The Effect of the Wenchuan and Lushan Earthquakes on the Size Distribution of Earthquakes along the Longmenshan Fault

Chun Hui1,2,3, Changxiu Cheng1,2,3,4, Shi Shen1,2,3, Peichao Gao1,2,3, Jin Chen1,2, Jing Yang5, Min Zhao1,2,3

1Key Laboratory of Environmental Change and Natural Disaster, Beijing Normal University, China, 100875

2State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, China, 100875

3Faculty of Geographical Science, Center for Geodata and Analysis, Beijing Normal University, China, 100875

4National Tibetan Plateau Data Center, Beijing, China, 100101

5College of Data Science, Taiyuan University of Technology, China, 030024

Corresponding author: Changxiu Cheng
Abstract

Changes in the stress state of faults and their surroundings is a highly plausible mechanism explaining earthquakes interaction. These stress changes can impact the seismicity rate and the size distribution of earthquakes. However, the effect of large earthquakes on the earthquake size distribution along the Longmenshan fault has not been quantified. We evaluated the levels of the b value for the stable state before and after the large earthquakes on 12 May 2008 (Wenchuan, M_S 8.0) and 20 April 2013 (Lushan, M_S 7.0) along the Longmenshan fault. We found that after the mainshocks, the size distribution of the subsequent earthquakes shifted toward relatively larger events in the Wenchuan aftershock zone (b value decreased from 1.03 to 0.84), and generally remained invariable in the Lushan aftershock zone (b value remained at 0.76). The time required for the b value to return to stable states after both mainshocks were entirely consistent with the time needed by the aftershock depth images to stop visibly changing. The result of the temporal variation of b values show decreasing trends for the b value before both large earthquakes. Our results are available for assessing the potential seismic risk of the Longmenshan fault as a reference.

Keywords: b value; stable state; depth; Longmenshan fault

1 Introduction

Following the Wenchuan M_S 8.0 earthquake on 12 May 2008, the Longmenshan fault zone was struck by the 20 April 2013 M_S 7.0 Lushan earthquake. The Longmenshan fault zone is composed of several almost parallel thrust faults, forming a boundary fault between the Sichuan Basin and Tibetan Plateau, and controls the seismicity of the Longmenshan region (Fig. 1). The epicenters of the Wenchuan and Lushan earthquakes were approximately 87 km apart, and the focal mechanism of both events showed a thrust rupture (Jia et al., 2014).

According to the characteristics of the Wenchuan and Lushan earthquakes, whether the M_S 7.0 Lushan event was a strong aftershock of the M_S 8.0 Wenchuan earthquake or a new and independent event has been a topic of debate. For example, some researchers suggest that the two large earthquakes were independent events. The reasons are as follows: (1) there is no overlapping area between the Wenchuan and Lushan earthquake rupture zones (Zhang et al., 2013); (2) the Wenchuan and Lushan earthquakes were generated in different faults in the Longmenshan fault zone (Li et al., 2014); (3) the rupture processes of the Wenchuan and Lushan earthquakes were different, and the aftershock zones of the two events were nearly 45 km apart (Du et al., 2013). Alternatively, some scientists propose that the Wenchuan and Lushan earthquakes were a mainshock-aftershock sequence and note that the Lushan event struck in an area where Coulomb stress was increased due to the Wenchuan earthquake (Parsons and Segou, 2014; Zhu, 2016).

The controversy over the relationship between the Wenchuan and Lushan earthquakes highlights the complexity of earthquakes interaction in the Longmenshan fault zone. It is widely accepted that earthquakes interactions can be understood by identifying changes in static and dynamic stress states around faults (Toda et al., 2011; Wedmore et al., 2017; Verdecchia et al., 2018).
The most observable effect of this stress change is a significant increase in seismicity rate, which is generally considered an aftershock phenomenon (Kilb et al., 2002; Toda et al., 2012; Devries et al., 2018). Statistically, aftershock activity is classically described by \(n(t) = K(t + c)^p \), where \(n(t) \) is the number of aftershocks after time \(t \) and \(K, c, \) and \(p \) are constants that describe the aftershock productivity (Utsu et al., 1995). Ogata (1988, 1998) described aftershock activity as a multigenerational branching process and proposed the epidemic-type aftershock sequence model, which is a stochastic point process model of self-exciting point processes.

