10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Evaluation of filtering methods for use on high-frequency measurements of

landslide displacements

Sohrab Sharifit, Michael T. Hendry!, Renato Macciotta!, Trevor Evans?

lDepartment of Civil and Environmental Engineering, University of Alberta, Edmonton, AB,
Canada

’Canadian National Railway, Kamloops, BC, Canada

Abstract

Displacement monitoring is a critical control for risks associated with potentially sudden slope
failures. Instrument measurements are, however, obscured by the presence of scatter. Data
filtering methods aim to reduce the scatter and therefore enhance the performance of early
warning systems (EWSSs). The effectiveness of EWSs depends on the lag time between the onset
of acceleration and its detection by the monitoring system, such that a timely warning is issued
for implementation of consequence mitigation strategies. This paper evaluates the performance
of three filtering methods (simple moving average, Gaussian-weighted moving average, and
Savitzky-Golay), and considers their comparative advantages and disadvantages. The evaluation
utilized six levels of randomly generated scatter on synthetic data as well as high-frequency global
navigation satellite system (GNSS) displacement measurements at the Ten-mile landslide in
British Columbia, Canada. The simple moving average method exhibited significant
disadvantages compared to the Gaussian-weighted moving average and Savitzky-Golay
approaches. This paper presents a framework to evaluate the adequacy of different algorithms

for minimizing monitoring data scatter.

Keywords: Landslide; Early Warning System; Scatter; Filter; Gaussian-Weighted Moving

Average, Savitzky-Golay
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1. Introduction

Landslides are associated with significant losses in terms of mortality and financial consequences
in countries all over the world. In Canada, landslides have cost Canadians approximately $10
billion since 1841 (Guthrie, 2013) and more than $200 million annually (Clague and Bobrowsky,
2010). Essential infrastructure, such as railways and roads that play vital roles in the Canadian
economy, can be exposed to damage if it transverses landslide-prone areas. Attempting to
completely prevent landslides is typically infeasible, as stabilizing options and realignment may
be cost-prohibitive or lead to environmental damage. This accentuates the significance of
adopting strategies that require constant monitoring to mitigate the consequences of sudden

landslide collapses (Vaziri et al., 2010; Macciotta and Hendry, 2021).

In recent years, detailed studies have addressed the use of early warning systems (EWSs) as a
robust approach to landslide risk management (Intrieri et al., 2012; Thiebes et al., 2014; Atzeni et
al., 2015; Hongtao, 2020). The United Nations defines an EWS as “a chain of capacities to provide
adequate warning of imminent failure, such that the community and authorities can act
accordingly to minimize the consequences associated with failure” (UNISDR, 2009). Although an
EWS comprises various components acting interactively, the core of its performance relies on its
ability to detect the magnitude and rate of landslide displacement (Intrieri et al., 2012). Given that
the timely response of an EWS determines its effectiveness, an accurate sense of landslide
velocity and acceleration is necessary. Monitoring instruments able to provide real-time or near
real-time readings such as global navigation satellite systems (GNSSs) and some remote sensing
techniques are, satisfactory for this purpose (Yin et al., 2010; Tofani et al., 2013; Benoit et al.,
2015; Macciotta et al., 2016; Casagli et al., 2017; Chae et al., 2017; Rodriguez et al., 2017, 2018,
2020; Huntley et al., 2017; Intrieri et al., 2018; Journault et al., 2018; Carla et al., 2019; Deane,
2020; Woods et al., 2020, 2021). These instruments can record the displacement of locations at
the surface of the landslide with high temporal resolution, which allows the monitoring system to

track movements on the order of a few millimeters per year. In practice, the results are usually
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obscured by the presence of scatter, also known as noise, and outliers that affect the quality of
observations. These unfavorable interferences do not reflect the true behavior of the ground
motion and stem from sources such as the external environment and the quality of the
communication signals and wave propagation in the case of remote sensing techniques (Wang,

2011; Carla et al., 2017b).

Scatter can be defined as measurement data that are distributed around the “true” displacement
trend, such that the average difference between the scatter and the displacement trend is zero
and has a finite standard deviation. Scatter in displacement measurements can significantly
impact the evaluation of slope movements performed on unfiltered data and decrease the
reliability of an EWS. This can lead to false warnings of slope acceleration or unacceptable time
lags between the onset of slope failure and its identification, and therefore a loss of credibility for
an EWS (Lacasse and Nadim, 2009). As a result, scatter should be reduced as much as possible
without removing the true slope displacement trends. The application of algorithms that work as

filters aims to minimize the amplitude of measured scatter around the displacement trend.

Several approaches have been proposed to filter displacement measurements based on either
the frequency or time domain. Fourier and wavelet transformations aim to find the frequency
characteristics of the data, then attenuate or amplify certain frequencies. These approaches are
discussed in Karl (1989), who suggests they are generally unsuitable for non-stationary data such
as monitoring data time series. Filters that work on the time domain can be classified as recursive,
kernel, or regression filters. Recursive filters, such as the exponential filtering function, calculate
the filtered value at a given time based on the previous filtered value. Kernel filters, which include
simple moving average (SMA) and Gaussian-weighted moving average (GWMA), calculate the
filtered values as the weighted average of neighbouring measurements. Of these two kernel
filters, SMA is frequently used in the literature largely due to its simplicity (Dick et al., 2015;
Macciotta et al., 2016, 2017b; Carla et al., 2017a,b, 2018, 2019; Bozzano et al., 2018; Intrieri et

al., 2018; Kothari and Momayez, 2018; Chen and Jiang, 2020; Zhou et al., 2020; Deng et al.,
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2021; Desrues et al.,, 2021; Grebby et al., 2021; Zhang et al., 2021a,b). Regression filters
calculate the filtered values by means of regression analysis on unfiltered values (e.g., Savitzky-
Golay, or S-G) (Savitzky and Golay, 1964; William, 1979; Cleveland, 1981; Cleveland and Devlin,
1988; Reid et al., 2021). Carla et al., (2017b) studied both SMA and exponential filtering on
multiple failed landslide cases and concluded the latter is inferior in terms of accuracy of failure
time prediction. On the other hand, Carri et al. (2021) cautioned the designers and users of EWSs
against the use of SMA when rapid movements are expected. However, published applications
of filters other than SMA for landslide monitoring are scarce, and studies dedicated to comparing

the functionality of other filters to that of SMA are limited.

