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 10 

ABSTRACT: Floods have negative effects on the reliable operation of transportation 11 

systems. In China alone, floods cause an average of ~1125 hours of railway service 12 

disruptions per year. In this study, we present a simulation framework to analyse the 13 

system vulnerability and risk of the Chinese railway system to floods. To do so, we have 14 

developed a novel methodology for generating flood events at both the national and 15 

river basin scale. The resulting event set provides the basis for national- and provincial-16 

level railway risk assessments, focusing in particular on affected trains, affected 17 

passengers and increased time for detoured trains. The results show that due to spatial 18 

variations in the railway topology and traffic flows, the system vulnerability of the 19 

Chinese railway system to floods in different basins is highly heterogeneous. Flood 20 

https://doi.org/10.5194/nhess-2021-188
Preprint. Discussion started: 8 July 2021
c© Author(s) 2021. CC BY 4.0 License.



 

2 

 

events in the Yangtze River Basin show the largest impact on the national railway system, 1 

with approximately 40% of the national daily trains being affected by a 100-year flood 2 

event in that basin. At the national level, the average number of daily affected trains 3 

and passengers for the national system are approximately 200 trips and 165,000 people 4 

(2.7% and 2.8% of the total daily numbers of trips and passengers), respectively. In 5 

addition, the mean average increased time for detoured trains reaches approximately 6 

five hours. The event-based approach presented in this study shows how we can 7 

identify critical hotspots within a complex network, taking the first steps in developing 8 

climate-resilient infrastructure.  9 

KEYWORDS: river basin flooding; railway system; risk assessment; system vulnerability 10 

1. Introduction 11 

Floods can have negative effects on transportation systems through both the 12 

destruction of physical infrastructure and the disruption of freight and traffic flows 13 

(Reed, 2004; Moran et al., 2010; Benn, 2013; Kellermann et al., 2015). For example, 14 

during the Tbilisi (Georgia) floods in June 2015, the estimated damage in terms of 15 

replacing affected assets was 14.8 million USD, whilst losses related to increases in 16 

travel time and higher operating costs were estimated at approximately three million 17 

USD (up until autumn 2015) (GFDRR, 2015). In May and June 2013, the Austrian Federal 18 

Railways faced severe damage by the major floods in central Europe, with a total cost 19 

of more than 84 million USD. The event caused extensive damage to track structures 20 
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and also caused widespread service disruptions, despite many protective actions that 1 

had been adopted ahead of time (Kellermann et al., 2016). In China, over 2146 rail 2 

service disruption events and over 20,825 hours of discontinued service due to flooding 3 

were reported from 2000 to 2016 (Editorial Board of China Railway Yearbook, 2001-4 

2017). In 2016, the direct economic loss of the Chinese railway system caused by floods 5 

was approximately 80 million USD (Editorial Board of China Railway Yearbook, 2001-6 

2017). As such, there is a clear need to evaluate the vulnerability of the transportation 7 

system to extreme flood hazards and to identify high-risk transportation components 8 

to make the transportation systems safer and more effective for operation and 9 

maintenance.  10 

Many studies have investigated flood impacts on transportation systems, focusing on 11 

either flood vulnerability of assets (Kellermann et al., 2015; Pregnolato et al., 2017; 12 

Singh et al., 2018; Koks et al., 2019) or the risk to the entire system (Gil and Steinbach, 13 

2008; Kellermann et al., 2016; Lamb et al., 2019). In these studies, flood vulnerability is 14 

usually defined as the relationship between the characteristics of the transportation 15 

components (i.e., the physical structure, traffic flow and traffic velocity) and the 16 

variables characterizing the intensity of the flood hazard (i.e., flood depth and flood 17 

velocity) (Pregnolato et al., 2017). However, as major river floods are usually driven by 18 

large-scale atmospheric circulations (Prudhomme and Genevier, 2011; Lavers et al., 19 

2013) and affect large areas, they can disrupt several components concurrently across 20 

a network system (Becker and Grünewald, 2003; Kundzewicz et al., 2013). Within a 21 
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network system, the impact on operational performance is often the result of failure of 1 

multiple components in the aftermath of an event (Gong et al., 2017). As such, a 2 

system-level perspective is essential to properly assess transportation system 3 

vulnerability due to flooding. 4 

Some studies have assessed transportation vulnerability to natural hazards from a 5 

system-level perspective (Chang et al., 2010; Hong et al., 2015). Chang et al. (2010) 6 

investigated the potential impacts of climate change on travel disruption in the 7 

metropolitan area of Portland, Oregon. They combined a hydrologic, hydraulic model 8 

and a travel forecast model to process their study. Hong et al. (2015) assessed the 9 

Chinese railway system’s vulnerability in terms of traffic flow loss based on historical 10 

flood events from 1981 to 2010. Unfortunately, due to the widespread lack of 11 

appropriate historical flood hazard data and computational issues with running large-12 

scale hydraulic models (Sene 2008; Chang et al. 2010), research so far has been carried 13 

out only on a case-study basis where historical scenarios are available (Hong et al., 14 

2015). However, for inter-city and inter-country trade, national and global-scale 15 

transportation systems have flourished in recent decades. Examples include Pan-16 

European transportation corridors (Janic and Vleugel, 2012) and the railway system of 17 

the Belt and Road Initiative (Yang et al. 2018); therefore, large-scale flood event data 18 

and methods should be improved to assess system-level vulnerability and risk on 19 

operational performance for such large spatial transportation systems. 20 

The recent development of global flood hazard maps (Alfieri et al., 2013; Hirabayashi 21 
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et al., 2013; Ward et al., 2013; Sampson et al., 2015;Dottori et al., 2016) has paved the 1 

way for performing large-scale flood risk assessments. These global flood hazard maps 2 

have been widely applied to assess the global risk to flooding in terms of population 3 

(Ward et al. 2013; Arnell et al. 2016; Dottori et al. 2016), gross domestic product (GDP) 4 

(Ward et al., 2013; Winsemius et al., 2013), economic damage (Ward et al., 2013; 5 

Dottori et al., 2016; Winsemius et al., 2016; Ward et al., 2017), and transportation 6 

infrastructure (Koks et al., 2019). Koks et al. (2019), for example, assessed the direct 7 

economic damage to transportation infrastructure assets using a conventional damage 8 

assessment approach through asset-specific fragility curves based on global flood data. 9 

Studies such as these facilitate a better understanding of the impacts of flood hazards 10 

on large-scale transportation systems and provide up-to-date knowledge on risk 11 

analysis frameworks. 12 

This study aims to develop a framework to quantify the system vulnerability and risk 13 

in transportation systems in terms of operational performance loss under large-scale 14 

flood hazards. System vulnerability in this study is represented as the system 15 

performance loss with different flood intensities. Most studies use regional- or national-16 

scale flood footprints, which show the flood depth for a given return period in that area. 17 

In reality, the presented floods in such as a flood footprint may not all happen at the 18 

same time. When assessing possible cascading effects, the use of independent flood 19 

events is therefore necessary (Nones and Pescaroli, 2016). As such, we develop a 20 

method for generating a set of independent flood events at the national and river basin 21 

https://doi.org/10.5194/nhess-2021-188
Preprint. Discussion started: 8 July 2021
c© Author(s) 2021. CC BY 4.0 License.



