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Abstract. Urbanization and climate change are the critical challenges in the 21st century. Flooding by extreme weather 10 

events and human activities can lead to catastrophic impacts in fast-urbanizing areas. However, high uncertainty in climate 11 

change and future urban growth limit the ability of cities to adapt to flood risk. This study presents a multi-scenario risk 12 

assessment method that couples the future land use simulation model (FLUS) and floodplain inundation model (LISFLOOD-13 

FP) to simulate and evaluate the impacts of future urban growth scenarios with flooding under climate change (two 14 

representative concentration pathways (RCPs 2.6 and 8.5)). By taking Shanghai coastal city as an example, we then quantify 15 

the role of urban planning policies in future urban development to compare urban development under multiple policy 16 

scenarios (Business as usual, BU; Growth as planned, GP; Growth as eco-constraints, GE). Geospatial databases related to 17 

anthropogenic flood protection facilities, land subsidence, and storm surge are developed and used as inputs to the 18 

LISFLOOD-FP model to estimate flood risk under various urbanization and climate change scenarios. The results show that 19 

urban growth under the three scenario models manifests significant differences in expansion trajectories, influenced by key 20 

factors such as infrastructure development and policy constraints. Comparing the urban inundation results for the RCP2.6 21 

and RCP8.5 scenarios, the urban inundation area under the GE scenario is less than that under the BU scenario, but more 22 

than that under the GP scenario. We also find that urban will tend to expand to areas vulnerable to floods under the 23 

restriction of ecological environment protection. The increasing flood risk information determined by the coupling model 24 

helps to understand the spatial distribution of future flood-prone urban areas and promote the re-formulation of urban 25 

planning in high-risk locations. 26 

1 Introduction 27 

Climate change and urbanization are the global challenges for the 21st century (Pecl et al., 2017; Ramaswami et al., 2016). 28 

Floods have been key threats for many cities around the world driven by global climate change (Fang et al., 2020; Hallegatte 29 

et al., 2013; IPCC, 2014). Currently, more than 600 million people worldwide live in the coastal cities that are less than 10 m 30 
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above sea level (United Nations, 2017a). The United Nations reports that the global population will increase by 29% (7.6 31 

billion) between 2017 and 2050 (United Nations, 2017b), which means that population of coastal cities will become 32 

increasingly concentrated in the future and impervious surfaces will become more numerous (Chen et al., 2020). On the 33 

other hand, the National Oceanic and Atmospheric Administration (NOAA) report suggests that global mean sea level will 34 

rise around 0.2 m to 2.0 m by 2100 under a continuing global warming trend (Parris et al., 2012). Additionally, properties 35 

and populations in many coastal areas will suffer more severely in the future if the effects of land subsidence are taken into 36 

account (Vousdoukas et al., 2018). 37 

However, high uncertainty in flood risk and urban growth leads to a lack of capacity of cities to respond to the flooding 38 

arising from future climate change (Du et al., 2015; Fang et al., 2021; Tessler et al., 2015). Therefore, there is an urgent need 39 

for specialist knowledge and techniques to address the conflict between urbanization and flood risk (Bouwer, 2018; Haynes 40 

et al., 2018; Lai et al., 2016; Wang et al., 2015). For example, flood risk studies focus mainly on the current urban scenarios 41 

for disaster risk assessment (Bisht et al., 2016; Zhou et al., 2019); and partly consider future land use changes, but urban 42 

growth scenarios are mainly limited to original typologies (business-as-usual development) growth scenarios for study 43 

(Huong and Pathirana, 2013; Muis et al., 2015), with less consideration of environmental factors and urban growth scenarios 44 

under planning constraints (Lin et al., 2020; Long and Wu, 2016); thus, the lack of knowledge of future urban development 45 

scenarios leads to a lack of awareness of the consequences of future flooding (Kim and Newman, 2020; Zhao et al., 2017). 46 

On the other hand, the failure to integrate with broader climate change-related scenarios and possible extreme-case flood 47 

risks has led to underinvestment in climate adaptation actions by governments that do not well address the spatial 48 

consequences of future floods (Berke et al., 2019; Reckien et al., 2018). Thus, there is an urgent to adopt a more 49 

comprehensive approach that considers the complexity of multiple possible scenarios of urbanization and dynamic flood risk 50 

in an integrated manner. 51 

This paper uses the coupling of the future land use simulation model (FLUS) and the 2D floodplain inundation model 52 