This paper presents an approach to detect and remove outliers, evaluates the performance of
three filters (SMA, GWMA, and S-G), and assesses their suitability to be utilized in an EWS. We
evaluated three filters against the following criteria: 1) scatter is minimized, 2) true underlying
displacement trends are kept with as little modification as possible, and 3) filtered displacement
trends detect acceleration episodes in a timely manner. Moreover, the paper investigates the
significance of the time lag between a landslide acceleration event and its identification by a

monitoring system for the three filters evaluated.

2. Methodology

2.1. Synthetic Data Generation

A numerical analysis on a synthetic dataset approach was adopted, which consists of synthetic
dataset scenarios generated to resemble typical landslide displacement measurements, including
acceleration and deceleration periods. These scenarios are idealizations based on observations
of typical landslide displacements published in the literature (Leroueil, 2001; Intrieri et al., 2012;
Macciotta et al., 2016; Schafer, 2016; Carla et al., 2017a; Scoppettuolo et al., 2020). A total of 12
dimensionless scenarios were built, with all data between the coordinates x=0, y=0 and x=1, y=1.

The x value represents time, and normalization between 0 and 1 allows for extrapolation of the
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findings for variable displacement measurement frequencies (e.g., the full range of x could
represent a week, a month, a year). The analysis of synthetic data focuses on the ability of
different algorithms to minimize scatter and identify changes in measured trends; therefore, y
represents any of the displacement measurement metrics of interest, e.g., displacement,
cumulative displacement, velocity, inverse velocity, etc. Mathematical equations and graphical

illustrations of the 12 scenarios are shown in Fig. 1.

Nine of the scenarios are referred to as harmonic scenarios, which are characterized by gradual
changes in the trend of parameter y. The remaining three scenarios show sudden variations at or
near x=0.5, and are referred to as instantaneous scenarios. Considering the discrete nature of
instrument measurements, and to account for different ranges in measurement frequencies, each

scenario was generated several times, each time with a different number of points (Table 1).



114

Scenario 1

Scenario 2

Scenario 3

1 1
= ot 2_27 _ 1 Vi1—x
z+1 =17 i
= 0.5 = 0.5 0.5
. @ ® ©
0 0.5 1 0 0.5 0 0.5 1
X X X
1 cenario 4 ! Scenario 5 | Scenario 6
_ 2q? e T—¢" et 2
T x4l T e l-el T e l4el-2
> 0.5 >~ 0.5 = 0.5
d
0 (d) 0 (e) 0 ()
0 0.5 1 0 0.5 0 0.5 1
X X X
1 Scenario 7 ! Scenario 8 | Scenario 9
_ e t4et—2 =4(z — 0.5 +0.5
(2 = g ( )
> 0.5 > 0.5 > 0.5
1 -2 _ .
0 e2ex | o—2ex 0 (h) 0 (l)
0 0.5 1 0 0.5 0 0.5 1
X X X
1 Scenario 10 ! Scenario 11 1 Scenario 12
> 0.5 > 0.5 > 0.5
0 ol ® ()
0 0.5 1 0 0.5 0 0.5 1
X X X
_ 6z—3 _ 1 _ 0.9743 0.9743
=05(1+erf(557)) = T0E—05°H — T0%@-047742 T T07(z—0537°+1
115
116 Fig. 1 Configuration of all synthetically generated scenarios
117  Table 1 Number of points used to generate scenarios and examples of their corresponding time spans
118 represented by the range of x from 0 to 1 if the measurement frequency is known (1-h and 1-m readings
119 for illustrative purposes).
Example monitoring frequency
Number of points
1-h readings 1-m readings
1000 41.7 Days 16.7 Hours
3000 4.1 Months 2.1 Days
9000 1.0 Years 6.3 Days
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20000 2.3 Years 2.0 Weeks

40000 4.6 Years 4.0 Weeks

86000 9.8 Years 2.0 Months
250000 5.8 Months
500000 0.9 Year
750000 14 Years
1.00E+6 1.9 Years

The next step was adding random scatter to the scenarios to represent unfiltered displacement
measurements. Macciotta et al. (2016) show the scatter in displacement monitoring for a GNSS
used in their analyses fitted a Gaussian distribution. We validated the scatter distribution fit
approximates a Gausian distribution for the displacement data scatter of the case study in this
paper. This assumption, however, has an underpinning theoretical base established by the central
limit theorem in probability theory. It states that mathematical summation of independent variables
(such as scatter) goes toward a Gaussian distribution (Smith, 2013). As a result, the scatter was
randomly produced from a normal distribution centred at zero, with extreme values truncated
between -1 and 1 and a standard deviation of 0.20. Random generation of the scatter followed
the techniques outlined in Clifford (1994) known as the acceptance-rejection method, which
generates scatter values through a series of iterations until the algorithm generates the initial
normal distribution. The amplitude of the scatter around the trend in parameter y was defined for
each scenario by scaling the randomly generated scatter. This allowed for investigation of the
effect of different scatter magnitudes on the performance of the filters. Scaling was done by
defining the ratio n/t, which is the ratio of scatter amplitude (maximum deviation around the trend,
termed n) to the range of values of the trend (t) in each scenario. Six levels of n/t (0.001, 0.005,
0.010, 0.050, 0.100, and 0.150) were considered when performing the analysis to cover a range

of possible levels of scatter in unfiltered measurements. Fig. 2 shows two samples of synthetic



139  unfiltered scenarios that are the result of superimposing scatter with n/t values of 0.05 and 0.10,
140  respectively, on scenario No. 7.
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142 Fig. 2 The procedure of generating a scenario with scatter: (a) generated scenario trend, (b) randomly
143 generated scatter, and two scenarios with scatter based on n/t values of (c) 0.05 and (d) 0.10
144 2.2 Data Processing Approaches
145  2.2.1. Simple moving average
146 SMA is a well-known method for scatter reduction that attempts to reduce scatter by calculating
147  the arithmetic mean of neighbouring points’ values. A constant-length interval (window or
148  bandwidth) is used for the calculation for each point; this is also termed a “running” average.
149  Equation 1 is the formulation of this method, which was used by Macciotta et al. (2016) to analyze
150 GNSS data scatter:
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yi=—2—, (1)

where ¥ is the filtered value, y; is the unfiltered value, and p is the window length. The window

length is constant across the dataset except for regions near the boundaries where fewer points
are available. Accordingly, p will be adjusted to the number of available points that are indeed
less than the value set by the user. This will cause variation in the effectiveness of the method at

the extremes, which needs to be considered when evaluating the results of this approach.
2.2.2. Gaussian-weighted moving average

