
We thank the reviewer’s thorough reading of the manuscript and valuable remarks that helped us to 

improve the manuscript. The comments are very helpful and we have incorporated them into the 

revised manuscript. In the following, the texts with blue font are the reviewer’s original comments, 

the texts with normal font are authors’ responses and the texts with italic font are authors’ responses 

in the revised manuscript. Our detailed responses are as follows: 

1) Abstract: the discussion on the results is too large and detailed for an abstract while a brief 

description on the adopted methodology is totally missing;  

Response: We thank for reviewer’s comments and agree with the reviewer that the abstract needs a 

brief description of methodology and a more streamlined description of the results. In the revised 

manuscript, we have rewritten the abstract parts to address the concern of the reviewer. Please refer 

to lines 12-21, page 1 and lines 1-10, page 2:  

Floods have negative effects on the reliable operation of transportation systems. In China alone, 

floods cause an average of ~1125 hours of railway service disruptions per year. In this study, we 

present a simulation framework to analyse the system vulnerability and risk of the railway system 

to floods. To do so, first, we developed a novel methodology for generating flood events at both the 

national and river basin scale. Based on flood hazard maps of different return periods, independent 

flood events are generated using the Monte Carlo sampling method. Combined with network theory 

and spatial analysis methods, the resulting event set provides the basis for national- and provincial-

level railway risk assessments, focusing in particular on train performance loss. Applying this 

framework to the Chinese railway system, we show that the system vulnerability of the Chinese 

railway system to floods in different basins is highly heterogeneous as a result of spatial variations 

in the railway topology and traffic flows. Flood events in the Yangtze River Basin show the largest 

impact on the national railway system, with approximately 40% of the national daily trains being 

affected by a 100-year flood event in that basin. At the national level, the average number of daily 

affected trains and passengers for the national system are approximately 200 trips and 165,000 

people (2.7% and 2.8% of the total daily numbers of trips and passengers), respectively. The event-

based approach presented in this study shows how we can identify critical hotspots within a complex 

network, taking the first steps in developing climate-resilient infrastructure.  

2) Introduction: the introduction should provide also some further details on both the adopted 



methodology and metrics. An anticipation of the analyses that will be carried out is essential to 

encourage potential readers to go through the paper. Novelty of the proposed approach should be 

better stressed.  

Response: We thank for the reviewer’s suggestions. In the revised manuscript, we have added more 

details on both adopted methodology and metrics in the introduction section in lines 14-21, page 5 

and lines 1-7, page 6; and the novelty of the proposed approach have been stressed in lines.  

This study aims to develop a framework to quantify the system vulnerability and risk to 

transportation systems in terms of operational performance loss under large-scale flood hazards. 

System vulnerability in this study is represented as the system performance loss with different flood 

intensities. When assessing possible cascading effects, the use of independent flood events is 

necessary (Nones and Pescaroli, 2016), as the presented floods in regional-or national-scale flood 

footprints, which show the flood depth for a given return period in that area, may not all happen at 

the same time. To overcome the shortcomings in existing studies, we develop a simplified practicable 

and novel method for generating a set of independent flood events at the national and river basin 

scale. The independent floods are generated using a curve fitting method and Monte Carlo sampling 

method based on global flood hazard model maps and river basins. By coupling simulated flood 

events with the railway network using the spatial analysis method, we identify the railway failure 

hotspots caused by floods. At the same time, the potential performance loss is assessed using 

network theory. We illustrate our methodology by applying it to the Chinese railway system.  

3) In Data and Method section and sect 2.1.1, the global flood hazard model should be better 

described (also providing some examples in the SM). All the adopted metrics should be defined 

much more carefully, with a more precise and effective use of terms. For instance, only the trains 

where passenger travel can be cancelled or detoured, while passengers cannot be cancelled or 

detoured; so the metrics named ‘passenger cancelled induce’ or ‘passenger detoured’ in my opinion 

should be renamed (and better defined at their first appearance in the text). 