Changes in stress can impact the seismicity rate and the frequency-size distribution, which is alternatively known as the frequency-magnitude distribution (FMD) (Gulia et al., 2018) or Gutenberg-Richter (G-R) law (Gutenberg and Richter, 1944) and is expressed as \(\log N = a - bM \), where \(N \) is the number of events in a given time period with magnitude greater than \(M \), \(a \) describes the seismicity of a volume, and \(b \) is slope of the FMD. Previous studies showed that \(b \) values fall within the range of 1.02 ± 0.03 on a large scale for a long time (Wech et al., 2010; El-Isa et al., 2014). For regions on a smaller scale, the \(b \) values show a broad range of spatial and temporal variations. For example, the \(b \) value ranged from 0.5 to 2.5 in the Andaman–Sumatra region and California (Nuannin et al., 2005). Interpretation of the variation of \(b \) values is based on several factors, including stress state (Amitrano, 2003; Goebel et al., 2013), focal depth (Spada et al., 2013), faulting style (Schorlemmer et al., 2005; Gulia et al., 2010), fluid pressure (Bachmann et al., 2012), and so on.

The earthquake size distribution generally follows a power law, with a slope of \(b \) values, which characterizes the relative occurrence of large and small events. A low \(b \) value indicates a larger proportion of large earthquakes and vice versa. Zhao et al. (2008) compared the spatial footprint of \(b \) values before and after the Wenchuan earthquake in the Longmenshan fault zone, and the results showed that the \(b \) values tend to change from lower in the southern region to higher in the northeastern region. The temporal change in \(b \) values before the Wenchuan \(M_5 \) 8.0 earthquake showed a decreasing trend (Zhang et al., 2016; Liu et al., 2017; Shi et al., 2018), and the Lushan \(M_5 \) 7.0 earthquake showed similar temporal change trends in \(b \) values (Zhao et al., 2020). These studies focused on the variation trend of \(b \) values before and after the two large events along the Longmenshan fault. However, the fundamental effect of the Wenchuan and Lushan earthquakes on the size distribution of earthquakes along the Longmenshan fault has not been quantified, which limits our understanding of how the apparent stress changes in the region affect the size distribution of earthquakes.

In this study, we evaluated the spatiotemporal evolution of the \(b \) values along the Longmenshan fault in the past nearly 20 years. Moreover, we estimated the levels of the \(b \) value for the stable state before and after the Wenchuan and Lushan earthquakes and quantified the effects of the two large earthquakes on the size distribution of subsequent events at different times. In addition, the spatial evolution process of the deep seismogenic environment in the Wenchuan and Lushan aftershock zones in two and three dimensions was illustrated via spatial scanning and data fitting, which can be used to analyze the aftershock activity of the two large earthquakes.
Figure 1. The topographic and tectonic map of the Longmenshan fault zone and its surrounding region. Blue beach ball represents the focal mechanism of the Wenchuan Ms 8.0 earthquake. Pink beach ball represents the focal mechanism of the Lushan Ms 7.0 earthquake. Red circles represent epicenters of earthquakes (Ms ≥ 4) from 1 January 2000 to 1 January 2019.

2 Data and Postulates

The earthquake catalog we used here was documented by the regional seismic network and then verified by the China Earthquake Networks Center (CENC) along the Longmenshan fault during the period from 1 January 2000 to 1 January 2019. It is a relatively complete catalog containing the Wenchuan-Lushan earthquake sequence. Figure 2 shows the magnitude-time distribution of earthquakes in the Wenchuan source region and Lushan source region. The locations of the earthquakes in this catalog were corrected for accuracy. Each event includes the time, location, magnitude and depth. Homogeneity of the catalog was iterated and optimized for subsequent research and analysis.
Stress change has been widely used to interpret the triggering of the mainshock-mainshock and mainshock-aftershock events (Stein et al., 1997; Mallman and Zoback, 2007; Toda et al., 2011; Delescluse et al., 2012; Durand et al., 2013; Sumy et al., 2014). However, the exact measurement of stress states is difficult; thus, a relationship between the stress state and b value has been proposed (Zuniga and Wyss, 2001; Schorlemmer et al., 2005; Nanjo et al., 2012; Gulia et al., 2018). Schorlemmer et al. (2005) demonstrated that the b value could be regarded as a stress indicator that depends inversely on differential stress. Therefore, changes in the stress state on faults lead to the variation in b values, which is followed by time-dependent recovery. In general, the larger the magnitude of the earthquake, the greater the stress changes and the larger the b value fluctuations.