 

6 

 

scale. Potential performance loss is assessed using network theory and a spatial analysis 1 

method. We illustrate our methodology by applying it to the Chinese railway system. 2 

The remainder of the paper is organized as follows. In section 2, we propose a 3 

framework for the evaluation of system vulnerability and risk of flood hazards to 4 

transportation systems and use the Chinese railway system for application, including 5 

how to generate flood events, define the network system for the transportation system, 6 

calculate system vulnerability metrics, and quantify flood risk. Section 3 presents the 7 

main findings and results. Section 4 and Section 5 provide the discussion and conclusion, 8 

respectively, to this article.  9 

2. Data and method 10 

Flood risk can be defined as a function of flood hazard, exposure and its related 11 

vulnerability. A flood hazard is usually characterised by its intensity and occurrence 12 

probability; exposure refers to the population and assets exposed to flooding; and 13 

vulnerability is often defined as the loss ratio of people or assets suffered to different 14 

intensity of hazard (Gouldby and Samuels, 2009; Haimes, 2009; UNISDR, 2011; 15 

Winsemius et al., 2013). In this work, exposure is represented by the railway network 16 

exposed to the flood hazard. Asset vulnerability is defined as the failure of a railway 17 

asset based on the design standard and is expressed as a failure threshold. If the failure 18 

threshold is exceeded, the service of the component is assumed to be disrupted, 19 

resulting in a 100% performance loss of that asset. System vulnerability is represented 20 
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as the system performance loss with different flood intensities. Risk is calculated as the 1 

expected annual performance loss at the national and provincial levels. 2 

Figure 1 presents an overview of the framework used in this study. First, we generate 3 

a national- and river basin-scale flood event set. To do this, we use flood hazard maps 4 

for different return periods at the national scale, taken from a global flood hazard model. 5 

We then divide these into flood hazard maps for the major river basins and use a curve-6 

fitting method to estimate the flood depth for any return period for any cell. We then 7 

apply a Monte Carlo sampling method (Metropolis 1987) to generate the flood events 8 

per river basin and aggregate these events to the national scale. Second, we define the 9 

railway system as a network using network theory (Newman, 2010). Third, we intersect 10 

the flood events with the railway network to identify the disrupted segments in the 11 

railway system based on a pre-defined failure threshold. In the last part of our analysis, 12 

we assess the system vulnerability and risk in terms of several performance loss metrics, 13 

including the daily cancelled trains and cancelled passengers, the daily detoured trains 14 

and detoured passengers, the daily affected trains and affected passengers, as well as 15 

the total increased time and the average increased time for the detoured trains. We 16 

also analyse the parameters in the failure threshold sensitivity to the risk result and the 17 

related risk uncertainty. 18 
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 1 

Fig. 1 Methodology of the flood system vulnerability and risk assessment of railway 2 

infrastructure. Railway geometries © OpenStreetMap contributors 2019. Distributed 3 

under the Open Data Commons Open Database License (ODbL) v1.0. 4 

2.1 National-scale flood event generation 5 

To ensure the estimation is as accurate as possible for an event-based flood risk 6 

assessment, a large number of independent flood events are required (Speight et al., 7 

2017; Wu, 2019; Zhu et al., 2020). In this study, we apply a curve-fitting method and a 8 

Monte Carlo sampling method to generate independent flood events using global flood 9 

hazard maps from GLOFRIS for multiple return periods (Ward et al., 2013). In brief, for 10 

each grid cell, we obtain the flood depth from the flood hazard maps for nine different 11 

return periods (2-1000 years). We then fit an inundation depth-exceedance probability 12 

function through these data points, which is used to estimate the flood depths for any 13 

return period. Based on these functions per cell, we apply a Monte Carlo sampling 14 

method to produce basin-specific flood events, which are further combined into a 15 

national independent flood event set (see Section 2.1.3). In this study, we assume that 16 
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a flood event within one basin will produce a flood with the same intensity (return 1 

period) within that entire basin, whilst we assume that floods between different basins 2 

are independent of each other (Fraiture, 2007; Rojas et al., 2013). In the following 3 

subsections, we describe the input flood hazard maps, the function fitting procedure, 4 

and the Monte Carlo analysis in more detail. 5 

2.1.1 Input flood hazard maps 6 

Our flood hazard data are extracted from the GLOFRIS global fluvial flood hazard 7 

maps of Winsemius et al. (2013), which are developed using the methods provided in 8 

Ward et al. (2013) and Winsemius et al. (2013). The GLOFRIS flood hazard dataset is a 9 

global 30-arcsecond (ca. 1-km) resolution gridded dataset. Hazard maps are provided 10 

for nine return periods (2, 5, 10, 25, 50, 100, 250, 500, and 1000 years). We divide China 11 

into nine major river basins (Fig. 3) according to the main river system from the Data 12 

Center for Resources and Environmental Sciences, Chinese Academy of Sciences, which 13 

is accessible from the Resource and Environment Data Cloud Platform 14 

(http://www.resdc.cn/, last access: 19 May 2020): the Continental Basin, Haihe River 15 

Basin, Huaihe River Basin, Pearl River Basin, Songhua and Liaohe River Basin, Southeast 16 

Basin, Southwest Basin, Yellow River Basin and Yangtze River Basin. As such, we extract 17 

the flood hazard data for each of these river basins. 18 

2.1.2 Fitting procedure 19 

For each grid cell, the GLOFRIS maps estimate the flood depth for the nine 20 
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aforementioned return periods. To estimate the flood depth for any return period, we 1 

fit a quadratic spline function to develop an inundation depth-exceedance probability 2 

function (p) for each grid cell (Marsden, 1974; Vandebogert, 2017; Meshram et al., 3 

2018). The quadratic spline is a method that uses a piecewise quadratic function to 4 

obtain the best-fitting curves. This interpolation method allows us to obtain a smooth 5 

continuous curve through the provided flood depths for the different return periods. 6 

The method is applied as follows. For each grid cell, the annual exceedance 7 

probability flood depth 𝐷𝑇 is calculated by Eq. 1: 8 

𝑃(𝐷𝑇) =
1

𝑇
                                (1) 9 

where 𝐷𝑇  is the magnitude of a flood depth with return period of T- year, 𝑃(𝐷𝑇) 10 

is the exceedance probability of 𝐷𝑇 . 𝐷𝑇  is between [𝐷1 , 𝐷1000], with 𝐷1 = 𝐷2 ≤11 

𝐷5…≤ 𝐷1000. We assume that 𝐷1 is equal to zero (i.e., 1-year event with a flood depth 12 

of 0 m) and is the same as that of a 2-year event (the lowest return period in the 13 

GLOFRIS dataset). Let 𝑃𝑟(𝐷𝑇)  denote a quadratic, continuously differentiable 14 

function of 𝑃(𝐷𝑇). Then, by definition: 15 

𝑃𝑟(𝐷𝑇) = 𝑎𝐷𝑇
2 + 𝑏𝐷𝑇 + 𝑐                         (2) 16 

For each interval of grid cell 𝑔𝑥,𝑦, we can obtain its piecewise quadratic function by 17 

Eq. 3: 18 

𝑃𝑟𝑥,𝑦(𝐷𝑇) =

{
 
 

 
 𝑃𝑟𝑥,𝑦

1 (𝐷𝑇) = 𝑎1𝐷𝑇
2 + 𝑏1𝐷𝑇 + 𝑐1   𝐷𝑇𝜖[𝐷1, 𝐷1−𝑇]

𝑃𝑟𝑥,𝑦
2 (𝐷𝑇) = 𝑎2𝐷𝑇

2 + 𝑏2𝐷𝑇 + 𝑐2   𝐷𝑇𝜖[𝐷1−𝑇 , 𝐷2−𝑇]
. . .

