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Abstract.  Deriving reliable estimates of design water levels and wave conditions resulting from tropical cyclones is a 

challenging problem of high relevance for, among others, coastal and offshore engineering projects and risk assessment studies. 

Tropical cyclone geometry and wind speeds have been recorded for the past few decades only, therefore resulting in poorly 

reliable estimates of the extremes, especially at regions characterized by a low number of past tropical cyclone events. In this 

paper, this challenge is overcome by using synthetic tropical cyclone tracks and wind fields generated by the open source tool 15 

TCWiSE (Tropical Cyclone Wind Statistical Estimation), to create thousands of realizations representative for 1,000 years of 

tropical cyclone activity for the Bay of Bengal. Each of these realizations is used to force coupled storm surge and wave 

simulations by means of the processed-based Delft3D Flexible Mesh Suite. It is shown that the use of synthetic tracks provides 

reliable estimates of the statistics of the first-order hazard (i.e. wind speed) compared to the statistics derived for historical 

tropical cyclones. Based on estimated wind fields, second-order hazards (i.e. storm surge and waves) are computed. The 20 

estimates of the extreme values derived for wind speed, wave height and storm surge are shown to converge within the 1,000 

years of simulated cyclone tracks. Comparing second-order hazard estimates based on historical and synthetic tracks show 

that, for this case study, the use of historical tracks (a deterministic approach) leads to an underestimation of the mean computed 

storm surge up to -30%. Differences between the use of synthetic versus historical tracks are characterized by a large spatial 

variability along the Bay of Bengal, where regions with a lower probability of occurrence of tropical cyclones show the largest 25 

difference in predicted storm surge and wave heights. In addition, the use of historical tracks leads to much larger uncertainty 

bands in the estimation of both storm surges and wave heights, with confidence intervals being +80% larger compared to those 

estimated by using synthetic tracks (probabilistic approach). Based on the same tropical cyclone realizations, the effect that 

changes in tropical cyclone frequency and intensity, possibly resulting from climate change, may have on modelled storm 

surge and wave heights were computed. As proof of concept, an increase in tropical cyclone frequency of +25.6% and wind 30 

intensity of +1.6%, based on literature values and without accounting for uncertainties in future climate projection, could 

resultwas estimated to possibly result in an increase of storm surge and wave heights of +11% and +9% respectively. This 

suggests that climate change could increase tropical cyclone induced coastal hazards more than just the actual increase in 

maximum wind speeds. Note however that the, though presented results remain a first insight into the possible mechanisms 
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effects and do not fully account for considering the uncertainties in the climate projections and alsonor y in future climate 35 

scenarios and the physical representation in modelling this.applied schematization and approach. 

 

Keywords: Tropical cyclones, extreme events, coastal hazards, climate change, Bay of Bengal, synthetic tracks, TCWiSE, 

Delft3D FM. 

1 Introduction 40 

Tropical cyclones (TCs) are among the most destructive natural hazards worldwide. Over the last two centuries, it is estimated 

that 1.9 million people have lost their lives as a result of TCs worldwide (Shultz et al., 2005; Nicholls et al., 1995). While only 

about 7% of the global TC form in the Indian oceans, associated damages and casualties surrounding this ocean basin are much 

larger than in any other region. Between 1960-2004 it is estimated that more than half a million inhabitants of Bangladesh died 

because of TC (Shultz et al., 2005). The recent cyclone Amphan (2020) showed that strong TCs still occur in the Bay of Bengal 45 

(BoB), where the direct impact has however been mitigated through early warning systems, cyclone shelters and embankments.  

