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Abstract. Urbanization and climate change are the critical challenges in the 21st century. Flooding by extreme weather 10 

events and human activities can lead to catastrophic impacts in fast-urbanizing areas. However, high uncertainty in climate 11 

change and future urban growth limit the ability of cities to adapt to flood risk. This study presents a multi-scenario risk 12 

assessment method that couples the future land use simulation model (FLUS) and floodplain inundation model (LISFLOOD-13 

FP) to simulate and evaluate the impacts of future urban growth scenarios with flooding under climate change (two 14 

representative concentration pathways (RCPs 2.6 and 8.5)). By taking Shanghai coastal city of Shanghai as an example, we 15 

then quantify the role of urban planning policies in future urban development to compare urban development under multiple 16 

policy scenarios (Business as usual, BU; Growth as planned, GP; Growth as eco-constraints, GE). Geospatial databases 17 

related to anthropogenic flood protection facilities, land subsidence, and storm surge are developed and used as inputs to the 18 

LISFLOOD-FP model to estimate flood risk under various urbanization and climate change scenarios. The results show that 19 

urban growth under the three scenario models manifests significant differences in expansion trajectories, influenced by key 20 

factors such as infrastructure development and policy constraints. Comparing the urban inundation results for the RCP2.6 21 

and RCP8.5 scenarios, the urban inundation area under the growth as eco-constraintsGE scenario is less than that under the 22 

business as usualBU scenario, but more than that under the growth as plannedGP scenario. We also find that urbanization 23 

tends to expand more towards flood-prone areas We also find that urban will tend to expand to areas vulnerable to floods 24 

under the restriction of ecological environment protection. The increasing flood risk information determined by the coupling 25 

model simulations helps to understand the spatial distribution of future flood-prone urban areas and promote the re-26 

formulation of urban planning in high-risk locations. 27 

1 Introduction 28 

Climate change and urbanization are the global challenges for the 21st century ( Ramaswami et al., 2016; Pecl et al., 2017). 29 

Floods have been key threats for many cities around the world driven by global climate change (Hallegatte et al., 2013; 30 
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IPCC, 2014; Fang et al., 2020). Currently, more than 600 million people worldwide live in the coastal cities that are less than 31 

10 m above sea level (United Nations, 2017). The United Nations reports that the global population will increase by 29% 32 

(7.6 billion) between 2017 and 2050 especially in some coastal countries (United Nations, 2017b), which means that 33 

population of coastal cities will become increasingly concentrated in the future and impervious surfaces will become more 34 

numerous The United Nations reports that the global population living in cities is projected to reach 6.7 billion by 2050 35 

(United Nations, 2018), especially in low elevation coastal areas, the population density is expected to be twice the current 36 

population density (Van Coppenolle and Temmerman, 2019), which means that the population of coastal cities will become 37 

increasingly concentrated in the future and impervious surfaces will become more numerous (Chen et al., 2020; He et al., 38 

2021). On the other hand, the National Oceanic and Atmospheric Administration (NOAA) report suggests that global mean 39 

sea level will rise around 0.2 m to 2.0 m by 2100 under a continuing global warming trend (Parris et al., 2012). Additionally, 40 

properties and populations in many coastal areas will suffer more severely in the future if the effects of land subsidence are 41 

taken into account (Vousdoukas et al., 2018). 42 

However, high uncertainty in flood risk and urban growth leads to a lack of capacity of cities to respond to the flooding 43 

arising from future climate change (Du et al., 2015; Tessler et al., 2015; Fang et al., 2021). Therefore, there is an urgent need 44 

for specialist knowledge and techniques to address the conflict between urbanization and flood risk ( Wang et al., 2015; Lai 45 

et al., 2016; Bouwer, 2018; Haynes et al., 2018). For example, flood risk studies focus mainly on the current urban scenarios 46 

for disaster risk assessment (Bisht et al., 2016; Zhou et al., 2019); and partly consider future land use changes, but urban 47 

growth scenarios are mainly limited to original typologies (business-as-usual development) growth scenarios for study 48 

(Huong and Pathirana, 2013; Muis et al., 2015), with less consideration of environmental factors and urban growth scenarios 49 

under planning constraints (Lin et al., 2020; Long and Wu, 2016); thus, the lack of knowledge of future urban development 50 

scenarios leads to a lack of awareness of the consequences of future flooding Studies on urban flood risk assessment are 51 

more likely to simulate flood risk using different climate change scenarios or integrating different flood sources (Huong and 52 

Pathirana, 2013; Muis et al., 2015; Dullo et al., 2021). For example, Zhou et al. examine the impact of urban flood volumes 53 

and associated risks under RCP2.6 and RCP8.5 scenarios (Zhou et al., 2019). Parodi et al. integrate the compound flood 54 

scenarios such as wave height, storm surge, and extreme sea level due to sea level rise to assess coastal flood risk (Parodi et 55 

al., 2020). However, ignoring the uncertainty of urban growth in urban flood risk assessment reduces the validity of the 56 

assessment (Gori et al., 2019), and hence an increased understanding of possible urban growth scenarios is needed, otherwise 57 

there is a lack of understanding of the consequences of future flooding ( Zhao et al., 2017; Kim and Newman, 2020). 58 