(LISFLOOD-FP) to explore the possible interaction between different urbanization development scenarios and climate 53 

change scenarios. The FLUS model improves the simulation accuracy of the model by combining artificial neural network 54 

(ANN) and Cellular automata (CA) model to simulate nonlinear land use changes while considering parameters related to 55 

environment, society, climate change, etc. (Liu et al., 2017; Zhai et al., 2020). The LISFLOOD-FP model has become a 56 

mature hydrodynamic model that can predict potential flood events in near real-time and are widely used in engineering 57 

applications (Sosa et al., 2020; Wing et al., 2019). The coastal metropolitan Area of Shanghai in the Yangtze River Delta in 58 

China, one of the fastest urbanizing cities in the world, is used as a case study. 59 

The paper asks, how can combining different urban growth scenarios with climate change scenario analysis help inform 60 

preparedness for flood risks from climate change in urban flood risk assessments? To answer this question, we first consider 61 

how urban grow under different environmental and planning factors in the future. Secondly, we coupled urban growth and 62 

flood risk scenarios and compared them using climate change scenarios from two representative concentrated pathways 63 

(RCP 2.6 and 8.5) proposed by the Intergovernmental Panel on Climate Change (IPCC). The research illustrates the 64 
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importance of assessing the performance of different future urban development scenarios in response to climate change, and65 

the simulation study of urban risks will prove to decision-makers that incorporating disaster prevention measures into urban 66 

development plans will help reduce disaster losses and improve the ability of urban systems to respond to floods. 67 

2 Study area and datasets 68 

2.1 Study area 69 

As the alluvial plain of the Yangtze River Delta, Shanghai is located on the coast of the East China Sea between 30°40′–70 

31°53′N and 120°52′–122°12′E, which borders the provinces of Jiangsu and Zhejiang to the west. It’s a typical middle 71 

latitude transition belt, marine land transitional zone and also a typical estuarine and coastal city with fragile ecological 72 

environment. The land area of Shanghai is about 6340.50 km2, accounting for 0.06 % of the total area of China, and has 213 73 

km of coastlines. The Shanghai metropolitan has undergone rapid urban expansion in the past decades and has become one 74 

of the largest urban areas in the world in both size and population(Sun et al., 2020). However, Shanghai's topography is low, 75 

with an average elevation of 4 m above sea level, and there is no natural barrier against storm surges. In 1905, one of the 76 

deadliest storm surges occurred in Shanghai, killing more than 29,000 people. Two years later, Typhoon Winnie made 77 

landfall in Shanghai, flooded more than 5,000 households (Du et al., 2020). Additionally, due to land subsidence and the 78 

increasing frequency and intensity of storm surge make Shanghai will become one of the most sensitive regions to the global 79 

climate change. 80 
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81 
Figure 1: Location map of the study area. The main inland rivers in Shanghai flow into the East China Sea through the Huangpu 82 
River. The line with coloured vectors in the figure indicates the different dike crest level in Shanghai. 83 

2.2 Data 84 

The research used three main categories of data, including basic data, scenarios constraints data and flood simulation data 85 

(Table 1). The basic data include land use, topography, traffic network, traffic site, socio-economic data. The land use data 86 

with a resolution of 100 m×100 m from the Resource and Environmental Science and Data Center of the Chinese Academy 87 

of Sciences is currently the most accurate land use remote sensing monitoring data product in China (Liu et al., 2014). The 88 

data for 2005 and 2010 were derived from Landsat-TM/ETM remote sensing image data respectively, and the data for 2015 89 

were interpreted using Landsat 8 remote sensing image. After the data was corrected and manually interpreted, the 90 

comprehensive evaluation accuracy of the interpretation accuracy of the first-class types of cultivated land, woodland, 91 

grassland, water area, urban land, and unused land reached more than 94.30%, and the discrimination accuracy rate on the 92 

map patches reached 98.70% (Xu et al., 2017). Within the allowable error range, it can be used as the basic data for 93 

analyzing land use changes. 94 

Topography factors (DEM, slope), traffic network factors (distance to railway, highway, subway, and main roads), traffic 95 

site factors (distance to the city center, train station, and airports) and socio-economic factors (population, GDP), etc. as well 96 

as planning constraints, were determined to be spatial influence factors of the flood risk assessment of the Shanghai. The 97 
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Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) digital elevation model (DEM), which has 98 

