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Abstract. Mountainous grassland slopes can be severely affected by soil erosion. To better understand the regional differences

of soil erosion patterns, we determine the locations of shallow landslides across different sites and aim at identifying their

triggering causal factors. Ten sites across Switzerland located in the Alps (8 sites), in foothill regions (1 site), and the Jura

mountains (1 site) were selected for statistical evaluations. For the shallow landslide inventory, we used aerial images (0.25

m) with a deep learning approach (U-Net) to map the locations of eroded sites. We used logistic regression with a Group5

Lasso variable selection method to identify important explanatory variables for predicting the mapped shallow landslides. The

set of variables consists of traditional susceptibility modelling factors and climate-related factors to represent local as well as

cross-regional conditions. This set of explanatory variables (predictors) are used to develop individual site models (regional

evaluation) as well as an all-in-one model (cross-regional evaluation) using all shallow landslide points simultaneously. While

the local conditions of the ten sites lead to different variable selections, consistently slope and aspect were selected as the es-10

sential explanatory variables of shallow landslide susceptibility. Accuracy scores range between 70.2 and 79.8% for individual

site models. The all-in-one model confirms these findings by selecting slope, aspect as well as roughness as the most important

explanatory variables (Accuracy = 72.3%). Our finding suggest that traditional susceptibility variables describing geomor-

phological and geological conditions yield satisfactory results for all tested regions. However, for two sites with lower model

accuracy, important processes may be under-represented with the available explanatory variables. The regression models for15

sites with an east-west oriented valley axis performed slightly better than models for north-south oriented valleys, which may

be due to the influence of exposition related processes. Additionally, model performance is higher for Alpine sites, suggesting

that core explanatory variables are understood for these areas.

1 Introduction

Soil erosion is an issue affecting many regions of the world and can have severe consequences for the environment and humanity20

(e.g., water pollution or food production) (Pimentel et al., 1995; Pimentel and Burgess, 2013; O’Mara, 2012; Alewell et al.,

2020, 2009). In Switzerland, grasslands of mountain and hill slopes can be strongly affected by soil erosion, which can be

caused by natural (e.g., precipitation events) and anthropogenic processes (e.g., land-use management) (Tasser et al., 2003;

Meusburger and Alewell, 2008; Zweifel et al., 2019; Geitner et al., 2021; Lepeška, 2016). The most visible form of erosion in
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grassland soils showing bare soil areas can be categorised as shallow erosion (Geitner et al., 2021). These shallow erosion sites25

are mainly triggered by prolonged and intense rainfall events (shallow landslides) or through abrasion by snow (snow gliding,

avalanches) (Wiegand and Geitner, 2010; Geitner et al., 2021). However, in many cases, a combination of these processes can

lead to shallow erosion sites and triggering processes cannot be distinguished from aerial photos. Therefore, we use the term

shallow landslides in our regions and the frame of this study with no implication of the triggering event. The aim of our study

is to statistically evaluate shallow landslide occurrence for 10 different sites (between 16 and 54 km2) across Switzerland. In30

the past, shallow landslide susceptibility studies have mainly focused on one or two study sites while often testing multiple

modelling techniques (Gómez and Kavzoglu, 2005; Meusburger and Alewell, 2009; Vorpahl et al., 2012; Tien Bui et al.,

2016; Oh and Lee, 2017; Lee et al., 2020; Nhu et al., 2020b) except for Persichillo et al. (2017), who evaluated four sites in

different catchments. For our shallow landslide inventory we map the eroded sites on aerial images (0.25 m resolution) using

a U-Net deep learning approach (Ronneberger et al., 2015). The U-Net tool was trained by Samarin et al. (2020) to identify35

and map the extent of soil erosion features on grassland. While this mapping tool is able to distinguish between different

erosion processes/appearances (i.e., shallow landslides, livestock trails, sheet erosion and management effects Samarin et al.

(2020)), here, we focus on shallow landslides, as we aim to understand their causal factors and spatial patterns better. With

the U-Net mapping tool, we can identify locations of shallow landslides in a very efficient and precise manner, increasing the

possibilities for mapping but also future model validation of soil erosion studies (Samarin et al., 2020). The mapped shallow40

landslide sites are subsequently evaluated with a statistical model to identify the most important explanatory variables and gain

a better understanding of causal factors as well as regional differences. For this purpose we use the Group Lasso approach

for logistic regressions (Tibshirani, 1996; Yuan and Lin, 2006; Meier et al., 2008). The Group Lasso can deal with continuous

and categorical variables and is able to estimate coefficients of classes within a categorical variable. In addition to estimating

coefficients, the Lasso can do variable selection simultaneously (Section 2.2). The Lasso tends to yield sparse and interpretable45

models, avoids over-fitting and is tolerant towards possible collinearity of variables (Dormann et al., 2013). Despite these

advantages, the Lasso has only been applied a small number of times for landslide susceptibility modelling (Camilo et al.,

2017; Lombardo and Mai, 2018; Gao et al., 2020). We evaluate the shallow landslides within each study site (10 models)

and across all 10 study sites simultaneously (all-in-one model) and consider only grassland surfaces. Our aim is to identify

explanatory variables that have local importance but also identify variables, which may explain regional differences in shallow50

landslide occurrence. The selected study sites are a combination of alpine (above 1500 m asl), foothill regions (below 1500 m

asl) as well as one site in the Jura mountains (below 1500 m asl). The explanatory variables we use are the same for all sites and

consist of a combination of classic landslide susceptibility variables (Budimir et al., 2015) as well as climate-related variables

(Karger et al., 2017, 2018), which may aid in explaining regional differences of shallow landslide occurrence (Section 3.2).