Varying the weights of the measurements within the calculation window in SMA can be used to
develop different filtering methods. The largest weight can be given to the measurement at the
time for which the calculation is being done, with weights decreasing for measurements farther
away in time. One simple weighting function that can be adopted is the Gaussian (normal)

distribution. Eq. 2 is the formulation of the Gaussian-weighted moving average (GWMA):
i+
yFZi_é ijj' ) (2)
2
where wj; is the weight coefficient based on the Gaussian distribution and the other terms follow

the same definition as per SMA.
2.2.3. Savitkzy-Golay

S-G fits a low-degree polynomial equation to the unfiltered measurements within a window and
defines the filtered measurements using the fitted curve (Schafer, 2011). Although this procedure
seems dissimilar from the weighted averaging as discussed for GWMA, its function can be
transformed into a kernel concept using the least-squares method if the data points are evenly
spaced. The detailed procedure is presented in Appendix A. Fig. 3 shows the weight kernel over

a window of seven points attained by fitting a quadratic polynomial. An immediate observation is
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that some points are given negative weights. If points are not evenly spaced, the weighting kernel
cannot be used and a local regression analysis should be periodically conducted for each point.
Such filtering is known as locally estimated scatterplot smoothing (LOESS). This decreases the

computational efficiency of filter performance and exponentially increases the execution time.

0.4

03¢

o T
ol |

T4 3 2 1 0 1 2 3 4
Local index

Fig. 3 The weighting kernel of the Savitzky-Golay filter for seven points

2.3 Evaluation of Processing Algorithms

The synthetic monitoring data and data from the case studies were filtered using SMA, GWMA,
and S-G techniques. The filters were applied with different lengths of moving windows, from 0.01
(1%) to 0.1 (10%) of all monitoring points, referred to as the bandwidth ratio. These limits for the
bandwidth ratio were selected based on literature reports for SMA. In the filtration process, we
only used the points prior to the time for which the calculation is being made (point of interest,
Fig. 4). This is to reflect the reality of displacement monitoring information as applied to EWSs.
To this end, filters used the first half of their kernels, but the weights were multiplied by 2 in

comparison to a symmetric window in order to keep the sum of weights equal to 1.

10



188
189

190

191

192

193

194

195

196

197

198

199

200

Point of interest

recedent observations

|
> L u - Future observations i
] i
|
0 00
X
DNon-symmetric window Symmetric window

Fig. 4. Concept of symmetric and non-symmetric window types in the filtration process

All of these filters require the definition of a bandwidth. A roughness factor was defined to aid in

the evaluation of the effect of bandwidth in reducing scatter. This factor is defined as:

2
3= f (VR)a il @)
Ra=[ (y") dx, (4)

where J, is the roughness factor, )“/" is the second derivative of filtered measurements, R, is the
absolute roughness computed by Eq. 4, and y' is the second derivative of unfiltered
measurements. The second derivative measures how much the slope of the line connecting two
consecutive points changes, which itself is an indication of fluctuation. The greater this second
derivative, the greater the variation. J, was normalized to the overall curvature of the unfiltered
scenario to determine the relative scatter reduction after the application of a filter, eliminating any

roughness associated with the real trend in the scenario. In limit states, a value of 1 means that

11
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fluctuations are similar to the unfiltered dataset, and therefore no improvement has been
achieved; a value of 0 suggests the slope of a scenario remains unchanged and indicates a linear
trend. Because all of the scenarios, except the first, include trends showing concavity or convexity,
a residual value for the roughness factor would be expected in the lowest limit state, meaning that
a value of 0 is not necessarily a goal. J, was used to infer the minimum value of bandwidth ratio
after which no significant change in the fluctuation of results is achieved. Considering the second
power in the formulation of J,, all observations are valid if the scenarios are mirrored (when they

vary from 1 to O, instead of O to 1).

The filters are not expected to remove all scatter, and the error attributed to the residual scatter
can be calculated using the root mean square error (RMSE). Given that velocity values are usually
used as thresholds in an EWS, one concern is whether the filter should be applied to displacement
values or to velocity values derived from unfiltered displacements. To address this issue, two
different approaches to filtering were investigated: direct and indirect. As a result, two different

approaches using the RMSE were also utilized here.
2.3.1. Direct scatter filtration

Direct filtration means the filter is applied to the diagram of interest. If the filtered displacement
values are the goal, and the filter is applied to unfiltered displacement values, then the filtering
process is called direct filtration. The same concept applies when velocity values are derived
using unfiltered displacements and the filters are then directly applied to the velocity values. In

this approach, the RMSE follows Eg. 5:

RMSEd= |31, (5-y,)’, (5)

where RMSEd is the measurement of error in direct filtration, y . is the value of the true trend (for

the synthetic scenario), ¥; is the filtered value, and m is the total number of points. This approach

12
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is often used in the literature (e.g., Macciotta et al., 2016; Carla et al., 2017a,b, 2018, 2019; Intrieri

et al., 2018).
2.3.2. Indirect scatter filtration

Some EWSs can apply the filter to the displacements but use velocity trends as the metric for
evaluation. In this case, the filtered velocity values will be computed using the filtered
displacements. Indirect filtration indicates the diagram of interest is the first derivative of the

diagram to which the filter is applied. The RMSE in this case is defined as:

RMSEi= |15, (5,y) ©)

where RMSEi is the measurement of error in indirect filtration, y,f is the first derivative of the true

trend, )7,.' is the first derivative of filtered data (derived velocity after the filter is applied to the

displacements), and m is the total number of points. Similar to J,, all observations are valid for
the mirrored scenarios of those presented in Fig. 1. This is a consequence of using the second

power in the definition of RMSEi and RMSECJ.
2.4 Lag Quantification

Only antecedent measurements are fed into the filters, which is expected to result in a lag between
the true trend and its identification by the filters. This lag means the calculated value of velocity
or displacement occurred sometime in the past. Consequently, reducing this lag means less time
is lost with respect to providing an early warning. To quantify the induced lag, the filtered diagrams
of all scenarios at all n/t ratios and bandwidth ratio values were shifted backwards a number of
points equivalent to 0.001 (0.1%) to 0.1 (10%) of all generated points. We refer to this as the shift
ratio in the rest of this paper. This shift of filtered diagrams is expected to increase their similarity
with the true trend until the best correlation is achieved. The R? test was used to determine how

well the shifted and filtered results replicate the underlying trend.
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2.5. Geocubes Differential GNSS System