Response: We thank the reviewer for their suggestion. In the revised manuscript, we have added 

more detail on the global flood hazard model and provide the flood maps for 50 and 500-year events 

in supplement materials in lines 9-20, page 9 and lines 1-3, page 10. Adopted metrics have been 



redefined and please refer to our response to Question 4. 

Our flood hazard data are extracted from the GLOFRIS global fluvial flood hazard maps of 

Winsemius et al. (2013), which are developed using the GLOFRIS modelling cascade provided in 

Ward et al. (2013) and Winsemius et al. (2013). The GLOFRIS modelling cascade first simulates 

daily discharge using the PCRaster GlobalWater Balance (PCR-GLOBWB) global hydrological 

model (Beek et al., 2008, 2011). Based on daily discharge, daily flood volumes are simulated using 

the PCR-GLOBWB extension for dynamic routing, DynRout (PCR-GLOBWB-DynRout) (Ward et 

al., 2013; Winsemius et al., 2013). In the next step, flood volumes, for different return periods: 2, 5, 

10, 25, 50, 100, 250, 500 and 1000 years, are obtained using the annual time series for maximum 

flood volumes by fitting a Gumbel distribution. These flood volumes are then converted into 

inundation maps (30-arcsecond, ca.1-km) using the inundation downscaling model of GLOFRIS 

(Winsemius et al., 2013). In the appendix materials, we provide flood maps for the 50 and 500-year 

return periods. The maps show that the inundation depth highly varies in China. Railway lines in 

eastern coastal China and South China are faced with the most severe floods. 

   

Fig. A1 (a) the 50-year flood, (b) the 500- year flood 

4) The description of the fitting procedure (Sect.2.1.2) must be improved. Figure 2a is rather 

unclear to me, and the caption does not help the readers. Moreover, its size is too small and the inset 

legend cannot be read (similar problems are present also in Figures 5, 6 and 7). I would suggest to 

place the four graph in figure 2 in a 2 x 2 grid, enlarging each graph. Caption must be more clear 

for figure 2a and more concise for figs 2b, 2c and 2d.  

Response: We apologize for the unclear description and thanks for your suggestions. In the revised 



manuscript, we have rewritten Sect 2.1.2 in lines 12-20, page 10, page 11, and lines 1-3, page 12. 

At the same time, Figure 2a as well as Figures 5, 6, 7 have been improved as followed. 

2.1.2 Fitting procedure 

For each grid cell, the GLOFRIS maps estimate the flood depth for the nine aforementioned 

return periods (2, 5, 10, 25, 50, 100, 250, 500 and 1000 years). To estimate the flood depth for any 

return period, we fit a quadratic spline function to develop an inundation depth-exceedance 

probability function (P) for each return period interval for each grid cell (Marsden, 1974; 

Vandebogert, 2017; Meshram et al., 2018). The quadratic spline is a method that uses a piecewise 

quadratic function to obtain the best-fitting curves. This interpolation method allows us to obtain a 

smooth continuous curve through the provided flood depths for the different return periods. 

The method is applied as follows, and examples of the inundation depth-exceedance probability 

function of grid cells are shown in Fig. 2a: 

For each grid cell gx,y, the annual exceedance probability flood depth 𝐷𝑇  is calculated by Eq. 

1: 

𝑃(𝐷𝑇) =
1

𝑇
                                (1) 

where 𝐷𝑇  is the magnitude of a flood depth with a return period of T- year, 𝑃(𝐷𝑇) is the 

exceedance probability of 𝐷𝑇.  

Let 𝑃𝑟(𝐷𝑇)  denotes a quadratic, continuously differentiable function of 𝑃(𝐷𝑇) . Then, by 

definition: 

𝑃𝑟(𝐷𝑇) = 𝑎𝐷𝑇
2 + 𝑏𝐷𝑇 + 𝑐                         (2) 

For each return period interval of grid cell 𝑔𝑥,𝑦, we can obtain its piecewise quadratic function 

by Eq. 3: 

𝑃𝑟𝑥,𝑦(𝐷𝑇) =

{
 
 

 
 𝑃𝑟𝑥,𝑦

1 (𝐷𝑇) = 𝑎1𝐷𝑇
2 + 𝑏1𝐷𝑇 + 𝑐1   𝐷𝑇𝜖[𝐷2, 𝐷5]

𝑃𝑟𝑥,𝑦
2 (𝐷𝑇) = 𝑎2𝐷𝑇

2 + 𝑏2𝐷𝑇 + 𝑐2   𝐷𝑇𝜖[𝐷5, 𝐷10]
. . .