To understand how well the selected variables and their coefficients perform, we evaluate the models on held-out test data.55

We determine Receiver-Operator-Characteristics (ROC) curves and the corresponding Area-Under-Curve (AUC) as well as the

Brier score, which is suitable for binary variables (presence/absence shallow landslides) (Section 2.3).
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2 Study Sites

A total of 10 sites were selected to produce shallow landslide inventories (mapping of shallow landslides) and perform subse-

quent statistical evaluations of explanatory variables. We only consider grassland areas, which were identified with the aid of60

the surface cover information of the product SwissTLM (Swisstopo, 2019). The sites were selected to represent different moun-

tain and hill regions and different geological conditions, valley expositions and slope angles. Figure 1 shows the locations of

all study sites within Switzerland, and Table 1 summarises important site information. Most permanent grassland surfaces in

Swiss mountain regions are used either for grazing (pastures) or haying (meadows) (FSO, 2013; Stumpf et al., 2020). Of the

10 sites, nine are located across the Swiss Alps, and one was selected in the Swiss Jura mountains (Baulmes, below 1500 m65

asl). The sites located in the Swiss Alps represent a range of alpine (above 1500 m asl) regions as well as foothill regions

(Hornbachtal, below 1500 m asl). Val Cluozza is located in the Swiss National park and shows no signs of anthropogenic

influences, and also contains only a small amount of grassland area (8%, rest mostly shrubs and rocks). For other sites in the

Alps, grassland covers 34-55 % of the valley. The rest of the land-cover consists of forest area, rock/debris area or, in some

cases, urban areas. The shallow landslide densities (shallow landslide affected area in relation to total grassland surfaces) range70

from 0.06% (Baulmes) to 2.31% (Chrauchtal). Figure 1 shows the locations of all study sites within Switzerland and Table 1

summarises important site information.

Table 1. List of Study sites and descriptive information: Elevation range, Total area of the study site, Grassland area within study site in

percent, average slope of grassland area, orientation of the main valley axis, number of shallow landslides and shallow landslide density on

grassland areas. GL = Grassland, SLS = Shallow Landslides.

Study Site Elevation Total GL GL Slope Orient. No. SLS GL SLS

(m asl) Area % average of Valley ≥ 4m2 Density

Arosa 1613 - 2535 50 km2 34 % 20.8◦ NNE-SSW 896 0.24 %

Baulmes 615 - 1512 21 km2 19 % 14.5◦ NE-SW 26 0.06 %

Chrauchtal 1421 - 2432 32 km2 53 % 27.2◦ N-S 8073 2.31 %

Hornbach 800 - 1256 17 km2 35 % 21.7◦ NW-SE 438 0.52 %

Rappetal 1427 - 2533 16 km2 50 % 27.4◦ NE-SW 1023 0.54 %

Turbach 1208 - 2367 28 km2 55 % 25.7◦ NNW-SSE 3010 0.97 %

Urseren 1514 - 2840 54 km2 48 % 25.1◦ NE-SW 3702 0.70 %

Val Cluozza 1643 - 2603 25 km2 8 % 30.5◦ N-S 177 0.46 %

Val d’Entremont 1808 - 2823 50 km2 44 % 24.5◦ N-S 1823 0.41 %

Val Piora 1848 - 2554 21 km2 43 % 20.8◦ E-W 1116 0.49 %

2.1 Shallow Landslides Inventory

To identify the locations of shallow landslides across the 10 study sites, we use a deep learning approach based on the U-Net

architecture (Ronneberger et al., 2015). These mapped shallow landslides are then used for statistical evaluations of causal75
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Figure 1. Map of Switzerland showing the 10 selected study sites (outlined in yellow). Colours of the map show lower elevations in dark and

higher elevations in lighter colours.

factors (Section 2.2). This fully convolutional neural network approach for semantic segmentation in images allows for ob-

jective and efficient mapping. The U-Net model was trained to identify and map erosion sites on aerial images (Swisstopo,

2010) with the aid of digital terrain model information (Swisstopo, 2014), as described in Samarin et al. (2020). The U-Net

model was trained on a small area of 9 km2 and tested on an area of 17 km2 in the Urseren Valley (Samarin et al., 2020). For

this study we use the same U-Net model without further training to map the new study sites and focus only on the erosion80

class shallow landslides, as defined in the introduction. The mapping results were carefully examined for all study areas and

corrected manually when necessary. We only consider shallow landslides of at least 4 m2 located on grassland grassland (see

Figure 3 for example of mapping results).