Although there are some studies that have quantified future growth scenarios for urbanization ( Nithila Devi et al., 2019; Lin 59 

et al., 2020), these studies have not considered the impact of existing planned policies that are designed to mitigate the 60 

impact of new development. On the other handIn addition, the failure to integrate with broader climate change-related 61 

scenarios and possible extreme-case flood risks has led to underinvestment in climate adaptation actions by governments that 62 

do not well address the spatial consequences of future floods (Reckien et al., 2018; Berke et al., 2019). Thus, there is an 63 
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urgent need to adopt a more comprehensive approach that considersto assess the complexity of multiple possible scenarios of 64 

urbanization and dynamic flood risk in an integrated manner. 65 

This paper uses the coupling of the future land use simulation model (FLUS) and the 2D floodplain inundation model 66 

(LISFLOOD-FP) to explore the possible interaction between different urbanization development scenarios and climate 67 

change scenarios. The FLUS model improves the simulation accuracy of the model by combining artificial neural network 68 

(ANN) and Cellular automata (CA) model to simulate nonlinear land use changes while considering parameters related to 69 

environment, society, climate change, etc. (Liu et al., 2017; Zhai et al., 2020). The LISFLOOD-FP model has become a 70 

mature hydrodynamic model that can predict potential flood events in near real-time and are widely used in engineering 71 

applications ( Wing et al., 2019; Sosa et al., 2020). The coastal metropolitan Area of Shanghai in the Yangtze River Delta in 72 

China, one of the fastest urbanizing cities in the world, is used as a case study. 73 

The paper asks, how can combining different urban growth scenarios combined with climate change scenario analysis may 74 

help to inform preparedness for flood risks from climate change in urban flood risk assessments? To answer this question, 75 

we first assume some future simulation scenario by considering the factors that influence urban growth and lead to flood 76 

risk.we first consider how urban grow under different environmental and planning factors in the future. Secondly, we 77 

coupled urban growth and flood risk scenarios and compared them using climate change scenarios from two representative 78 

concentrated pathways (RCP 2.6 and 8.5) proposed by the Intergovernmental Panel on Climate Change (IPCC). Finally, we 79 

assessed the risk of flooding in different urban development scenarios. The research illustrates the importance of assessing 80 

the performance of different future urban development scenarios in response to climate change, and the simulation study of 81 

urban risks will prove to decision-makers that incorporating disaster prevention measures into urban development plans will 82 

help to reduce disaster losses and improve the ability of urban systems to respond to floods.  83 

The rest of paper is organized as follows: section 2 describes the characteristics of the study area and presents the data used 84 

in this paper; followed by a description of the methodology for integrating future land use change models and hydrodynamic 85 

models in Section 3. The results and discussion in Section 4 and Section 5. We divided the discussion section into two parts, 86 

on the one hand discussing the sources of uncertainty in the study, and the other part discussing adaptation policies for urban 87 

flood risk in the context of climate change. The conclusion of the study is described in Section 6. 88 

2 Study area and datasets 89 

2.1 Study area 90 

As the alluvial plain of the Yangtze River Delta, Shanghai is located on the coast of the East China Sea between 30°40′–91 

31°53′N and 120°52′–122°12′E, which borders the provinces of Jiangsu and Zhejiang to the westWest (Fig. 1). It’s a typical 92 

middle latitude transition belt, marine land transitional zone and also a typical estuarine and coastal city with a fragile 93 

ecological environment. The land area of Shanghai is about 6340.50 km2, accounting for 0.06 % of the total area of China, 94 

and has 213 km of coastlines. The Shanghai metropolitan area has undergone rapid urban expansion in the past decades and 95 
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has become one of the largest urban areas in the world in both size and population (Sun et al., 2020). However, Shanghai's 96 

topography is low, with an average elevation of 4 m above sea level, and there is no natural barrier against storm surges. In 97 

1905, one of the deadliest storm surges occurred in Shanghai, killing more than 29,000 people. Two years later, Typhoon 98 

Winnie made landfall in Shanghai, flooded more than 5,000 households (Du et al., 2020). Additionally, due to land 99 

subsidence and the increasing frequency and intensity of storm surges make, Shanghai will become one of the most sensitive 100 

regions due to the global climate change. 101 

 102 

Figure 1: Location map of the study area. The main inland rivers in Shanghai flow into the East China Sea through the Huangpu 103 

River. The line with coloured vectors in the figure indicates the different dike crest level in Shanghai. 104 