30-meter resolution, served as the basis data for terrain heights and slopes. Traffic network and site were collected from99 

open-source data retrieved from OpenStreetMap (OSM) and POI data were extracted from Tencent Map. Euclidean distance 100 

was calculated for all vector data. The data of population and gross domestic product (GDP), were provided by the Resource 101 

and Environmental Science and Data Center of the Chinese Academy of Sciences (Xu, 2017a, 2017b), and their time span 102 

was consistent with the land use data. According to the simulation forecast demand, all materials were converted into 100 × 103 

100 m grid by resampling. The spatial limiting factors were the basic ecological control line, permanent basic cropland and 104 

cultural protection control line as outlined in the 2017–2035 Shanghai City Master Plan. All the impact factor data were 105 

normalized, and the range of the value is between 0 and 1 to subsequent data mining. 106 

The storm surge data comes from the Global Tide and Surge Reanalysis (GTSR) dataset, which has been validation to have 107 

good accuracy (Muis et al., 2016). In addition, man-made flood defenses have been considered to reasonably evaluate the 108 

inundation impact of the flooding. The coastal flood protection data was obtained from the historical archival of the 109 

Shanghai Water Authority for Shanghai (Yin et al., 2020). All data sources are listed in in the table below. 110 
Table 2. Data required and sources. The list details the resolution and sources of the data in the study. 111 

Category Data Type Resolution Source 

Basic data 

Land use 100 m × 100m 
Resource and Environmental 

Science and Data Center 
(http://www.resdc.cn) 

Topography Vector line ASTER GDEM 
(https://earthexplorer.usgs.gov/) 

Traffic network Vector line OpenStreetMap 
(https://www.openstreetmap.org) 

Traffic site Vector point Tencent Map (https://map.qq.com/) 

Social economy 1 km × 1 km Resource and Environmental 
Science and Data Center  

Scenarios 
constraints 

Ecological  
control line Vector line 

《2017-2035 Shanghai City Master 
Plan》 

Permanent basic  
cropland control line Vector line 

Cultural protection 
control line Vector line 

Flood data 
Floodwalls Vector line Shanghai Water Authority 

(http://swj.sh.gov.cn/) 

Storm surge Vector line GTSR 
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3 Methodology 112 

The presented approach for relative sea level rise scenario flood risk assessment is the integration of the FLUS model, 113 

LISFLOOD-FP model, and Markov chain model. In the framework, the FLUS model and Markov chain model are designed 114 

to stimulate complexity land-use change processes in three different scenarios through 2030 to 2050, which include Business 115 

as usual (BU), Growth as planned (GP), Growth as eco-constraints (GE) scenarios. A Markov chain model is used to predict 116 

land-use demand in 2030 and 2050 combine planning policy factors, which is one of the crucial data inputs in the FLUS 117 

model. Next, the LISFLOOD-FP two-dimensional flood model is used to explore the potential flooding areas under the RCP 118 

2.6 and 8.5 scenarios in 2030 and 2050, to avoid the overestimation of the submerged range based on the GIS-based 119 

elevation area method. This model also considers the compound influence of sea-level rise, storm surge, and land subsidence, 120 

Finally, via ArcGIS spatial comprehensive analysis, the flooding of different land types is calculated employing different 121 

flooding scenarios. The overall flow chart of research is illustrated in Fig. 2. 122 

123 
Figure 2: The overall flow chart of research. 124 
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3.1 Markov chain model 125 

Markov chain model refers to the random transition process of state from one state to another, and its future state is only 126 

related to the state at previous moment. In the study of land use change, the type of land use at a certain moment is only 127 

related to the type of land use at the previous moment. Therefore, land-use change is a typical Markov process and has 128 

widely used in the prediction of land-use changes (Zhou et al., 2020). We predicted future land use by Eq. (1): 129 

