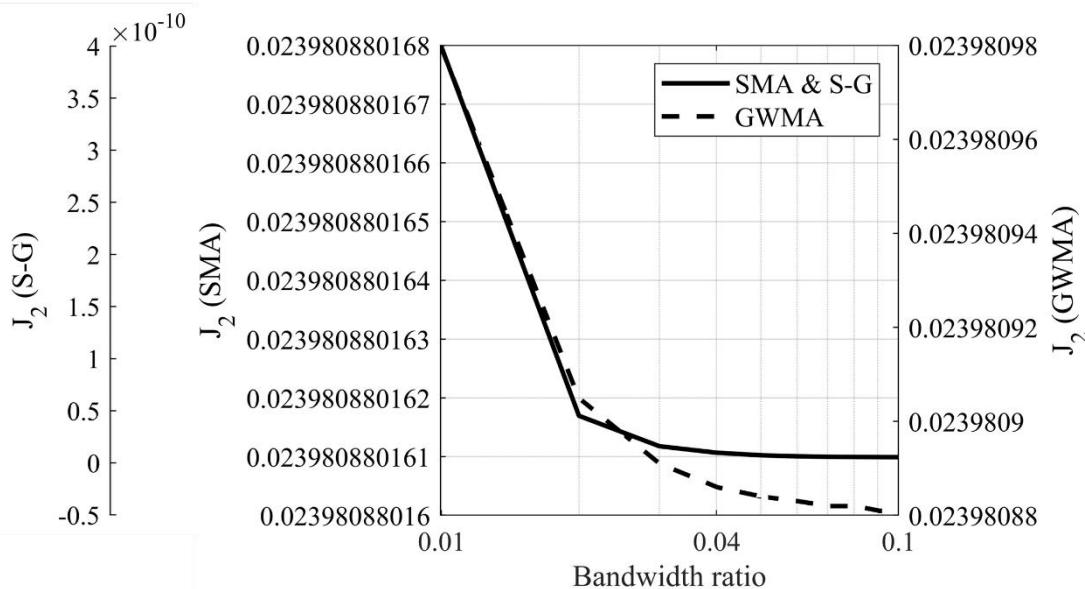


309
310 **Fig. 6** Cumulative horizontal displacement of Geocube units No. 46 and 47

311 **4. Results**

312 **4.1. Synthetic Analysis**

313 Fig. 7 shows the roughness value (J_2) of scenario 6 for SMA, GWMA, and S-G on a semi-
 314 logarithmic scale. This figure illustrates how, regardless of the n/t ratio, J_2 substantially decreases
 315 as the bandwidth ratio increases to 0.01 and then asymptotically approaches a final value. This
 316 means that increasing the bandwidth ratio drastically reduces scatter; however, its effectiveness
 317 is restricted as the bandwidth ratio increases above 0.01. This observation was consistent for
 318 other scenarios. J_2 values (including scenario 6 in Fig. 7) indicate that J_2 approaches its minimum
 319 at bandwidth ratio values of 0.03 to 0.04, regardless of the filter selected.



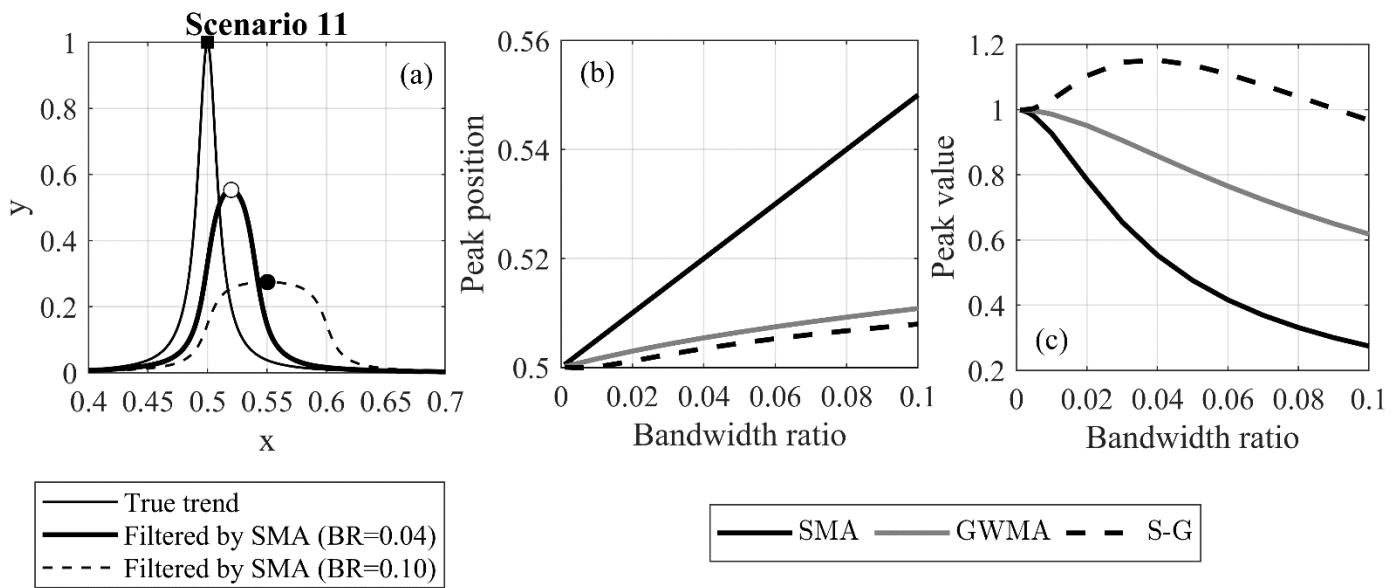
320

321 **Fig. 7** Variation of roughness factor for scenario 6 with respect to the applied filter on a semi-log scale

322 **4.1.1. Effect of filters on trend distortion**

323 Scenarios 11 and 12 were first analyzed to evaluate the degree to which the trend was preserved
 324 by these filters, as peaks made it easier for visualization. Fig. 8**Error! Reference source not**
 325 **found.**a shows the true trend of scenario 11 along with two SMA-filtered scenarios at bandwidth
 326 ratios of 0.04 and 0.10, respectively. This figure shows that, as the SMA filter bandwidth
 327 increases, the peak in measurements is identified at a later time than the true trend ($x=0.5$) and
 328 the magnitude of the peak is reduced (more than 70% reduction at a bandwidth ratio of 0.10).
 329 Furthermore, as the bandwidth ratio increases, the “instantaneous” nature of the peak is lost to a
 330 more transitional variation. This highlights a disadvantage of SMA when handling sudden changes
 331 in data trends. The calculated x value of the peak in scenario 11 is plotted for different bandwidth
 332 ratios and for all three filters in Fig. 8**Error! Reference source not found.**b. This figure shows
 333 the time at which the peak is identified lags as the bandwidth ratio increases for all filters; however,
 334 GWMA and S-G identify the peak with a much smaller lag, independent of the n/t ratio. As an
 335 example, for a year of monitoring data at a frequency of 30 s and bandwidth ratio of 0.10, SMA,
 336 GWMA, and S-G predict the peak point approximately 17, 3.5, and 2.7 days after the real peak,
 337 respectively. This lag can be attributed to the utilization of an asymmetric window, which leads to

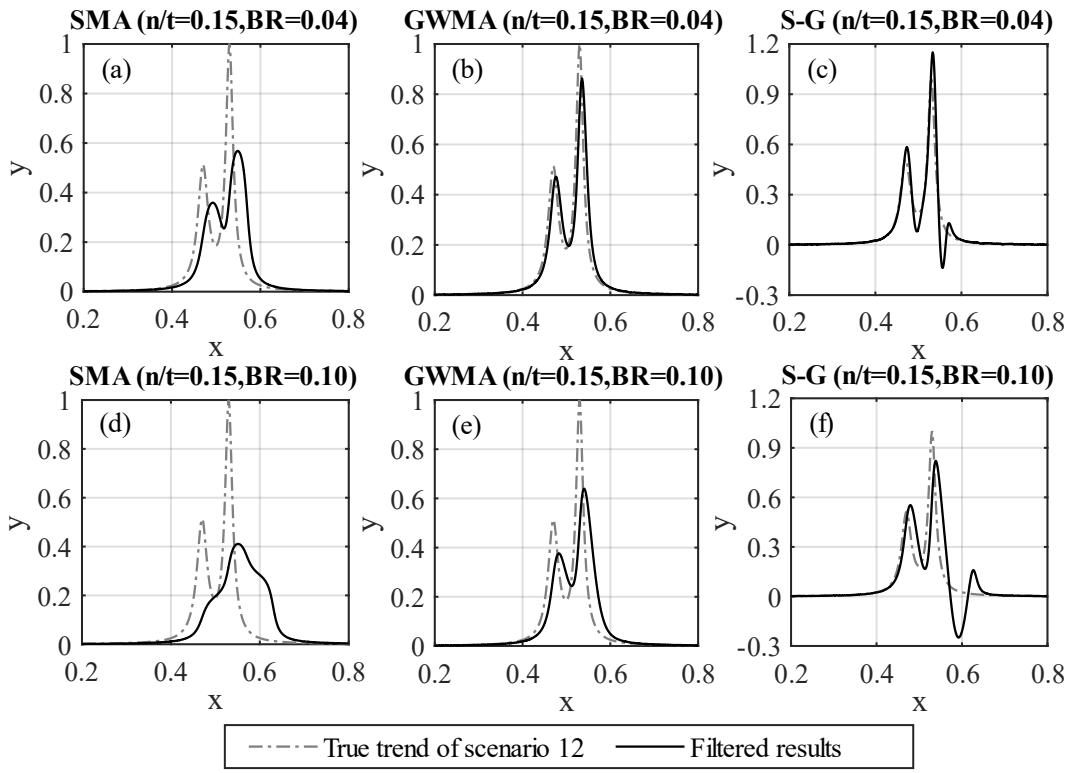
338 a lagged response of the filter. As more points are included in the filtering procedure (increasing
 339 bandwidth ratio), this lag increases because the averaging process is sensitive to window type.
 340 The degree of sensitivity, however, depends on the filter. Fig. 8**Error! Reference source not**
 341 **found.c** shows the variation of the peak magnitude with respect to the bandwidth ratio for all three
 342 filters. SMA and GWMA both underestimate the peak value, and the difference between the
 343 calculated peak and real peak increases as the bandwidth ratio increases. SMA calculations
 344 underestimate the peak more than twice as much as GWMA. On the contrary, S-G intensifies the
 345 peak up to a bandwidth ratio of 0.04, with the impact tending to diminish at larger bandwidth ratios;
 346 it predicts the true value at a bandwidth ratio value of almost 0.09.