 𝑃𝑟𝑥,𝑦
𝑝 (𝐷𝑇) = 𝑎𝑝𝐷𝑇

2 + 𝑏𝑝𝐷𝑇 + 𝑐𝑝  𝐷𝑇𝜖[𝐷𝑝−1−𝑇, 𝐷𝑝−𝑇]

    (3) 19 

where 𝑃𝑟𝑥,𝑦(𝐷𝑇) is a set of continuous inundation depth-exceedance probability 20 
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functions consisting of p continuous quadratic functions. For 1 

a(a1, a2, . . . , a𝑝), b(𝑏1, 𝑏2, . . . , 𝑏𝑝), c(𝑐1, 𝑐2, . . . , 𝑐𝑝)ϵR, we can calculate these constants 2 

by bracketing the critical point of 𝑃(𝐷𝑇) and derivative of the function 𝑃𝑟𝑥,𝑦(𝐷𝑇); 3 

details on the interpolation methods can be found in a previous study by Sun and Yuan 4 

(2006). We assume that only one event occurs per year in each basin. Examples of the 5 

inundation depth-exceedance probability function of grid cells are shown in Fig. 2a. 6 

2.1.3 Simulation procedure 7 

To produce a time-series of flood events based on the created inundation depth-8 

exceedance probability functions (Section 2.1.2), we use a Monte Carlo sampling 9 

method. The basic idea of the Monte Carlo sampling method is that when the number 10 

of simulations is sufficiently large, the frequency of an event approximates the 11 

probability of the occurrence of the event (Baker, 2008; Speight et al., 2017). The flood 12 

event generation procedure is presented in Fig. 2 and Appendix Fig. A1 and can be 13 

summarized in two steps. First, we generate a set of independent events at the basin 14 

scale. For each event 𝐸𝑗
𝑖, and for each basin 𝐵𝑗, a random number 𝑃𝑗

𝑖  between 0 and 15 

1 is generated from a uniform distribution. The flood depth of the cells in basin  for 16 

event 𝐸𝑗
𝑖  can be calculated using 𝑃𝑗

𝑖  and the inundation depth-exceedance 17 

probability function based on the assumption that a flood event in one basin will 18 

produce a flood with the same intensity. This concept is presented in Fig. 2a-b. Second, 19 

we generate a set of national-scale independent flood events. For a national-scale flood 20 
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event, basin-specific floods of nine basins can be randomly combined into a national-1 

scale flood by assuming independence between the flood events among different 2 

basins, as presented in Fig. 2c-d. 3 

 4 

Fig. 2 A flowchart of national-scale flood event generation. 𝐸1
1 (the top layer in (b)) is a 5 

flood event in basin 𝐵1, where 𝑃1
1 = 0.93; 𝐸1

2 (the middle layer in (b)) is a flood event in 6 

basin 𝐵1, where 𝑃1
2 = 0.45; and 𝐸1

3 (the lower layer in (b)) is a flood event in basin 𝐵1, 7 

where 𝑃1
3 = 0.17. The upper-left layers in (c) are a basin-scale flood set of basin 𝐵1, the 8 

upper-right layers in (c) are a basin-scale flood set of basin 𝐵2, the lower-left layers in (c) 9 

are a basin-scale flood set of basin 𝐵3, and the lower-right layers in (c) are a basin-scale 10 

flood set of basin 𝐵4. The top layer in (d) is combined with the top four layers in (c) (the 11 

four basin-scale floods of basin 𝐵1, 𝐵2, 𝐵3 and 𝐵4 combine into a national-scale flood 12 

event).  13 

For each year, we assume that within each basin, only one flood event can occur. For 14 

each basin to obtain 10,000-year events (we assume that 10,000-year of events are 15 

sufficient to cover almost all probable scenarios), we therefore apply a Monte Carlo 16 

method to sample 10,000 exceedance probabilities. For each of these exceedance 17 

probabilities, we estimate the inundation depth for each cell within that basin (i.e., 18 

assuming that the exceedance probability is the same throughout the entire basin). We 19 
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repeat this procedure for each basin, which results in a 10,000-year set of flood events 1 

for each basin. We then combine these sets into a national scale flood event set by 2 

assuming independence between the flood events in the different river basins (Fig. 2d). 3 

Hence, for each of the 10,000 years, we simply take the estimated flood depths for each 4 

basin. For example, in year 1, basin 1 may have an exceedance probability of 0.5, whilst 5 

basin 2 may have an exceedance probability of 0.98. For year 1, the resulting national-6 

scale flood map would therefore have values for a flood event with an exceedance 7 

probability of 0.5 in basin 1, a flood event with an exceedance probability of 0.98 in 8 

basin 2, and so forth. This procedure results in a 10,000-year national-scale flood event 9 

set. 10 

We also assess the system vulnerability by calculating the impacts that could occur 11 

throughout China if a flood with a given return period were to occur within an individual 12 

basin. To do this, for each basin and each return period we draw 10,000 events for all 13 

other basins assuming independence. In total, this leads to a set of 810,000 events 14 

(10,000 events x 9 return periods x 9 basins).  15 

2.2 Railway network building 16 

Railway systems are commonly represented through spatially explicit networks as an 17 

analogy for their structure and flows (Rodrigue, 2016). This network representation can 18 

be used to calculate system performance metrics based on network theory. In this work, 19 

the Chinese railway system was modelled as a directed weighted network, which 20 

https://doi.org/10.5194/nhess-2021-188
Preprint. Discussion started: 8 July 2021
c© Author(s) 2021. CC BY 4.0 License.