A Geocubes system is a network of differential global navigation satellite system (GNSS) units
that works with a single frequency (1572.42 MHz), making it cost-effective (Dorberstein, 2011;
Benoit et al., 2014; Rodriguez et al., 2018). Geocubes communicate with each other through radio
frequency, and a reference unit outside the boundaries of the landslide is assumed as static for
differential correction to increase the poor accuracy associated with single frequency GNSSs
(Benoit et al., 2014; Rodriguez et al., 2018). The ability of this system to achieve real-time
positioning, remote data collection, and processing makes it a suitable candidate for incorporation
into an EWS. As a result, Geocube data are used in this study to evaluate the performance of the

three mentioned filters.

2.6. Outlier Detection

Outliers are defined herein as abnormal inconsistencies (e.g., displacement directions,
magnitudes) when compared to the majority of observations in a random sampling of data (Zimek
and Filzmoser, 2018). Techniques for outlier detection have been proposed based on the
statistical characteristics of datasets. One common example is the Z-score method, which
calculates the mean and standard deviation of data within a defined interval and identifies outlier
data as those beyond three standard deviations from the mean (Rousseeuw and Hubert, 2011).
A limitation of this kind of approach is the sensitivity of the mean and standard deviation to the
outlier data points, which has led to the development of other methods that use other indices such
as the median (Salgado et al., 2016). One such technique that was adopted in this study is the
Hampel filter (Hampel, 1971). In this method, the median of the displacement measurements
within a running bandwidth is calculated and data outside a defined threshold from the median
are identified as outliers. The threshold is defined as a constant (threshold factor) multiplied by
the median absolute deviation. An asymmetric window with a bandwidth ratio of 0.004 (0.4%) and

a threshold factor of three were adopted following previous studies (Davies and Gather, 1993;
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Pearson, 2002; Liu et al.,, 2004; Yao et al., 2019). The data identified as outliers were then

removed from the dataset.

3. Study Site — Ten-mile Landslide

The Ten-mile landslide is located in southwestern British Columbia (BC), in the Fraser River
Valley north of Lillooet (Fig. 5a). It is a reactivated portion of a post-glacial earthflow (Bovis, 1985)
that was first recognized in the 1970s. The landslide velocity has increased from an average of 1
mm/day in 2006 to 6 mm/day in 2016, with a maximum measured velocity of 10 mm/day (Gaib et
al., 2012; BGC Engineering Inc., 2016). The movement of this landslide impacts the integrity of
BC Highway 99 and a section of railway operated by Canadian National Railway (CN) (Carla et
al., 2018), with most movement limited to the volume downslope from the railway due to the
installation of a retaining wall (Macciotta et al., 2017a). Despite the stabilization work done to date,
the uppermost tension crack has retrogressed approximately 200 m in 45 years and is now
situated 60 m upslope of the railway track (Macciotta et al., 2017b). The landslide lateral extents
have not expanded since 1981 according to the aerial photographs Macciotta et al., 2017b). The
Ten-mile landslide is currently approximately 200 m wide, 140 m high, and has a volume of 0.75
to 1 million m3, moving towards the Fraser River on a continuous rupture surface with a dip of
about 22 to 24°, which is sub-parallel to the ground surface (Rodriguez et al., 2017; Donati et al.,
2020). The elevation of the shear surface and mechanism of the landslide have been inferred

from the readings of multiple slope inclinometers installed in 2015 (BGC Engineering Inc., 2015).

The bedrock in this region consists of volcanic rocks, such as andesite, dacite, and basalt, and is
overlain by Quaternary deposits (Donati et al., 2020; Carla et al., 2018; Macciotta et al., 2017a).
The thickness of the landslide varies between 20 and 40 m and the ground profile from the surface
to depth comprises medium to high plastic clays and silts overlying colluvium material and glacial

deposits, overlying bedrock (BGC Engineering Inc., 2015). The stratigraphy of the sedimented
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soils in the landslide area notably varies from one borehole to another and reflects the complex

stratigraphy of the earthflow.

A total of 11 Geocubes were installed at the Ten-mile landslide in 2016. Fig. 5b is a front view of
the landslide showing the locations of the Geocube units. Units 44 and 50 are installed near the
uppermost tension crack identified as the current landslide backscarp, unit 69 is 30 m above the
backscarp, and unit 39 is used as the reference point. Please note that unit 69 is used as the fixed
Geocube, and is not shown in Fig. 5b. The other units are located within the boundaries of the
landslide, with a maximum distance between units of 310 m (Rodriguez et al., 2018). The time
step between every two consecutive measurements is 60 s. Fig. 6 shows the displacements of

units 46 and 47, which were the largest in comparison to other Geocubes.

50°48'N

50°46'N Ten-mile landslide w::;:::\'l‘e‘;'?:'; ; a,/"

~ N
9 Y CN railway &=

50°44'N

; Lillooet
50°42'N ESS

50°40'N

50°38'N

122°W 121°55'W 121°50'W
Fig. 5 (a) Location of the Ten-mile landslide (© Google Earth) and (b) front view of the Ten-mile landslide
and distribution of Geocubes on its surface (Rodriguez et al., 2018; Macciotta et al., 2017b)
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4. Results
4.1. Synthetic Analysis

Fig. 7 shows the roughness value (J,) of scenario 6 for SMA, GWMA, and S-G on a semi-
logarithmic scale. This figure illustrates how, regardless of the n/t ratio, J, substantially decreases
as the bandwidth ratio increases to 0.01 and then asymptotically approaches a final value. This
means that increasing the bandwidth ratio drastically reduces scatter; however, its effectiveness
is restricted as the bandwidth ratio increases above 0.01. This observation was consistent for
other scenarios. J, values (including scenario 6 in Fig. 7) indicate that J, approaches its minimum

at bandwidth ratio values of 0.03 to 0.04, regardless of the filter selected.
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Fig. 7 Variation of roughness factor for scenario 6 with respect to the applied filter on a semi-log scale