2.2 Logistic Regression with Group Lasso

With the statistical evaluation of the shallow landslide sites, we aim to understand possible causal factors. We evaluate the85

10 study sites individually (evaluation within each site) as well as across all of the sites simultaneously (all-in-one model).

The aim of this is to test, whether the same causal factors are important on different spatial scales. For each of the 10 sites an
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equal number of shallow landslide and non-landslide points constitute the binary response variable (no=0, yes=1) with a set

of corresponding explanatory variables (see Section 3). Our aim is to use a method that generates sparse models that are easy

to interpret and avoid over-fitting. To achieve this, we use a logistic regression estimated with the Least Absolute Shrinkage90

Selection Operator (Lasso) (Tibshirani, 1996). The Lasso regression performs variable selection and coefficient estimation

simultaneously. This is obtained by applying a penalty term (II.) to the log-likelihood function of the logistic regression (I.)

(Hastie et al., 2016):

`λ(β) =−
n∑

i=1

(yizβ(xi)− log(1 + ezβ(xi)))

︸ ︷︷ ︸
I.

+λ
p∑

j=1

|βj
︸ ︷︷ ︸
II.

|. (1)

We consider the linear model zβ(x) = β0+
∑p
j=1βjxj on a data set of size n with p features, i.e. xi ∈ Rp, and binary response95

yi ∈ {0,1}. The penalty term is determined by the parameter λ which is estimated by minimising the model error. The weight

of λ determines how many variables are selected, and in turn, the model shrinks coefficients of variables that contribute to

the error (Hastie et al., 2009, 2016). By shrinking the coefficients of unimportant variables to zero, they are removed from the

model and thereby variable selection is performed. To achieve the least complex model in terms of selected variables, we chose

λ to be one standard error larger than the minimal mean square error (Hastie et al., 2009). As some of the explanatory variables100

are categorical (i.e., geology, aspect) we use the Group Lasso approach. All levels within a categorical variable (encoded as

dummy variables) are treated as a group and all coefficients within that group become zero (dismissed) or non-zero (selected)

simultaneously (Yuan and Lin, 2006; Hastie et al., 2016). This leads to a new objective function with modified penalty term,

`λ(β) =−
n∑

i=1

(yizβ(xi)− log(1+ ezβ(xi))) +λ

G∑

g=1

αg‖βg‖Gg , (2)

where αg is a scaling factor depending on the number of parameters in βg and ‖η‖K = (ηTKη)1/2 is a norm depending on the105

group structure of theG different groups. For more details on the mathematical extension of the Group Lasso we refer to Meier

et al. (2008). We implement the Group Lasso for logistic regression with the R-package grpreg (Breheny and Huang, 2015).

Due to the spatial relationship of geographic data sets, we divide the data into spatially separated blocks of 1 km2, randomly

numbered from 1 to 5 (Valavi et al., 2019) (see Figure 2). These blocks are used for 5-fold cross-validation of the model. Every

block is held out once for testing, while the others are used for model training (e.g., while blocks labeled with 2/3/4/5 are used110

for training, blocks labeled with 1 are used for model testing). During each fold, coefficients are estimated for the explanatory

variables. Note that the explanatory variables have been standardised to allow for easier comparisons between variables. The

estimated values of the coefficients, therefore, give an indication of their relative importance to model the response variable

(shallow landslide and non-shallow landslide points). With higher absolute values of an estimated coefficient, the influence

of this explanatory variable is stronger. A linear transformation would be performed to ultimately get the coefficients for115

the variables on their original scale (Lombardo and Mai, 2018). The process of coefficient estimation is repeated 20 times
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Figure 2. Spatial blocks for 5-fold cross-validation shown with the example of Chrauchtal. Blocks have a size of 1 km2. Blocks are assigned

randomly and determined with the R-package blockCV (Valavi et al., 2019).

(bootstrapping) with different randomly selected blocks, generating 100 estimates of coefficients for every site (20 times 5-fold

cross-validation). We assess the model-selected coefficients by evaluating the range of the coefficient estimates (boxplots) as

well as their inclusion rate (number of times selected by models) as the number of ideal variables can vary in each fold.

2.3 Model Evaluation120

To evaluate the accuracy and the predictive ability of the logistic regression models, we use performance measures described

in the following. All model performances are based on test set estimations (predictions evaluated on held-out test data blocks).

The Receiver-Operator-Characteristic (ROC) curve is a continuous curve showing the relationship between the True Positive

Rate (TPR) and False Positive Rate (FPR) for every probability threshold of the model predictions (Hosmer and Lemeshow,

2000). The accompanying Area-Under-Curve (AUC) is the integrated area under the ROC curve and describes the model skill125

across all possible probability thresholds. Values of the AUC above 0.5 (equivalent to a random model) are better, while a

score of 1 indicates a perfect model. Additionally, we compute confusion matrix performance scores for a fixed probability
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prediction threshold of 50 %. To summarise the accuracy of the models, we assess the magnitude of the error in the probability

predictions using the Brier score (BS) (Equation 3) (Brier, 1950; Wilks, 2006).