 

14 

 

consists of a group of nodes (stations) and connected by edges (railway lines) with daily 1 

train trips, where the edges have a travel direction associated with them. To build the 2 

Chinese railway network, we use the geographic information of railway system from 3 

OpenStreetMap (OSM) and the timetable data including daily number of trains and 4 

associated routes from the Railway Service Website (Liu et al., 2018; Zhu et al., 2020). 5 

As our method is primarily concerned with flood risk along rail segments between cities 6 

and not within cities, for simplicity, we combine multi-stations into one node using the 7 

location of the highest capacity station in each city. In total, 2240 nodes are combined 8 

into 1790 nodes. The final extracted railway network has a total length of 90,600 km for 9 

(merged parallel) lines connecting two identical stations, consisting of 1973 edges and 10 

1790 nodes (Fig. 3). Figure 3 shows the spatial distribution of the railway network and 11 

average daily numbers of trains. Topology and traffic flows vary greatly in spatial apace. 12 

The network density, reduces greatly moving from Eastern China to Western China. For 13 

the traffic flow, the railways connect large cities, like the railways from Beijing to 14 

Guangzhou, Harbin and Shanghai, and railway from Shanghai to Changsha have higher 15 

flows. 16 
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 1 

Fig. 3 The spatial distribution of the railway network and average daily numbers of trains. 2 

The river basins layer comes from the Data Center for Resources and Environmental 3 

Sciences, Chinese Academy of Sciences, which is accessible from the Resource and 4 

Environment Data Cloud Platform (http://www.resdc.cn/, last access: 19 May 2020). 5 

Railway geometries © OpenStreetMap contributors 2019. Distributed under the Open 6 

Data Commons Open Database License (ODbL) v1.0. The timetable data included the 7 

daily number of trains and associated routes from the Railway Service Website (Liu et al., 8 

2018). 9 

2.3 Failure condition based on an event 10 

We assume that a railway is impassable when the water level on the railway line is 11 

higher than the failure threshold 𝑊𝑑 of the railway service after drainage (CRPH, 2012; 12 

Espinet et al., 2018). The water level after drainage 𝑊𝐿𝑥,𝑦  of grid cell 𝑔𝑥,𝑦  is 13 

calculated by Eq. 4: 14 
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𝑊𝐿𝑥,𝑦 = 𝐷𝑇𝑥,𝑦 −𝑊𝑙𝑑𝑥,𝑦 ∗ 𝐷𝑐                      (4) 1 

where 𝐷𝑇𝑥,𝑦 is the flood depth of a flood event, 𝑊𝑙𝑑𝑥,𝑦 is the water level of the 2 

design standard (i.e., the return period t) of grid cell 𝑔𝑥,𝑦 , and 𝐷𝑐 is the drainage 3 

capacity rate. 4 

The rail segment 𝑙𝑖𝑗 between two stations failure condition is defined by Equations 5 

5 and 6: 6 

𝐹𝑐𝑖𝑗 = ∏ 𝑍(𝑥𝑦)
𝑖𝑗
𝑥𝑦                             (5) 7 

𝑍(𝑥𝑦) = {
0,𝑊𝐿𝑥,𝑦 ≥ 𝑊𝑑

1,𝑊𝐿𝑥,𝑦 < 𝑊𝑑
                          (6) 8 

 𝐹𝑐𝑖𝑗 is the failure condition of component 𝑙𝑖𝑗, which has two states, namely, normal 9 

(denoted by 1) and disrupted (denoted by 0), resulting in 100% disruption. 𝑍(𝑥𝑦) is 10 

the failure condition of grid cell 𝑔𝑥,𝑦; when the water level after drainage is larger than 11 

𝑊𝑑, 𝑍(𝑥𝑦)=0; otherwise, 𝑍(𝑥𝑦)=1. 12 

In this study, we consider a failure threshold of 0.2 m after drainage, according to the 13 

railway transportation emergency plan (CRPH, 2012; Espinet et al., 2018). The flood 14 

design standard of the culverts, bridge and embankments of the Chinese national 15 

railway system is designed for 100 year in China, according to the standard for flood 16 

control (CRPH, 2016). Furthermore, we assume that the drainage capacity rate is 0.8 of 17 

water level of the design standard, and it reduces the total amount of water that the 18 

railway structure can actually drain (TB 10001, 2016; Espinet et al., 2018). 19 

Failure hotspots of railway segments 𝑙𝑖𝑗  can be found by the annual failure 20 

probability 𝐴𝐹𝑖𝑗, which is calculated by Eq. 7: 21 
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𝐴𝐹𝑖𝑗 =
∑ 𝐹𝐶𝑖𝑗

𝑒𝐸
𝑒

𝑁
                             (7) 1 

where 𝐴𝐹𝑖𝑗 is the failure probability to the railway segments, 𝐸 is the N-year flood 2 

events catalogue, and 𝐹𝐶𝑖𝑗
𝑒  is the failure condition of railway segment 𝑙𝑖𝑗 under flood 3 

event e. 4 

2.4 Calculating system vulnerability and risk 5 

2.4.1 Performance loss metrics 6 

Daily affected trains and the associated daily affected passengers 7 

Once a flood occurs, trains may be affected in two ways: (i) increased travel time; or 8 

(ii) cancellation. The number of daily affected trains 𝑁𝑒
𝑡𝑜𝑙  is calculated by Eq. 8: 9 

𝑁𝑒
𝑡𝑜𝑙 = 𝑁𝑒

𝑐 +𝑁𝑒
𝑑                             (8) 10 

Where 𝑁𝑒
𝑐  the number of daily is cancelled trains and 𝑁𝑒

𝑑 is the number of daily 11 

detoured trains after a flood event. 12 

We assume that the average number of passengers is 80% of the train’s capacity (Wei 13 

et al., 2017)(Rezvani et al., 2015)(Rezvani et al., 2015)(Rezvani et al., 2015)(Rezvani et 14 

al., 2015). As such, the number of affected passengers 𝑃𝑒
𝑡𝑜𝑙  can be defined by Eq. 9: 15 

𝑃𝑒
𝑡𝑜𝑙 = ∑ 𝐶𝐴𝑖 ∗ 0.8

(𝑁𝑒
𝑐+𝑁𝑒

𝑑)
𝑖                     (9) 16 

where 𝐶𝐴𝑖 is the capacity of the 𝑖𝑡ℎ train. 17 

Daily detoured trains and the associated daily detoured passengers 18 

Once a flood occurs, some trains will detour to complete their journeys. The daily 19 

detoured trains 𝑁𝑒
𝑑 can be calculated based on four assumptions as follows (in order 20 
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of descending priority), which is also presented in Appendix Fig. A2: 1 

①  Stations are not repeated along the routes; 2 

②  The train passes the largest number of original stations along the detoured 3 

route; 4 

③  The detour with the smallest increase in travel time is selected; 5 

④  Detouring is impossible when the increased time for re-routing is greater than 6 

24 hours. 7 

the daily detoured passengers 𝑃𝑒
𝑑 can be defined by Eq. 10: 8 

𝑃𝑒
𝑑 = ∑ 𝐶𝐴𝑖 ∗ 0.8

(𝑁𝑒
𝑑)

𝑖                        (10) 9 

where 𝑁𝑑 is the daily detoured trains and 𝐶𝐴𝑖 is the capacity of the 𝑖𝑡ℎ train. 10 