No event of magnitude larger than M 7.0 had been reported in the historical record of the Longmenshan fault zone and the catalog we used in this paper contains more than 80,000 events and only two large earthquakes greater than magnitude 6.5, that is, the Wenchuan M 8.0 and Lushan M 7.0 earthquakes. Thus, these two events are mainly responsible for the apparent changes in stress state along the Longmenshan fault zone in the past 20 years.

Therefore, there are two postulates: first, without a large earthquake perturbation, the b value will remain in a stable state with a small fluctuation range for a long time; second, after the perturbation of a large earthquake, the b value may recover to another stable state. We evaluated the levels of the b value for the stable state before and after these two large earthquakes in the study region.

3 Methods

The main methods we used include estimation methods (MaxCurvature for the estimation of the completeness magnitude; maximum likelihood estimation (MLE) for the b value estimation),
test methods (Akaike information criterion (AIC) for the variation trend of b values; the nonlinearity
index (NLIndex) for the linearity assessment of frequency-magnitude distribution) and kriging
interpolation to describe the spatial and temporal evolution images of aftershock focal depth.

3.1 Completeness magnitude (M_C) and b value estimation

The estimation of the completeness of earthquake catalogs is essential to the computation of b
values, and the lowest magnitude of all earthquakes that are reliably detected in a space-time volume
is defined as the completeness magnitude (M_C) (Woessner and Wiemer, 2005). The lower the M_C, the
higher the detection capability. Here, we use the MaxCurvature technique, which estimates the M_c by locating the magnitude that is the highest frequency of events in the FMD. Mignan (2011)
showed that the MaxCurvature technique underestimates the M_c in cases involving gradually curved
FMDs and postulated that this underestimation tendency arises from spatiotemporal heterogeneities
within the earthquake monitoring network. Therefore, we used the corrected MaxCurvature method
with a correction factor of $+0.2$ (Gulia and Wiemer, 2019), and the uncertainties were determined
by bootstrapping.

The least-squares method and maximum likelihood estimation are often used to calculate the
b value, and the latter approach is considered more stable. In this work, the maximum likelihood
estimation used to calculate the b value and its standard deviation (Aki, 1965; Utsu, 1965):

$$b = \frac{1}{\ln(10)(M - M_c)}$$

where \overline{M} is the average magnitude of earthquakes with $M \geq M_C$; M_C is the cutoff magnitude. The
certainty limit of the b value is expressed as follows:

$$\sigma = \frac{b}{\sqrt{N}}$$

where N is the number of earthquake cases of the given sample.

3.2 Estimation of the frequency-magnitude distribution (FMD) extrapolation

The nonlinearity index (NLIndex) can be used to assess whether the extrapolation of a given
high-magnitude FMD is likely an overestimate or underestimate of the probable rates for large
events (Tormann et al., 2014).

1) Calculate the b value for all M_c from M_{min} to the highest M_{cut} for which N_{min} events
are still sampled.

2) Divide the standard deviation by the largest individual b value uncertainty for each
possible M_{cut}, and for each M_{cut}, this value is the NLIndex.

3) Divide the NLIndex by the number of estimated b values to weight the result
by data density.

4) Find the minimum weighted NLIndex to find the best M_{cut} that produces the most linear
FMD fit.

If NLIndex ≤ 1, the FMD is regarded as linear, and if NLIndex > 1, the FMD is not linear. The
slope of M_{cut} is clearly positive or negative, respectively indicating that the FMD overestimates
or underestimate large M rates.

3.3 Akaike information criterion

To quantify the changing trend of b values, the P test was conducted for b values in two sample
windows based on the Akaike information criterion (AIC) (Akaike, 1974). Hypothesis 1: the b
values in the two sample windows are the same; Hypothesis 2: the \(b \) values in the two sample windows are different, respectively represented as \(b_1 \) and \(b_2 \). The hypothesis of the difference of the AIC leads to the difference \(\Delta \text{AIC} \) (Utsu, 1992):

\[
\Delta \text{AIC} = -2(N'_1 + N'_2) \ln(N'_1 + N'_2) + 2N'_1 \ln(N'_1 + \frac{N'_1b_1}{b_1}) + 2N'_2 \ln(N'_2 + \frac{N'_2b_2}{b_2}) - 2
\]

where \(N_i \) is the numbers of events in the sample windows and \(b_i \) is \(b \) values in the sample windows. \(P_b \) represents the probability that the events in the two sample windows come from the same population and can be derived from the AIC as follows:

\[
P_b = e^{(-\Delta \text{AIC}/2)^{2}}
\]

The \(b \) value in the sample window represents a significant change when \(\Delta \text{AIC} \geq 2 \) \((P_b \approx 0.05) \) and is highly significant when \(\Delta \text{AIC} > 5 \) \((P_b \approx 0.01) \) (Utsu, 1999).