4.1.1. Effect of filters on trend distortion

Scenarios 11 and 12 were first analyzed to evaluate the degree to which the trend was preserved
by these filters, as peaks made it easier for visualization. Fig. 8Error! Reference source not
found.a shows the true trend of scenario 11 along with two SMA-filtered scenarios at bandwidth
ratios of 0.04 and 0.10, respectively. This figure shows that, as the SMA filter bandwidth
increases, the peak in measurements is identified at a later time than the true trend (x=0.5) and
the magnitude of the peak is reduced (more than 70% reduction at a bandwidth ratio of 0.10).
Furthermore, as the bandwidth ratio increases, the “instantaneous” nature of the peak is lost to a
more transitional variation. This highlights a disadvantage of SMA when handling sudden changes
in data trends. The calculated x value of the peak in scenario 11 is plotted for different bandwidth
ratios and for all three filters in Fig. 8Error! Reference source not found.b. This figure shows
the time at which the peak is identified lags as the bandwidth ratio increases for all filters; however,
GWMA and S-G identify the peak with a much smaller lag, independent of the n/t ratio. As an
example, for a year of monitoring data at a frequency of 30 s and bandwidth ratio of 0.10, SMA,
GWMA, and S-G predict the peak point approximately 17, 3.5, and 2.7 days after the real peak,

respectively. This lag can be attributed to the utilization of an asymmetric window, which leads to
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338 alagged response of the filter. As more points are included in the filtering procedure (increasing
339  bandwidth ratio), this lag increases because the averaging process is sensitive to window type.
340 The degree of sensitivity, however, depends on the filter. Fig. 8Error! Reference source not
341 found.c shows the variation of the peak magnitude with respect to the bandwidth ratio for all three
342  filters. SMA and GWMA both underestimate the peak value, and the difference between the
343 calculated peak and real peak increases as the bandwidth ratio increases. SMA calculations
344  underestimate the peak more than twice as much as GWMA. On the contrary, S-G intensifies the
345  peak up to a bandwidth ratio of 0.04, with the impact tending to diminish at larger bandwidth ratios;

346 it predicts the true value at a bandwidth ratio value of almost 0.09.

! Scenario 11 0.56 12
(a) (b) N T Tt~
0.8t o 1 -~
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- - - - Filtered by SMA (BR=0.10)

347
348 Fig. 8 (a) An example of peak displacement by applying SMA, and variation of (b) peak position and (c)

349 peak value with respect to the filter and bandwidth ratio used (original peak at 0.5)

350 Scenario 12 was used for a detailed evaluation of the ability of these filters to conserve the
351 underlying original trend.Error! Reference source not found. Fig. 9 shows scenario 12 and the
352  filtered results for all three filters and for an n/t ratio of 0.15. This scenario and these specific
353  parameters were selected for illustration purposes as they allow visual identification of differences
354  for discussion. The SMA filter considerably underestimates the magnitude of the peak at a
355  bandwidth ratio of 0.04, which should be the minimum bandwidth ratio according to Fig. 7. At a

356 bandwidth ratio of 0.10, the filtered diagram is distorted in comparison to the true trend and the
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initial peak is not identified. GWMA at a bandwidth ratio of 0.04 shows less underestimation of
the peak magnitude, and a slight lag is visually observed at a bandwidth ratio of 0.10. This
indicates the significantly better performance of GWMA over SMA. S-G results for both bandwidth
ratios closely identify the time and magnitude of both peaks, indicating yet better performance.
However, the peak is artificially intensified at a bandwidth ratio of 0.04, and a significant drop
occurs well beyond the true trend immediately after the second peak for both bandwidth ratios
(pulsating effect), which was also observed in scenario 11. Increasing the degree of the
polynomial fitted as part of the S-G methodology was not completely effective at eliminating this
effect. The pulsating effect was also observed when a symmetrical window was utilized and is

attributed to the negative weights in the S-G kernel.

1SMA (0/t=0.15,BR=0.04) (%WMA (/t=0.15,BR=0.04) | 2S-G (0/t=0.15,BR=0.04)

(b) ; ©)
0.8 0.8 : 0.9
0.6 0.6 0.6
>~ >~ >~

0.4 ! '. 0.4 0.3
0.2 | 0.2 0 U\g

0 - 0 -0.3

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

X X X
SMA (/t=0.15,BR=0.10) GWMA (n/t=0.15,BR=0.10) . 2S-G (n/t=0.15,BR=0.10)
1 T 1 T .
(@ i
0.8 i 0.8 0.9
il
0.6 i 0.6 0.6
) b > >

0.4 ! 0.4 0.3
0.2 ) 0.2 0

0 — 0 - 0.3

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

X
————— True trend of scenario 12— Filtered results

Fig. 9 Filtered results of Scenario 12 with scatter using SMA (a,d), GWMA (b,e), and S-G (c,f) at

bandwidth ratios (BRs) of 0.04 (a-c) and 0.10 (d-f)

4.1.2. Results of direct scatter filtration
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Fig. 10 shows the RMSEd of all three filters for all of the harmonic synthetic scenarios. This figure
shows that, for these numerical analysis on synthetic scenarios, the error depends linearly on the
bandwidth ratio for all of the filters and does not depend on the scenario or n/t ratio. SMA shows
the greatest difference from the true trend, followed by GWMA (approximately 60% less difference
than SMA). S-G, on the other hand, almost lies on the horizontal axis for all of the bandwidth
ratios, which means the filtered results yield near zero error. Fig. 10 also shows how the error
increases as the bandwidth ratio increases. This can be attributed to the utilization of an
asymmetric window, which leads to a lagged response of the filter. As more points are included
in the filtering procedure (increasing bandwidth ratio), this lag increases and, consequently,
causes larger error. The RMSEd of filters for the instantaneous synthetic scenarios are shown in
Fig. 11. In scenario 10, the same behaviour as noted for the harmonic scenarios can be seen fir
SMA and GWMA, whereas S-G is not as accurate. This is more noticeable in scenarios 11 and
12 in which S-G becomes less accurate than GWMA at larger bandwidth ratios. This result shows
that S-G cannot handle the instantaneous scenarios as satisfactorily as the harmonic ones. The
errors related to SMA and GWMA for the instantaneous synthetic scenarios show non-linear
behavior, and are greater when compared to the harmonic scenarios. Fig. 11 clearly shows all
filters are challenged by the instantaneous variations when compared to gradual ones in direct

filtration.
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Fig. 10 RMSEd for the harmonic scenarios
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Fig. 11 RMSEd for the instantaneous scenarios