BS =
1
N

N∑

t=1

(ft− ot)2, (3)130

where N are the number of mapped shallow landslides, ft are the predicted probabilities for shallow landslide occurrence

(between 0 or 1), and ot are the observed (mapped) of shallow landslides (either no=0 or yes=1). The Brier score (BS) is

equivalent to the Mean-squared error, yet is valid for binary observations. A BS of zero indicates perfect model performance,

while 1 is the worst possible score (prediction is opposite of observation). Probability predictions that are further away from the

observation are penalised more heavily. If the model predicts a 50 % chance of shallow landslide every time (random), a score135

of 0.25 is achieved for a balanced data set (Steyerberg et al., 2010; Raja et al., 2017). We re-estimate the BS with bootstrapping

(500 repetitions, sampled with replacement) to achieve confidence intervals.

3 Data Sets

3.1 Shallow Landslide and Non-Landslide Points

To perform the mapping of shallow landslide sites with the U-Net model (Section 2.1), we require aerial (ortho-)images140

(SwissImage, Swisstopo (2010)) and a digital terrain model (DTM; SwissALTI, Swisstopo (2014)). The aerial images have a

spatial resolution of 0.25 m and red, green and blue spectral bands. The aerial images for the study sites were collected during

the years 2013 (Turbach, Urseren, Val d’Entremont), 2014 (Arosa, Baulmes, Chrauchtal) and 2015 (Hornbach, Rappetal, Val

Cluozza, Val Piora). From the DTM, the derivatives slope, aspect and curvature (plan and profile) are required, which are

calculated with ArcGIS (10.5). Additionally, we use data set with land-cover information (SwissTLM, Swisstopo (2019))145

to assure only sites with grassland are being mapped. For the mapped shallow landslides, we extract the centre points with

ArcGIS of sites with a minimum size of 4 m2. Non-landslide points were extracted randomly within the grassland area and

with a minimum buffer distance to mapped shallow landslides of 5 m. This shallow landslide data set contains an equal number

of landslide to non-landslide points for each study site (Figure 3).

3.2 Explanatory Variables150

The explanatory variables selected for the statistical evaluation of the shallow landslide points are a combination of variables

commonly found in landslide or shallow landslide susceptibility studies (Budimir et al., 2015; Chen et al., 2017; Cignetti et al.,

2019; Kavzoglu et al., 2014; Lee et al., 2020; Meusburger and Alewell, 2009; Persichillo et al., 2017; Nhu et al., 2020b, a) and

climate-related variables that may explain differences between the sites (e.g., strong precipitation events) from the CHELSA

data set (Karger et al., 2017, 2018). Variables related to land-cover and vegetation are not considered as we filter our study sites155

to contain only grassland areas.
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0 40 8020 m ¯
Figure 3. Example of mapped shallow landslides in the Turbach valley (purple). The centred points (yellow) represent shallow landslide

locations for the Lasso model evaluation. Only sites with an area larger than 4 m2 were used for the evaluation. Red points represent

randomised non-landslide points. Aerial image (2013) obtained from Swisstopo.

For every shallow landslide and non-landslide point the variables listed in Table 2 were extracted. The same variables are

used for evaluating all 10 sites as well as the all-in-one model. The continuous variables have been standardized to allow for

comparing coefficients of variables. The categorical variables were converted in to dummy variables (all classes of a categorical

variable encoded as 0 or 1). Most variables can be derived from the DTM (elevation values, SwissALTI) which has a spatial160

resolution of 2 m. Slope (in degrees) describes the maximum change in elevation to neighboring cells. Aspect is included as

a categorical variable containing eight exposition sectors (North, North-East, East, South-East, South, South-West, West, and

North-West). For Curvature we use plan and profile. Plan curvature describes the slopes concave (positive values) or convex

(negative values) properties perpendicular to the direction of the maximum slope, while profile curvature indicates the same

but parallel to the maximum slope. A value of zero indicates a flat surface. Plan curvature characterizes the convergence and165

divergence of surface flow and profile curvature describes the acceleration of the surface flow (Zevenbergen and C., 1987).

Roughness expresses the difference between maximum and minimum elevation values between a cell and all of its neighboring

cells (Wilson et al., 2007). Higher roughness values indicate rougher terrain. Based on flow direction (direction of the steepest

descent) we determine the Flow Accumulation, which describes the number of cells flowing into a cell. The Topographic

Wetness Index TWI gives indications of where water accumulates on slopes and is calculated with ln(α/tanβ), where α is170

the upslope area draining through a certain point per unit contour length (Flow Accumulation) and β is the slope (Beven and
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Table 2. Table containing the variables used for the logistic regression with information on the type of variable (continuous/categorical),

spatial resolution and which data set the variable was originally based on.