3.4 Kriging interpolation

Kriging interpolation is the most commonly used geostatistical approach for spatial interpolation. With this method, a semivariogram is used to express the spatial relationship of the distance between samples. This technique depends on the spatial model between samples to predict attribute values at unsampled locations (McGrath et al. 2004). As a widely used interpolation method, kriging takes into account the distance between unknown positions and the sample locations as well as the distance between sample locations, effectively reducing the interference of clustering in samples on the accuracy of the interpolated estimates (Ha et al., 2014). We used the kriging interpolation algorithm to produce maps incorporating anisotropy and underlying trends from irregularly spaced data.

The exponential semivariance model with the smallest prediction errors was chosen over the Gaussian and spherical models for the spatial interpolation of focal depth data.

4 Results and Analysis

4.1 Completenss magnitude (\(M_c \)) and linearity assessment of frequency-magnitude distribution (FMD)

As shown in Fig. 3, the results of the corrected MaxCurvature method show that the \(M_c \) of the earthquake catalog used in this work is \(M_c = 1.5 \). This result is consistent with the results of previous studies on the Wenchuan earthquake zone (Huang, 2008; Shi et al., 2018). Fang et al. (2015) described in detail the aftershock performance and analysis of the Lushan earthquake based on the combined data from permanent and temporary seismic stations. They concluded that the minimum complete magnitude was \(M = 1.0 \). To unify the consistency of the \(M_c \) of the Wenchuan \(M_c \) 8.0 and Lushan \(M_c \) 7.0 earthquakes in the Longmenshan fault zone, we selected events with magnitudes of \(M \geq M_c = 1.5 \).

We performed a linearity check on FMD, and the results are shown in Fig. 4. The NLIndex (red) is shown for different cutoff magnitudes (upper inset) and the NLIndex \(\leq 1 \) for all cut off magnitudes; thus, the linear FMD is accepted as the best \(M_c \).
4.2 Time-space analysis of b values

Earthquake frequency will increase immediately within a short time after a large event and may exceed the recording capacity of the seismic network. Before establishing the time-space series of b values with aftershocks, we should eliminate the events documented in the early catalog, which is somewhat heterogeneous and incomplete in small events (Gulia and Wiemer, 2019). In this work, the exclusion period depends on the magnitude of completeness over time. Therefore, we first removed the events documented in the initial catalog within two months after the Wenchuan M_S 8.0 and Lushan M_S 7.0 earthquakes, a period for which the data are highly incomplete. Then, we calculated the spatiotemporal distributions of b values before and after two large events that occurred from 2000-2019 along the Longmenshan fault by selecting events with $M \geq M_C = 1.5$ and using a time window and spatial grid to calculate the b values. In this computation, the window lengths were set to at least 500 events in the Wenchuan aftershock zone and 200 events in the Lushan aftershock zone. Each window was moved forward by one event at a time.

Figures 5a and 5b display time series of the b value in source regions, and the overall change trend conforms to our postulation that b values will undergo relatively significant changes in a period of time before and after a large earthquake. Specifically, b values show a decreasing trend before the occurrence of both large earthquakes in both zones. To ensure that this trend is statistically significant, we quantitatively assessed the temporal variation in b values using the P parameter test and selected three windows before the M_S 8.0 event (W_1, W_2, and W_3) and the M_S 7.0 event (L_1, L_2, and L_3). Window selection was based on the significance of changes in b values (Fig. 5a, 5b). The results are shown in Table 1. The b value in the sample window has significantly changed when $\Delta AIC > 2$ ($P_0 \approx 0.05$) (Utsu, 1999). Table 1 shows that the b values decreased before both large earthquakes with statistically significant variations.