347
 348 **Fig. 8** (a) An example of peak displacement by applying SMA, and variation of (b) peak position and (c)
 349 peak value with respect to the filter and bandwidth ratio used (original peak at 0.5)

350 Scenario 12 was used for a detailed evaluation of the ability of these filters to conserve the
 351 underlying original trend. **Error! Reference source not found.** Fig. 9 shows scenario 12 and the
 352 filtered results for all three filters and for an n/t ratio of 0.15. This scenario and these specific
 353 parameters were selected for illustration purposes as they allow visual identification of differences
 354 for discussion. The SMA filter considerably underestimates the magnitude of the peak at a
 355 bandwidth ratio of 0.04, which should be the minimum bandwidth ratio according to Fig. 7. At a
 356 bandwidth ratio of 0.10, the filtered diagram is distorted in comparison to the true trend and the

357 initial peak is not identified. GWMA at a bandwidth ratio of 0.04 shows less underestimation of
 358 the peak magnitude, and a slight lag is visually observed at a bandwidth ratio of 0.10. This
 359 indicates the significantly better performance of GWMA over SMA. S-G results for both bandwidth
 360 ratios closely identify the time and magnitude of both peaks, indicating yet better performance.
 361 However, the peak is artificially intensified at a bandwidth ratio of 0.04, and a significant drop
 362 occurs well beyond the true trend immediately after the second peak for both bandwidth ratios
 363 (pulsating effect), which was also observed in scenario 11. Increasing the degree of the
 364 polynomial fitted as part of the S-G methodology was not completely effective at eliminating this
 365 effect. The pulsating effect was also observed when a symmetrical window was utilized and is
 366 attributed to the negative weights in the S-G kernel.



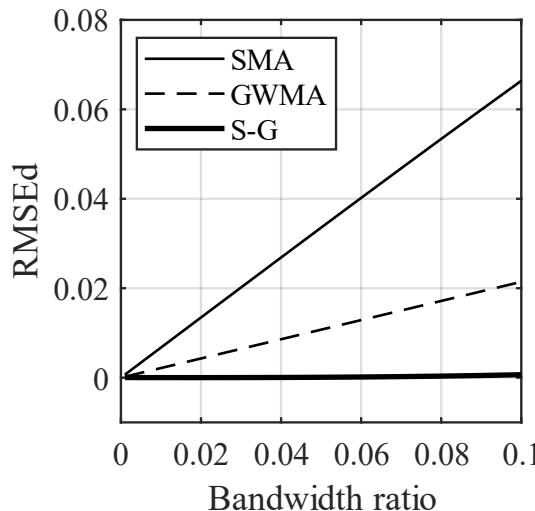
367

368
 369
 370

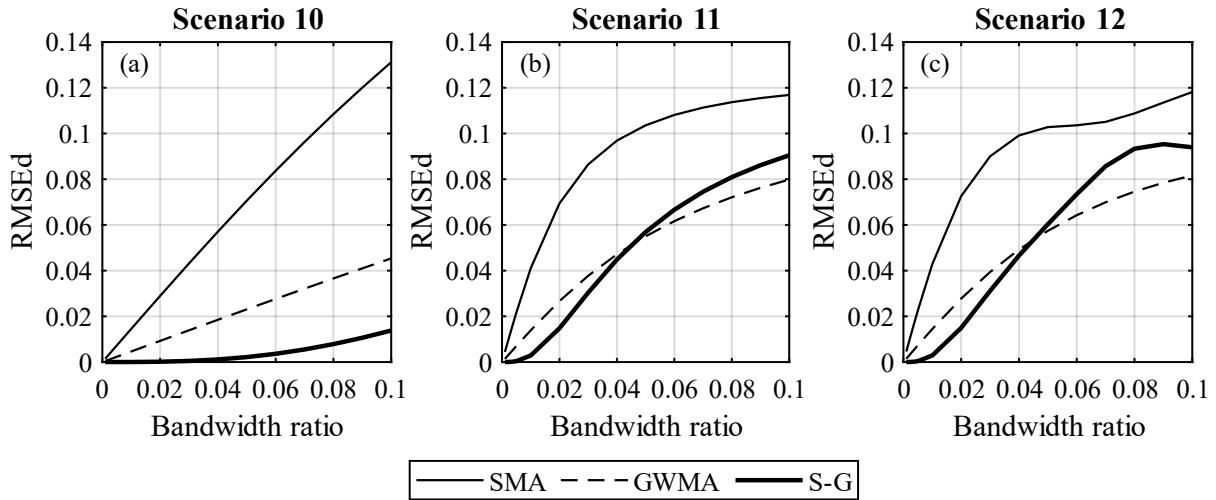
Fig. 9 Filtered results of Scenario 12 with scatter using SMA (a,d), GWMA (b,e), and S-G (c,f) at bandwidth ratios (BRs) of 0.04 (a-c) and 0.10 (d-f)

371 4.1.2. Results of direct scatter filtration

372 Fig. 10 shows the RMSEd of all three filters for all of the harmonic synthetic scenarios. This figure
 373 shows that, for these numerical analysis on synthetic scenarios, the error depends linearly on the
 374 bandwidth ratio for all of the filters and does not depend on the scenario or n/t ratio. SMA shows
 375 the greatest difference from the true trend, followed by GWMA (approximately 60% less difference
 376 than SMA). S-G, on the other hand, almost lies on the horizontal axis for all of the bandwidth
 377 ratios, which means the filtered results yield near zero error. Fig. 10 also shows how the error
 378 increases as the bandwidth ratio increases. This can be attributed to the utilization of an
 379 asymmetric window, which leads to a lagged response of the filter. As more points are included
 380 in the filtering procedure (increasing bandwidth ratio), this lag increases and, consequently,
 381 causes larger error. The RMSEd of filters for the instantaneous synthetic scenarios are shown in
 382 Fig. 11. In scenario 10, the same behaviour as noted for the harmonic scenarios can be seen for
 383 SMA and GWMA, whereas S-G is not as accurate. This is more noticeable in scenarios 11 and
 384 12 in which S-G becomes less accurate than GWMA at larger bandwidth ratios. This result shows
 385 that S-G cannot handle the instantaneous scenarios as satisfactorily as the harmonic ones. The
 386 errors related to SMA and GWMA for the instantaneous synthetic scenarios show non-linear
 387 behavior, and are greater when compared to the harmonic scenarios. Fig. 11 clearly shows all
 388 filters are challenged by the instantaneous variations when compared to gradual ones in direct
 389 filtration.



390

Fig. 10 RMSEd for the harmonic scenarios**Fig. 11** RMSEd for the instantaneous scenarios394 *4.1.3. Results of indirect scatter filtration*

395 Fig. 12 shows the RMSEi results for the harmonic scenarios (when performing indirect filtration)
 396 on a semi-logarithmic scale. We observed that the error considerably decreases as the bandwidth
 397 ratio increases to 0.02; however, to highlight the variation of error in the range of interest for the
 398 bandwidth ratio, only RMSEi values corresponding to bandwidth ratios greater than 0.04 are
 399 plotted in Fig. 12 and 13. In Fig. 12, the error for the GWMA is either equal to or slightly less than
 400 the error for the SMA, and S-G shows the least error for the harmonic scenarios. The RMSEi
 401 results for the instantaneous scenarios (Fig. 13) are similar to those for the harmonic scenarios
 402 for large n/t ratios (0.05, 0.10 and 0.15). For small n/t ratios, the GWMA is superior at bandwidth
 403 ratios above 0.06, and S-G has the worst performance.