Variable Type Resolution Based on

Elevation continuous 2 m SwissALTI

Slope Gradient cont. 2 m SwissALTI

Curvature plan cont. 2 m SwissALTI

Curvature profile cont. 2 m SwissALTI

Roughness cont. 2 m SwissALTI

Flow Accumulation cont. 2 m SwissALTI

Topographic Wetness Index cont. 2 m SwissALTI

Distance to Roads cont. 10 m SwissTLM

Distance to Streams cont. 10 m SwissTLM

Road Density (500 m radius) cont. 25 m SwissTLM

Stream Density (500 m radius) cont. 25 m SwissTLM

Max. Precipitation Event (10 y) cont. 1 km CHELSA

Max. Precipitation Event (5 y) cont. 1 km CHELSA

Snow Days cont. 1 km CHELSA

Snow Cover Days cont. 1 km CHELSA

Growing Season Length cont. 1 km CHELSA

Frost Change Frequency cont. 1 km CHELSA

Geology (4 classes) categorical 1:500’000 Geological Map

Aspect (8 classes) cat. 2 m SwissALTI

Kirkby, 1979). Distance to Roads and Road Density are variables that are often included in landslide susceptibility studies,

as they represent constructional interference (Meusburger and Alewell, 2009; Nhu et al., 2020b). Distance to Streams and

Stream Density can give further information on rainfall drainage and runoff processes (Nhu et al., 2020b). These variables

were calculated based on the SwissTLM data set (Swisstopo, 2019), containing information on road and stream locations using175

the distance and line density tool (search radius of 500m (Meusburger and Alewell, 2009)) of ArcGIS. In addition to these

terrain-related variables, we use variables derived from the CHELSA data set, which contains monthly values on temperature

and precipitation from which many environmental parameters are derived (Karger et al., 2017, 2018). We include the strongest

precipitation events of the last 5 years and 10 years prior to the recording year of the aerial images, information on snow

fall/cover, growing season length and frost change frequency (5-year average of 2009-2013). While these variables have a180

comparatively low spatial resolution (30 arc sec, approx. 1 km), they may give a good indication of regional differences of

shallow landslide occurrence as they are representative of alpine processes often linked to the triggering of shallow landslides

(Meusburger and Alewell, 2008; Wiegand and Geitner, 2010; Löbmann et al., 2020; Geitner et al., 2021). Specifics on the
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individual CHELSA variables used can be found in Karger and Zimmermann (2019). Since we analyse 10 different sites as

well as all sites in one model, we select a simplified geological data set containing only the three main rock formation classes185

(igneous, metamorphic, sedimentary) and unconsolidated rocks. This reduces the number of classes in the categorical variable

and increases the interpretability of the model, especially when comparing between sites.

4 Results and Discussion

The Lasso regression model selects the relevant explanatory variables and estimates their regression coefficients to predict the

location of shallow landslides. The statistical evaluation was conducted for all 10 sites individually and for all sites combined190

in to one large model (all-in-one model). The same explanatory variables were used for both approaches. Due to the 5-fold

cross-validation and random re-sampling of 20 times (bootstrapping), the coefficients are estimated 100 times. The estimated

coefficients should be analysed in combination with the variable inclusion rate, which describes how many times the explana-

tory variable was selected by the Lasso regression model selected the explanatory variables (100 = selected every time) and

gives an indication of the importance of the variable.195

4.1 Individual Site Models

The statistical evaluation of the study sites yields one model per site (10 models). We combine the results of all 10 sites in

heat-maps, showing the median estimated coefficients (Figure 4) and their inclusion rate (Figure 5).

Most sites select slope as the most important variable in terms of coefficient value as well as the inclusion rate. Only the

sites Baulmes (29 %) and Hornbach (19 %) rarely select slope and shrink the value of the coefficient towards zero. These sites200

are both located outside of the Alpine region (Jura mountains and the foothills of the Alps) and on average, have gentler slopes

(Baulmes 14◦ and Hornbach 21◦). Steeper slopes tend to be more susceptible to shallow landslides, which is in agreement with

other studies that have found slope to be one of their top predictors (Budimir et al., 2015; Goetz et al., 2015; Tien Bui et al.,

2016; Oh and Lee, 2017; Persichillo et al., 2017; Lombardo and Mai, 2018; Lee et al., 2020; Nhu et al., 2020b, a).

The aspect was selected most times (84-100 %) for all sites except for Arosa (4 %) and Baulmes (0 %) (Figure 5). In205

Baulmes, this may relate to the fact that there are only 26 mapped shallow landslides available and that all grassland areas in

the valley are located on the south-east facing slope, which includes non-landslide points. The rest of this site is covered with

forest, which was not considered for our evaluation. Arosa is located in a wide circular-shaped valley with no dominant slope

expositions, and no typical aspect for shallow landslides is present. For the remaining eight sites, the sectors ranging from W to

NE are strong indicators of no shallow landslides occurring, while E to SW facing slopes are favourable for shallow landslides210

(Persichillo et al., 2017; Lombardo and Mai, 2018). The coefficient size of the individual aspect sectors varies slightly from site

to site, indicating that aspect may be more predictive in some areas (e.g., Urseren or Val Piora) than in others (e.g., Hornbach

or Val Cluozza).