 

A challenge in several coastal engineering applications consists in the determination of reliable estimates of design water levels 

and wave conditions resulting from these TC, both for present and future climate scenarios. The estimation of design values 

resulting from TCs is often based on a limited number of recorded Historical Tropical Cyclones (HTC) at a given region (for 50 

the BoB see e.g. Chiu and Small, 2016; Dube et al., 2009). This results in a large statistical uncertainty in estimating the first-

order hazards resulting from TCs (e.g. wind speeds) due to the limited number of observations at a certain location. One 

approach to overcome this is by using Synthetic Tropical Cyclones (STC) based on the statistics of the properties of observed 

HTC. The Tropical Cyclone Wind Statistical Estimation tool (TCWiSE; Nederhoff et al., 2021) can, for example, be used to 

generate numerous synthetic tracks. Thiese synthetic tracks allows for the creation of a much longer dataset than otherwise 55 

available through HTC tracks only, which can be used to perform extreme value analysis on than otherwise available through 

HTC tracks only, and which can be used to calculate more reliable estimates of first-order hazards. Subsequently, these STC 

can then be modelled using hydrodynamic and wave models to generate better estimates of second-order hazards like storm 

surge and wave heights. Other datasets and methods to generate STC are those of Vickery et al., 2000; Hardy et al., 2003; 

James and Mason, 2005; Emanuel et al., 2006; Emanuel et al., 2008; Haigh et al., 2014; Nakajo et al., 2014; Lee et al., 2018 60 

and  Bloemendaal et al., 2020. HoweverHereby, so far literature so far has mainly focused on deriving STC tracks and 

corresponding wind and pressure fields. , rather than exploring the effect of using these to derive local design values for storm 

surge and wave heights compared to considering HTC only. Some work has been done exploring the effect of using these to 

derive offshore extremes for storm surge and wave heights compared to considering HTC only (e.g. Meza-Padilla et al., 2015, 

Appendini et al., 2017), in this direction but with focus on different regions than the BoB (e.g. Australia (Haigh et al., 2014), 65 

Mexico (Meza et al., 2015), Northern Pacific Ocean (Mori et al. 2016a, Mori et al. 2016b, Yang et al. 2020) or USA (Lin et 
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al., 2012, Appendini et al., 2017, Marsooli et al. 2019)) andor /or without taking waves into account, which is found to be an 

important factor leading to flooding in the northern BoB (Krien et al., 2017) and arguably worldwide.  

 

The effects that climate change and global warming have on TCs is subject to scientific debate. As discussed in Knutson et al.  70 

(2010), this is related to the large temporal fluctuations in TC frequency and intensity, making it difficult to derive reliable 

trends. Recent work has shown that, globally, a statistically significant trend towards an increase in TC intensity can be found 

(Kossin et al., 2020). According to Knutson et al. (2010), future projections indicate an increase towards stronger storms of 2-

11% by 2100, and a decrease in the globally averaged frequency of TCs by 6–34%, with a large variation between models and 

different basins. These general findings were confirmed in the modeling study by Knutson et al. (2015). The authors assessed, 75 

by means of CMIP5 model ensembles, the possible changes in TC frequency and intensity under RCP 4.5 for the late twenty-

first century compared to the period 1982-2005. Large differences between basins were depicted in the modeling study. For 

the North Indian Ocean (NIO) basin, an increase in TC frequency was estimated equal to 25.6% for TCs of category 1-5. The 

increase was even larger for TCs of category 4-5 (200%, although the change is marked as not being statistically significant in 

that study). An increase in intensification of TCs in the NIO during the last decades has already been reported by several 80 

authors (Webster, 2005; Singh et al., 2001; Singh, 2007; Deo et al., 2011; Kishtawal et al., 2012). According to Knutson et al. 

(2015), this increase in intensity was estimated to be 1.6% for TCs of category 1-5. Nevertheless, the values described by 

different authors suggest a large scatter, making it difficult to derive statistically robust trends and conclusions. In combination 

with sea level rise, an increase in TC intensity will lead to significant and amplified increases in flood risk (Karim and Mimura, 

2008).  85 

 

In this study, TCWiSE was applied in combination with the hydrodynamic Delft3D Flexible Mesh model (Delft3D FM; 

Kernkamp et al., 2011) and the coupled wave model SWAN (Booij et al., 1999), to estimate storm surge and wave conditions 

along the BoB. TCWiSE was extended to be able to derive estimates for present and future scenarios, therefore accounting for 

the possible influence of climate change. In particular, downscaled projections of TC frequency and intensity based on Knutson 90 

et al. (2015) were used as input to the modeling study. Estimates of extreme storm surge and wave conditions were derived 

along the BoB (4,000+ km in total) at an alongshore resolution of 5-25 km following the coastal sections segments of the 