𝑆𝑆(𝑡𝑡+1) = 𝑃𝑃𝑖𝑖,𝑗𝑗 × 𝑆𝑆𝑡𝑡 (1) 130 

where S t and S t+1 represent the land use at times t and t+1, and Pi, j  is a state transition matrix that land-use type i is 131 

converted to land-use type j. This model has a good predictive effect on the process state (Gounaridis et al., 2019). Therefore, 132 

we use the Markov chain to calculate the probability of the conversion of various land types, and then predict the number of 133 

future land change. 134 

3.2 The FLUS land use simulation model 135 

The FLUS model is an upgraded version of cellular automata model (Liu et al., 2017)，which can solve the complex land 136 

use simulation problems by self-adaptive inertia and competition mechanism. The FLUS shows the highest current 137 

performances than other simulation models such as CLEU-S, SLEUTH, and LTM and has been applied to land use change 138 

simulation research at different scales and for different purposes (Liang et al., 2018; Lin et al., 2020). 139 

As the most important scheme to manage the space of the urban, urban land use plan can reflect the general arrangement of 140 

land use in the future (Xu and Yang, 2019). In this research, three categories of urban growth scenarios are simulated 141 

through the FLUS model. The similarity of the three scenarios is that they use factors that affect urban development and 142 

changes, such as population, GDP, traffic, and slope, as the main spatial driving factors. The difference is as follows: 143 

(i) Business as usual (BU): BU is natural growth without development laws and regulations. Its development is based on the144 

premise of the current urban development patterns. Therefore, the land demand predicted by Markov is used as the constraint 145 

condition for the iteration of CA model in the subsequent application of the scenario. 146 

(ii) Growth as planned (GP): Under the GP scenario, the urban growth projection that closely link to the master plan for147 

Shanghai in terms of quantity, reflecting how the city government prefer to develop. The master plan requires that the total 148 

area of planned urban construction land does not exceed 3,200 km2 in 2035. As the condition for the model iteration to stop, 149 

we estimated the urban area to be 2,768 km2 in 2030 and 3,200 km2 in 2050 combined with urban master plan. 150 

(iii) Growth as eco-constraints (GE): The GE scenario is an eco-environmental protection scenario  which development is151 

limited by the ecological environment protection. Combined with Shanghai's ecological and environmental protection 152 

requirements and the distribution of permanent basic farmland, sensitive areas restricted for development are identified at the 153 

scenario, and we also establish a cultural protection control line for strengthening historical and cultural protection. In 154 
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addition, the number of areas of future urban growth in GE scenario also combines the requirements given in the urban 155 

master plan to enhance the reality of the scenario. 156 

Therefore, the FLUS model is used to simulate future urban growth combines various scenarios. First, the driving factors and 157 

land-use data is trained by ANN model to obtain a probability-of-occurrence map, and then incorporate with the self-158 

adaptive land inertial, conversion cost, and neighborhood competition among the different land use types to estimate the 159 

combined probability for each grid. Next, combining the number of various types of land predicted by the Markov Chain 160 

model and the constraints of each scenario to predicted urban growth in 2030 and 2050. To better validate the model before 161 

predicting for future change, we compared output to the actual land use 2015. Note that the number of iterations in each 162 

scenario is set to 5000, which is much higher than the default value to show higher prediction accuracy. 163 

3.3 The LISFLOOD-FP flood inundation model 164 

LISFLOOD-FP is a 2D hydraulic model based on a raster grid (Bates et al., 2010), which can efficiently simulate the 165 

dynamic propagation of flood waves over fluvial and estuarine floodplains and show real-time changes in water depth of 166 

complex terrain. LISFLOOD-FP model solves the Saint-Venant equations at very low computational cost by omitting only 167 

the convective acceleration term over a structured grid using a highly efficient explicit finite difference scheme to produce a 168 

two-dimensional simulation of floodplain hydrodynamics (O’Loughlin et al., 2020). The model has been widely used in the 169 

applications of small-scale and large-scale urban waterlogging and flooding. 170 

In the present study, the LISFLOOD-FP model is used to simulate storm surge floods along the coast of Shanghai and floods 171 

along the Huangpu River. The effectiveness of the model in the study area has been verified by another article of our group 172 

members and shows good simulation results (Xu et al., 2021). In the boundary control of model, hydrological stations and 173 

global storm surge data are respectively employed as the input of the scenario design. However, Shanghai Geological 174 