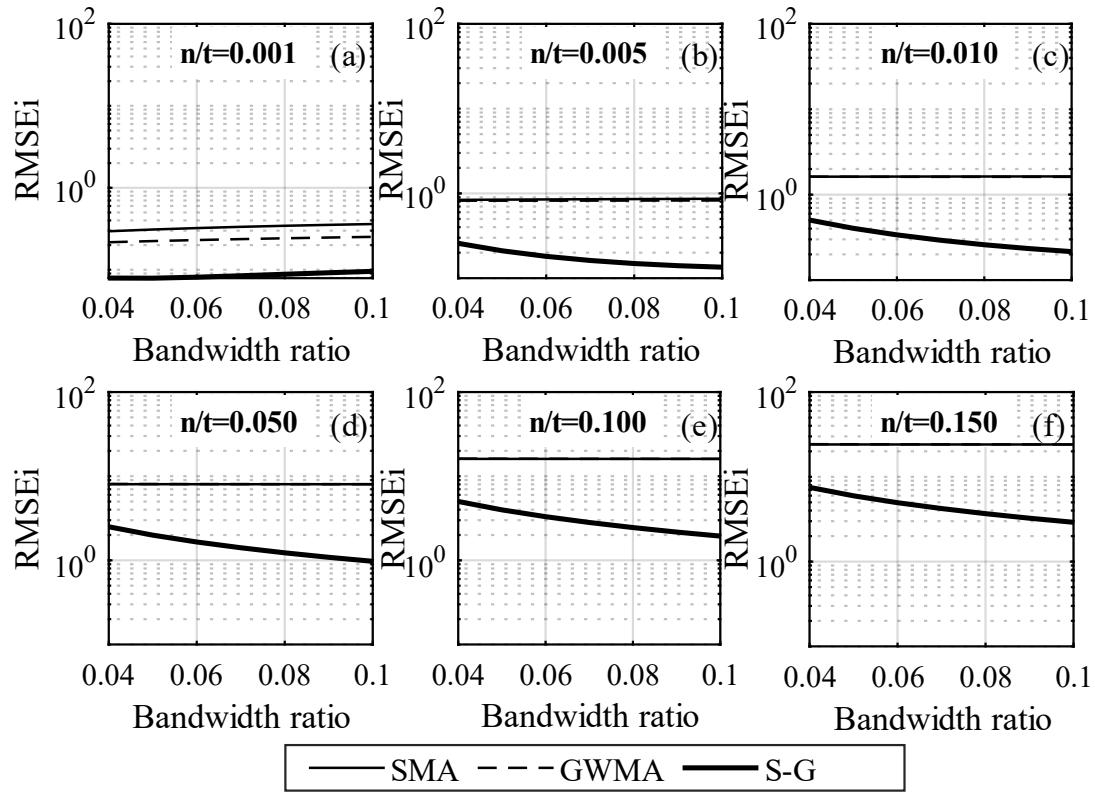


Fig. 12 RMSEi for the harmonic scenarios on a semi-logarithmic scale

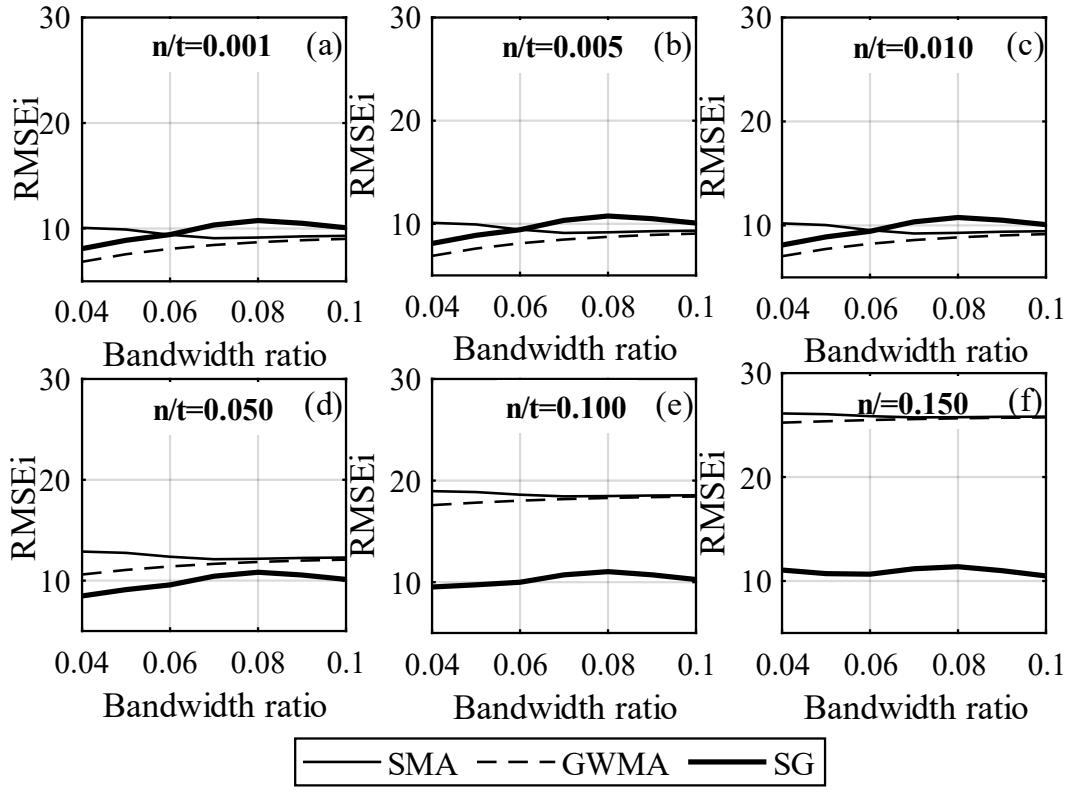
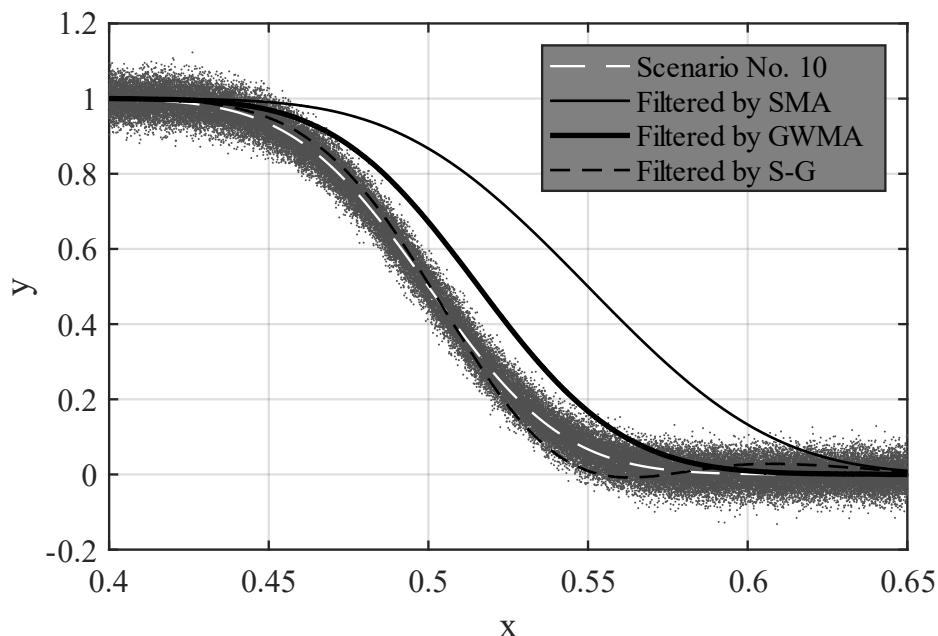


Fig. 13 RMSEi for the instantaneous scenarios

408 4.1.4. Lag quantification

409 The non-symmetric inclusion of points causes the identification of a lag in the trend of filtered
410 data. Fig. 14 shows Scenario 10 with respect to the original trend, with scatter added (at an n/t
411 value of 0.15), and the results after filtering with each of the three methods at a bandwidth ratio
412 of 0.04. This figure clearly shows the lag between the results filtered by SMA and GWMA and the
413 true trend. S-G results do not have as severe a lag as that resulting from the other filters; we
414 attribute this to the negative weights in its kernel that anchor the filtered values and prevent a
415 lagged response. A minor pulsating effect can be observed in the S-G filtered data, decreasing
416 the calculated values at a much earlier time than the true trend. This suggests that S-G is robust
417 with respect to identifying initial changes in monitoring trends but overcorrects subsequent
418 changes; SMA grossly lags with respect to the identification of any change; and GWMA has a
419 reduced lag when compared to SMA.

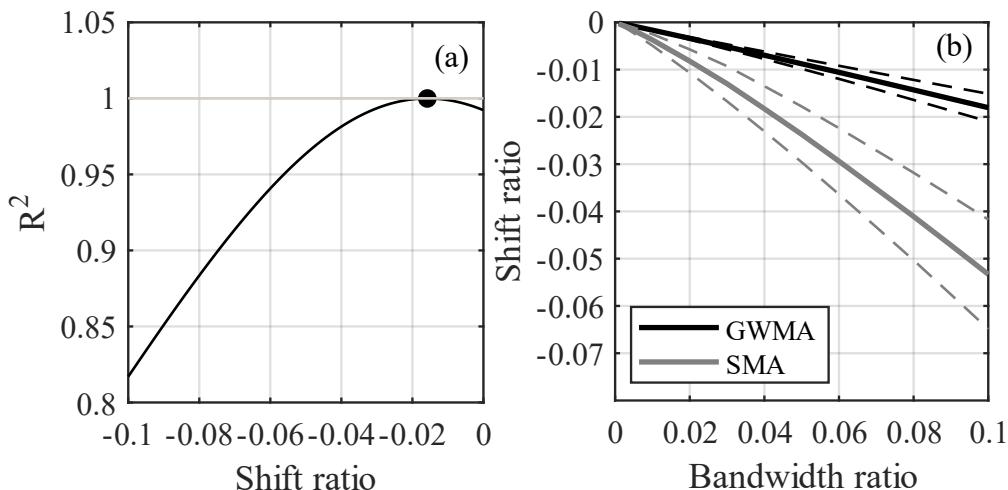


420

421 **Fig. 14** Scenario 10 with and without scatter, and with scattered results filtered by SMA, GWMA, and S-G
422 for an n/t value of 0.15 and a bandwidth ratio of 0.04.

423 Fig. 15a shows an example of R^2 correlation for scenario 7, comparing the original trend and the
424 results filtered by SMA at an n/t value of 0.01 and bandwidth ratio of 0.04. The shift ratio is the

425 shift of filtered trends (in the horizontal axis – parameter x) relative to the range of x values. R^2
 426 calculations are shown for the filtered data (shift ratio of 0) and as the filtered trends are shifted
 427 backwards in time (negative shift ratio value). In this analysis, the peak R^2 value (largest
 428 correlation between the shifted filtered results and original trend) indicates the shift required to
 429 minimize the lag in identifying the original trend changes, therefore providing a quantitative
 430 approach to calculating the lag in parameter x . In the example in Fig. 15a, the lag corresponded
 431 to 0.018 (1.8%) of the total points.