<table>
<thead>
<tr>
<th>Windows</th>
<th>ΔAIC</th>
<th>P_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>W_1 & W_2</td>
<td>3.8</td>
<td>0.02</td>
</tr>
<tr>
<td>W_2 & W_3</td>
<td>3.2</td>
<td>0.03</td>
</tr>
<tr>
<td>W_1 & W_3</td>
<td>19.9</td>
<td>6.4×10^{-6}</td>
</tr>
<tr>
<td>L_1 & L_2</td>
<td>2.6</td>
<td>0.03</td>
</tr>
</tbody>
</table>
After the Wenchuan M_S 8.0 event, the b values in the Wenchuan aftershock zone experienced a period of dramatic fluctuation (indicated by the pink shading lasting not more than one year) before gradually stabilizing within a small fluctuation range (Fig. 5a), which was similar to the range of b values in the third period (Fig. 5c, b=0.84). After the Lushan M_S 7.0 event, the b values in the Lushan aftershock zones increased rapidly and then slowly dropped to a stable state (Fig. 5b), which was similar to the FMD in the first period (Fig. 5d, b=0.76). As shown in Fig. 5b (red shading), the b value required less than ten months to return to a stable state.

The reference b values can be estimated for the background levels (for the period, b=1.03 in the Wenchuan aftershock zone and b=0.76 in the Lushan aftershock zone). When the perturbation effect of the mainshocks gradually decreases, the b values in the Lushan aftershock zone eventually return to the background level (b=0.76), whereas those in the Wenchuan aftershock zone drop below the background level (from 1.03 to 0.84). To date, there have been no earthquakes that have significantly changed the stability of the Longmenshan fault zone since the M_S 7.0 Lushan earthquake.

The temporal distribution of earthquakes also indicates the change in stress state of faults and their surroundings. As shown in Fig. 2a, before the M_S 8.0 Wenchuan earthquake, the frequency of events in the Wenchuan aftershock zone had been decreasing for a year since 2006, and only two events greater than M_S 4 occurred during the period when b values were significantly decreasing (Fig. 5a). However, earthquakes greater than M_S 4 struck the entire Wenchuan aftershock zone after the M_S 8.0 event (Fig. 1). In addition, there were no strong aftershocks above magnitude 6.5 along the faults, and only six events greater than M_S 4 occurred within two months after the mainshock. These phenomena indicate that without the continuous perturbation of strong aftershock, the b value gradually stabilized to the state mainly determined by the background earthquakes, which tended to shift to larger events following the M_S 8.0 event in the Wenchuan aftershock zone.

After the M_S 8.0 Wenchuan earthquake, the Lushan aftershock zone also experienced a “seismic quiescence” of approximately two years, and only one event greater than M_S 4 occurred before the M_S 7.0 Lushan earthquake during the period when b values were significantly decreasing (Fig. 2b). Moreover, only a few events greater than M_S 4 occurred within two months after the mainshock; the subsequent events basically returned to the magnitude of the background earthquakes before the mainshock, which shows that the b values in the Lushan aftershock zone eventually returned to the background level (Fig. 5b).
Figure 5. Temporal and spatial analysis of the b values for the Wenchuan-Lushan sequence

a, b, Temporal variation of b values for the Wenchuan and Lushan source regions. The dashed black lines represent the times of the M_s 8.0 (Wenchuan) and M_s 7.0 (Lushan) events, and the dashed blue lines show the background b values for the Wenchuan and Lushan source regions. The dashed red line represents the b value after the time of the M_s 7.0 event (Lushan) for the Wenchuan source region. The shaded regions represent the uncertainties in the b values.

c, d, FMDs for the two aftershock zones in three different periods.

e, f, g, Map showing the spatial footprint of b values for the Wenchuan aftershock zone in three different periods.

h, i, j, Map showing the spatial footprint of b values for the Lushan aftershock zone in three different periods.

To analyze the spatial footprints of the changes in the b values, we divided the two study regions into $0.1^\circ \times 0.1^\circ$ grids, sampled the 300 events nearest to each grid node within radius of 30 km, and re-estimated the M_c in each node. For this purpose, we used a bootstrap approach to sample the events 1000 times randomly. The spatial footprints of the changes in the b values are consistent.
with the FMDs (Fig. 5c, 5d). Figures 5e-5g demonstrate the spatial variation in the b values throughout the Wenchuan aftershock zone. Figures 5h-5j show the spatial variation in the b values in the Lushan aftershock zone.