Other important variables, which show a high inclusion rate amongst most sites, yet often do not have a large impact

concerning the coefficient values, are Roughness, TWI, Distance to Roads/Streams, Road/Stream Density and Frost Change215
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Figure 4. Heat-map displaying estimates of coefficients (median of 100 estimates) for all 10 sites. Note that not all geological rock classes

are present at all sites (grey line). White boxes are equivalent to coefficients of zero and were therefore never selected for the models.

Frequency. However, these variables were disregarded for some of the sites (low inclusion rates or even excluded completely).

The coefficients’ values may have a negative or positive correlation to shallow landslide points (SLS points), depending on the

sites and the local conditions. Geology is important for most sites, while either sedimentary rocks and unconsolidated rocks

are present at the sites or selected for the model from all available classes. Unconsolidated rocks are negatively correlated in

most cases. They can often be found near the valley bottom in proximity to streams and lakes, which tend to be located outside220

of shallow landslide zones. Sedimentary rocks are positively correlated in most cases, but can also show a negative correlation,

depending on the site.

Two sites (Chrauchtal and Val Piora) have been selected as examples to show detailed results of the models and how the

selection of explanatory variables can differ between sites (Figures 6 and 7). The boxplots of the estimated coefficients for

all 10 sites can be found in the supplemental material (Figures S1 - S10). Chrauchtal (Figure 6) is located on the northern225
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Figure 5. Heat-map displaying the inclusion rate of variables for all 10 sites. The numbers indicate how often variables were selected for the

models out of 100 estimates. Note that not all geological rock classes are present at all sites (grey line). Darker colors show variables selected

more often. White boxes indicate which variables were never selected for the models.

side of the Alps, while Val Piora (Figure 7) is located on the south side. They have opposing orientations of the main valley

axis (N-S and E-W, see Table 1). Chrauchtal is the site with the highest shallow landslide density (2.31 % with 8073 SLS

points), which affects the very high inclusion rates for all explanatory variables (Figure 5). This also affects the spread of the

boxplots, which show small variability of the coefficient values (Figure 6). With the high number of shallow landslides the

variability of coefficients decreases, which means that the Lasso regression estimates very similar coefficient values for all 100230

repetitions. Val Piora has a lower landslide density (0.49 % with 1116 SLS points). Here, the spread of the boxplots shows a

higher variability for the estimated coefficients (Figure 7). Interquartile ranges are often much wider, and longer whiskers and

outliers are more common than for the Chrauchtal site. For both sites, slope and aspect are very important variables in terms

of coefficient size and inclusion rate. Aspect sectors S-SW are susceptible to shallow landslides while N-NW facing slopes
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Figure 6. Boxplots (with whiskers and outliers) showing the coefficient range with 100 repetitions. Numbers above variable names indicate

the number of times it was selected for the model. Boxes show the interquartile range (25th and 75th percentile), and the line indicates the

median of the coefficients. Chrauchtal is selected from 10 study sites as an example.
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Figure 7. Boxplots (with whiskers and outliers) showing the coefficient range with 100 repetitions. Numbers above variable names indicate

the number of times it was selected for the model. Boxes show the interquartile range (25th and 75th percentile), and the line indicates the

median of the coefficients. Val Piora is selected from 10 study sites as a second example.
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are unfavourable. Roughness is negatively correlated for both sites, meaning that rougher terrain is less favourable to shallow235

landslides. Variables with smaller coefficients may also be selected often by the Lasso regression. However, these variables

tend to have different effects depending on local conditions (e.g. Distance to Roads/Road Density, Elevation or TWI).

To assess the prediction skills of the individual site models, we calculate the ROC curves and the corresponding AUC

values (Section 2.3). Curves closer to the top left corner of the plot show models with higher predictive skills (e.g., Urseren,

AUC=0.865), while curves closer to the diagonal line have lower predictive skill (e.g., Baulmes, AUC=0.733). Confusion240

matrix scores summarised in Table 3 are based on a probability threshold of 0.5, which is the best threshold based on ROC

curve evaluation (not shown). Brier scores describe the accuracy of the predictions, where values closer to zero indicate better

model performance (Section 2.3). The Urseren site has the best model accuracy (BS = 0.14), while Baulmes has the lowest

score (BS = 0.21, located in the Jura mountains with only 26 SLS points). The remaining eight models have BS values that

range between 0.16 and 0.19, which is satisfactory. Models of sites with more SLS points perform better and have a smaller245

spread of the bootstrapped BS. Sites with fewer SLS points do not perform as well. One exception is the Chrauchtal site (BS =

0.18), which has 8074 SLS points, yet doesn’t perform as well as other sites with fewer points. For models with higher Brier

scores the selected explanatory variables might not have been suitable enough to predict the location of shallow landslides.

Whereas for sites such as Urseren and Val Piora, the available explanatory variables are well suited to describe the mapped

shallow landslides.250
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Figure 8. ROC performance measure of the models for all 10 sites. Plot displays ROC curves with corresponding AUC values.