2.2 Data 105 

The research used three main categories of data, including basic data, scenarios constraints data and flood simulation data 106 

(Table 1). The basic data include land use, topography, traffic network, traffic site, socio-economic data. The land use data 107 

with a resolution of 100 m×100 m from the Resource and Environmental Science and Data Center of the Chinese Academy 108 

of Sciences is currently the most accurate land use remote sensing monitoring data product in China (Liu et al., 2014). The 109 

data for 2005 and 2010 were derived from Landsat-TM/ETM remote sensing image data respectively, and the data for 2015 110 

were interpreted using Landsat 8 remote sensing image. After the data was were corrected and manually visually interpreted, 111 

the comprehensive evaluation accuracy of the interpretation accuracy of the first-class types of cultivated land, woodland, 112 
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grassland, water area, urban land, and unused land reached more than 94.30 %, and the discrimination accuracy rate on the 113 

map patches reached 98.70 % (Xu et al., 2017). Within the allowable error range, it can be used as the basic data for 114 

analyzing land use changes.  115 

Topography factors (DEM, slope), traffic network factors (distance to railway, highway, subway, and main roads), traffic 116 

site factors (distance to the city center, train station, and airports) and socio-economic factors (population, GDP), etc. as well 117 

as planning constraints, were determined to be spatial influence factors of the flood risk assessment of the Shanghai area. 118 

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) digital elevation model (DEM), which 119 

has 30-meter resolution, served as the basis data for terrain heights and slopes. ASTER-DEM has been shown to be the most 120 

stable data performer among six types of open access DEM products (SRTM, ASTER-DEM, AW3D, MERIT, NASADEM 121 

and CoastalDEM) for flood inundation simulations with different return periods (Xu et al., 2021). Traffic network and site 122 

were collected from open-source data retrieved from OpenStreetMap (OSM) and POI data were extracted from Tencent 123 

Map. Euclidean distance was calculated for all vector data. The data of population and gross domestic product (GDP), were 124 

provided by the Resource and Environmental Science and Data Center of the Chinese Academy of Sciences (Xu, 2017a, 125 

2017b), and their time span was consistent with the land use data. According to the simulation forecast demand, all materials 126 

were converted into 100 × 100 m grid by resampling. The spatial limiting factors were the basic ecological control line, 127 

permanent basic cropland and cultural protection control line as outlined in the 2017–2035 Shanghai City Master Plan. All 128 

the impact factor data were normalized, and the range of the value is between 0 and 1 to subsequent data mining.  129 

The storm surge data comes from the Global Tide and Surge Reanalysis (GTSR) dataset, which has been validation validated 130 

to have good accuracy (Muis et al., 2016). In addition, man-made flood defenses have been considered to reasonably 131 

evaluate the inundation impact of the flooding. The coastal flood protection data was obtained from the historical archival of 132 

the Shanghai Water Authority for Shanghai (Yin et al., 2020). All data sources are listed in in the table below. 133 

Table 21. Data required and sources. The list details the resolution and sources of the data in the study. 134 

Category Data Type Resolution Source 

Basic data 

Land use 100 m × 100m 

Resource and Environmental 

Science and Data Center 

(http://www.resdc.cn) 

Topography Vector line 
ASTER GDEM 

(https://earthexplorer.usgs.gov/) 

Traffic network Vector line 
OpenStreetMap 

(https://www.openstreetmap.org) 

Traffic site Vector point Tencent Map (https://map.qq.com/) 

Social economy 1 km × 1 km 
Resource and Environmental 

Science and Data Center  

Scenarios 

constraints 

Ecological  

control line 
Vector line 《2017-2035 Shanghai City Master 



6 

 

Permanent basic  

cropland control line 
Vector line 

Plan》 

Cultural protection 

control line 
Vector line 

Flood data 

Floodwalls Vector line 
Shanghai Water Authority 

(http://swj.sh.gov.cn/) 

Storm surge  Vector line GTSR 

3 Methodology 135 

The presented approach for relative sea level rise scenario flood risk assessment is the integration of the FLUS model, 136 

LISFLOOD-FP model, and Markov chain model. In the framework, the FLUS model and Markov chain model are designed 137 

to stimulate complexity land-use change processes in three different scenarios through 2030 to 2050, which include Business 138 

as usual (BU), Growth as planned (GP), Growth as eco-constraints (GE) scenarios. A Markov chain model is used to predict 139 

land-use demand in 2030 and 2050, combine combining planning policy factors, which is one of the crucial data inputs in the 140 

FLUS model. Next, the LISFLOOD-FP two-dimensional flood model is used to explore the potential flooding areas under 141 

the RCP 2.6 and 8.5 scenarios in 2030 and 2050, to avoid the overestimation of the submerged range based on the GIS-based 142 

elevation area method. This model also considers the compound influence of sea-level rise, storm surge, and land 143 

subsidence, Finallysubsidence. Finally, via ArcGIS spatial comprehensive analysis, the flooding of different land types is 144 

calculated employing different flooding scenarios. The overall flow chart of research is illustrated in Fig. 2. 145 
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 146 