The b value in the southern part of the Wenchuan source region and Lushan source region was lower than that in the northern part of the Wenchuan aftershock before the M8.0 Wenchuan event (Fig. 5e, 5h). This pattern is consistent with the characteristics of the Longmenshan fault, which is a strike-slip fault in the north and a thrust fault in the southern section. It is generally considered that the b value is inversely proportional to stress, and the b values of different types of faults are as follows: b(normal) > 1, b(strike-slip)~1, and b(thrust) < 1 (Schorlemmer et al., 2005; Gulia et al. 2010). The conditions changed markedly after the M8.0 Wenchuan event; the b values decreased in the Wenchuan source region and Lushan source region (Fig. 5f, 5i). This finding illustrates the effect of the Wenchuan earthquakes on stress change along the Longmenshan fault. Figures 5g and 5j illustrate the stable state of the b value in the Longmenshan fault zone.

4.3 Evolution of images of aftershock activity depicted by focal depth

Spatial scanning was performed using events with depth data in the catalog, i.e., at a step size of 0.1° for both longitude and latitude. For all earthquakes in each 0.1°×0.1° grid point, the average depth was used as the depth value of the grid point, and then kriging interpolation was applied to all the grids. We counted at least ten events in each grid node in the Wenchuan aftershock zone as samples (as well as five events for the Lushan aftershock zone) to prevent the average depth of grid points from being affected by too few events. The contour lines of depth distribution at different periods after the mainshock were obtained and superimposed with regional faults (Fig. 6, Fig. 7).

To illustrate the evolution of the deep seismogenic environment in the Wenchuan aftershock zone. Figure 6 shows the spatial evolution of the aftershock depth at one day, one week, one month, six months, one year and three years after the mainshock. The analysis shows that the focal depth of the Wenchuan aftershock zone spread along the direction of the fault. With Mianyang as the boundary, the aftershock zone can be divided into the southern section and the northern section. The depth distribution is generally deep in the southeast and shallow in the northwest, and the average aftershock focal depth is 10-15 km.

A comparison of the aftershock activity images depicted by the focal depth information shown in Fig. 6d and Fig. 6e revealed that the image formed one year after the mainshock did not show a significantly different pattern in the following two years. This finding indicates that after the mainshock, the aftershock frequency tends to be stable one year later, which means that the aftershock active period of the Wenchuan M8.0 was less than one year.

Figure 7 shows the spatial evolution of aftershock depths at one day, one week, five months, ten months, one year and three years after the mainshock in the Lushan aftershock zone. The analysis shows that the focal depths of the Lushan aftershock are distributed around the fault, with the fault as the boundary, with a trend of deep in the southeast and shallow in the northwest. Moreover, a comparison of the regional aftershock activity images depicted by the focal depth information in Fig. 7d and Fig. 7e revealed that the pattern of the image formed ten months after the mainshock presented limited changes in the following one year, which indicates that the aftershock frequency tended to be stable ten months after the Lushan mainshock. Therefore, the aftershock active period of the Lushan M7.0 earthquake was less than ten months.
Figure 6. Spatial distribution of the focal depths of the aftershocks following the Wenchuan Ms 8.0 earthquake on the fault plane. Red lines represent the locations of faults. a One day after the mainshock; b 1 week after the mainshock; c 1 month after the mainshock; d 1 year after the mainshock; and e 3 years after the mainshock.
Figure 7. Spatial distribution of the focal depths of the aftershocks following the Lushan Ms 7.0 earthquake on the fault plane. Red lines represent the locations of faults. a One day after the mainshock; b 1 month after the mainshock; c 5 months after the mainshock; d 10 months after the mainshock; and e 2 years after the mainshock.
5 Discussion

Earthquake interaction can change the stress state of faults, which is reflected in both earthquake activity rate and earthquake size distribution. The relationship between stress state and b value can be used to quantify the effect of large earthquakes that can significantly change the stress states and, therefore, the earthquake size distribution. In contrast to previous studies on the Wenchuan and Lushan earthquakes, our paper focuses on a quantitative analysis and discussion of the effect of the Wenchuan M_5 8.0 and Lushan M_5 7.0 earthquakes on the size distribution of the earthquakes along the Longmenshan fault at different times.