432
 433 **Fig. 15** (a) R^2 values for scenario 7 with filtered and shifted results at an n/t value of 0.01 and bandwidth
 434 ratio of 0.04 and (b) shift ratio at peak R^2 for all scenarios and n/t ratios, with the mean (solid line)
 435 bounded by one standard deviation (dashed lines)

436 Peak R^2 values for all scenarios and n/t values are closely correlated with the bandwidth ratio.
 437 The lag, quantified by the shift ratio, is larger when the trend change is more pronounced;
 438 therefore, the correlation between the shift ratio and bandwidth ratio is different for different
 439 scenarios. Fig. 15b shows the mean correlation between the shift ratio and bandwidth ratio, for
 440 all scenarios and n/t values, bounded by one standard deviation, for GWMA and SMA. Table 2
 441 shows linear and quadratic regressions of this correlation and the strength of the correlation in
 442 terms of R^2 and RMSE. Fig. 15b quantitatively shows that GWMA lags less than SMA with respect
 443 to identifying changes in measurement trends. Moreover, the uncertainty associated with lag for
 444 SMA is greater than for GWMA because of the larger standard deviation. Fig. 15b quantifies how
 445 increasing the bandwidth ratio increases the lag with respect to identifying true measurement

446 trends and, although large bandwidth ratios decrease the scatter in data, the bandwidth ratio
 447 should carefully balance minimizing both scatter (J_2) and lag (shift ratio). S-G is not included in
 448 this analysis as the method resulted in no significant lag in identifying changes in measurement
 449 trends; however, it had the disadvantages previously noted including pulsating effects and
 450 overestimating peak values.

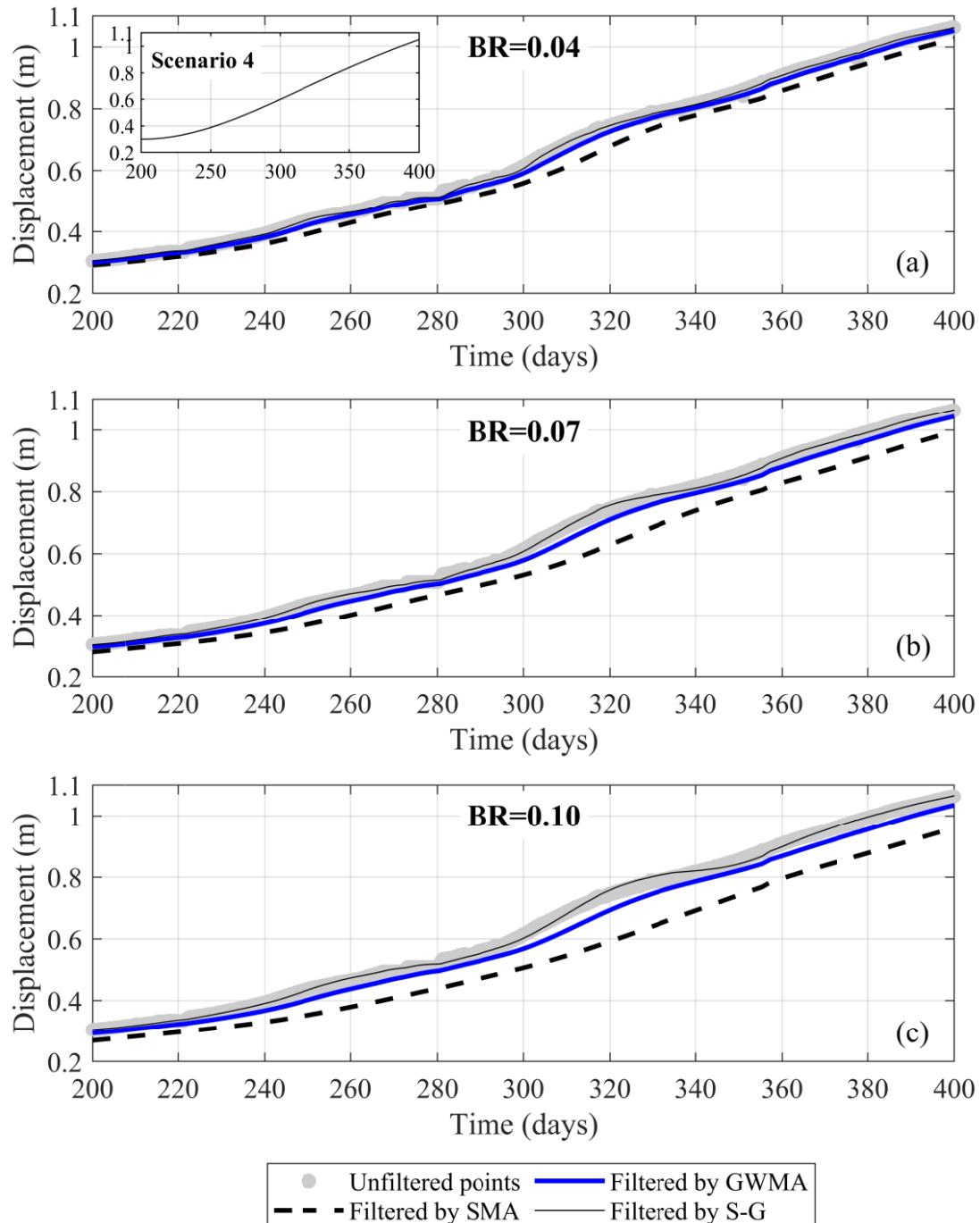
451 **Table 2** Regression correlations between shift ratio (SR) and bandwidth ratio (BR) with the strength of the
 452 correlation in terms of R^2 and RMSE

	Linear regression		Quadratic regression	
SMA	SR=-0.5087(BR)	$R^2=0.9940$ RMSE=0.0014	SR=-1.323(BR^2)-0.4049(BR)	$R^2=0.9997$ RMSE=3.24E-4
GWMA	SR=-0.1783(BR)	$R^2=0.9996$ RMSE=1.2963E-4	SR=-0.1171(BR^2)-0.1691(BR)	$R^2=0.9999$ RMSE=3.5672E-5

453 **4.2. Results on the Ten-mile landslide**

454 Unfiltered results reported by Geocubes 46 and 47 installed on the Ten-mile landslide were
 455 processed by all three filters. To illustrate to the reader through visual inspection the difference
 456 between the performance of SMA, GWMA, and S-G, only a 200-day window of displacement data
 457 from Geocube 46 and filtered points produced by direct filtration are shown in Fig. 16. Fig. 16a
 458 also features an inset showing scaled scenario 4, which resembles the general trend of Geocube
 459 46 data for the period from day 200 to 400. Fig. 16 shows that increasing the bandwidth ratio
 460 reduces the scatter, but increases the lag in the filtered results, consistent with observations on
 461 the synthetic datasets. For bandwidth ratios larger than 0.04, SMA becomes insensitive to some
 462 short-scale (20- to 30-day) trends in the data (qualitative visual inspection). As an example, at a
 463 bandwidth ratio of 0.10, SMA suggests the displacement of Geocube 46 follows a bi-linear trend
 464 with an inflection point at day 240, while unfiltered points and other filters suggest other periods

465 of acceleration and deceleration. Importantly, S-G is sensitive to even subtle variation and does
 466 not show significant lag.



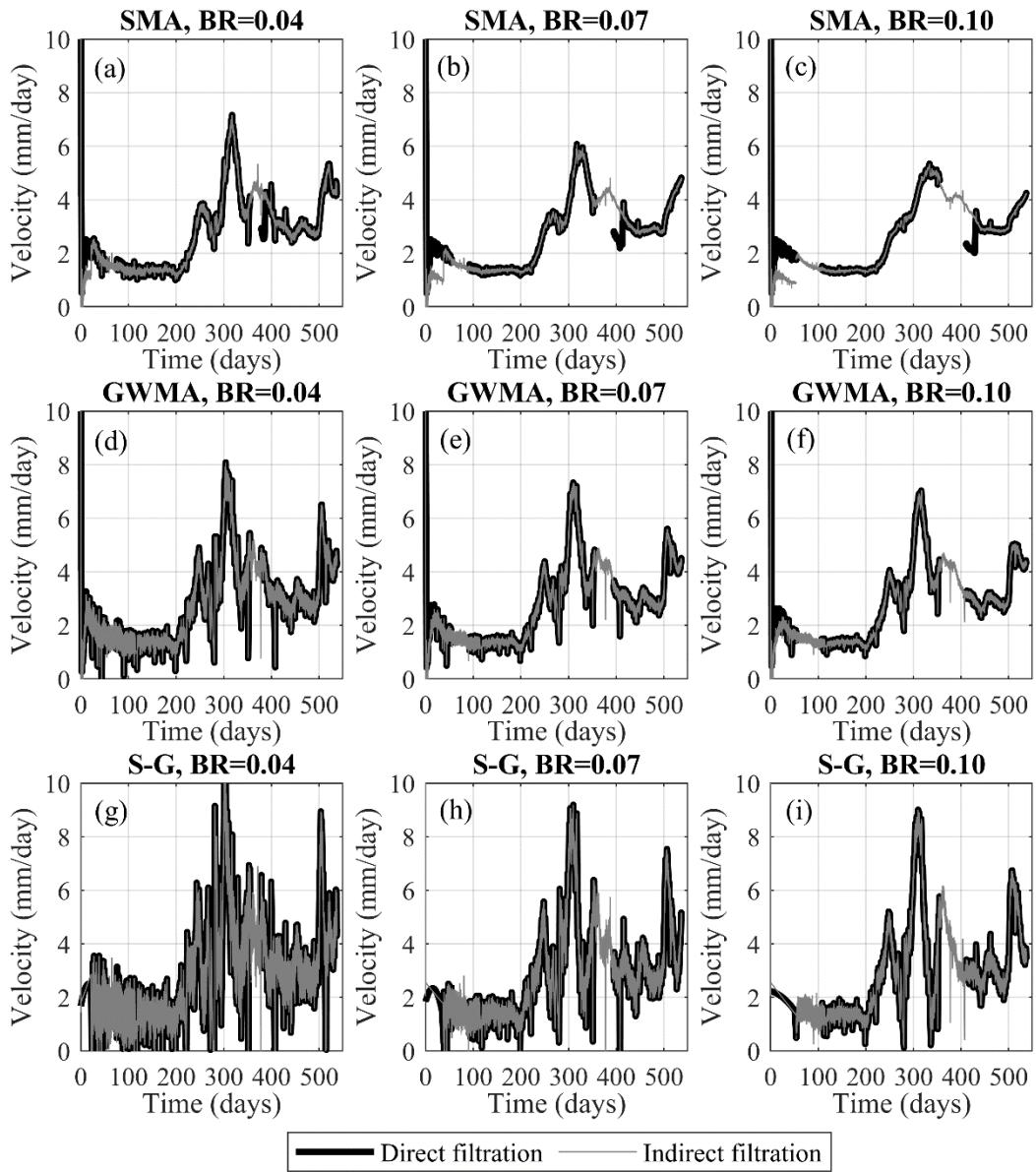
467
 468 **Fig. 16** Unfiltered displacement of Geocube 46 data vs. time and data filtered by SMA, GWMA, and S-G
 469 for bandwidth ratios (BRs) of (a) 0.04, (b) 0.07, and (c) 0.10.