Total increased time for the detoured trains 11 

The total increased time 𝑇𝑒
𝑡𝑜𝑙 for detoured trains is calculated by Eq. 11: 12 

𝑇𝑒
𝑡𝑜𝑙 = ∑ 𝑇𝑖

𝑒 −
𝑁𝑑
𝑖 ∑ 𝑇𝑖

𝑁𝑑
𝑖                         (11) 13 

where 𝑇𝑖
𝑒 is the running time of the 𝑖𝑡ℎ train under flood event e, and 𝑇𝑖 is the 14 

original travelling time of the 𝑖𝑡ℎ train. 15 

Average increased time for the detoured trains 16 

The average increased time is calculated by Eq. 12: 17 

𝑇𝑒
𝑎𝑣𝑒 =

𝑇𝑒
𝑡𝑜𝑙

𝑁𝑒
𝑑                            (12) 18 

where 𝑇𝑒
𝑎𝑣𝑒  is the average increased time under flood event e and 𝑁𝑑  is the 19 

number of detoured trains. 20 
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Daily cancelled trains and the associated daily cancelled passengers 1 

Once a flood occurs, some trains may be cancelled if there is no alternative route 2 

possible or when the re-routing time is too long (greater than 24 hours). The daily 3 

cancelled trains 𝑁𝑒
𝑐  is calculated by Eq. 13: 4 

𝑁𝑒
𝑐 = 𝑁𝑆 − 𝑁𝑒

𝑠                               (13) 5 

where 𝑁𝑒
𝑐  is the daily cancelled trains after a flood event, 𝑁𝑒

𝑠  is the number of 6 

running trains in the system after a flood event, and 𝑁𝑆 is the original number of trains 7 

in the system. 8 

Daily cancelled passengers 𝑃𝑒
𝑐  can be defined by Eq. 14: 9 

𝑃𝑒
𝑐 = ∑ 𝐶𝐴𝑖 ∗ 0.8

(𝑁𝑒
𝑐)

𝑖                        (14) 10 

where 𝑁𝑐 is the daily cancelled trains and 𝐶𝐴𝑖 is the capacity of the 𝑖𝑡ℎ train. 11 

2.4.2 Calculating system vulnerability and risk 12 

Each performance loss metric is calculated for each flood event. System vulnerability 13 

curves are generated to present the relationship between performance loss and flood 14 

intensity (return period). We use the expected daily affected trains, cancelled trains, 15 

detoured trains, affected passengers and increased time for detoured trains to present 16 

the flood risk to the railway system according to Eq. 15: 17 

𝐴𝑅𝑠 =
∑ 𝑉𝑒
𝐸
𝑒

𝑁
                            (15) 18 

where 𝐴𝑅𝑠 is the expected daily flood risk level to the railway system, 𝐸 is the N-19 

event flood catalogue, and 𝑉𝑒  is the performance loss metric, 20 
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i.e.,  𝑁𝑒
𝑑 ,  𝑁𝑒

𝑐 ,  𝑁𝑒
𝑡𝑜𝑙 ,  𝑃𝑒

𝑑 ,  𝑃𝑒
𝑐 ,  𝑃𝑒

𝑡𝑜𝑙 , 𝑇𝑒
𝑡𝑜𝑙 , and 𝑇𝑒

𝑎𝑣𝑒 under flood event 𝑒, which is defined in 1 

Eqs. 9-14. 2 

2.5 Uncertainty and sensitivity analysis 3 

By applying an uncertainty analysis (UA), we identified the range of model output for 4 

imprecisely known input parameters (De Moel et al., 2012). A sensitivity analysis (SA) 5 

aims to determine the parameter effect on the model output (Koks and Haer, 2020). 6 

Parameters with greater effect should attract more additional attention to deal with the 7 

uncertainty they bring (Koks and Haer, 2020; De Moel et al., 2012). Detailed methods 8 

of uncertainty and sensitivity analysis can be found in previous studies by De Moel 9 

(2011) and Koks and Haer (2020). 10 

In this study, we make assumptions on the train disruption threshold using three 11 

parameters (the water level failure threshold, drainage capacity rate, and design 12 

standard) based on emergency code and design code standards (CRPH 2012). However, 13 

it should be noted that these standards are not known exactly for each asset and will 14 

change over time, such as dynamically changing protection standards and ageing 15 

infrastructure. Within a railway system, a lot of different asset types exist, with varying 16 

design standards. This implies that the capacity to cope with the hazard does vary from 17 

location to location. As such, it is worthwhile to perform a sensitivity analysis on these 18 

key parameters (De Moel and Aerts, 2011; Horacio et al., 2019). Hence, we perform an 19 

uncertainty and global sensitivity analysis in which we assess the performance loss 20 
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metrics for a range of different values for these parameters. For water level failure, we 1 

use a range between 0.1 and 0.5 m. For the drainage capacity rate, we use a range 2 

between 0.7 and 0.9, and for the design standards, we use a range between 50 and 100 3 

years. The list of all assumptions taken in this study and their range in the sensitivity 4 

analysis can be found in appendix. In total, we create a set of 1000 different parameter 5 

value combinations in the sample space. 6 

3 Results 7 

3.1 Failure hotspots of railway segments 8 

The annual failure probability of the network segments is shown in Fig. 4 and is 9 

calculated based on the 10,000-year national flood event set. The results show a clear 10 

regional differentiation (Fig. 4a). Areas with high annual failure probabilities are mainly 11 

located in the Yangtze River Basin, Southeast Basin, and Pearl River Basin areas. These 12 

three basins have a humid subtropical climate and high precipitation levels in the rainy 13 

season during the summer; and these areas also have the highest railway density (Fig. 14 

3), mostly across rivers and located on flat area in China, which makes these railway 15 

lines susceptible to flood hazards. 16 

Figure 4b shows the percentage of the length of railway lines that fall into each failure 17 

probability category for the national- and basin-level analyses. Nationally, the failure 18 

probability is greater than 0 for more than 55% of the total length of the railway lines. 19 

This percentage is heterogeneous across different river basins: it is highest in the 20 
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Southeast Basin, followed by the Pearl River Basin and the Yangtze River Basin. 1 

Nationally, 6.8% of the length of the railway lines has a failure probability greater than 2 

0.02, with the highest proportions in the Yangtze River, Yellow River, and Southeast 3 

Basins, with 12.5%, 10% and 7.2%, respectively. 4 

 5 

Fig. 4 (a) Annual failure probability map of the network segments affected by floods and 6 

(b) the percentage of the length of railway lines for different failure probability categories 7 

per river basin. Railway geometries © OpenStreetMap contributors 2019. Distributed 8 

under the Open Data Commons Open Database License (ODbL) v1.0. 9 

3.2 Risk analysis of the Chinese railway system 10 

The performance loss distribution curves of the railway system using the 10,000-year 11 

national-scale flood set are presented in Fig. 5. The results show that approximately 85% 12 

of the flood events have little effect (less than 0.01 of the daily trains and passengers) on 13 

the railway system from the perspective of all the performance metrics. For the daily 14 

affected trains, the absolute maximum number can reach 4200, and the average number 15 

is approximately 200 trips; these values represent 59% and 2.7% of the number of the 16 
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daily trains. For the daily affected passengers, the absolute maximum number can reach 1 