Figure 2: The overall flow chart of research. 147 

3.1 Markov chain model 148 

Markov chain model refers to the random transition process of state from one state to another, and its future state is only 149 

related to the state at previous moment. In the study of land use change, the type of land use at a certain moment is only 150 

related to the type of land use at the previous moment. Therefore, land-use change is a typical Markov process and has 151 

widely used in the prediction of land-use changes (Zhou et al., 2020). We predicted future land use by Eq. (1): 152 

𝑆(𝑡+1) = 𝑃𝑖,𝑗 × 𝑆𝑡            (1) 153 

where S t and S t+1  represent the land use at times t and t+1, and Pi, j  is a state transition matrix that land-use type i is 154 

converted to land-use type j. This model has a good predictive effect on the process state (Gounaridis et al., 2019). 155 

Therefore, we use the Markov chain to calculate the probability of the conversion of various land types, and then predict the 156 

number of future land changes. 157 
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3.2 The FLUS land use simulation model 158 

The FLUS model is an upgraded version of a cellular automata model (Liu et al., 2017)， which can solve the complex land 159 

use simulation problems by self-adaptive inertia and competition mechanism. The FLUS shows the highest current 160 

performances than other simulation models such as CLEU-S, SLEUTH, and LTM and has been applied to land use change 161 

simulation research at different scales and for different purposes (Liang et al., 2018; Lin et al., 2020).  162 

As the most important scheme to manage the space of the urban area, an urban land use plan can reflect the general 163 

arrangement of land use in the future (Xu and Yang, 2019). In this research, three categories of urban growth scenarios are 164 

simulated through the FLUS model. The similarity of the three scenarios is that they use factors that affect urban 165 

development and changes, such as population, GDP, traffic, and slope, as the main spatial driving factors. The difference is 166 

are as follows: 167 

(i) Business as usual (BU): BU is natural growth without development laws and regulations. Its development is based on the 168 

premise of the current urban development patterns. Therefore, the land demand predicted by Markov is used as the constraint 169 

condition for the iteration of CA model in the subsequent application of the scenario. 170 

(ii) Growth as planned (GP): Under the GP scenario, the urban growth projection that closely link to the master plan for 171 

Shanghai in terms of quantity, reflecting how the city government prefer to develop. The master plan requires that the total 172 

area of planned urban construction land does not exceed 3,200 km2 in 2035. We choose an urban area of 2768 km2 in 2030 173 

and 3200 km2 in 2050 as the constraints under the GP scenario. The reason is that the Markov chain model projections result 174 

in an urban area is 2768 km2 in 2030 and 3270 km2 in 2050, and the total urban construction land area in 2035 of the 175 

Shanghai Master Plan does not exceed 3200 km2.As the condition for the model iteration to stop, we estimated the urban 176 

area to be 2,768 km2 in 2030 and 3,200 km2 in 2050 combined with urban master plan. 177 

(iii) Growth as eco-constraints (GE): The GE scenario is an eco-environmental protection scenario which development is 178 

limited by the ecological environment protection. Combined with Shanghai's ecological and environmental protection 179 

requirements and the distribution of permanent basic farmland, sensitive areas restricted for development are identified at the 180 

scenario, and we also establish a cultural protection control line for strengthening historical and cultural protection. In 181 

addition, the number of areas of future urban growth in the GE scenario also combines the requirements given in the urban 182 

master plan to enhance the reality of the scenario. 183 

Therefore, the FLUS model is used to simulate future urban growth combines combining various scenarios. First, the driving 184 

factors and land-use data is are trained by an ANN model to obtain a probability-of-occurrence map, and then incorporate 185 

with the self-adaptive land inertial, conversion cost, and neighborhood competition among the different land use types to 186 

estimate the combined probability for each grid. Next, combining the number of various types of land predicted by the 187 

Markov Chain model and considering the constraints of each scenario to predicted urban growth in 2030 and 2050. To better 188 

validate the model before predicting for future change, we compared the output to with the actual land use 2015. Note that 189 
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the number of iterations in each scenario is set to 5000, which is much higher than the default value to show higher 190 

prediction accuracy. 191 

3.3 The LISFLOOD-FP flood inundation model 192 

LISFLOOD-FP is a 2D hydraulic model based on a raster grid (Bates et al., 2010), which can efficiently simulate the 193 

dynamic propagation of flood waves over fluvial and estuarine floodplains and show real-time changes in water depth of 194 

complex terrain. LISFLOOD-FP model solves the Saint-Venant equations at very low computational cost by omitting only 195 

the convective acceleration term over a structured grid using a highly efficient explicit finite difference scheme to produce a 196 

two-dimensional simulation of floodplain hydrodynamics (O’Loughlin et al., 2020). The model has been widely used in the 197 

applications of small-scale and large-scale urban waterlogging and flooding (Hoch et al., 2019; Rajib et al., 2020; Zhao et 198 

al., 2020). 199 

In the present study, the LISFLOOD-FP model is used to simulate storm surge floods along the coast of Shanghai and floods 200 

along the Huangpu River. The effectiveness of the model in the study area has been verified by another article of our group 201 

members and shows good simulation results(Xu et al., 2021). In the boundary control of model, hydrological stations and 202 

global storm surge data are respectively employed as the input of the scenario design. However, Shanghai Geological 203 