Environmental Bulletin and land subsidence control plan show that land subsidence has a significant contribution to the 175 

flood hazards in Shanghai (Xian et al., 2018). With reference to the research of Yin et al (Yin et al., 2013), the values of land 176 

subsidence in 2030 and 2050 are selected to be 0.12 m and 0.24 m, respectively. This study also combines the storyline of 177 

future scenario of the IPCC, namely the Representative Concentration Pathway (RCP) scenarios, and selects conservative 178 

(RCP2.6) and largest magnitude (RCP8.5) climate-change scenarios, which values from Kopp et al (Kopp et al., 2017). For 179 

the simulation of the Huangpu River flood, we conducted experiments for 50-year return period under the RCP2.6 scenario 180 

and 100-year return period under the RCP8.5 scenario respectively during 2030 to 2050. For the 2030 and 2050, both 181 

Huangpu River and the coastal floods are followed to the RCP2.6 and RCP8.5 scenarios. Finally, we combine land 182 

subsidence and the RCP data to control the flood inundation simulation. 183 
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4 Results 184 

4.1 Model validity 185 

Model verification is the prerequisite for model operation, and the operation can only be carried out after confirming the 186 

model that is considered valid. The applicability of the proposed model was tested by simulating LUCCs in 2015 at Shanghai. 187 

The spatial simulation result shows that the simulated result and the actual land use have a high consistency (Fig. 3). We 188 

compared the actual land use and the simulated result pixel by pixel in our study and found the overall accuracy (OA) was 189 

93.20%, the kappa coefficient (kappa) was 0.89. The discrepancy of the actual land use and simulated result is likely due to 190 

the neighborhood interaction in the CA model, in which grid cells in more urbanized neighborhoods have a higher 191 

probability to convert to urban, whereas the grid cells are less likely to change to urban in less urbanized neighborhoods. 192 

Overall, the model accuracy outputs are measured shows an acceptable or good level of prediction, therefore the model is 193 

suitable for predicting changes in land use of Shanghai. 194 

195 
Figure 3: Comparing the simulation results of Shanghai urban expansion with the actual situation, (a) simulation result in 2015; (b) 196 
actual land use in 2015. 197 

https://doi.org/10.5194/nhess-2021-200
Preprint. Discussion started: 2 July 2021
c© Author(s) 2021. CC BY 4.0 License.



10 
 

4.2 Future land use changes 198 

Based on the conditions under three different development scenarios, we predicted the development of future urban land use 199 

change in 2030 and 2050. The prediction result shows different development patterns for each scenario (Fig. 4). Future urban 200 

growth under the BU scenario is primarily located in northwestern with some development in the central regions, and under 201 

the GP scenario the urban growth involves evenly distributed development. Urban growth in the GE scenario, however, 202 

Chongming Island regions have seen more urban growth, and the downtown area is not fully occupied by urban expansion 203 

due to restrictions.  204 

Due to the impact of infrastructure construction, distance to the city center, and policy restrictions, Shanghai’s overall urban 205 

expansion model shows a center-peripheral expansion. The built-up land areas in 2030 and 2050 are respectively project to 206 

increase by about 6 % and 13 % as compare to 2015, the most significant reduction is found for cultivated land and 207 

woodland. Specifically, the built-up land areas in 2030 are respectively project to increase by 427.32 km2, 428.27 km2 and 208 

429.12 km2 at BU, GP and GE scenarios, the built-up land areas in 2050 are respectively project to increase by 926.38 km2, 209 

857.63 km2 and 751.47 km2 at BU, GP and GE scenarios. The most significant reduction is found for cropland, which is 210 

predicting in 2050 to decrease by 876.97 km2, 857.63 km2 and 723.59 km2 as compared to 2015 in BU, GP and GE scenarios. 211 

The southwestern region is not suitable for large-scale urban development, due to large amounts of farmland in the region 212 

are listed as ecological protection areas, so the slow growth of these areas is not expected. The simulation maps show, as 213 

expected, land use changes under different planning scenarios, especially the urban sprawl trend at the GE scenario, creating 214 

new development areas in suburbs. To sum up, the urban expansion trajectory under BU, GP and GE shows significant 215 

differences, and these changes mainly at the expense of the cropland. 216 
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 217 
Figure 4: Simulation results of different scenarios in 2030 and 2050. Each image shows the spatial distribution and the proportion 218 
of area of different land use types in the simulated scenario. 219 