470 Fig. 17 shows the filtered velocity values obtained by directly filtering the calculated velocities and
 471 by indirectly filtering the displacement values before calculating the velocity from Geocube 46

472 data. The direct and indirect filtering approaches demonstrated similar performance in terms of
473 scatter reduction for Geocube 46 data. As the bandwidth ratio increases, SMA tends to
474 significantly attenuate the local maximum and minimum points in comparison to results at smaller
475 bandwidth ratios, indicating a probable loss of information about the landslide behaviour and
476 sensitivity of this filter to the bandwidth ratio, as also noted in Fig. 16 (curvature loss in SMA
477 results). Indirect filtration by SMA seems to be limited near the boundary at time zero, resulting in
478 a subdued replica of direct filtration. The length of this region is found to be governed by the
479 bandwidth ratio, as the necessary number of points for filtering in this portion has not been
480 provided to the filter. This is also observed in S-G results. This problem was not found in GWMA
481 results, as direct and indirect filtration both follow the same pattern. GWMA and S-G are both able
482 to preserve the velocity variation even at the most intense filtration (bandwidth ratio of 0.10);
483 however, variations between local maxima and minima are more extreme in S-G than GWMA
484 results. This is attributed to peak overestimation (Fig. 8 and 9) or a pulsating effect superimposing
485 on the peaks/troughs. Moreover, the S-G results still demonstrate relatively large fluctuations
486 even at the largest bandwidth ratio. This means that application of S-G might still trigger false
487 alarms in an EWS if the landslide is moving at a faster rate or experiencing different episodes of
488 acceleration and deceleration. To avoid this, a larger bandwidth ratio should be used but this can
489 be problematic due to the higher computational effort required and issues that might follow, such
490 as the pulsating effect.

491 Results for Geocube 47 confirm the same observations made for Geocube 46 but also allow for
492 an evaluation of the significance of outliers on the filtered results. Fig. 18a displays the outliers
493 detected in the displacement diagram of Geocube 47 data along with the threshold established
494 by the Hampel algorithm using an asymmetric window, bandwidth of 0.4% and threshold factor of
495 3. Fig. 18b-d shows a magnified portion of the displacement measurements for Geocube 47
496 filtered by each of the three filters at three different bandwidth ratios before the elimination of
497 outliers. This highlights the necessity of outlier elimination before application of any scatter filter.

498 These plots show that detecting and removing outliers significantly impacts the performance of
499 S-G, as the presence of the outlier generates a peak that follows the outlier measurement and is
500 followed by a sudden decrease that drops well beyond the data trend. SMA tends to widen the
501 time range affected by the outlier more than GWMA but, for most part, the SMA-filtered results
502 are almost parallel to the underlying trend. All filters appear to be significantly impacted by the
503 outlier value, suggesting a pre-processing filter is required to remove outliers regardless of the
504 use of SMA, GWMA, or S-G to reduce scatter. The outliers were successfully identified and
505 removed after application of the Hampel algorithm, and the above-mentioned effects were no
506 longer observed in the filtered results.



507
 508 **Fig. 17** Indirect and direct filtration results of Geocube No. 46 velocity values for bandwidth ratio (BR)
 509 values of (a) 0.04, (b) 0.07, and (c) 0.10.

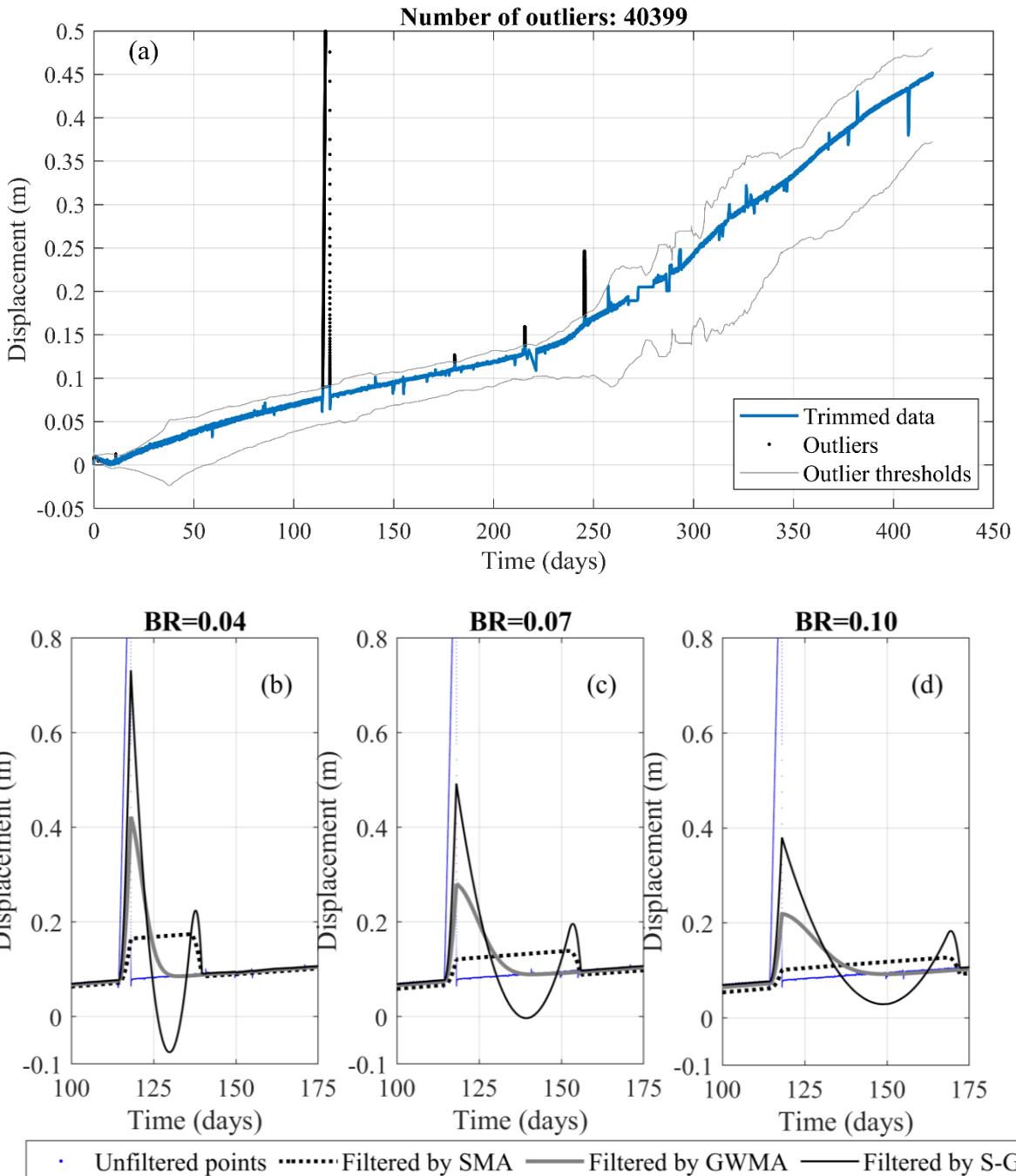


Fig. 18 Unfiltered and filtered displacement measurements for Geocube 47 at bandwidth ratios (BRs) of (a) 0.04, (b) 0.07 and (c) 0.10

4.2.1. Lag minimization in filtered Geocube results

The lag between unfiltered and filtered data for Geocube 46 (Fig. 16) is consistent with the synthetic database results. The lag quantification results (Fig. 15b) were used to provide a correction value for the filtered Geocube results. The shift ratios used for this purpose with respect

518 to each filter and bandwidth ratio are tabulated in Table 3. To determine whether the results of
519 lag correction using the mean correlations derived from the synthetic scenarios (Table 2) were
520 acceptable, the filtered diagrams were shifted (using the mean line for GWMA and values
521 between the mean and lower boundary for SMA) and different portions of the displacement
522 diagrams for Geocubes 46 and 47 were examined. Some examples are shown in Fig. 19