Interpretation of the b value and its variability according to physical mechanisms has received considerable attention and discussion. In most cases, the observation of spatial and temporal b value variability can be caused by several factors: i) Process of estimation: homogeneity of catalog and method of calculation can affect the results. All the data in this work are from the Longmenshan fault and its surroundings, and each event includes the time, location and magnitude depth. The maximum likelihood estimation and least-squares regression method (Aki, 1965; Utsu, 1965; López-Pineda and Rebollar, 2005; Singh et al, 2011; Woessner et al, 2015; Shi et al., 2018, Li et al., 2018; Gulia and Wiemer, 2019) are used to estimate the b value and its uncertainty, but the latter is excessively affected by the largest earthquake magnitude. Marzocchi et al. (2020) measured the bias on b values caused by the magnitude binning and catalog incompleteness when the b value is estimated by the maximum likelihood estimation and provided guidance to reduce the likelihood of being misled by b value variation. ii) Stress conditions: the b value and its variation represent stress buildup and release. The differential stress is inversely dependent on the b value has been observed in laboratory experiments (Varotsos et al., 2013; Sarlis et al., 2013) as well as in the field (Scholz, 2015; Rodriguez-Pérez and Zuñiga, 2018). The stress acting on a fault may control the variation in the b value in space and time. Parsons et al. (2008) calculated the regional Coulomb stress changes on major faults surrounding the rupture resulting from the Wenchuan M_5 8.0 and showed that significant stress increased in the Lushan aftershock zone. Other studies obtained similar results (Shan et al., 2013; Parsons and Segou, 2014; Zhu, 2016). The spatial variation in the b values throughout the Lushan aftershock zone decreased after the M_5 8.0 mainshock (Fig. 5i), and the same effect occurred in the southern part of the Wenchuan aftershock zone after the M_5 7.0 event (Fig. 5g). These finding suggest that the b value is negatively correlated with stress and indicate the effect of the earthquakes interaction along the Longmenshan fault zone. iii) Crustal tectonics: the variation in b value can be interpreted according to the tectonic characteristics, i.e., rock heterogeneity (Gerstenberger et al., 2001), focal depth (Spada et al., 2013), pore pressure (Bachmann et al., 2012), and fault types (Schorlemmer et al., 2005; Gulia et al. 2010). Previous studies have shown that the b value in different types of faults is b(normal) > 1, b(strike-slip) < 1 (Beauval and Scotti, 2004; Ishibe et al., 2008; Gulia et al. 2010). As shown in the spatial footprints in Fig. 5, the b value of the southern part of the Longmenshan fault zone is lower than that in the northern part. This pattern is consistent with the tectonic characteristics of the Longmenshan fault, which is a strike-slip fault in the north and a thrust fault in the southern part (Hubbard and Shaw, 2009; Lei and Zhao, 2009).

Stress changes seem to be a key factor that affects the b value and its variation. Excepting the approach of estimation, all other factors are secondary because they are directly or indirectly
affected by the stress (El-Isa and Eaton, 2014). Therefore, the observed falls in the b values shown in Fig. 5a and Fig. 5b was interpreted as changes in the related stress conditions, which could be precursors to large earthquakes. However, these temporal variations may occur over a timescale ranging from months to years, and the timeliness and effectiveness of this variability as an indicator are difficult to guarantee. Additionally, there is usually an insufficient number of events to accurately calculate the b value before large earthquakes. Gulia and Wiemer (2019) pointed out that the period following a moderate earthquake is rich in such data, with thousands of events occurring within a short period. These events may allow real-time monitoring of the evolution of b values. The authors claim that the probability of a larger earthquake following a moderate earthquake increases by several orders of magnitude if the b value remains the same or drops significantly rather than increases. However, Brodsky (2019) suggested that the observed pattern revealing the changes in b values is a statistical effect rather than deterministic and that researchers need more cases to test this claim.

In general, thousands of aftershocks occur in the period following a large earthquake. Based on these abundant data, there are two typically common operational aftershock forecasting models used in aftershock hazard assessment, namely the short-term earthquake probability (STEP) model (Gerstenberger et al., 2005) and epidemic-type aftershock sequence model (Ogata, 1988, 1999). Gulia et al. (2018) reported that these models forecast a high probability for a repeat of the mainshock rupture and thus substantially overestimate the aftershock hazard. This paradox can be resolved by taking into account the stress changes and their effect on the earthquake size distribution.