4.3 Changing flood hazard in the future 220 

The LISFLOOD-FP model is used to simulate the flood evolution process under RCP2.6 and RCP8.5 scenarios (the 221 

inundation results are plotted in Supplementary Figure 1), and then the submerged depth and area under different scenarios 222 

are statistically analyzed to explore the future flood risk under different RCP scenarios. First, the maximum water depth risk 223 

of the submerged area is counted, and the submerged area is divided into four depth levels: the submerged water depth is less 224 

than 0.5 m as shallow water area, water depth is 0.5-1 m as medium water area, the water depth is 1-2 m as deep water area, 225 

and submerged water depth is above 2 m as the extremely deep area. The area and proportion of each water depth level are 226 

calculated. 227 

By comparing the scenarios in RCP2.6 and RCP8.5, it is evident that the submerged area increasing trends with time (Table 228 

2). The total flooded area increased by 162.43 km2 and 189.44 km2 under RCP2.6 and RCP8.5 scenarios from 2030 to 2050, 229 
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respectively. Additionally, the depth of submergence and the extent of submergence will gradually increase as the floodwater 230 

spreads. Taking the area with submergence depth above 2 m as an example, under RCP2.6 scenario the area with 231 

submergence is 353.69 km2 and 401.57 km2 respectively in 2030 and 2050, and under RCP8.5 scenario the area with 232 

submergence is 356.28 km2 and 418.36 km2 respectively in 2030 and 2050. It shows that Shanghai will still face great flood 233 

risk under these two scenarios.  234 
Table 2. Statistics of flood water depth. 235 

Categor
y 

<0.5 m 0.5-1 m 1-2 m >2 m 
Total 
/km2 Area/ 

km2 
Ratio/

% 
Area/ 
km2 

Ratio/
% 

Area/ 
km2 

Ratio/
% 

Area/ 
km2 

Ratio/
% 

2030 
RCP2.6 138.61 14.54 164.07 17.21 296.98 31.15 353.69 37.10 953.35 

2030 
RCP8.5 137.13 14.23 169.76 17.61 300.82 31.21 356.28 36.96 963.99 

2050 
RCP2.6 125.04 11.21 229.81 20.60 359.36 32.21 401.57 35.99 1115.78 

2050 
RCP8.5 141.72 12.29 219.58 19.04 373.77 32.41 418.36 36.27 1153.43 

4.4 Future changes in urban flood risk 236 

The flood risk of the urban is calculated by overlapping existing urban and projected future urban scenarios with future flood 237 

risk zones. First, in the existing urban exposure to future flood risk scenarios (the upper left in Fig. 5), more urban areas will 238 

be vulnerable to flood risk in the context of global climate change. Under the RCP 2.6 scenario, 4.68 % and 5.96 % of the 239 

total existing urban areas in 2030 and 2050 would be susceptible to flood risk, respectively. In the 2030 and 2050 of the 240 

RCP8.5 scenarios the area of existing urban land which would be vulnerable to future flood risks are 110.27 km2 and 146.23 241 

km2, respectively. Many urban areas will be flooded under sea level rise caused by climate change even when protected by 242 

levees, and more than 5% of urban areas in Shanghai are still in the floodplain. 243 
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 244 
Figure 5: Flood exposure of existing urban and future urban growth scenarios. The four pie charts for the BU, GE, and GP 245 
scenarios represent the proportion of new growth urban area exposed to flooding under the 2030RCP2.6, 2030RCP8.5, 246 
2050RCP2.6, and 2050RCP8.5, respectively. The four pie charts for the EU scenarios represent the proportion of the existing 247 
urban area affected by the future flood risk scenario.  248 
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Future urban development would occur in the flood zone, with the rapid expansion of the urban. Fig. 5 also shows the 249 

comprehensive analysis results of the three urban growth scenarios under different climate change scenarios. Under the 250 

RCP2.6 scenario, new growth in urban land area affected by flooding in 2030 are respectively 55.11 km2, 23.22 km2, and 251 