4.1.3. Results of indirect scatter filtration

Fig. 12 shows the RMSEi results for the harmonic scenarios (when performing indirect filtration)
on a semi-logarithmic scale. We observed that the error considerably decreases as the bandwidth
ratio increases to 0.02; however, to highlight the variation of error in the range of interest for the
bandwidth ratio, only RMSEi values corresponding to bandwidth ratios greater than 0.04 are
plotted in Fig. 12 and 13. In Fig. 12, the error for the GWMA is either equal to or slightly less than
the error for the SMA, and S-G shows the least error for the harmonic scenarios. The RMSEi
results for the instantaneous scenarios (Fig. 13) are similar to those for the harmonic scenarios
for large n/t ratios (0.05, 0.10 and 0.15). For small n/t ratios, the GWMA is superior at bandwidth

ratios above 0.06, and S-G has the worst performance.
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4.1.4. Lag quantification

The non-symmetric inclusion of points causes the identification of a lag in the trend of filtered
data. Fig. 14 shows Scenario 10 with respect to the original trend, with scatter added (at an n/t
value of 0.15), and the results after filtering with each of the three methods at a bandwidth ratio
of 0.04. This figure clearly shows the lag between the results filtered by SMA and GWMA and the
true trend. S-G results do not have as severe a lag as that resulting from the other filters; we
attribute this to the negative weights in its kernel that anchor the filtered values and prevent a
lagged response. A minor pulsating effect can be observed in the S-G filtered data, decreasing
the calculated values at a much earlier time than the true trend. This suggests that S-G is robust
with respect to identifying initial changes in monitoring trends but overcorrects subsequent
changes; SMA grossly lags with respect to the identification of any change; and GWMA has a

reduced lag when compared to SMA.

_0.2 1 1 1 1
0.4 0.45 0.5 0.55 0.6 0.65

X

Fig. 14 Scenario 10 with and without scatter, and with scattered results filtered by SMA, GWMA, and S-G
for an n/t value of 0.15 and a bandwidth ratio of 0.04.

Fig. 15a shows an example of R? correlation for scenario 7, comparing the original trend and the

results filtered by SMA at an n/t value of 0.01 and bandwidth ratio of 0.04. The shift ratio is the
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shift of filtered trends (in the horizontal axis — parameter x) relative to the range of x values. R?
calculations are shown for the filtered data (shift ratio of 0) and as the filtered trends are shifted
backwards in time (negative shift ratio valus). In this analysis, the peak R? value (largest
correlation between the shifted filtered results and original trend) indicates the shift required to
minimize the lag in identifying the original trend changes, therefore providing a quantitative
approach to calculating the lag in parameter x. In the example in Fig. 15a, the lag corresponded

to 0.018 (1.8%) of the total points.
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Fig. 15 (a) R? values for scenario 7 with filtered and shifted results at an n/t value of 0.01 and bandwidth
ratio of 0.04 and (b) shift ratio at peak R? for all scenarios and n/t ratios, with the mean (solid line)
bounded by one standard deviation (dashed lines)

Peak R? values for all scenarios and n/t values are closely correlated with the bandwidth ratio.
The lag, quantified by the shift ratio, is larger when the trend change is more pronounced;
therefore, the correlation between the shift ratio and bandwidth ratio is different for different
scenarios. Fig. 15b shows the mean correlation between the shift ratio and bandwidth ratio, for
all scenarios and n/t values, bounded by one standard deviation, for GWMA and SMA. Table 2
shows linear and quadratic regressions of this correlation and the strength of the correlation in
terms of R?2 and RMSE. Fig. 15b quantitatively shows that GWMA lags less than SMA with respect
to identifying changes in measurement trends. Moreover, the uncertainty associated with lag for
SMA is greater than for GWMA because of the larger standard deviation. Fig. 15b quantifies how

increasing the bandwidth ratio increases the lag with respect to identifying true measurement
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446  trends and, although large bandwidth ratios decrease the scatter in data, the bandwidth ratio
447  should carefully balance minimizing both scatter (J,) and lag (shift ratio). S-G is not included in
448  this analysis as the method resulted in no significant lag in identifying changes in measurement
449  trends; however, it had the disadvantages previously noted including pulsating effects and

450  overestimating peak values.

451 Table 2 Regression correlations between shift ratio (SR) and bandwidth ratio (BR) with the strength of the
452 correlation in terms of R? and RMSE

Linear regression Quadratic regression
< R?=0.9940 ) R%=0.9997
> | SR=-0.5087(BR) SR=-1.323(BR?)-0.4049(BR)
N RMSE=0.0014 RMSE=3.24E-4
= R?=0.9996 , R?=0.9999
S | SR=-0.1783(BR) SR=-0.1171(BR?)-0.1691(BR)
o RMSE=1.2963E-4 RMSE=3.5672E-5

453 4.2. Results on the Ten-mile landslide

454  Unfiltered results reported by Geocubes 46 and 47 installed on the Ten-mile landslide were
455  processed by all three filters. To illustrate to the reader through visual inspection the difference
456  between the performance of SMA, GWMA, and S-G, only a 200-day window of displacement data
457  from Geocube 46 and filtered points produced by direct filtration are shown in Fig. 16. Fig. 16a
458  also features an inset showing scaled scenario 4, which resembles the general trend of Geocube
459 46 data for the period from day 200 to 400. Fig. 16 shows that increasing the bandwidth ratio
460 reduces the scatter, but increases the lag in the filtered results, consistent with observations on
461  the synthetic datasets. For bandwidth ratios larger than 0.04, SMA becomes insensitive to some
462  short-scale (20- to 30-day) trends in the data (qualitative visual inspection). As an example, at a
463  bandwidth ratio of 0.10, SMA suggests the displacement of Geocube 46 follows a bi-linear trend

464  with an inflection point at day 240, while unfiltered points and other filters suggest other periods
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of acceleration and deceleration. Importantly, S-G is sensitive to even subtle variation and does

not show significant lag.
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Fig. 16 Unfiltered displacement of Geocube 46 data vs. time and data filtered by SMA, GWMA, and S-G
for bandwidth ratios (BRs) of (a) 0.04, (b) 0.07, and (c) 0.10.