Bandwidth ratio	Shift ratio	
	SMA	GWMA
0.04	-0.02	-0.007
0.07	-0.035	-0.012
0.10	-0.06	-0.018

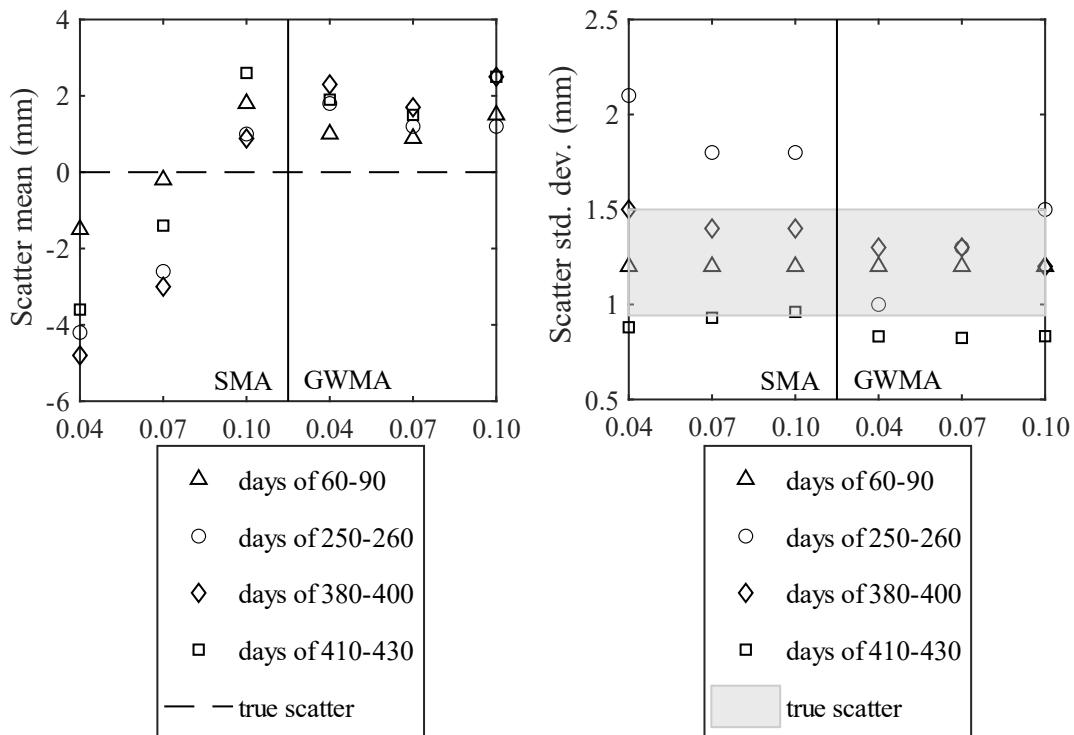
523 . The mean and standard deviation of the scatter around the trend (error distribution) were
524 calculated by assuming a linear trend within the short time periods of analysis (considered an
525 approximation of the true displacement trend for the short time interval). These were also
526 calculated for the filtered and shifted diagrams. The closer the mean and standard deviation of
527 the filtered and shifted data are to that obtained from the linear trend, the better the performance
528 of the lag correction based on the results from the synthetic scenarios. As an example, for the
529 time period from day 250 to 260, the GWMA resulted in a standard deviation of 0.001 to 0.0015
530 for bandwidth ratios from 0.04 to 0.10, respectively; corresponding values for SMA to 0.0018 to
531 0.0021. This illustrates that shifted GWMA results are closer to the true (scatter-free)
532 displacements because the standard deviations of scatter inferred by this filter are closer to the
533 true scatter, although both have good agreement with the true scatter. The means of inferred
534 scatter by both filters are also close enough to the mean of the true scatter (almost zero). The
535 results show the statistical indices of scatter inferred from the filtered shifted displacement
536 measurements closely agree with that considered to be true scatter, and therefore the filtered
537 displacement measurements are corrected for lag. This suggests the correlations stated in Fig.

538 15b and Table 2 based on the synthetic scenarios are applicable to minimize the lag for the
539 Geocube system at the Ten-mile landslide.

540 **Table 3.** Shift ratios used for lag minimization of Geocube 46 displacements

Bandwidth ratio	Shift ratio	
	SMA	GWMA
0.04	-0.02	-0.007
0.07	-0.035	-0.012
0.10	-0.06	-0.018

541



542
543 **Fig. 19.** Mean and standard deviation of scatter inferred by SMA and GWMA in comparison with true
544 scatter in the displacement of Geocube 46

545

546 5. Discussion

547 Previous studies dedicated to landslide monitoring consistently adopt SMA for scatter
548 minimization in displacement data. However, the adequacy of this filter and the effect of

549 bandwidth selection were not well understood. Analyses conducted on synthetic databases in this
550 study using a roughness factor (J_2) demonstrate that at least 4% of the total observations should
551 be fed into the filter to ensure fluctuations are sufficiently reduced.

552 The results of this study show that SMA tends to considerably distort the underlying trend at a
553 bandwidth ratio of 0.10 (Fig. 8 and 9), and its lagged response with respect to real-time monitoring
554 is almost three times that of GWMA results. As a result, a bandwidth ratio between 0.04 and 0.07
555 is suggested. However, we caution that the bandwidth should be selected with a complete
556 awareness that SMA is highly sensitive to bandwidth, and sensitivity analyses on bandwidth are
557 recommended when defining an EWS. Corresponding observations were made during the
558 analysis of displacement data from Geocubes installed on the Ten-mile landslide.

559 Error calculations show that GWMA and S-G outperform SMA in both direct and indirect filtration
560 and are more successful in preserving the true displacement trend. The near-zero lagged
561 response of S-G makes it a notable candidate for developing an EWS. Nonetheless, its intrinsic
562 shortcoming in handling peaks, leading to a pulsating effect, will pose challenges for its utilization.
563 The bandwidth range used for SMA is also suggested to be applied with the S-G filter.

564 GWMA results suggest a proper trade-off can be achieved between minimizing the lag time and
565 scatter and avoiding the pulsating effect. Compared to SMA and S-G, GWMA is less sensitive to
566 changes in the bandwidth. Analyses focused on the Geocube data also confirm that GWMA is
567 capable of constraining the fluctuations in the velocity diagram while not attenuating variations in
568 the displacement rate diagram. Moreover, the lag quantification chart proposed could reliably
569 capture the required shift with a greater degree of confidence in comparison to SMA even at the
570 largest bandwidth ratio studied here (0.10). The bandwidth for GWMA can therefore range of 0.04
571 to 0.10. Moreover, we observed consistency between direct and indirect filtration results using
572 GWMA but greater differences when using SMA or S-G results. This was especially the case in

573 the early parts of the datasets and at some locations where outlier elimination was likely
574 ineffective.

575 Filter and bandwidth selections should not be arbitrarily or purely empirical, as differences in
576 outcomes can be substantial. An automated surveillance system for landslides demands stability
577 in filter performance for a variety of circumstances, considering the ground can experience
578 irregular sequences of acceleration and deceleration. The results here suggest practice moves
579 away from the adoption of SMA due to the limitations discussed. S-G demonstrates some
580 inconsistent or erratic performance for certain displacement trends, which is detrimental although
581 overall the error is smaller than for SMA. On the balance of its strengths and limitations as
582 evaluated in this study, GWMA appears to be the more robust approach.

583 **6. Conclusions**

584 This study evaluated the suitability of SMA, GWMA, and S-G filters for scatter reduction of
585 datasets targeted for use in an EWS. A total of different 12 scenarios with harmonic and
586 instantaneous changes were synthetically generated and random variations with Gaussian
587 distribution then added to produce unfiltered results. The three filters considered were then each
588 applied with different bandwidths and the error computed. These filters were also successfully
589 applied to the records from two Geocubes installed on the Ten-mile landslide. The results led to
590 the following conclusions:

591 • When used for direct filtration of harmonic scenarios, the error resulting from the GWMA
592 approach is approximately one-third that of the SMA approach. The S-G approach results
593 in near zero error regardless of the values of the bandwidth ratio and n/t . When used for
594 direct filtration of instantaneous scenarios, the superiority of S-G is no longer unconditional
595 and depends on the bandwidth ratio; this reflects the fact that S-G cannot appropriately
596 handle peaks in the velocity diagram.

- When used for indirect filtration of harmonic scenarios, S-G again outperforms the other methods. The error associated with GWMA is marginally less than for SMA. These observations are not valid when the filters are applied to instantaneous scenarios, as GWMA results in less error than S-G at bandwidth ratios above 0.03.
- Detailed investigations with scenarios 11 and 12 demonstrate that that SMA distorts the underlying trend by displacing and sometimes neglecting peak(s), while GWMA and S-G tend to preserve them somewhat similarly.
- Due to the presence of negative weights in the S-G kernel, some artificial smaller troughs and peaks are created after major peaks. This phenomenon, referred to herein as a pulsating effect, results in unfavorable performance of S-G on the velocity and displacement diagrams, especially in the presence of outliers.
- Investigations on the roughness factor reveal the bandwidth ratio should be at least 0.04. Taking this into account, GWMA seems to be the most reasonable option as the related uncertainties are much smaller than for S-G and the error is acceptable and less than for SMA.
- A consequence of using asymmetric windows in the filtering process is a lag in the SMA and GWMA results that increases with increasing bandwidth ratio. Lag quantification suggests a correlation between the needed shift and bandwidth ratio that can be used to eliminate the lag. SMA requires approximately three times the shift of GWMA on average.
- Application of these filters to displacement data reported by Geocubes shows SMA and S-G are unable to properly handle data points at the beginning of the dataset (i.e., near the boundary) in indirect filtration of the velocity diagram. Moreover, SMA and S-G are inclined to respectively underestimate and overestimate peaks and fluctuations in the velocity diagram. Overall, GWMA provides the most reliable filtered values for velocity with no distinct difference between direct and indirect filtration.