30.92 km2 at BU, GP and GE scenarios. Under the RCP8.5 scenario, future more urban growth areas would be affected by 252 

the flooding, which will be reached 12.47 %, 10.87 %, and 8.20 % at BU, GP and GE scenarios in 2050, respectively. In 253 

general, the higher the sea level rises, the greater the risk of flooding in future urban areas. Small changes in sea level rise 254 

will affect a large amount of land, due to the average altitude of Shanghai is around 4 m. 255 
Table 3. Inundate of each land use type under different scenarios. The inundated areas of different land use types, including 256 
cropland, woodland, grassland and urban land, were calculated for each scenario, where a indicates new growth area of urban 257 
affected by flooding. 258 

Time Category Urban 
scenario 

Inundated areas (km2) 

Cropland Woodland  Grassland  Urban land a 

2030 

RCP2.6 

BU 595.05 10.05 5.60 55.11 

GE 618.95 12.12 5.84 30.92 

GP 597.71 12.40 5.91 23.22 

RCP8.5 

BU 602.38 10.23 5.67 55.92 

GE 625.97 12.29 5.91 31.23 

GP 604.32 12.59 5.98 23.72 

2050 

RCP2.6 

BU 662.64 13.56 5.25 110.19 

GE 677.59 16.74 5.95 78.95 

GP 651.24 15.66 5.46 67.55 

RCP8.5 

BU 683.56 15.06 5.70 115.53 

GE 698.98 18.05 6.40 81.71 

GP 672.30 16.85 5.91 70.36 
 259 
The research found that the cultivated land is most affected by flooding (Table 3), and urban areas and woodland are the 260 

second most affected. Under the GE scenario, the flooded area of cultivated land is 618.95 km2 and 625.97 km2 at the 261 

RCP2.6 and RCP8.5 in 2030, and 677.59 km2 and 698.98 km2 at the RCP2.6 and RCP8.5 in 2050. Further, the exposure of 262 

various types of land is increasing with time, but urban land and cropland will be the most impacted land types in the future. 263 

Comparing the three scenarios we can find that the urban development area under the planning scenario is less affected by 264 
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flooding, as compared to the business-as-usual development scenario. Comparing the inundation of the two planning 265 

scenarios (GE and GP), also reflects the decision-makers' trade-off between economic development and ecological 266 

protection. The inundation area of the urban land under the GP scenario is less than that of the GE, which means that under 267 

the planning constraint of protecting ecological and cultural areas, urban built-up areas will develop on low-protection areas, 268 

which are more vulnerable to flooding. In conclusion, from reducing the risk of future flooding in urban areas, GE scenario 269 

shows to be better than BU scenario, but worse than GP scenario. 270 

5 Discussions 271 

5.1 Source of uncertainties 272 

There are some limitations in our study, which is what we need to improve in the future. First, there is still more room to 273 

improve the accuracy of model prediction. In this study, the performance of the FLUS model is tested by kappa and OA 274 

measures, which shows a good range of prediction accuracy. In addition, this study proves that 16 driving factors contribute 275 

to the simulation and prediction of urban growth in Shanghai. The relationship between human and natural driving factors 276 

and land use change can be effectively integrated through the FLUS model embedded with an ANN, to obtain more realistic 277 

simulation results. However, if more influential drivers and the latest land cover are employed, the prediction would be 278 

having higher accuracy. Second, future flood risks in coastal areas also are not fully reflected through using of hydrodynamic 279 

models, although it shows higher accuracy than the elevation area submergence method. On the one hand, this study is based 280 

on the modeling results of DEM data, which may overestimate or underestimate the simulation effect due to the error of 281 

DEM data. On the other hand, extreme storm surge and land subsidence data are combined to enhance the reliability of the 282 

extreme flood forecast in this study. However, the change of the impervious surface that affects hydrology not be considered 283 

in this study. When other land uses are converted to urban land uses, the risk of flooding will also greatly increase due to 284 

changes the impervious surfaces. Therefore, it is necessary to dynamically adjust relevant factors affecting flood peak flows 285 

and risk in future forecasts to enhance the accuracy of prediction.  286 

In the context of global climate change, extreme weather in the future may become more and more serious, so it is necessary 287 

to dynamically combine climate scenarios to develop more accurate flood risk delineation methods to guide urban planning 288 

in the future, and rely on new technology and equipment to provide data support, For example, unmanned aviation vehicles 289 