DIVA database Vafeidis et al. (2008)(Hinkel and Klein, 2009). This dataDerived estimates can be used as boundary conditions 

for the estimation of present and future hazards and risks resulting from TC events for the entire region and the conceptual 

design of suitable mitigation options, in combination with higher resolution local models. The methodology and tool are 95 

generic and can in principle be applied to any location worldwide that is exposed to TCs. 
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2 Data and methods 

2.1 Study area 

The BoB is the north-eastern part of the NIO, bounded on the southwest by Sri Lanka, on the west and northwest by India, on 

the north by Bangladesh and on the east by Myanmar. Within the bay lie the Andaman and Nicobar Islands (see ‘ANI’ in 100 

Figure 1).  The different countries and regions considered in the study are described in Table 1. Per region, one representative 

location is included for further analysis and shown in Figure 1 (‘Coastal cities’).  The entire Bay of Bengal, and the northern 

part in particular, is highly affected by TCs. Extreme sea levels around the bay, including maximum tidal levels and storm 

surge increase towards Bangladesh as a result of the bay geometry and the shallow continental shelf (Figure 1 and Muis et al., 

2016).  105 

 

Figure 1 Map of the Bay of Bengal with satellite image (ESRI) and bed elevation (GEBCO, Becker et al., 2009) including locations of 

output points for detailed analysis at different coastal cities along the bay (white circles with dot), water levels (blue dots) and waves (red 

dots). Country and state boundaries are indicated in white lines (ESRI). For a summary of countries, regions (with used abbreviations) and 

locations for further detailed analysis, see Table 1. 110 

Table 1 List of countries, regions/states/provinces (abbreviation in brackets) and coastal cities for further detailed analyses. Charchenga is 

sometimes also referred to as Charchanga (e.g. in Mamnun et al. (2020)). 

Country  Regions/States/Provinces 
Coastal cities for 

detailed analysis 
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Sri Lanka - Batticaloa 

India Tamil Nadu (TN) Madras 

 Andhra Pradesh (AP) Visakhapatnam 

 Odisha and West Bengal (OWB) Puri 

 Andaman and Nicobar Islands (ANI) Port Blair 

Bangladesh Khulna and Barisal (KB) Charchenga 

 Chittagong (CH) Chittagong 

Myanmar Rakhaing and Ayeyarwady (RA) Sittwe 

 Yangon and Mon (YM) Mawlamyine 

 

2.2 Data 

Different datasets were used in order to set-up the numerical modeling system, namely: bathymetry, coastal segments and 115 

HTC tracks with associated maximum wind speeds. 

 

Deep-water bathymetry data for the BoB were derived from the GEBCO 2008 global bathymetric data set (Becker et al., 2009), 

see Figure 1). These bathymetric data were used as input for both the hydrodynamic and wave models. 

 120 

Output locations were chosen based on Coastal segmentation from the DIVA schematization coastal segmentation (Hinkel and 

Klein, 2009) as in Vafeidis et al. (2008), beingallowing a global spatial determination of similar stretches (segments) of 

coastline (linear coastal segments)., A total of 197 which was used as a basis to define the output locations (one per segment) 

along the entire coastline were defined at which to extract time-series of extreme storm surge and significant wave heights 

along the entire coastline were extracted as in Muis et al. (2016), including 197 points in total. Each segment has a length of 125 

approximately 5-25 km. For the wave conditions, the locations in these DIVA segments were translated into locations in deeper 

water to provide deep-water wave conditions, therefore not affected by the local bathymetry. For each location, the closest 

point, with a water depth larger than 30 meters, was chosen (Figure 1). 