Fig. 17 shows the filtered velocity values obtained by directly filtering the calculated velocities and

by indirectly filtering the displacement values before calculating the velocity from Geocube 46
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data. The direct and indirect filtering approaches demonstrated similar performance in terms of
scatter reduction for Geocube 46 data. As the bandwidth ratio increases, SMA tends to
significantly attenuate the local maximum and minimum points in comparison to results at smaller
bandwidth ratios, indicating a probable loss of information about the landslide behaviour and
sensitivity of this filter to the bandwidth ratio, as also noted in Fig. 16 (curvature loss in SMA
results). Indirect filtration by SMA seems to be limited near the boundary at time zero, resulting in
a subdued replica of direct filtration. The length of this region is found to be governed by the
bandwidth ratio, as the necessary number of points for filtering in this portion has not been
provided to the filter. This is also observed in S-G results. This problem was not found in GWMA
results, as direct and indirect filtration both follow the same pattern. GWMA and S-G are both able
to preserve the velocity variation even at the most intense filtration (bandwidth ratio of 0.10);
however, variations between local maxima and minima are more extreme in S-G than GWMA
results. This is attributed to peak overestimation (Fig. 8 and 9) or a pulsating effect superimposing
on the peaks/troughs. Moreover, the S-G results still demonstrate relatively large fluctuations
even at the largest bandwidth ratio. This means that application of S-G might still trigger false
alarms in an EWS if the landslide is moving at a faster rate or experiencing different episodes of
acceleration and deceleration. To avoid this, a larger bandwidth ratio should be used but this can
be problematic due to the higher computational effort required and issues that might follow, such

as the pulsating effect.

Results for Geocube 47 confirm the same observations made for Geocube 46 but also allow for
an evaluation of the significance of outliers on the filtered results. Fig. 18a displays the outliers
detected in the displacement diagram of Geocube 47 data along with the threshold established
by the Hampel algorithm using an asymmetric window, bandwidth of 0.4% and threshold factor of
3. Fig. 18b-d shows a magnified portion of the displacement measurements for Geocube 47
filtered by each of the three filters at three different bandwidth ratios before the elimination of

outliers. This highlights the necessity of outlier elimination before application of any scatter filter.
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These plots show that detecting and removing outliers significantly impacts the performance of
S-G, as the presence of the outlier generates a peak that follows the outlier measurement and is
followed by a sudden decrease that drops well beyond the data trend. SMA tends to widen the
time range affected by the outlier more than GWMA but, for most part, the SMA-filtered results
are almost parallel to the underlying trend. All filters appear to be significantly impacted by the
outlier value, suggesting a pre-processing filter is required to remove outliers regardless of the
use of SMA, GWMA, or S-G to reduce scatter. The outliers were successfully identified and
removed after application of the Hampel algorithm, and the above-mentioned effects were no

longer observed in the filtered results.
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508 Fig. 17 Indirect and direct filtration results of Geocube No. 46 velocity values for bandwidth ratio (BR)
509 values of (a) 0.04, (b) 0.07, and (c) 0.10.
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Fig. 18 Unfiltered and filtered displacement measurements for Geocube 47 at bandwidth ratios (BRs) of

(a) 0.04, (b) 0.07 and (c) 0.10

4.2.1. Lag minimization in filtered Geocube results

The lag between unfiltered and filtered data for Geocube 46 (Fig. 16) is consistent with the

synthetic database results. The lag quantification results (Fig. 15b) were used to provide a

correction value for the filtered Geocube results. The shift ratios used for this purpose with respect
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to each filter and bandwidth ratio are tabulated in Table 3. To determine whether the results of
lag correction using the mean correlations derived from the synthetic scenarios (Table 2) were
acceptable, the filtered diagrams were shifted (using the mean line for GWMA and values
between the mean and lower boundary for SMA) and different portions of the displacement

diagrams for Geocubes 46 and 47 were examined. Some examples are shown in Fig. 19

Shift ratio

Bandwidth ratio
SMA GWMA

0.04 -0.02 -0.007
0.07 -0.035 -0.012
0.10 -0.06 -0.018

. The mean and standard deviation of the scatter around the trend (error distribution) were
calculated by assuming a linear trend within the short time periods of analysis (considered an
approximation of the true displacement trend for the short time interval). These were also
calculated for the filtered and shifted diagrams. The closer the mean and standard deviation of
the filtered and shifted data are to that obtained from the linear trend, the better the performance
of the lag correction based on the results from the synthetic scenarios. As an example, for the
time period from day 250 to 260, the GWMA resulted in a standard deviation of 0.001 to 0.0015
for bandwidth ratios from 0.04 to 0.10, respectively; corresponding values for SMA to 0.0018 to
0.0021. This illustrates that shifted GWMA results are closer to the true (scatter-free)
displacements because the standard deviations of scatter inferred by this filter are closer to the
true scatter, although both have good agreement with the true scatter. The means of inferred
scatter by both filters are also close enough to the mean of the true scatter (almost zero). The
results show the statistical indices of scatter inferred from the filtered shifted displacement
measurements closely agree with that considered to be true scatter, and therefore the filtered

displacement measurements are corrected for lag. This suggests the correlations stated in Fig.
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538 15b and Table 2 based on the synthetic scenarios are applicable to minimize the lag for the

539  Geocube system at the Ten-mile landslide.

540  Table 3. Shift ratios used for lag minimization of Geocube 46 displacements

Shift ratio
Bandwidth ratio

SMA GWMA

0.04 -0.02 -0.007
0.07 -0.035 -0.012
0.10 -0.06 -0.018
541
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542
543 Fig. 19. Mean and standard deviation of scatter inferred by SMA and GWMA in comparison with true
544 scatter in the displacement of Geocube 46
545

546 5. Discussion

547  Previous studies dedicated to landslide monitoring consistently adopt SMA for scatter

548 minimization in displacement data. However, the adequacy of this filter and the effect of
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bandwidth selection were not well understood. Analyzes conducted on synthetic databases in this
study using a roughness factor (J2) demonstrate that at least 4% of the total observations should

be fed into the filter to ensure fluctuations are sufficiently reduced.