Our results showed that the time series of the b value in the Longmenshan fault zone after the mainshocks exhibited a period of significant fluctuation before returning to the stable state in both the Wenchuan aftershock zone (one year) and the Lushan aftershock zone (ten months). Figure 6 and Figure 7 show that the time required for the b values to return to a stable state after both mainshocks was entirely consistent with the time required for the aftershock depth images to cease changing visibly. The spatial footprints of the changes in the b value reveal that the southern part of the Longmenshan fault zone is lower than the northern part. This finding demonstrates that the Wenchuan and Lushan events did not change the pattern of higher stress in the southern part of the Longmenshan fault zone than in the northern part. However, the most obvious change is that after the mainshock, the size distribution of the subsequent earthquakes in the Wenchuan source region shifts toward relatively larger events (lower b values).

The Longmenshan fault zone began to develop in the Late Triassic, and severe tectonic deformation occurred during the Indo-China and Himalayan movements, forming a combination of thrust and strike-slip displacement (Lei and Zhao, 2009; Deng et al., 2012). Previous studies did not comprehensively quantify the stable state for the Longmenshan fault zone before and after the two large events in a long time series (Zhao et al. 2008; Wang et al., 2014; Parsons and Segou, 2014; Zhu, 2016; Liu et al., 2017, Shi et al., 2018, Li et al., 2018). The b value is a measurable indicator of earthquake size distribution within a specified region and period of time and is dependent on stress. With our present results, we reported the temporal and spatial variation in b values before and after two big earthquakes and fitted the source depth in time and space to quantify the stress changes and their effect on the earthquake size distribution in the Longmenshan fault zone.
6 Conclusions

Based on the tectonic characteristics and potential seismicity surrounding the aftershock zones of the Wenchuan Ms 8.0 and Lushan Ms 7.0 earthquakes, we studied the spatial and temporal variation of b values in two source regions from 2000 to 2019. In addition, the spatial evolution process of the deep seismogenic environment in the Wenchuan and Lushan aftershock zones was drawn by spatial scanning and depth data fitting.

The results depict the decreasing trends of b values before the two large earthquakes in the study region. Additionally, the b value in the Wenchuan aftershock zone took approximately one year to enter a new stable state (b ranging from 1.03 to 0.84), while the b value in the Lushan aftershock zone took approximately ten months to return to its original stable state ($b=0.76$). Moreover, the major aftershock active periods of the Wenchuan Ms 8.0 and Lushan Ms 7.0 earthquakes were less than one year and ten months, respectively, which are consistent with the time required for the b value to return to a stable state. The spatial footprints of the changes in the b values results reveal that the Wenchuan Ms 8.0 and Lushan Ms 7.0 events did not change the pattern of high b values in the north and low b values in the south along the Longmenshan fault zone.

We quantified the effect of the Wenchuan Ms 8.0 and Lushan Ms 7.0 earthquakes on the size distribution of earthquakes along the Longmenshan fault. Future studies can focus on how to quantify the effect of large earthquake size distribution across different tectonic regimes and apply the findings in potential seismic risk assessment.

Acknowledgments

This research was supported by the National Natural Science Foundation of China (Grant No. 41771537) and the Fundamental Research Funds for the Central Universities. The authors thank American Journal Experts (AJE) for polishing the language of this article. Datasets for this research are available in these in-text data citation references: Shi et al. (2018), [http://doi.org/10.6038/cjg2018M0024], Li et al. (2018), [http://doi.org/10.6038/cjg2018M0129] and China Earthquake Networks Center (CENC), [http://www.cenc.ac.cn/].

Author Contributions

Competing Interests

No conflicts of interest exist in the submission of this manuscript, and the manuscript is approved by all authors for publication.

References

Shi, H. X., Meng, L. Y., Zhang, X. M., Chang, Y., Yang, Z. T., Xie, W. Y., Hattori, K., and Han, P.: Decrease in b value prior to the Wenchuan earthquake (M(s)8.0), Chinese Journal Of Geophysics,

Verdecchia, A., Pace, B., Visini, F., Scotti, O., Peruzza, L., and Benedetti, L.: The Role of Viscoelastic Stress Transfer in Long-Term Earthquake Cascades: Insights After the Central Italy

Zuniga, F. R. and Wyss, M.: Most- and least-likely locations of large to great earthquakes along the...