 

HTC data were derived from the IBTrACS (International Best Track Archive for Climate Stewardship) database version 130 

v04r00 (Knapp et al., 2018). The IBTrACS database contains the most complete global set of HTCs available. From the 

IBTrACS dataset, the best track data of the Joint Typhoon Warning Center (JTWC) for the NIO was chosen as source, 

including reliable satellite-derived data (Singh, 2010) available for the period 1972-2020. The data contains TC information 

including the best track coordinates and maximum wind speeds. The 1-minute averaged wind speeds were converted into 10-

minute wind speeds using, as correction factor, the value 0.93, following Harper et al. (2010). In total, 110 historical tracks 135 

were available for the NIO, of which 81 originated in the BoB including the recent cyclone Amphan (2020). In the dataset, 

two distinct periods with TC activity can be identified, corresponding with the pre-monsoon period (May) and the post-
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monsoon period (November, e.g. Alam et al. (2003) and Islam and Peterson (2009)). Generally, about 2-4 TCs per year are 

generated in the NIO, though this is not spread evenly through time, as the TC generation is influenced by a number of external 

factors such as the El Niño-Southern Oscillation (ENSO) cycle (e.g. Singh et al. (2000), Hoarau et al. (2012)). The HTC tracks 140 

were used to derive the STC tracks in TCWiSE. Figure 2Figure 2a illustrates the selected HTC tracks, with different colors 

indicating different wind speed categories, while Figure 2b shows the generated STC tracks based on the HTC. Note that wind 

speeds on land may be less reliable as they are affected by several factors (e.g. land friction, local topography). Nevertheless, 

these uncertainties are not relevant for this study, which instead focuses on storm surge and waves in the ocean and coastal 

zone.  145 

 
(a) 

 
(b) 

Figure 2 Cyclone tracks subdivided in different cyclone wind speed categories based on the intensity scale of the India Meteorological 

Department: (a) Historical Tropical Cyclones (HTC) for the period 1972-2020; (b) Synthetic Tropical Cyclones (STC) for a period of 1,000 

years. 

2.3 Methods 

The methodology which was followed for generating extreme values for surge and waves for both historical and synthetic 150 

tracks is described in Figure 3Figure 3. From the IBTrACS dataset, a regional subset of HTC is extracted for the NIO. In 

particular, TC characteristics (i.e. location, wind speed) describing the HTC are extracted and used for generating the STC 

with TCWISE.  The HTC and STC are then  converted into wind and pressure fields using WES (Wind Enhancement Scheme; 

Deltares, 2019), which is a routine incorporated within TCWiSE. The generated wind and pressure fields are then used to force 

the numerical hydrodynamic and wave models Delft3D FM and SWAN. From these models, time-series of storm surge and 155 

wave heights are extracted at the DIVA segments and, per location, an Extreme Value Analysis (EVA) is performed using the 

peaks-over-threshold (POT) method. The results are extreme values of storm surge and wave heights for different return 

periods at each location, which are used to perform regional comparisons between the obtained HTC and STC datasets. 
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 160 

Figure 3 Flow diagram showing the procedure to generate regional comparisons of surge and waves values. Abbreviations: IBTrACS 

(International Best Track Archive for Climate Stewardship); HTC (Historical Tropical Cyclone); TCWiSE (Tropical Cyclone Wind 

Statistical Estimation tool); HTC (Historical Tropical Cyclone); STC (Synthetic Tropical Cyclones); STCC (Synthetic Tropical Cyclones 

Current climate); STCF (Synthetic Tropical Cyclones Future climate); WES (Wind Enhancement Scheme); POT (peaks-over-threshold 

method); EVA (Extreme Value Analysis); RP (Return Period). The section numbers at which each of the steps is elaborated is also indicated.  165 

2.3.1 Generation of synthetic cyclone tracks 

The generation of STC tracks was carried out using TCWiSE (Nederhoff et al., 2021). The tool allows the generation of 

synthetic tracks based on a Markov model where observed data serves as a data source to compute synthetic tracks.  The main 

variables it keeps track off are location (latitude and longitude), time and the statistics of maximum sustained wind speeds 

(vmax), forward speed (c) and heading (θ) as spatially-varying PDFs (Probability Density Functions). TC genesis is computed 170 

through randomly sampling the locations for each track from a spatially-varying PDF. TC termination is estimated based on 

PDFs describing the probability that a TC will terminate at a certain location and with a given wind speed. These spatially-

varying PDFs are all constructed based on historical input data and created on a 0.1-degree grid for the entire NIO.  