Environmental Bulletin and land subsidence control plan show that land subsidence has a significant contribution to the 204 

flood hazards in Shanghai (Xian et al., 2018). With reference to the research of Yin et al (Yin et al., 2013), Land subsidence 205 

in Shanghai is mainly caused by tectonic subsidence and compaction of sediments due to geological structure conditions and 206 

human activities. With reference to the long-term tectonic subsidence monitoring data of the very long baseline 207 

interferometer (VLBI) in the Sheshan bedrock and the land subsidence analysis rules of Yin et al. (Yin et al., 2013). 208 

therefore, the total land subsidence is predicted to be 0.12 m and 0.24 m by 2030 and 2050, respectively. However, due to 209 

the uncertainty of future anthropogenic activities and spatial distribution, there could be large variations in the the values of 210 

land subsidence in 2030 and 2050 are selected to be 0.12 m and 0.24 m, respectively. Thisprojection. This study also 211 

combines the storyline of future scenarios of the IPCC, namely the Representative Concentration Pathway (RCP) scenarios, 212 

and selects conservative (RCP2.6) and largest magnitude (RCP8.5) climate-change scenarios, which with values from Kopp 213 

et al (Kopp et al., 2017). For the simulation of the Huangpu River flood, we conducted experiments for a 50-year return 214 

period under the RCP2.6 scenario and a 100-year return period under the RCP8.5 scenario respectively during 2030 to 2050. 215 

For the 2030 and 2050, both Huangpu River and the coastal floods are followed tofollowing the RCP2.6 and RCP8.5 216 

scenarios. Finally, we combine land subsidence and the RCP data to control the flood inundation simulation.  217 
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4 Results 218 

4.1 Model validity 219 

Model verification is the prerequisite for model operation, and the operation can only be carried out after confirming the 220 

model that is consideredto be valid. The applicability of the proposed model was tested by simulating land use/cover changes 221 

(LUCCs) in 2015 at Shanghai. The spatial simulation result shows that the simulated result and the actual land use have a 222 

high consistency (Fig. 3). We compared the actual land use and the simulated result pixel by pixel in our study and found the 223 

overall accuracy (OA) was 93.20 %, the kappa coefficient (kappa) was 0.89. The discrepancy of the actual land use and 224 

simulated result is likely due to the neighborhood interaction in the CA model, in which grid cells in more urbanized 225 

neighborhoods have a higher probability to convert to urban, whereas the grid cells are less likely to change to urban in less 226 

urbanized neighborhoods. Overall, the measured model accuracy outputs are measured shows showed an acceptable or good 227 

level of prediction, therefore the model is suitable for predicting changes in land use of the Shanghai area. 228 

 229 

Figure 3: Comparing the simulation results of Shanghai urban expansion with the actual situation, (a) simulation result in 2015; 230 

(b) actual land use in 2015. 231 
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4.2 Future land use changes 232 

Based on the conditions under three different development scenarios, we predicted the development of future urban land use 233 

change in 2030 and 2050. The prediction result shows different development patterns for each scenario (Fig. 4). Future urban 234 

growth under the BU scenario is primarily located in northwestern with some development in the central regions, and under 235 

the GP scenario the urban growth involves evenly distributed development. Urban growth in the GE scenario, however, 236 

Chongming Island regions have seen more urban growth, and the downtown area is not fully occupied by urban expansion 237 

due to restrictions.  238 

Due to the impact of infrastructure construction, distance to the city center, and policy restrictions, Shanghai’s overall urban 239 

expansion model shows a center-peripheral expansion. The built-up land areas in 2030 and 2050 are respectively projected to 240 

increase by about 6 % and 13 % as compared to 2015, the most significant reduction is found for cultivated land and 241 

woodland. Specifically, the built-up land areas in 2030 are respectively projected to increase by 427.32 km2, 428.27 km2 and 242 