(UAVs) are deployed around the coastline to generate real-time information about weather conditions and sea-level changes 290 

(Cochrane et al., 2017). These tools will as a complement to existing information and early warning systems, which also can 291 

provide guidance for coastal flood risk management and urban planning in the future. Overall, although uncertainty cannot 292 

be avoided when assessing coastal flood risk, the deviation of the proposed model output is within an acceptable range, 293 

which ensures the accuracy of coastal flood risk assessments. 294 
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5.2 Recommendations on strategies and policies for urban adaptation to flooding 295 

In the twenty-first century, adapting to climate change and coastal flooding is a critical challenge for coastal cities. Human 296 

response to the impacts of flooding largely depends on the allocation of urban facilities and managers' planning for future 297 

urban development (Hunt and Watkiss, 2011). Shanghai is considered one of the most protected Chinese cities in terms of 298 

flood protection, yet it’s the EAD/GDP (the Expected Annual Disruption, EAD), that is the direct damage to buildings and 299 

vehicles) ratio is as much as five times than in New York (Aerts et al., 2014). Therefore, there is an urgent need to adopt 300 

flood risk adaptation strategies in Shanghai. 301 

We conducted a set of comparative experiments to analyze the coastal flood damage in Shanghai with and without flood 302 

walls (hard adaptation strategies). Our analysis considered the important effects of land subsidence and SLR on flood risk. 303 

We found that the current flood protection wall can reduce the flood losses due to climate change to a relatively low level 304 

(Supplementary Figure 2). In comparison, the flood protection wall constructed for the current conditions would reduce the 305 

flooded area under the RCP8.5 scenario by about 35% and 36% in 2030 and 2050, respectively. This result shows that the 306 

current hard protection strategy can reduce the flood risk to a low level, but the residual flood risk from using the hard 307 

protection strategies still needs to be addressed. From the cases of advanced flood risk management countries such as the 308 

Netherlands (Kabat et al., 2009; Song et al., 2018), an important success lesson for future flood protection design is to leave 309 

enough space along coasts for wetland migration and leave space for nature. In other words, "soft strategies" such as 310 

"working with rivers and nature" are considered in the flood protection measures. Therefore, it is necessary to learn from the 311 

practical experience of advanced countries to strengthen the development and construction of coastal wetlands and tidal flat 312 

ecosystems, and further reduce the residual risk through the adaptive regulation of coastal ecosystems and other soft 313 

strategies. In addition, the implementation of "soft strategies" can increase the value of ecosystem services, increase 314 

biodiversity and carbon sequestration, and improve social welfare (Du et al., 2020). 315 

6 Conclusion 316 

Scenario-based assessment has been found to be a powerful approach in numerous flood risk studies. This study combines an 317 

urban growth model with a two-dimensional flood inundation model to not only simulate urban development dynamics more 318 

accurately, but also to discard the shortcomings of the traditional elevation inundation method of overestimating inundation 319 

areas. We have also tested the resilience of Shanghai to future different climate scenarios with current flood wall. The results 320 

of the study are beneficial to local planners and coastal managers in making decisions of future protected areas and 321 

developments. 322 

This study employed three urban development scenarios and detected the relationships of urbanization and climate changes 323 

in 2030 and 2050. The results of the study show that urban growth under the three scenario models manifests significant 324 

differences in expansion trajectories, influenced by key factors such as infrastructure development and policy constraints. 325 

According to the predicted results of flood, new built-up areas are also potentially vulnerable areas of flood risk. New built-326 
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up areas under different scenarios show significant vulnerability and exposure risk under different climate scenarios, even 327 

with the support of flood bank and other hard structures. Additionally, the research provided significant insights into the 328 

range and spatial distribution of flood risk in future urban. 329 

The current study is based on the multi scenario analysis of RCP scenarios. In the future, the shared socioeconomic pathways 330 

(SSPs) can be combined to predict land use change, which make urban development scenarios have more realistic choices. 331 

The results of this study estimate the future urban flood exposure areas, but this does not mean that all flood-vulnerable areas 332 

will be flooded, only that in these areas, the probability of each possible occurrence is greater. Therefore, proper preparations 333 

(such as definition restricted development zones) can reduce the damage risk of future flood and build more resilient cities. 334 
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