Furthermore, the number of TCs per year and the probable period within the year of TC generation are used to provide each 

track with a unique time within the synthetic year.  175 

 

At first, the 81 HTC tracks which have occurred in the BoB over a period of 48 years, with location and vmax, were extracted 

from the IBTrACS dataset (Figure 4). After calculating the PDFs of the different variables based on the HTC, TCWiSE was 

run to estimate 1,000 years of synthetic tracks both for current (Synthetic Tropical Cyclones Current climate, STCC) and future 

climates (Synthetic Tropical Cyclones Future climate, STCF). The estimation of the effects of future climate on TC was based 180 

on Knutson et al. (2015).  The authors estimated that the frequency of TCs per year may increase with 25.6% by the end of the 

century, for all TC categories (cat 1 – 5), defined as TC with wind speeds larger than 33 m/s, and according to an RCP 4.5 

scenario. Similarly, the intensity (i.e. maximum wind speed) may increase by 1.6%. In order to avoid creating sampling 

differences when creating the synthetic tracks for current and future scenarios separately, and making sure that only frequency 

and intensity would vary, the total amount of tracks for the STCF were generated first, resulting in 2191 tracks. Then, the first 185 

1745 tracks were selected as representative of 1000 years TC in the current climate (Figure 4). The ratio between these two 

values (2191/1745) represents the 25.6% TC frequency increase between future and current scenario. Similarly, according to 

Knutson et al. (2015), Similarly, the intensity (i.e. maximum wind speed) may increase by 1.6% for the future climate. . Only 



   

 

8 

 

 

after generating all synthetic tracks, the wind speeds for all time steps of the STCF tracks wereas reduced increased by 1.6% 

to represent the intensity increase for the future climate to create the wind fields of the STCC.  190 

 

 

 

Figure 4  Normalized wave height and number of tracks for HTC (black), STCC (blue) and STCF (red) at Charchenga, Bangladesh. 

2.3.2 Generation of pressure and wind fields 195 

For each HTC and STC track, time- and spatially-varying wind and pressure fields were generated based on the parametric 

wind model of Holland et al. (2010) using WES. The wind-pressure relations of Holland (2008) were used to compute the 

maximum pressure drop and create corresponding spatially-varying pressure fields. The calibrated coefficients for the NIO 

basin based on Nederhoff et al. (2019) were used to compute TC geometry (most probable Radius of Maximum Winds (RMW), 

and radius of gale force winds (R35)). TC asymmetry between the different quadrants was defined using Schwerdt et al. (1979). 200 

Furthermore, a constant inflow angle of 22 degrees based on Zhang and Uhlhorn (2012) was assumed and a wind decay after 

landfall was included based on Kaplan and DeMaria (1995).  

2.3.3 Hydrodynamic and wave numerical models 

The effect of each individual TC on storm surge and wave conditions were modelled using a coupled hydrodynamic (Delft3D 

FM) and wave model (SWAN), where water levels are exchanged every hour and the wave radiation stresses are communicated 205 

from SWAN to Delft3D FM as well. The resolution of the models was chosen in such a way to keep the running time 

sufficiently low to be able to run the entire set of thousands of tracks, and still allowing sufficient accuracy to simulate realistic 

results. For the hydrodynamic model, the finest grid size was equal to about 3 km nearshore and extracted from the GTSM 

(Global Tide and Surge Model; Muis et al., 2016) grid and forced with wind and pressure fields only from the TCs. Therefore, 

storm surge estimates is computed becauseare computed based on of both wind speed and atmospheric pressure. Tidal forcing 210 

was excluded from the model to be able to intercompare the impact of different TCs directly and focus on the wind- and 
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atmospheric pressure-driven surge components only, without the timing of the actual high- or low-water of the tide playing a 

role. In reality, non-linearities between tide and surge can, depending on the tidal range, have a large effect on the estimated 

total water level values (Chiu and Small, 2016).   