429.12 km2 at BU, GP and GE scenarios, the built-up land areas in 2050 are respectively projected to increase by 926.38 243 

km2, 857.63 km2 and 751.47 km2 at BU, GP and GE scenarios. The most significant reduction is found for cropland, which is 244 

predicting in 2050 to decrease by 876.97 km2, 857.63 km2 and 723.59 km2 as compared to 2015 in BU, GP and GE 245 

scenarios. The southwestern region is not suitable for large-scale urban development, due tosince large amounts of farmland 246 

in the region are listed as ecological protection areas, so the slow growth of these areas is not expected. The simulation maps 247 

show, as expected, land use changes under different planning scenarios, especially the urban sprawl trend at the GE scenario, 248 

creating new development areas in suburbs. To sum up, the urban expansion trajectory under BU, GP and GE shows 249 

significant differences, and these changes mainly at the expense of the cropland. 250 
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 251 

Figure 4: Simulation results of different scenarios in 2030 (top) and 2050 (bottom). Each image shows the spatial distribution and 252 

the proportion of area of different land use types in the simulated scenario. 253 

4.3 Changing flood hazard in the future 254 

The LISFLOOD-FP model is used to simulate the flood evolution process under RCP2.6 and RCP8.5 scenarios (the 255 

inundation results are plotted in Supplementary Figure 1), and then the submerged depth and area under different scenarios 256 

are statistically analyzed to explore the future flood risk under different RCP scenarios. First, the maximum water depth risk 257 

of the submerged area is counted, and the submerged area is divided into four depth levels: the submerged water depth is less 258 

than 0.5 m as shallow water area, water depth is 0.5-1 m as medium water area, the water depth is 1-2 m as deep water area, 259 

and submerged water depth is above 2 m as the extremely deep area. The area and proportion of each water depth level are 260 

calculated. 261 

By comparing the scenarios in RCP2.6 and RCP8.5, it is evident that the submerged area is increasing trends with time 262 

(Table 2). The total flooded area increased by 162.43 km2 and 189.44 km2 under RCP2.6 and RCP8.5 scenarios from 2030 to 263 
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2050, respectively. Additionally, the depth of submergence and the extent of submergence will gradually increase as the 264 

floodwater spreads. Taking the area with submergence depth above 2 m as an example, under RCP2.6 scenario the area with 265 

submergence is 353.69 km2 and 401.57 km2 respectively in 2030 and 2050, and under RCP8.5 scenario the area with 266 

submergence is 356.28 km2 and 418.36 km2 respectively in 2030 and 2050. It shows that Shanghai will still face great flood 267 

risk under these two scenarios.  268 

Table 2. Statistics of flood water depth. 269 

Categor

y 

<0.5 m 0.5-1 m 1-2 m >2 m 
Total 

/km2 Area/ 

km2 

Ratio/

% 

Area/ 

km2 

Ratio/

% 

Area/ 

km2 

Ratio/

% 

Area/ 

km2 

Ratio/

% 

2030 

RCP2.6 
138.61 14.54 164.07 17.21 296.98 31.15 353.69 37.10 953.35 

2030 

RCP8.5 
137.13 14.23 169.76 17.61 300.82 31.21 356.28 36.96 963.99 

2050 

RCP2.6 
125.04 11.21 229.81 20.60 359.36 32.21 401.57 35.99 1115.78 

2050 

RCP8.5 
141.72 12.29 219.58 19.04 373.77 32.41 418.36 36.27 1153.43 

4.4 Future changes in urban flood risk 270 

The flood risk of the urban area is calculated by overlapping existing urban and projected future urban scenarios with future 271 

flood risk zones. First, in the existing urban exposure to future flood risk scenarios (the upper left in Fig. 5), more urban 272 

areas will be vulnerable to flood risk in the context of global climate change. The four pie charts for the EU scenarios 273 

represent the proportion of the existing urban area affected by the future flood risk scenario. Under the RCP 2.6 scenario, 274 

4.68 % and 5.96 % of the total existing urban areas in 2030 and 2050 would be susceptible to flood risk, respectively. In the 275 

2030 and 2050 of the RCP8.5 scenarios the area of existing urban land which would be vulnerable to future flood risks are 276 

110.27 km2 and 146.23 km2, respectively. Many urban areas will be flooded under sea level rise caused by climate change 277 

even when protected by levees, and more than 5 % of urban areas in Shanghai are still in the floodplain (Fig. 5). 278 
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 279 

Figure 5: Flood exposure of existing urban and future urban growth scenarios. The four pie charts for the BU, GE, and GP 280 

scenarios represent the proportion of new growth grown urban area exposed to flooding under the 2030 RCP2.6, 2030 RCP8.5, 281 

2050 RCP2.6, and 2050 RCP8.5 scenarios, respectively. The four pie charts for the EU scenarios represent the proportion of the 282 

existing urban area affected by the future flood risk scenario.  283 
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Future urban development would occur in the flood zone, with the a rapid expansion of the urban area. Fig. 5 also shows the 284 

comprehensive analysis results of the three urban growth scenarios under different climate change scenarios. Under the 285 

RCP2.6 scenario, new growth in urban land area affected by flooding in 2030 are respectively 55.11 km2, 23.22 km2, and 286 