3,500,000, and the average number is approximately 165,000 people (60% and 2.8 of the 2 

number of the daily passengers). In addition, the largest average increased time for detoured 3 

trains can reach 14 hours and the mean average increased time for detoured trains is 4 

approximately 5 hours. 5 

 6 

Fig. 5 Exceedance probability-performance loss curves 7 

The performance losses per province of the railway system are presented in Fig. 6 for 8 

a range of metrics. The risk differs considerably between regions when expressed in 9 

different risk metrics. When examining the metrics of the daily affected trains and 10 

affected passengers, we find that the provinces in Central China, such as Henan, Hubei 11 

and Anhui, have the highest absolute and relative risks, estimated to be over 40 daily 12 

affected trains (4.5% relative to the number of the province’s daily trains) and more 13 

than 35,000 daily affected passengers (3.5% relative to the number of the province’s 14 

daily passengers). Interestingly, some provinces, such as Tibet Province, have a low risk 15 

in absolute terms but a high risk in relative terms because the Tibet Province has the 16 

smallest rail network and rail traffic density; only one line (i.e., Qinghai-Tibet Railway) 17 

crosses this region, which is therefore highly vulnerable to even a low-frequency flood 18 
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hazard. Guangdong Province has the opposite results, with high risk in absolute terms 1 

and low risk in relative terms due to the large rail network and rail traffic density, which 2 

make the railway system more robust even with a high flood failure probability. The total 3 

and average increased time for detoured trains show contrasting results. The high risk 4 

in terms of the total increased time is mostly distributed in East China, whereas the 5 

highest average increased time is distributed in western provinces such as Xinjiang and 6 

Tibet Provinces. From Eastern China to Western China, the traffic flow becomes 7 

significantly lower; more trains can be detoured with less time per trip in East China, 8 

and in the western provinces, fewer trains can be detoured but with more time per trip. 9 

 10 

Fig. 6 Performance loss of the railway system per province. (a) The daily affected trains 11 

in absolute terms; (b) the daily affected trains relative to the number of the province’s 12 

daily trains; (c) the daily affected passengers in absolute terms; (d) the daily affected 13 

passengers relative to the number of the province’s daily passengers; (e) the daily total 14 

increased time for the detoured trains per province; and (f) daily average increased time 15 

for the detoured trains per province. Appendix Fig. A3 provides the risk map of detoured 16 
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and cancelled trains and detoured and cancelled passengers. Appendix Fig. A4 provides 1 

a map of the Chinese provinces 2 

Several provinces appear at the highest level of the three metrics presented in Fig. 6 3 

and can be classified as particularly vulnerable provinces. Anhui Province, for example, 4 

has one of the highest absolute and relative levels of risk to trains and passengers in Fig. 5 

6a-d but also has the highest total increased time in Fig. 6e. Hubei Province shows one 6 

of the highest absolute and relative levels of risk to trains and passengers in Fig. 6a-d. 7 

Jiangsu Province has the highest absolute levels of risk to trains and passengers in Fig. 8 

6a and c and one of the highest total increased time in Fig. 6e. These provinces are at 9 

the highest risk compared to the other provinces. 10 

3.3 System vulnerability of the Chinese railway system 11 

Figure 7 presents system vulnerability curves based on the 810,000 simulated flood 12 

events and shows the performance loss metrics (namely, the percentage of daily 13 

affected trains and increased time) plotted against the return periods. The bottom-right 14 

plots for subfigures a and b show the national results, whilst the other figures show the 15 

results for each river basin. The colour shade represents the distribution of the flood 16 

performance loss, where the lines refer to the median performance loss value and the 17 

bounded lines refer to the 10th and 90th percentiles. The low-impact events cause the 18 

median values to be the same as the lower bound for the nine river basins as a result 19 

of their high frequency. 20 
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 1 

Fig. 7 System vulnerability curves induced by river floods from the national flood event 2 

set, showing: (a) the percentage of daily affected trains to the total number of daily trains 3 

and; (b) the increased time for the detoured trains. The shading shows the distribution of 4 

the flood performance loss, where the lines refer to the median performance loss value 5 

and the bounded lines refer to the 10th and 90th percentiles. In the Appendix Fig. A5, we 6 

provide the system vulnerability curves for the passenger-level metrics. NB: for total 7 

increased travel time, the values can decrease at higher return periods – this is because 8 

some of the trains are cancelled and therefore there is no travel time for those trains 9 

Due to the different definitions and focus of each metric, the relationship between 10 

each metric and flood intensity is also different. From Fig. 7a, we can see that the 11 

percentage of daily affected trains and daily cancelled trains to the total number of daily 12 

trains increases with the increases of the return period of the flood events for the nine 13 

basins. The percentage of daily detoured trains to the total number of daily trains and 14 

the total and average increased time for detoured trains do not always increase with 15 
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increasing return period shown in Fig. 7a and Fig. 7b. The median performance loss for 1 

the five metrics is close to zero for floods with a return period below 25-years and 2 

remains stable when the flood hazard return period exceeds 100-years because of the 3 

railway design protection standards and assumed drainage capacity. Between the 25-4 

year and 100-year flood events, the percentage of daily affected trains and daily 5 

cancelled trains relative to the total number of daily trains per flood event increases. 6 

The percentage of daily detoured trains relative to total daily trains and the total and 7 

average increased time, increases between the 25-year and 50-year flood events, and 8 

sharply decreases between the 50-year and 100-year events, especially for the Yangtze 9 

River, Yellow River and Pear River Basin floods. This is because most of the north-south 10 

rail lines in China, such as the Beijing-Guangzhou and Beijing-Jiulong lines, cross these 11 

basins. Most trains that are detoured for a 50-year event cannot be detoured for a 100-12 

year event, as most of the north-south rail lines suffer failures at this hazard intensity. 13 

When comparing the results between the nine river basins, we find that, in general, 14 

floods in the basins in central and eastern China have the highest impacts on the 15 

Chinese national railway system. The percentage of daily affected trains (cancelled and 16 

detoured trains) of the total number of trains is the largest for the Yangtze River Basin, 17 

followed by the Pearl River Basin and the Yellow River Basin. In the Yangtze River Basin, 18 

the median percentage of daily affected trains (cancelled and detoured trains) to the 19 

total number of trains is close to 40% for a 100-year flood event. For the Continental 20 

and Southwest Basins, the value is close to zero. The high impacts of daily affected trains 21 
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observed in the central and eastern area are due to a significantly higher railway line 1 

density and daily train flows compared to the more inland river basins (see Fig. 3). The 2 

higher annual failure probability of the rail segments in the central and eastern regions 3 

shown in Fig. 4 also causes a large chance of failed railway segments per flood event 4 

and results in higher impact. The daily detoured trains in the Huaihe and Haihe River 5 