 215 

For the wave model, a constant resolution of 0.02 degrees (~2 km) was used to allow the simulation of the large number of 

tracks. This resolution is not sufficient to accurately model nearshore processes like wave shoaling and breaking. Therefore, 

only results in water depths deeper than 30 meters were used. The wave model was run in non-stationary mode, with a time 

step of 10 min, and forced by wind fields from the TCs only. No background winds or wave heights were included since these 

are not available for the synthetic tracks and they would alter the comparison with the historical tracks. For more details 220 

regarding the setup of the numerical models see Appendix A. Per DIVA section, the generated time-series of storm surge and 

significant wave heights per track were combined to generate 1000-year long time-series of STCs. Additionally, also a 48-year 

long time-series of storm surge and wave heights was created forcing the models with the HTC winds and pressures. 

2.3.4 Extreme value analysis 

An EVA was carried out on the extreme storm surge and wave heights using a POT-method and an exponential fit (Caires, 225 

2016). Extreme values were derived along the entire coastline at each DIVA-segment and based on the created time-series, for 

return periods corresponding to 10, 25, 50 and 100 years. The POT thresholds were automatically selected between the 99-

percentile, as minimum threshold, and the 99.9-percentile as maximum threshold, using the threshold stability criteria (Caires, 

2016). For the HTC, the 98-percentile was used as a minimum percentile to create stable EVA fits as the time-series contained 

a lower number of peaks. Additionally, 95% confidence intervals (CIs) were computed and based on the CI of a Generalized 230 

Pareto Distribution (GPD), by applying the relative values of the lower and upper estimates, relative to the point estimates. 

The point estimates are determined with as plotting position (xi, (n+1)/(lu (n+1-i)), where n is the sample size, i the order and 

lu the Poisson rate). Hereafter, for the comparison between the HTC/STCC/STCF results, the absolute values per DIVA section 

were averaged into larger regions, as described in Table 1.  

3 Results 235 

3.1 Verification synthetic cyclone tracks 

Time-series of 1,000 years of synthetic tracks for the BoB for current (STCC) and future climate (STCF) were generated using 

TCWiSE. Since the synthetic tracks were based on historical data, statistical properties for the STCC should be similar to those 

of the HTC. Nederhoff et al. (2021) demonstrated this through an application of TCWISE for the Gulf of Mexico, by comparing 

statistical properties for 10,000 years of synthetic tracks and those of 133 years of historical data.  240 
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Here, a similar analysis is presented for the BoB. Spatial patterns for genesis, occurrence and termination were compared 

qualitatively and quantitively using the correlation parameter R based on the similarity score of Kirchhofer (1974) in Figure 

B1 in the Appendix. The closer R is to 1, the more similar the spatial patterns of the HTC and subsequently generated STCC 

are. The regions with the highest probability of TC genesis in the historical data were found around the Andaman and Nicobar 245 

Islands in the middle of the BoB (Figure B1a and B1b). The spatial genesis patterns of the STCC appear very similar to those 

of the HTC, which is confirmed by the correlation parameter R being 0.88 [-]. For the probability of termination of TCs, the 

patterns appear similar as well (Figure B1c and B1d), but the magnitudes are more spread out for the STCC leading to a slightly 

lower R-value of 0.82. The main regions of TCs making landfall is around Eastern India, Bangladesh and Northern Myanmar. 

The highest TC occurrence is found in the middle of the BoB (Figure B1e and B1f). The yearly occurrences are quite well 250 

reproduced with an R-value of 0.68. The lower correlation is due to the spatial patterns of the synthetic tracks being more 

smoothed out compared to that of the HTC due to the much larger number of realizations. The maximum yearly probability of 

the HTC is about 0.4 (i.e. return period of 2.5 years), indicating that a particular region in the NIO is likely to be affected by a 

TC in average once every 2.5 years. The spatial coverage of the probability of genesis, probability of termination and yearly 

probability estimation over the whole BoB, as well as the similarities in spatial patterns between the HTC and the STCC, 255 

indicate that the STCC can be used as a basis for quantifying wave heights and storm surges along the entire coast.  