 𝑃𝑟𝑥,𝑦
8 (𝐷𝑇) = 𝑎8𝐷𝑇

2 + 𝑏8𝐷𝑇 + 𝑐8  𝐷𝑇𝜖[𝐷500, 𝐷1000]

         (3) 

where 𝑃𝑟𝑥,𝑦(𝐷𝑇)  is a set of continuous inundation depth-exceedance probability functions 

consisting of 8 continuous quadratic functions for 𝑔𝑥,𝑦  and shows in Fig. 2a with curves. For 

𝑎(𝑎1, 𝑎2, . . . , 𝑎8), 𝑏(𝑏1, 𝑏2, . . . , 𝑏8), 𝑐(𝑐1, 𝑐2, . . . , 𝑐8)𝜖𝑅 , we can calculate these constants by 

bracketing the critical point of P(DT) and derivative of the function 𝑃𝑟𝑥,𝑦(𝐷𝑇); details on the 



interpolation methods can be found in a previous study by Sun and Yuan (2006). In this work, we 

assume that only one event occurs per year in each basin since we assume the intensity of events is 

equal to or larger than 1-year. When the return period is lower than 2, the flood depth is set to zero 

which is the same as that of a 2-year event. 

 

Fig. 2 An example of generating national-scale flood events. In (b), 𝒑1, 𝒑2 , 𝒑3 , and 𝒑4 are 

the random number between 0 and 1 generated for basin 𝑩𝟏, 𝑩𝟐, 𝑩𝟑 and 𝑩𝟒, which are used to 

generate basin-scale events based on the functions in (a). The layers of basin-scale floods in (b) 

are combined into a national-scale flood event. The layers in (c) are the 10000 national-scale 

events using the process in (b). 

2.1.3 Simulation procedure 

To produce a time-series of flood events based on the created inundation depth-exceedance 

probability functions (Section 2.1.2), we use a Monte Carlo sampling method. The basic idea of the 

Monte Carlo sampling method is that when the number of simulations is sufficiently large, the 

frequency of an event approximates the probability of the occurrence of the event (Baker, 2008; 

Speight et al., 2017). The flood event generation procedure is presented in Fig. 2 and Appendix Fig. 

A1 and can be summarized in two steps. First, we generate independent events at each basin and 

combine them into a national event. For an event 𝐸𝑗
𝑖, and for each basin 𝐵𝑗, a random number 𝑃𝑗

𝑖 

between 0 and 1 is generated from a uniform distribution. The flood depth of the cells in basin 𝐵𝑗 

for event 𝐸𝑗
𝑖 can be calculated using 𝑃𝑗

𝑖 and the inundation depth-exceedance probability function 

based on the assumption that a flood event in one basin will produce a flood with the same intensity. 

For a national-scale flood event, basin-specific floods of nine basins can be randomly combined 

into a national-scale flood by assuming independence between the flood events among different 



basins, this concept is presented in Fig. 2b. Second, we repeat this process 10000 times to generate 

a set of national-scale independent flood events as presented in Fig. 2c. 

 

Fig. 5 Exceedance probability-performance loss curves 

Fig. 6 Performance loss of the railway system per province. 



Fig. 7 System vulnerability curves induced by river floods from the national flood event set 

5) 2.4 could be renamed “performance loss metrics” and restructured with a separate subsection 

for each metric. Subsection 2.4.2 could become sect. 2.5. All the assumptions made for the metrics 

definition must be better clarified.  