Basins in eastern China are higher compared to other basins, which leads to a large total 6 

increased time when one flood occurs. The reason is that the Huaihe and Haihe River 7 

Basins are located in eastern China and only cross railway lines in the eastern coastal 8 

area; therefore, the affected trains have more detour options through the lines of the 9 

Yangtze and Yellow River Basins, which lead to more detoured trains and associated 10 

total increased time. 11 

3.4 Risk uncertainty and parameters sensitivity 12 

Figure 8 and Appendix Fig. A6 present the sensitivity of the results to the assumed 13 

parameters and the range of performance metric uncertainty. Overall, from the 14 

uncertainty histograms, we can see that all the performance metrics are right-skewed, 15 

especially for the average daily affected and affected passengers shown in Fig. 8a and c, 16 

and average daily cancelled trains and cancelled passengers shown in Appendix Fig. A6b 17 

and d, they have a long right tail for high performance loss estimates. This seems a little 18 

bit less for the average daily detoured trains and passengers showed in Appendix Fig. 19 

A6a and c, and average increased time for detoured trains showed in Fig. 8e, which is 20 
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probably the result of the assumption that detouring is impossible when the increased 1 

time for re-routing is greater than 24 hours, resulting in a smaller range of detoured 2 

options and thus a smaller range in resulting performance loss estimates. The average 3 

number of daily affected trains ranges from 100 to 500 trips; for daily affected 4 

passengers, it is range from 100,000 to 450,000 people, and the average increased time 5 

ranges from 3.5 hours to 5.5 hours with the change in the parameters. The results show 6 

that the performance loss estimates are particularly sensitive to the values used for the 7 

design standards; using the different parameter settings, we see a variation in the 8 

design standards of approximately 43%. The variation in the drainage capacity rate and 9 

water level threshold produces similar uncertainty as the capacity loss, which is 10 

approximately 28%. 11 

 12 

Fig. 8 Results of the uncertainty (histograms) and sensitivity (pie charts) analyses for the 13 

performance metrics. (a) and (b) average daily affected trains; (c) and (d) average daily 14 
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affected passengers; (d) and (f) average increased time. Fig. A5 provides the results of 1 

the other performance metrics. 2 

4 Discussion 3 

Our results reveal clear geographical disparities in the failure hotspots. Areas with 4 

high annual failure probabilities are mainly located in the Yangtze River Basin, Southeast 5 

Basin, and Pearl River Basin. Comparing the failure probability from this study with the 6 

susceptibility map presented in seminal works by Liu et al. (2018a, 2018b), we find some 7 

differences in hotspots in Xinjiang Province and along the Beijing-Shanghai line. In our 8 

study, we find lower failure probabilities relative to the work of Liu et al. For other 9 

regions, the spatial patterns are similar. Our study considers the same protection 10 

standards (the water level failure threshold, drainage capacity rate, and design standard) 11 

for the railway lines in the Chinese railway system. It should be noted that these 12 

standards will not remain constant over time, as a result of ageing infrastructure. This 13 

means that the failure probability in some areas in this study is biased compared to 14 

research based on historical data. Indeed, many older lines have been 15 

upgraded/improved so that the protection standards are more consistent with newer 16 

lines.  17 

In our work, we find that in the Yangtze River Basin, the median relative cancelled 18 

trains to total daily trains is between 0 and 14% when the flood intensity is between 25 19 

and 50-year. In 2016, from May to July, the Yangtze River Basin and Huaihe River Basin 20 

suffered by severely rainfall (Lyu et al., 2018). In most affected areas within the Yangtze 21 
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River Basin, the floods that occurred exceeded the 25-year return period. Floods caused 1 

disruptions on several railway lines, including the Chengdu-Chongqing line, Hefei-2 

Jiujiang line, and Sichuan-Guizhou line, that cross the Yangtze River Basin. In the Huaihe 3 

River Basin, damage occurred to the Beijing-Guangzhou line. From 30 June to 6 July, 4 

approximately 100 trips (approximately 2% of the daily trains) were cancelled every day 5 

for the Chinese railway system. These observed impacts are within the range of our 6 

estimates. 7 

In this study, we assumed that within a river basin, the flood probability is constant, 8 

whilst among different basins it is fully independent. In future work, we will assess the 9 

dependence structure of flood hazards within and between basins, for example, by 10 

means of the copula approach as presented in (Jongman et al., 2014). As we assumed 11 

a disruption time of one day due to the lack of information on flood duration in this 12 

study, we may have underestimated the operational performance losses. 13 

Using our current approach, the performance loss can be used as the start of the 14 

indirect risk assessment from the travel journey perspective. By combining the ticket 15 

prices and the operating cost per kilometre, the economic loss for the railway company 16 

can be calculated based on the affected trains and associated passengers (Lamb et al., 17 

2019). As a key mode of transport for interregional trade, the failure of railway systems 18 

can produce large shocks for industries dependent on the supply that may come from 19 

flooded businesses. The risk values per province (such as expected daily cancelled trains 20 

and passengers) can be used as indicators to link with business disruptions. Future work 21 
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can try to assess the interregional trade based on the Input and Output table and 1 

regional railway transportation performance decreased in this work. The assessment of 2 

shocks and indirect economic losses induced by railway system failures is essential for 3 

policymakers to design railway infrastructures and to measure indirect economic losses.  4 

5 Conclusion 5 

The increased frequency of extreme flood events, coupled with interregional trade 6 

growth, requires national- and global-scale transportation networks to be more resilient 7 

to cope with disruptive events. Evaluation of system-level vulnerability and 8 

identification of risk hotspots is a first step to enhance the robustness of the transport 9 

system. This study presents a framework for performing system-level vulnerability and 10 

risk assessments of a railway system under flooding. The developed framework couples 11 

simulated flood events with state-of-the-art network analysis to measure system 12 

disruptions caused by floods to identify risk hotspots. This work quantifies the system 13 

vulnerability and risk in terms of the performance loss of the Chinese railway system, 14 

induced by the flooding. Results show that failure hotspots, system vulnerability and 15 

the risk of the Chinese railway system under floods are highly heterogeneous. In 16 

addition, the adopted vulnerability metrics present different results in terms of the 17 

system vulnerability and risk.  18 

High failure hotspots are mainly distributed in South China, i.e. Yangtze River, Pearl 19 

River and Southeast Basins. The humid subtropical climate and severe flood hazards in 20 
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these areas result in large chances of disruption. For the system vulnerability, the 1 

heterogeneity is largely due to a spatially imbalanced railway topology and traffic flow 2 

as well as a spatially heterogeneous hazard intensity distribution among China. In 3 

general, floods in the basins in central and eastern China have the highest impacts on 4 

the Chinese railway system. Floods in the Yangtze River Basin have the largest impact 5 

on the daily cancelled trains and associated daily cancelled passengers. In the Yangtze 6 

River Basin, the median percentage of daily affected trains to the total number trains 7 

can reach to 45% for a 1000-year flood event. In addition, floods in the Huaihe and 8 