30.92 km2 at BU, GP and GE scenarios. Under the RCP8.5 scenario, future more urban growth areas would be affected by 287 

the flooding, which will be reached 115.53 km212.47 %, 70.36 km210.87 %, and 81.71 km28.20 % at BU, GP and GE 288 

scenarios in 2050, respectively. In general, the higher the sea level rises, the greater the risk of flooding in future urban areas. 289 

Small changes in sea level rise will affect a large amount of land, due tosince the average altitude of Shanghai is only around 290 

4 m. 291 

Table 3. Inundate Inundation of each land use type under different scenarios. The inundated areas of different land use types, 292 

including cropland, woodland, grassland and urban land, were calculated for each scenario, where a indicates new growth grown 293 

areas of the urban class affected by flooding. 294 

Time Category 
Urban 

scenario 

Inundated areas (km2) 

Cropland Woodland  Grassland  Urban land a 

2030 

RCP2.6 

BU 595.05 10.05 5.60 55.11 

GE 618.95 12.12 5.84 30.92 

GP 597.71 12.40 5.91 23.22 

RCP8.5 

BU 602.38 10.23 5.67 55.92 

GE 625.97 12.29 5.91 31.23 

GP 604.32 12.59 5.98 23.72 

2050 

RCP2.6 

BU 662.64 13.56 5.25 110.19 

GE 677.59 16.74 5.95 78.95 

GP 651.24 15.66 5.46 67.55 

RCP8.5 

BU 683.56 15.06 5.70 115.53 

GE 698.98 18.05 6.40 81.71 

GP 672.30 16.85 5.91 70.36 

 295 

The research found that the cultivated land is the most affected land type by flooding relative to urban areas, woodland and 296 

grassland The research found that the cultivated land is most affected by flooding (Table 3), and urban areas and woodland 297 

are the second most affected. Under the GE scenario, the flooded area of cultivated land is 618.95 km2 and 625.97 km2 at the 298 

RCP2.6 and RCP8.5 in 2030, and 677.59 km2 and 698.98 km2 at the RCP2.6 and RCP8.5 in 2050. Further, the exposure of 299 
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various types of land is increasing with time, but urban land and cropland will be the most impacted land types in the future. 300 

Comparing the three scenarios we can find that the urban development area under the planning scenario is less affected by 301 

flooding, as compared to the business-as-usual development scenario. Comparing the inundation of the two planning 302 

scenarios (GE and GP), it also reflects the decision-makers' trade-off between economic development and ecological 303 

protection. The inundation area of the urban land under the GP scenario is less than that of the GE, which means that under 304 

the planning constraint of protecting ecological and cultural areas, urban built-up areas will develop on low-protection areas, 305 

which are more vulnerable to flooding. In conclusion, from reducing the risk of future flooding in urban areas, GE scenario 306 

shows to be better than BU scenario, but worse than GP scenario. 307 

5 Discussions 308 

5.1 Source of uncertainties 309 

There are some limitations in our study, which is what we need to improve in the future. First, there is still more room to 310 

improve the accuracy of model prediction. In this study, the performance of the FLUS model is tested by kappa and OA 311 

measures, which shows a good range of prediction accuracy. In addition, this study proves that 16 driving factors contribute 312 

to the simulation and prediction of urban growth in Shanghai. The relationship between human and natural driving factors 313 

and land use change can be effectively integrated through the FLUS model embedded with an ANN, to obtain more realistic 314 

simulation results. However, if more influential drivers and the latest land cover are employed, the prediction would be 315 

having higher accuracy. Second, future flood risks in coastal areas are also are not fully reflected through using the use of 316 

hydrodynamic models, although it shows higher accuracy than the elevation area submergence method. On the one hand, this 317 

study is based on the modeling results of DEM data, which may overestimate or underestimate the simulation effect due to 318 

the error of DEM data. On the other hand, extreme storm surge and land subsidence data are combined to enhance the 319 

reliability of the extreme flood forecast in this study. However, the change of the impervious surface that affects hydrology 320 

is not be yet considered in this study. When other land uses are converted to urban land uses, the risk of flooding will also 321 

greatly increase due to changes the of impervious surfaces. Therefore, it is necessary to dynamically adjust relevant factors 322 

affecting flood peak flows and risk in future forecasts to enhance the accuracy of prediction.  323 

In the context of global climate change, extreme weather in the future may become more and more serious, so it is necessary 324 

to dynamically combine climate scenarios to develop more accurate flood risk delineation methods to guide urban planning 325 

in the future, and rely on new technology and equipment to provide data support, . For example, unmanned aviation vehicles 326 

(UAVs) are deployed around the coastline to generate real-time information about weather conditions and sea-level changes 327 