Response: We thank for the reviewer’s suggestions. In the revised manuscript, we renamed 

“performance loss metrics” and restructured them in a separate subsection. For the assumptions of 

the metrics clearer, we added some descriptions in lines 2-4, page 18: 

2.4 Performance loss metrics 

2.4.1 Daily affected trains and passengers  

2.4.2 Daily detoured trains and passengers influenced by detoured train  

2.4.3 Total increased time for the detoured trains 

2.4.4 Average increased time for the detoured trains 

2.4.5 Daily cancelled trains and passengers influenced by cancelled train  

2.5 Calculating system vulnerability and risk 

2.6 2.6 Uncertainty and sensitivity analysis 

 

We assume that the average number of passengers is 80% of the train’s capacity (Wei et al., 2017; 



Rezvani et al., 2015). As such, the number of affected passengers 𝑃𝑒
𝑡𝑜𝑙 can be defined by Eq. 9: 

 

6) Results section presents a quite good description of the results while comments on the potential 

implications of the various results are almost totally missing or present only in the discussion section; 

this aspect could be improved. The discussion on the results of the sensitivity and uncertainty 

analysis in Setc.3.4 should be considerably improved; for instance, pie charts in Fig.8 should be 

explained and commented.  

Response: We thank for the reviewer’s suggestions. In the revised manuscript, we add the comments 

on the potential implications of the various results in results parts in lines 14-17, page 22, lines 1-4, 

page 27, and lines 7-10, page 30. Meantime, the results of the sensitivity and uncertainty also 

improved in and lines 7-16, page 31. 

3.1 Failure hotspots of railway segments 

Figure 4b shows the percentage of the length of railway lines that fall into each failure probability 

category for the national- and basin-level analyses. Nationally, the failure probability is greater 

than 0 for more than 55% of the total length of the railway lines. This percentage is heterogeneous 

across different river basins: it is highest in the Southeast Basin, followed by the Pearl River Basin 

and the Yangtze River Basin. Nationally, 6.8% of the length of the railway lines has a failure 

probability greater than 0.02, with the highest proportions in the Yangtze River, Yellow River, and 

Southeast Basins, with 12.5%, 10% and 7.2%, respectively. The results for the Failure hotspots 

indicate that the railways located in Yangtze River, Southeast and Pearl River Basins need more 

attention and planned prevention measures to reduce the failure probability induced by floods.  

3.2 Risk analysis of the Chinese railway system 

Several provinces appear at the highest level of the three metrics presented in Fig. 6 and can be 

classified as particularly vulnerable provinces. Anhui Province, for example, has one of the highest 

absolute and relative levels of risk to trains and passengers in Fig. 6a-d but also has the highest 

total increased time in Fig. 6e. Hubei Province shows one of the highest absolute and relative levels 

of risk to trains and passengers in Fig. 6a-d. Jiangsu Province has the highest absolute levels of 

risk to trains and passengers in Fig. 6a and c and one of the highest total increased time in Fig. 6e. 



These provinces are at the highest risk compared to the other provinces. This information can help 

researchers and local authorities to determine high-risk areas and prioritize risk management 

interventions to reduce risk. These can be used in the first steps of developing climate-resilient 

infrastructure. 

3.3 System vulnerability of the Chinese railway system 

When comparing the results between the nine river basins, we find that, in general, floods in the 

basins in central and eastern China have the highest impacts on the Chinese national railway system. 

The percentage of daily affected trains (cancelled and detoured trains) of the total number of trains 

is the largest for the Yangtze River Basin, followed by the Pearl River Basin and the Yellow River 

Basin. In the Yangtze River Basin, the median percentage of daily affected trains (cancelled and 

detoured trains) to the total number of trains is close to 40% for a 100-year flood event. For the 