Appendix A

623 Consider a polynomial of degree k that is intended to be fitted over an odd number of points
 624 denoted as z . The weighting coefficients of the Savitzky-Golay filter can be extracted from the first
 625 row of matrix C (Eq. 7):

626
$$C = (J^T J)^{-1} J^T, \quad (7)$$

627 where T operator is the transpose of a matrix and J is the Vandermonde matrix, with elements at
 628 the i th row and j th column ($1 \leq i \leq z$ and $1 \leq j \leq k+1$) that can be achieved as follows:

629
$$J_{ij} = m_i^{j-1}, \quad (8)$$

630 where m is the local index of points $(-(z+1)/2 \leq m \leq (z+1)/2)$. As an example, the kernel of an S-G
 631 filter that fits a quadratic polynomial ($k=2$) over seven points ($z=7$) is attained here. In the first
 632 step, J is set up as follows:

633
$$J = \begin{bmatrix} 1 & (-3)^1 & (-3)^2 \\ 1 & (-2)^1 & (-2)^2 \\ 1 & (-1)^1 & (-1)^2 \\ 1 & (0)^1 & (0)^2 \\ 1 & (1)^1 & (1)^2 \\ 1 & (2)^1 & (2)^2 \\ 1 & (3)^1 & (3)^2 \end{bmatrix}. \quad (9)$$

634 Then, using Eq. 1, matrix C is computed as Eq. 10:

635
$$C = \begin{bmatrix} -0.0952 & 0.1429 & 0.2857 & 0.3333 & 0.2857 & 0.1429 & -0.0952 \\ -0.1070 & -0.0714 & -0.0357 & 0 & 0.0357 & 0.0714 & 0.1071 \\ -0.0595 & 0 & -0.0357 & -0.0476 & -0.0357 & 0 & 0.0595 \end{bmatrix}. \quad (10)$$

636 The second and third rows of C are the coefficients to find the filtered values' first and second
 637 derivations at the point of interest, respectively.

638 **Data availability**

639 The synthetic database can be generated through the comprehensive steps provided here. The
 640 Geocube measurements of the Ten-mile landslide displacement are not publicly available.

641 **Author contribution**

642 Sohrab Sharifi: conceptualization, methodology, analysis, writing – draft preparation. Michael
643 Hendry: supervision, review, writing – review and editing, project administration. Renato
644 Macciotta: supervision, review, writing – review and editing. Trevor Evans: writing – review and
645 editing, validation, project administration.

646 **Competing interests**

647 The authors declare that they have no conflict of interest.

648 **Acknowledgment**

649 The authors thank Canadian National Railway (CN) for providing access to the Ten-mile site and
650 for purchasing the Geocube units. This research was conducted through the (Canadian) Railway
651 Ground Hazard Research Program, which is funded by the Natural Sciences and Engineering
652 Research Council of Canada (NSERC ALLRP 549684-19), Canadian Pacific Railway, CN, and
653 Transport Canada.

654 **References**

655 Atzeni, C., Barla, M., Pieraccini, M., and Antolini, F.: Early warning monitoring of natural and
656 engineered slopes with ground-based synthetic-aperture radar, *Rock Mech. Rock Eng.*, 48(1),
657 235-246, <https://doi.org/10.1007/s00603-014-0554-4>, 2015.

658 Benoit, L., Briole, P., Martin, O., and Thom, C.: Real-time deformation monitoring by a wireless
659 network of a low-cost GPS, *J. Appl. Geodesy*, 8(2), 119-128, 2014.

660 Benoit, L., Briole, P., Martin, O., Thom, C., Malet, J. P., and Ulrich, P.: Monitoring landslide
661 displacements with the Geocube wireless network of low-cost GPS, *Eng. Geol.*, 195, 111-121,
662 2015.

663 BGC Engineering Inc. CN Lillooet Sub. M. 167.7 (Fountain Slide) September 2015 Drilling and
664 Instrumentation. Project report to Canadian National Railway, 2015.

665 BGC Engineering Inc. CN Lillooet Sub. M. 167.7 (Ten Mile Slide) April 2016 Drilling and
666 Instrumentation. Project report to Canadian National Railway, 2016.

667 Bovis, M. J.: Earthflows in the interior plateau, southwest British Columbia, Can. Geotech. J.,
668 22(3), 313-334, 1985.

669 Bozzano, F., Mazzanti, P., and Moretto, S.: Discussion to: 'Guidelines on the use of inverse
670 velocity method as a tool for setting alarm thresholds and forecasting landslides and structure
671 collapses' by T. Carlà, E. Intrieri, F. Di Traglia, T. Nolesini, G. Gigli, and N.
672 Casagli, Landslides, 15(7), 1437-1441, 2018.

673 Carlà, T., Farina, P., Intrieri, E., Botsialas, K., and Casagli, N.: On the monitoring and early-
674 warning of brittle slope failures in hard rock masses: Examples from an open-pit mine, Eng.
675 Geol., 228, 71-81, 2017a.

676 Carlà, T., Intrieri, E., Di Traglia, F., Nolesini, T., Gigli, G., and Casagli, N.: Guidelines on the use
677 of inverse velocity method as a tool for setting alarm thresholds and forecasting landslides and
678 structure collapses, Landslides 14(2), 517-534, 2017b.

679 Carlà, T., Macciotta, R., Hendry, M., Martin, D., Edwards, T., Evans, T., Farina, P., Intrieri, E., and
680 Casagli, N.: Displacement of a landslide retaining wall and application of an enhanced failure
681 forecasting approach, Landslides, 15(3), 489-505, 2018.

682 Carlà, T., Intrieri, E., Raspini, F., Bardi, F., Farina, P., Ferretti, A., Colombo, D., Novali, F., and
683 Casagli, N.: Perspectives on the prediction of catastrophic slope failures from satellite InSAR, Sci.
684 Rep., 9(1), 1-9, 2019.

685 Carri, A., Valletta, A., Cavalca, E., Savi, R. and Segalini, A.: Advantages of IoT-based
686 geotechnical monitoring systems integrating automatic procedures for data acquisition and
687 elaboration, Sensors, 21(6), 2249, 2021.

688 Casagli, N., Frodella, W., Morelli, S., Tofani, V., Ciampalini, A., Intrieri, E., Raspini, F., Rossi, G.,
689 Tanteri, L., and Lu, P.: Spaceborne, UAV and ground-based remote sensing techniques for
690 landslide mapping, monitoring and early warning, Geoenviron. Disasters, 4(1), 1-23, 2017.

691 Chae, B. G., Park, H. J., Catani, F., Simoni, A., and Berti, M.: Landslide prediction, monitoring
692 and early warning: a concise review of state-of-the-art, Geosci. J., 21(6), 1033-1070, 2017.

693 Chen, M., and Jiang, Q.: An early warning system integrating time-of-failure analysis and alert
694 procedure for slope failures, Eng. Geol., 272, 105629, 2020.

695 Clague, J. J., and Bobrowsky, P. T.: International year of planet earth 8. Natural hazards in
696 Canada, Geosci. Can. 37(1), 17-37, 2010.

697 Cleveland, W. S.: LOWESS: A program for smoothing scatterplots by robust locally weighted
698 regression, Am. Stat., 35(1), 54, 1981.

699 Cleveland, W. S., and Devlin, S. J.: Locally weighted regression: an approach analysis by local
700 fitting, J. Am. Stat. Assoc. 83(403), 596-610, 1988.

701 Clifford, P.: Monte Carlo methods, in: statistical methods for Physical Science, edited by: Stanford,
702 J. L., and Vardeman, S. B., Elsevier, 125-153, 1994.

703 Davies, L., and Gather, U.: The identification of multiple outliers, J. Am. Stat. Assoc., 88(423),
704 782-792, 1993.

705 Deane, E.: The Application of Emerging Monitoring Technologies on Very Slow Vegetated
706 Landslides, Dissertation, University of Alberta, 2020.

707 Desrues, M., Malet, J.P., Brenguier, O., Carrier, A., Mathy, A., and Lorier, L.: Landslide kinematics
708 inferred from in situ measurements: the Cliets rock-slide (Savoie, French Alps), *Landslides*, 1-16,
709 2021.

710 Dick, G.J., Eberhardt, E., Cabrejo-Liévano, A.G., Stead, D. and Rose, N.D.: Development of an
711 early-warning time-of-failure analysis methodology for open-pit mine slopes utilizing ground-
712 based slope stability radar monitoring data, *Canadian Geotechnical Journal*, 52(4), 515-529,
713 2015.

714 Donati, D., Stead, D., Lato, M., and Gaib, S.: Spatio-temporal characterization of slope damage:
715 insights from the Ten Mile Slide, British Columbia, Canada, *Landslides*, 17(5), 1037-1049, 2020.

716 Dorberstein, D.: *Fundamentals of GPS Receivers: A Hardware Approach*, Springer Science &
717 Business Media, Nipomo, CA, USA, 2011.

718 Gaib, S., Wilson, B., and Lapointe, E.: Design, construction and monitoring of a test section for
719 the stabilization of an active slide area utilizing soil mixed shear keys installed using cutter soil
720 mixing, *Proceedings of the ISSMGE - TC 211 International Symposium on Ground Improvement*
721 IS-GI, Brussels, 3, 147-158, 2012.