The results of this study show that SMA tends to considerably distort the underlying trend at a
bandwidth ratio of 0.10 (Fig. 8 and 9), and its lagged response with respect to real-time monitoring
is almost three times that of GWMA results. As a result, a bandwidth ratio between 0.04 and 0.07
is suggested. However, we caution that the bandwidth should be selected with a complete
awareness that SMA is highly sensitive to bandwidth, and sensitivity analyses on bandwidth are
recommended when defining an EWS. Corresponding observations were made during the

analysis of displacement data from Geocubes installed on the Ten-mile landslide.

Error calculations show that GWMA and S-G outperform SMA in both direct and indirect filtration
and are more successful in preserving the true displacement trend. The near-zero lagged
response of S-G makes it a notable candidate for developing an EWS. Nonetheless, its intrinsic
shortcoming in handling peaks, leading to a pulsating effect, will pose challenges for its utilization.

The bandwidth range used for SMA is also suggested to be applied with the S-G filter.

GWMA results suggest a proper trade-off can be achieved between minimizing the lag time and
scatter and avoiding the pulsating effect. Compared to SMA and S-G, GWMA is less sensitive to
changes in the bandwidth. Analyses focused on the Geocube data also confirm that GWMA is
capable of constraining the fluctuations in the velocity diagram while not attenuating variations in
the displacement rate diagram. Moreover, the lag quantification chart proposed could reliably
capture the required shift with a greater degree of confidence in comparison to SMA even at the
largest bandwidth ratio studied here (0.10). The bandwidth for GWMA can therefore range of 0.04
to 0.10. Moreover, we observed consistency between direct and indirect filtration results using

GWMA but greater differences when using SMA or S-G results. This was especially the case in
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the early parts of the datasets and at some locations where outlier elimination was likely

ineffective.

Filter and bandwidth selections should not be arbitrarily or purely empirical, as differences in
outcomes can be substantial. An automated surveillance system for landslides demands stability
in filter performance for a variety of circumstances, considering the ground can experience
irregular sequences of acceleration and deceleration. The results here suggest practice moves
away from the adoption of SMA due to the limitations discussed. S-G demonstrates some
inconsistent or erratic performance for certain displacement trends, which is detrimental although
overall the error is smaller than for SMA. On the balance of its strengths and limitations as

evaluated in this study, GWMA appears to be the more robust approach.

6. Conclusions

This study evaluated the suitability of SMA, GWMA, and S-G filters for scatter reduction of
datasets targeted for use in an EWS. A total of different 12 scenarios with harmonic and
instantaneous changes were synthetically generated and random variations with Gaussian
distribution then added to produce unfiltered results. The three filters considered were then each
applied with different bandwidths and the error computed. These filters were also successfully
applied to the records from two Geocubes installed on the Ten-mile landslide. The results led to

the following conclusions:

e When used for direct filtration of harmonic scenarios, the error resulting from the GWMA
approach is approximately one-third that of the SMA approach. The S-G approach results
in near zero error regardless of the values of the bandwidth ratio and n/t. When used for
direct filtration of instantaneous scenarios, the superiority of S-G is no longer unconditional
and depends on the bandwidth ratio; this reflects the fact that S-G cannot appropriately

handle peaks in the velocity diagram.
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When used for indirect filtration of harmonic scenarios, S-G again outperforms the other
methods. The error associated with GWMA is marginally less than for SMA. These
observations are not valid when the filters are applied to instantaneous scenarios, as
GWMA results in less error than S-G at bandwidth ratios above 0.03.

Detailed investigations with scenarios 11 and 12 demonstrate that that SMA distorts the
underlying trend by displacing and sometimes neglecting peak(s), while GWMA and S-G
tend to preserve them somewhat similarly.

Due to the presence of negative weights in the S-G kernel, some artificial smaller troughs
and peaks are created after major peaks. This phenomenon, referred to herein as a
pulsating effect, results in unfavorable performance of S-G on the velocity and
displacement diagrams, especially in the presence of outliers.

Investigations on the roughness factor reveal the bandwidth ratio should be at least 0.04.
Taking this into account, GWMA seems to be the most reasonable option as the related
uncertainties are much smaller than for S-G and the error is acceptable and less than for
SMA.

A consequence of using asymmetric windows in the filtering process is a lag in the SMA
and GWMA results that increases with increasing bandwidth ratio. Lag quantification
suggests a correlation between the needed shift and bandwidth ratio that can be used to
eliminate the lag. SMA requires approximately three times the shift of GWMA on average.
Application of these filters to displacement data reported by Geocubes shows SMA and
S-G are unable to properly handle data points at the beginning of the dataset (i.e., near
the boundary) in indirect filtration of the velocity diagram. Moreover, SMA and S-G are
inclined to respectively underestimate and overestimate peaks and fluctuations in the
velocity diagram. Overall, GWMA provides the most reliable filtered values for velocity with

no distinct difference between direct and indirect filtration.

Appendix A
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Consider a polynomial of degree k that is intended to be fitted over an odd number of points
denoted as z. The weighting coefficients of the Savitzky-Golay filter can be extracted from the first

row of matrix C (Eq. 7):
c=(0")" T, 7)
where T operator is the transpose of a matrix and J is the Vandermonde matrix, with elements at
the ith row and jth column (1<i<z and 1<j<k+1) that can be achieved as follows:
J=m!™, (8)

where m is the local index of points (- (z+1)/2<m=<(z+1)/2). As an example, the kernel of an S-G
filter that fits a quadratic polynomial (k=2) over seven points (z=7) is attained here. In the first

step, J is set up as follows:

1 (-3)" (-3)?]
1 2" (-2)?
1 DY 1)?
=11 O (0)?] )
1T M ?
1 @' @2
1 3)!' (3)2]

Then, using Eqg. 1, matrix C is computed as Eq. 10:

-0.0952 0.1429 0.2857 0.3333 0.2857 0.1429 -0.0952
C=(-0.1070 -0.0714 -0.0357 0 0.0357 0.0714 0.1071 |. (10)
-0.0595 0 -0.0357 -0.0476 -0.0357 0 0.0595

The second and third rows of C are the coefficients to find the filtered values’ first and second

derivations at the point of interest, respectively.

Data availability

The synthetic database can be generated through the comprehensive steps provided here. The

Geocube measurements of the Ten-mile landslide displacement are not publicly available.
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