Generally, the number of shallow landslides available at a site does not necessarily affect the mean estimated value of

coefficients, but the variability of the estimates is smaller, and the inclusion rates are higher for sites with more data points.
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Figure 9. Performance measure expressed with the Brier score for the models for all 10 sites. Plot shows boxplots of Brier scores where

lower Brier scores are indicative of better model performance.

Table 3. Confusion matrix derivations using 0.5 for the prediction threshold. Perfect scores are Accuracy = 1, Bias = 1 (above 1 is over-

predicted, while below 1 is under-predicted), True Positive Rate (TPR = 1 and False Positive Rate (FPR) = 0. Site names are abbreviated.

Site A. B. C. H. R. T. U. V. C. V. E. V. P.

Accuracy 0.760 0.716 0.727 0.723 0.758 0.741 0.798 0.702 0.717 0.770

Bias 1.023 0.851 1.071 1.066 1.123 1.098 1.081 0.989 1.029 1.083

TPR 0.772 0.641 0.763 0.756 0.819 0.790 0.838 0.697 0.731 0.812

FPR 0.251 0.209 0.308 0.310 0.303 0.308 0.243 0.293 0.298 0.271

Low performing models are either for sites located outside of the Alpine region (Baulmes, Hornbach) or in the National

Park (Val Cluozza, only 8% grassland in the valley) and have the lowest number of shallow landslides. This may be because

different processes govern shallow landslides that are not covered by available variables. Alpine sites perform better, although255

performance measures can vary here too. Sites with better Lasso regression model performance may be better explained with

the available explanatory variables than other sites. Additionally, the better performing models are for sites with an east-

west orientation of the valley, independent of the number of shallow landslides. Because the latter implies that more slope

surfaces are facing either south or north. South-facing slopes tend to be more susceptible to shallow landslides in the Alps as

the exposition determines the amount of solar radiation (solar angle and duration). This, in turn, affects parameters such as260

evapotranspiration or soil moisture, but also affects snow characteristics such as snow cover, snow movement or snow melt,
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which have a strong influence on the occurrence of shallow landslide (Schauer, 1975; Moser and Hohensinn, 1983; Tasser

et al., 2003; Meusburger et al., 2010; Wiegand and Geitner, 2013; Höller, 2014; Leitinger et al., 2018).

4.2 Performance of Slope-only model

As the slope is always the most important predictor for shallow landslides in terms of coefficient size and model inclusion265

rates, a slope-only model was tested for all sites. The application of the slope-only model indicates how well slope predicts

shallow landslides and how important additional explanatory variables can be. We, therefore, compare the results of Slope-only

models for all sites to the full-variable models based on their Brier scores (Table 4). Interestingly, for Baulmes with only 26

SLS points, the Slope-only model performs slightly better than the full model. Arosa has only a slightly higher BS result for

the full model compared to the Slope-only model, which indicates that additional explanatory variables do not improve the270

model for Arosa very much. The importance of Slope for Arosa can already be seen in Figures 4 and 5. For all remaining sites,

additional explanatory variables included in the model increase the model performance substantially. The differences between

the slope-only models and the full models are statistically significant for all sites (paired t-test with p-values ≤ 0.05).

Table 4. Brier scores for the Slope-only model compared with Brier scores of the full models for all sites. The values displayed are median

values of the bootstrapped Brier scores (500 repetitions). Lower scores are better (bold font) than higher scores.

Site Slope-only Full Model

Arosa 0.17031 0.17017

Baulmes 0.19803 0.21049

Chrauchtal 0.20170 0.18277

Hornbach 0.20348 0.18979

Rappetal 0.22223 0.16944

Turbach 0.20377 0.18023

Urseren 0.18088 0.14354

Val Cluozza 0.22741 0.19141

Val d’Entremont 0.21468 0.18627

Val Piora 0.19847 0.16000

4.3 Performance of All-in-one Model

With the all-in-one model, we evaluate whether the same explanatory variables are important for cross-regional evaluations as275

for individual site evaluations. As all sites included in the all-in-one model have different numbers of SLS points, the sites with

more points have a stronger influence on the model’s outcome.

The all-in-one model places the ROC curve at roughly the centre of the individual site models (Figure 10), which is confirmed

by the AUC value of 0.786. The same can be stated for the BS result (BS=0.186). With a Bias of 1.079, the all-in-one model

only slightly over-forecasts shallow landslide points, while the overall accuracy of 72.3 % is slightly below the average for the280
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Figure 10. On the LHS, the ROC Curve is displayed with the AUC value for the all-in-one model in black (including locations of probability

thresholds) superimposed over the individual site models in grey. On the RHS is the bootstrapped Brier score for the all-in-one model.

individual site models (74.1 %). The True Positive Rate lies at 76.3 % and the False Positive Rate at 31.6 %, which is slightly

higher than all individual site models. Generally, the individual-site models perform better in most cases, as local conditions

are important for the overall accuracy of models. However, the variability of the estimated coefficients of the all-in-one model

is relatively low (Figure 11) indicating, that the coefficients were estimated similarly when selected.