Haihe River Basins cause the largest number of the detoured trains as well as associated 9 

increased time for the Chinese railway system compared with other basins. Finally, this 10 

work quantifies the performance risk due to flooding at the national and provincial level. 11 

We find that, at a national level, the average daily number of affected trains and 12 

passengers are approximately 200 trips and 165,000 people (2.7% and 2.8% of the total 13 

daily numbers of trains and passengers), respectively. The mean average increased time 14 

for detoured trains reaches approximately 5 hours. At the provincial level, the provinces 15 

in Central China have the highest absolute and relative risks, estimated to be over 40 16 

daily affected trains (4.5% relative to the number of the province’s daily trains) and 17 

more than 35,000 daily affected passengers (3.5% relative to the number of the 18 

province’s daily passengers). The high risk in terms of the total increased time is mostly 19 

distributed in East China, whereas the highest average increased time is distributed in 20 

western provinces, such as Xinjiang and Tibet Provinces. The developed system 21 
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vulnerability curves and flood risk maps can provide the information for the decisions 1 

on safety and effectiveness of operation and maintenance. Various performance 2 

metrics can be considered by management departments based on their particular 3 

problems. 4 
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Appendix 1 

 2 

Fig.A1 A flowchart to generate flood event  3 

 4 

 Fig. A2 An example for detour 5 

 6 

https://doi.org/10.5194/nhess-2021-188
Preprint. Discussion started: 8 July 2021
c© Author(s) 2021. CC BY 4.0 License.



 

44 

 

 1 

 Fig. A3 Performance loss of the railway system per province. (a) presents the daily 2 

detoured trains in absolute terms; (b) presents the daily detoured trains relative to the 3 

number of the province’s daily trains; (c) presents the daily cancelled trains in absolute 4 

terms; (d) presents the daily cancelled trains relative to the number of the province’s daily 5 

trains; (e) presents the daily detoured passengers in absolute terms; (f) presents the daily 6 

detoured passengers relative to the number of the province’s daily trains; (g) presents the 7 

daily cancelled passengers in absolute terms; (h) presents the daily cancelled 8 

passengers relative to the number of the province’s daily trains. 9 
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 1 

 Fig. A4 Chinese provinces distribution map. The China Provincial Map layer comes from 2 

the Data Center for Resources and Environmental Sciences, Chinese Academy of 3 

Sciences, which is accessible from the Resource and Environment Data Cloud Platform 4 

(http://www.resdc.cn/, last access: 19 May 2020). 5 

 6 

7 

Fig. A5 system-vulnerability curves of passenger’s metrics 8 
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 1 

 Fig. A6 Results of the uncertainty and sensitivity analyses for the performance metrics. 2 

(a) average daily detoured trains; (b) average daily cancelled trains; (c) average daily 3 

detoured passengers; (d) average daily cancelled passengers; (e) total increased time; 4 

(f) the sensitivity results. 5 

6 
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Table A1 List of variables 1 

List of variables  

Variable Description 

𝑇 Return period of T- year 

𝐷𝑇 The flood depth with return period of T- year 

𝑔𝑥,𝑦 A grid cell with longitude 𝑥 and latitude 𝑦 

𝐷𝑇𝑥,𝑦 The flood depth of a flood event of grid cell 𝑔𝑥,𝑦 with return period of T- year 

𝑃(𝐷𝑇) The annual exceedance probability of flood depth 𝐷𝑇 

𝑃𝑟(𝐷𝑇) A quadratic, continuously differentiable function of 𝑃(𝐷𝑇) 

𝑃𝑟𝑥,𝑦(𝐷𝑇) A set of continuous inundation depth-exceedance probability functions for 𝑔𝑥,𝑦 

a, b, c Constant parameters in function 𝑃𝑟𝑥,𝑦(𝐷𝑇) 

𝐵𝑗 River basin 𝑗 

𝐸𝑗
𝑖 Flood event 𝑖 in river basin 𝐵𝑗 

𝑃𝑗
𝑖 A random number between 0 and 1 for flood event 𝐸𝑗

𝑖 in basin 𝐵𝑗 

𝑊𝑑 The failure threshold of the railway service after drainage, default value is 0.2 

𝑊𝐿𝑥,𝑦 The water level after drainage of grid cell 𝑔𝑥,𝑦 

𝑊𝑙𝑑𝑥,𝑦 The water level of the flood depth under design standard of grid cell 𝑔𝑥,𝑦 

𝐷𝑐 The drainage capacity rate of Chinese railway system, default value is 0.8 

𝑍(𝑥𝑦) The failure condition of grid cell 𝑔𝑥,𝑦 

𝑙𝑖𝑗 Rail segment between station 𝑖 and station 𝑗 

𝐹𝑐𝑖𝑗 Failure condition of component 𝑙𝑖𝑗 

𝐹𝐶𝑖𝑗
𝑒  The failure condition of railway segment 𝑙𝑖𝑗 under flood event e 

𝐴𝐹𝑖𝑗 The annual failure probability of rail segment 𝑙𝑖𝑗 

𝐸 The N-year flood events catalogue 

𝑁𝑆 The original number of trains in the system 

𝑁𝑒
𝑠 The number of running trains in the system after a flood event 

𝑁𝑒
𝑡𝑜𝑙 The number of daily affected trains under flood event e 

𝑁𝑒
𝑐 The number of daily is cancelled trains under flood event e 

𝑁𝑒
𝑑 The number of daily detoured trains under flood event 𝑒 

𝐶𝐴𝑖 The capacity of the 𝑖𝑡ℎ train 

𝑃𝑒
𝑡𝑜𝑙 The number of affected passengers 

𝑃𝑒
𝑐 The number of daily passengers is cancelled passengers under flood event e 

𝑃𝑒
𝑑 The number of daily passengers is detoured passengers under flood event e 

𝑇𝑖 The original travelling time of the 𝑖𝑡ℎ train. 

𝑇𝑖
𝑒 The running time of the 𝑖𝑡ℎ train under flood event e 

𝑇𝑒
𝑡𝑜𝑙 The total increased time for detoured trains under flood event e 

𝑇𝑒
𝑎𝑣𝑒 The average increased time under flood event e 

𝐴𝑅𝑠 The expected daily flood risk level to the railway system 

𝑉𝑒 Performance loss metric, including  𝑁𝑒
𝑑 ,  𝑁𝑒

𝑐 ,  𝑁𝑒
𝑡𝑜𝑙 ,  𝑃𝑒

𝑑 ,   𝑃𝑒
𝑐 ,   𝑃𝑒

𝑡𝑜𝑙, 𝑇𝑒
𝑡𝑜𝑙 ,  

and 𝑇𝑒
𝑎𝑣𝑒 
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Table A2 List of all assumptions taken in this study and their range in the sensitivity analysis 1 

List of all assumptions taken in this study and their range in the sensitivity analysis 

Varying parameter Default values Range  

water level failure threshold 0.2 [0.1m, 0.5m] 

drainage capacity rate 0.8 [0.7, 0.9] 

design standards 100 [50, 100] 

 2 
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