Continental and Southwest Basins, the value is close to zero. The high impacts of daily affected 

trains observed in the central and eastern area are due to a significantly higher railway line density 

and daily train flows compared to the more inland river basins (see Fig. 3). The higher annual 

failure probability of the rail segments in the central and eastern regions shown in Fig. 4 also leads 

to a higher probability of failed railway segments per flood event and results in higher impact. The 

daily detoured trains in the Huaihe and Haihe River Basins in eastern China are higher compared 

to other basins, which leads to a large total increased time when one flood occurs. The reason is 

that the Huaihe and Haihe River Basins are located in eastern China and only cross railway lines 

in the eastern coastal area. Therefore, the affected trains have more detour options through the lines 

of the Yangtze and Yellow River Basins, which lead to more detoured trains and associated total 

increased time. For each basin, based on the vulnerability curve, once we know the intensity of 

flooding that would occur, we can estimate the affected trains and passengers. Based on this kind 

of information, local authorities could prepare dispatch plans in advance of floods.  

3.4 Risk uncertainty and parameters sensitivity 

Figure 8 and Appendix Fig. A. 7 present the sensitivity of the results to the assumed parameters 

and the range of performance metric uncertainty. Overall, from the uncertainty histograms, we can 

see that all the performance metrics are right-skewed, especially for the average daily affected and 

affected passengers shown in Fig. 8a and c, and average daily cancelled trains and cancelled 



passengers shown in Appendix Fig. A 7b and d, have a long right tail for high performance loss 

estimates. This seems a little bit less for the average daily detoured trains and passengers shown in 

Appendix Fig. A 7a and c, and average increased time for detoured trains shown in Fig. 8e, which 

is probably the result of the assumption that detouring is impossible when the increased time for re-

routing is greater than 24 hours, resulting in a smaller range of detoured options and thus a smaller 

range in resulting performance loss estimates. The average number of daily affected trains ranges 

from 100 to 500 trips. For daily affected passengers, it ranges between 100,000 and 450,000 people, 

and the average increased time ranges between 3.5 hours and 5.5 hours with the change in the 

parameters.  

In Fig. 8b, d, f and Fig. A 7f, the pie-charts show how much the uncertainty in each input 

parameter contributes to the variance of the performance loss estimates. The results show that the 

performance loss estimates are particularly sensitive to the values used for the design standards. 

Using the different parameter settings, we see a variation in the design standards of approximately 

43%. The variation in the drainage capacity rate and water level threshold produces similar 

uncertainty as the capacity loss, which is approximately 28%. Reducing uncertainty in risk 

assessment is particularly challenging as it would require location-specific parameters. Despite the 

difficulties, these geographically varying design standards should be developed in the future to 

reduce uncertainty and improve the performance loss estimates. 

7) Some practical examples of the utility of the proposed approach should be reported in the 

conclusion to highlight the importance of the work.  

Response: We thank for the reviewer’s suggestions. In the revised manuscript, we have added some 

practical examples of the utility of the proposed approach in the conclusion part on page 20 and 

lines 8-21, page 37 and lines 1-2, page 38.  

The developed system vulnerability curves and flood risk maps can provide information for 

decisions on safety and effectiveness of operation and maintenance. Various performance metrics 

can be considered by management departments based on their particular problems. Using our 

current approach, the performance loss can be used as the start of the indirect risk assessment from 

the travel journey perspective. By combining the ticket prices and the operating cost per kilometre, 



the economic loss for the railway company can be calculated based on the affected trains and 

associated passengers (Lamb et al., 2019). As a key mode of transport for interregional trade, the 

failure of railway systems can produce large shocks for industries that depend on the supply that 

may come from flooded businesses. The risk values per province (such as expected daily cancelled 

trains and passengers) can be used as indicators to link with business disruptions. Future work can 

try to assess the interregional trade based on Input and Output tables and regional railway 

transportation performance decreased in our work. The assessment of shocks and indirect economic 

losses induced by railway system failures is essential for policymakers to design railway 

infrastructures and to measure indirect economic losses.  

8) Please double-check your References. I have found out some inconsistencies. For example, in 

your manuscript you refer to Liu 2018a and 2018b, but in the References I have found Liu 2009, 

Liu 2018 and Lyu 2018.  

Response: We thank you for the reviewer’s suggestions. We have checked the references and 

revised them in the revised manuscript. 