The most important variables are comparable to the individual site models, with slope and roughness having the largest285

coefficients for continuous variables (Goetz et al., 2015). The categorical variables aspect and geology show similar behaviour

to the individual site models. The CHELSA climatology variables (Max. Precipitation Events, Snow Days/Snow Cover Days,

Growing Season Length and Frost Change Frequency) were originally included with the idea that these might have a stronger

impact when doing cross-regional evaluations such as this all-in-one model. From these variables, frost change frequency was

selected the most times (88 %). Frost change frequency describes the number of daily events for which the temperature en-290

compasses zero (Karger and Zimmermann, 2019), yet the estimated coefficient is very small. This variable was tested as it

may represent snow movement processes related to freezing/thawing cycles, yet, it was too ambiguous. Other climate variables

were rarely selected. The inclusion of climate variables may prove helpful when comparing different regions in a "bulk" per-

spective (e.g. average landslide density per site), but seemingly not when explaining locations of individual shallow landslides

across different regions. Additionally, the comparatively low spatial resolution of the CHELSA data set (30 arcsec) may not be295

suitable for such detailed analysis, and the variables might not represent triggering landslide processes well enough.
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Figure 11. Boxplots showing the coefficient range with 100 repetitions. Numbers above variable names indicate the number of times it was

selected for the model.

Additionally, shallow landslide causes can be manifold and singular triggering processes are difficult to assign and the

timing of the occurrence is often unknown. If possible, it would be useful to differentiate between triggering factors of shallow

landslides based on visual appearance, as was suggested by Geitner et al. (2021). With the U-Net approach used to map the

shallow landslide sites on aerial images (0.25 m), it is impossible to distinguish between triggering factors (Samarin et al., 2020;300

Zweifel et al., 2019). With higher spatial resolutions of climate variables and a temporal component to the mapped shallow

landslides, it may become possible to assign triggering processes with such evaluation techniques. Additional variables such as

land-use information (e.g., grassland management) could be of great importance if available in appropriate spatial resolution

and high enough accuracy for all regions (Meusburger and Alewell, 2009; Budimir et al., 2015).

While the explanatory variables for this study were chosen based on data availability, this is not an exclusive list of possible305

predictors. Many studies have worked towards identifying triggering factors in varying Alpine regions, such as the effects of

land-use, snow processes, precipitation events or vegetation cover (Newesely et al., 2000; Tasser et al., 2003; Rickli and Graf,

2009; Wiegand and Geitner, 2010, 2013; Meusburger and Alewell, 2008; Meusburger et al., 2013; Von Ruette et al., 2013;

Höller, 2014; Ceaglio et al., 2017; Fromm et al., 2018; Geitner et al., 2021). Therefore, it is difficult to fully quantify all

ongoing processes simultaneously in such a complex system, as triggering factors are often interlaced (Zweifel et al., 2019). To310

ideally represent causal factors for statistical evaluations of shallow landslides, these important processes need to be represented

with high spatial resolutions and a temporal component needs to be included (Meusburger and Alewell, 2009).
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5 Conclusions

Using the Lasso regression model, we identified the most important explanatory variables for shallow landslides of 10 study

sites located on grassland slopes spread across Switzerland. Due to the different local conditions of the varying sites, different315

explanatory variables were identified as important. Slope and aspect are among the most important variables. Shallow landslides

of sites with an east-west orientation of the valley axis as well as alpine sites were better explained by the available explanatory

variables (Urseren, Val Piora, Rappetal and Arosa). This concludes that exposition-related processes in mountainous regions are

essential for understanding regional patterns (e.g., snowmelt, snow movement). For the remaining sites, the available selection

of explanatory variables was not as well suited and, therefore, important processes could be missed. Sites outside of the main320

Alpine region (Baulmes and Hornbach) or located in the National Park (Val Cluozza) have a small number of SLS points, which

were not well explained by the available variables. Performance scores for individual site models range between BS = 0.144,

AUC = 0.865 (Urseren) and BS = 0.210, AUC = 0.733 (Baulmes). Although we find that slope was the most important variable,

predictions using only slope yield lower accuracies, indicting that additional variables are important to explain local shallow

landslide occurrence. An all-in-one model evaluating all 10 sites simultaneously found comparable results to the individual-site325

models (i.e. slope and aspect) with performance values of BS = 0.186 and AUC = 0.786. Additionally, this model showed a

relatively strong negative correlation for roughness, indicating that smooth grassland surfaces are more susceptible to shallow

landslides. The decisive causal factors identified are generally related to static variables (e.g., geomorphological, geological),

while the available climate-related data sets have proven to be less informative on both regional and cross-regional scales.

Nevertheless, data sets representing triggering shallow landslide conditions and processes in appropriate spatial resolutions330

would likely improve model performance. Studies focusing on understanding small scale processes are therefore of great

importance, and with data availability shifting towards open access and higher spatial resolutions as well as large spatial

coverage, such statistical evaluations may improve in the future.
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