722 Grebby, S., Sowter, A., Gluyas, J., Toll, D., Gee, D., Athab, A., and Girindran, R.: Advanced
723 analysis of satellite data reveals ground deformation precursors to the Brumadinho Tailings Dam
724 collapse, *Communications Earth & Environment*, 2(1), 1-9, 2021.

725 Guthrie, R. H.: *Socio-Economic Significance: Canadian Technical Guidelines and Best Practices*
726 *Related to Landslides: A National Initiative for Loss Reduction*, Natural Resources Canada,
727 Ottawa, ON, 2013.

728 Hampel, F. R.: A general qualitative definition of robustness, *Ann. Math. Stats.*, 42(6), 1887-1896,
729 1971.

730 Hongtao, N.: Smart safety early warning model of landslide geological hazard based on BP neural
731 network, *Safety Sci.*, 123, 104572, 2020.

732 Huntley, D., Bobrowsky, P., Charbonneau, F., Journault, J., Macciotta, R., and Hendry, M.:
733 Innovative landslide change detection monitoring: application of space-borne InSAR techniques
734 in the Thompson River valley, British Columbia, Canada, *Workshop on World Landslide Forum*
735 3, 219-229, 2017.

736 Intrieri, E., Gigli, G., Mugnai, F., Fanti, R., and Casagli, N.: Design and implementation of a
737 landslide early warning system, *Eng. Geol.*, 147, 124-136, 2012.

738 Intrieri, E., Raspini, F., Fumagalli, A., Lu, P., Del Conte, S., Farina, P., Allievi, J., Ferretti, A., and
739 Casagli, N.: The Maoxian landslide as seen from space: detecting precursors of failure with
740 Sentinel-1 data, *Landslides*, 15(1), 123-133, 2018.

741 Journault, J., Macciotta, R., Hendry, M. T., Charbonneau, F., Huntley, D., and Bobrowsky, P. T.:
742 Measuring displacements of the Thompson River valley landslides, south of Ashcroft, BC,
743 Canada, using satellite InSAR, *Landslides*, 15(4), 621-636, 2018.

744 Karl, J. H.: *Introduction to Digital Signal Processing*, Academic Press, San Diego, 1989.

745 Kothari, U.C. and Momayez, M.: New approaches to monitoring, analyzing and predicting slope
746 instabilities, *Journal of Geology and Mining Research*, 10(1), 1-14, 2018.

747 Lacasse, S., and Nadim, F.: Landslide risk assessment and mitigation strategy, in: *Landslides–*
748 *Disaster Risk Reduction*, edited by: Sassa, K., and Canuti, P., Springer, 31-61, 2009.

749 Leroueil, S.: Natural slopes and cuts: movement and failure mechanisms, *Géotechnique*, 51(3),
750 197-243, 2001.

751 Liu, H., Shah, S., and Jiang, W.: On-line outlier detection and data cleaning, *Comput. Chem. Eng.*,
752 28(9), 1635-1647, 2004.

753 Maciotta, R., and Hendry, M. T. Remote sensing applications for landslide monitoring and
754 investigation in western Canada, *Remote Sens.*, 13(3), 366-389, 2021.

755 Maciotta, R., Hendry, M., and Martin, C. D.: Developing an early warning system for a very slow
756 landslide based on displacement monitoring, *Nat. Hazards*, 81(2), 887-907, 2016.

757 Maciotta, R., Carlà, T., Hendry, M., Evans, T., Edwards, T., Farina, P., and Casagli, N.: The 10-
758 mile Slide and response of a retaining wall to its continuous deformation, Workshop on World
759 Landslide Forum, 553-562, 2017a.

760 Maciotta, R., Rodriguez, J., Hendry, M., Martin, C. D., Edwards, T., and Evans, T.: The 10-mile
761 Slide north of Lillooet, British Columbia—history, characteristics, and monitoring. In *Proceedings,*
762 3rd North American Symposium on Landslides, 937-948, 2017b.

763 Pearson, R. K.: Outliers in process modeling and identification, *IEEE Trans. Control Syst.*
764 *Technol.*, 10(1), 55-63, 2002.

765 Reid, M. E., Godt, J. W., LaHusen, R. G., Slaughter, S. L., Badger, T. C., Collins, B. D., Schulz,
766 W. H., Baum, R. L., Coe, J. A., Harp, E. L. and Schmidt, K. M.: When hazard avoidance is not an
767 option: lessons learned from monitoring the postdisaster Oso landslide, USA, *Landslides*, 18,
768 2993-3009, 2021.

769 Rodriguez, J. L., Maciotta, R., Hendry, M., Edwards, T., and Evans, T.: Slope hazards and risk
770 engineering in the Canadian railway network through the Cordillera, *Proceedings of the AIIT*
771 *International Congress on Transport Infrastructure and Systems (TIS 2017)*, Rome, Italy, 163-
772 168, 2017.

773 Rodriguez, J., Hendry, M., Maciotta, R., and Evans, T.: Cost-effective landslide monitoring GPS
774 system: characteristics, implementation, and results, *Geohazards7*, Canmore, Alberta, 2018.

775 Rodriguez, J., Macciotta, R., Hendry, M. T., Roustaei, M., Gräpel, C., and Skirrow, R.: UAVs for
776 monitoring, investigation, and mitigation design of a rock slope with multiple failure mechanisms—
777 a case study, *Landslides*, 17, 2027-2040, 2020.

778 Rousseeuw, P. J., and Hubert, M.: Robust statistics for outlier detection. *Wiley Interdiscip. Rev.*
779 *Data Min. Knowl. Discov.*, 1(1), 73-79, 2011.

780 Salgado, C. M., Azevodo, C., Proen  a, H., and Vieira, S. M.: Noise versus outliers. In: *Secondary*
781 *Analysis of Electronic Health Records*, MIT Critical Data, Springer, 163-183, 2016.

782 Savitzky, A., and Golay, M. J.: Smoothing and differentiation of data by simplified least squares
783 procedures, *Anal. Chem.*, 36(8), 1627-1639, 1964.

784 Schafer, M. B.: Kinematics and Controlling Mechanics of Slow-moving Ripley Landslide.
785 Dissertation, University of Alberta, 2016.

786 Schafer, R. W.: What is a Savitzky-Golay filter? [lecture notes], *IEEE Signal Process. Mag.*, 28(4),
787 111-117, 2011.

788 Scoppettuolo, M.R., Cascini, L., and Babilio, E.: Typical displacement behaviours of slope
789 movements, *Landslides*, 17, 1105-1116. 2020

790 Smith, S.: *Digital Signal Processing: A Practical Guide for Engineers and Scientists*, Elsevier,
791 2013.

792 Thiebes, B., Bell, R., Glade, T., J  ger, S., Mayer, J., Anderson, M., and Holcombe, L.: Integration
793 of a limit-equilibrium model into a landslide early warning system, *Landslides*, 11(5), 859-875,
794 2014.

795 Tofani, V., Rasipini, F., Catani, F., and Casagli, N.: Persistent Scatterer Interferometry (PSI)
796 technique for landslide characterization and monitoring, *Remote Sens.*, 5(3), 1045-1065, 2013.

797 UNISDR: United Nations International Strategy for Disaster Reduction: Terminology on Disaster
798 Risk Reduction, 2009. Available at <http://www.unisdr.org>.

799 Vaziri, A., Moore, L., and Ali, H.: Monitoring systems for warning impending failures in slopes and
800 open pit mines, *Nat. Hazards*, 55(2), 501-512, 2010.

801 Wang, G.: GPS landslide monitoring: single base vs. network solutions-a case study based on
802 the Puerto Rico and Virgin Islands permanent GPS network, *J. Geodet. Sci.*, 1(3), 191-203, 2011.

803 William, S. C.: Robust locally weighted regression and smoothing scatterplots. *J. Am. Stat.*
804 *Assoc.*, 74(368), 829-836, 1979.

805 Woods, A., Hendry, M. T., Macciotta, R., Stewart, T., and Marsh, J.: GB-InSAR monitoring of
806 vegetated and snow-covered slopes in remote mountainous environments, *Landslides*, 17, 1713-
807 1726, 2020.

808 Woods, A., Macciotta, R., Hendry, M. T., Stewart, T., and Marsh, J.: Updated understanding of
809 the deformation characteristics of the Checkerboard Creek rock slope through GB-InSAR
810 monitoring, *Eng. Geol.*, 281, 105974, 2021.

811 Yao, Z., Xie, J., Tian, Y., and Huang, Q.: Using Hampel identifier to eliminate profile-isolated
812 outliers in laser vision measurement, *J. Sens.*, 2019, 3823691, 2019.

813 Yin, Y., Wang, H., Gao, Y., and Li, X.: Real-time monitoring and early warning of landslides at
814 relocated Wushan Tow, the Three Gorges Reservoir, China, *Landslides*, 7(3), 339-349, 2010.

815 Zhang, Y.H., Ma, H.T. and Yu, Z.X.: Application of the method for prediction of the failure location
816 and time based on monitoring of a slope using synthetic aperture radar, *Environ. Earth Sci.*,
817 80(21) 1-13, 2021a.

818 Zhang, Y. G., Tang, J., He, Z. Y., Tan, J., and Li, C.: A novel displacement prediction method
819 using gated recurrent unit model with time series analysis in the Erdaohe landslide. *Nat. Hazards*,
820 105, 783-813, 2021b.

821 Zhou, X.P., Liu, L.J., and Xu, C.: A modified inverse-velocity method for predicting the failure time
822 of landslides, Eng. Geol., 268, 105521, 2020.

823 Zimek, A., and Filzmoser, P.: There and back again: Outlier detection between statistical
824 reasoning and data mining algorithms, Data Min. Knowl. Discov., 8(6), 1280, 2018.

825