(Cochrane et al., 2017). These tools will act as a complement to existing information and early warning systems, which also 328 

can provide guidance for coastal flood risk management and urban planning in the future. Overall, although uncertainty 329 

cannot be avoided when assessing coastal flood risk, the deviation of the proposed model output is within an acceptable 330 

range, which ensures the accuracy of coastal flood risk assessments. 331 
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5.2 Recommendations on strategies and policies for urban adaptation to flooding 332 

In the twenty-first century, adapting to climate change and coastal flooding is a critical challenge for coastal cities. Human 333 

response to the impacts of flooding largely depends on the allocation of urban facilities and managers' planning for future 334 

urban development (Hunt and Watkiss, 2011). Shanghai is considered one of the most protected Chinese cities in terms of 335 

flood protection, yet it’s the EAD/GDP (the Expected Annual Disruption, EAD), that is the direct damage to buildings and 336 

vehicles) ratio, which is as much as five times than in New York (Aerts et al., 2014). Therefore, there is an urgent need to 337 

adopt flood risk adaptation strategies in Shanghai. 338 

We conducted a set of comparative experiments to analyze the coastal flood damage in Shanghai with and without flood 339 

walls (hard adaptation strategies). Our analysis considered the important effects of land subsidence and SLR sea level rise on 340 

flood risk. We found that the current flood protection wall can reduce the flood losses due to climate change to a relatively 341 

low level (Supplementary Figure 2). In comparison, the flood protection wall constructed for the current conditions would 342 

reduce the flooded area under the RCP8.5 scenario by about 35 % and 36 % in 2030 and 2050, respectively. This result 343 

shows that the current hard protection strategy can reduce the flood risk to a low level, but the residual flood risk from using 344 

the hard protection strategies still needs to be addressed. From the cases of advanced flood risk management countries such 345 

as the Netherlands (Kabat et al., 2009; Song et al., 2018), an important success lesson for future flood protection design is to 346 

leave enough space along coasts for wetland migration and leave space for nature. In other words, "soft strategies" such as 347 

"working with rivers and nature" are considered in the flood protection measures. Therefore, it is necessary to learn from the 348 

practical experience of advanced countries to strengthen the development and construction of coastal wetlands and tidal flat 349 

ecosystems, and further reduce the residual risk through the adaptive regulation of coastal ecosystems and other soft 350 

strategies. Furthermore, our results show that the area of future urban flood risk varies by scenario. Although the GE 351 

scenario performs higher than the GP scenario in terms of flood inundation area, this does not mean that the GE scenario is 352 

worse. From the cases of advanced flood risk management countries such as the Netherlands (Kabat et al., 2009; Song et al., 353 

2018), an important success lesson for future flood protection design is to leave enough space along coasts for wetland 354 

migration and leave space for nature. In other words, "soft strategies" such as "working with rivers and nature" are 355 

considered in the flood protection measures. Therefore, from this perspective the GE scenario may be a more likely future 356 

development scenario among these three scenarios. Future, it is necessary to learn from the practical experience of advanced 357 

countries to strengthen the development and construction of coastal wetlands and tidal flat ecosystems, and further reduce 358 

the residual risk through the adaptive regulation of coastal ecosystems and other soft strategies. In addition, the 359 

implementation of "soft strategies" can increase the value of ecosystem services, increase biodiversity and carbon 360 

sequestration, and improve social welfare (Du et al., 2020). 361 
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6 Conclusion 362 

Scenario-based assessment has been found to be a powerful approach in numerous flood risk studies. This study combines an 363 

urban growth model with a two-dimensional flood inundation model to not only simulate urban development dynamics more 364 

accurately, but also to discard the shortcomings of the traditional elevation inundation method of overestimating inundation 365 

areas. We have also tested the resilience of Shanghai to future different climate scenarios with the current flood wall. The 366 

results of the study are beneficial to local planners and coastal managers in making decisions of future protected areas and 367 

developments. 368 

This study employed three urban development scenarios and detected the relationships of urbanization and climate changes 369 

in 2030 and 2050. The results of the study show that urban growth under the three scenario models manifests significant 370 

differences in expansion trajectories, influenced by key factors such as infrastructure development and policy constraints. 371 

According to the predicted results of flood, new built-up areas are also potentially vulnerable areas of flood risk. New built-372 

up areas under different scenarios show significant vulnerability and exposure risk under different climate scenarios, even 373 

with the support of flood bank and other hard structures. Additionally, the research provided significant insights into the 374 

range and spatial distribution of flood risk in future urban areas. 375 

The current study is based on the multi scenario analysis of RCP global warming scenarios. In the future, the shared 376 

socioeconomic pathways (SSPs) can be combined to predict land use change, which make urban development scenarios have 377 

more realistic choices. The results of this study estimate the future urban flood exposure areas, but this does not mean that all 378 

flood-vulnerable areas will be flooded, only that in these areas, the probability of each possible occurrence is greater. 379 

Therefore, proper preparations (such as definition restricted development zones) can reduce the damage risk of future flood 380 

and build more resilient cities. 381 
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