 

A comparison between the Cumulative Distribution Functions (CDF) of maximum wind speeds (vmax) for HTC and STCC, at 

nine locations along the BoB, is shown in Figure 5Figure 5. The functions are estimated based on TCs within a 200 km radius 

from each of the nine locations. Per location, the number of samples of timesteps of TCs within a 200 km radius are included; 260 

these are between a factor 6 and 34 larger for the STCC compared to HTC and including 1000 samples or more except for 

Mawlamyine (Myanmar). The CDFs of the other parameters (i.e. forward speed and heading) are presented respectively in 

Figure B2 and B3 of Appendix B. Additionally, a number of statistical parameters describing the differences between the two 

distributions are computed (i.e. absolute difference in maxima (∆max), normalized Mean Absolute Error (nMAE), the relative 

bias of the median value (bias), and the Root-Mean-Square Error (RMSE) of the whole CDF function).  Locations characterized 265 

by a higher HTC occurrence, as the ones in India and Bangladesh, generally have a lower absolute bias. For locations with a 

lower HTC occurrence, as for example Batticaloa (Sri Lanka) and Mawlamyne (Myanmar), the bias is larger and the CDFs of 

the HTC indicate a less smooth distribution as a result of the lower number of tracks included. The nMAE varies between 0.01 

and 0.06, according to the location, and the RMSE between 1 and 10 m/s, with the largest discrepancies seen at Batticaloa. At 

Batticaloa, there are a limited number of samples for the HTC with a clear distinction of tracks with a wind speed of either 270 

below 15 or above 25 m/s (Figure 5Figure 5), while for the STCC a more gradual distribution can be seen, including also 

realizations in between these values. Maximum wind speeds are generally higher for the STCC than for the HTC, meaning 

that more extremes are captured in the STCC, and with largest differences observed at Port Blair reaching up to 25 m/s. 

Smoother distributions of the parameters describing the TCs is one of the advantages of using synthetic tracks computed over 
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a long period of 1,000 years. Similar patterns are also visible for the forward speed,  and heading and central pressure (Figure 275 

B2, and  B3 and B4). In these cases, the RMSE for the forward speed ranges between 0.4 and 1.4 m/s (nMAE 0.1-0.5),  while 

the RMSE for the heading ranges between 11.3 and 50.5 degrees (nMAE 0 – 0.04) and the RMSE for the central pressure 

ranges between 2.3 and 16.4hPa (nMAE 0-0.08). Here, the central pressure values were not sampled in TCWiSE directly but 

are derived values after applying the Holland et al. (2008) estimates of pressure based on maximum wind speed. 

 280 

Based on these results it can be concluded that the first-order hazards of wind speeds are well resembled by the synthetic tracks 

created by TCWiSE for the current climate compared to historical observations. Therefore, the computed synthetic tracks and 

wind speed will be used for further analysis in the paper to estimate the resulting second order hazards (i.e. storm surge and 

wave height). 
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 285 

Figure 5 Comparison between CDFs of maximum wind speed (vmax) for HTC (black line) with 75% confidence intervals (dashed line) and 

STCC (blue line) at nine locations along the Bay of Bengal. The functions are estimated based on TCs within a 200 km radius from each 

location. The number of samples (timesteps of a TC) within the 200 km radius is indicated (#HTC and #STCC), alongside several statistical 

parameters comparing the HTC and STCC distributions (i.e. absolute difference in maxima (∆max), normalized Mean Absolute Error 

(nMAE), the relative bias of the median value (bias), and the Root Mean Square Error (RMSE) of the whole CDF function. The nine locations 290 
are shown in Figure 1.    

3.2 Convergence of synthetic results 

After validation of the synthetic cyclone tracks, spatially varying wind fields were created and used as input to force coupled 

Delft3D FM and SWAN models to estimate storm surge and wave heights along the BoB. It is first verified how dependent 

the estimated variables of wind speed, wave heights and storm surge are to the number of years of synthetic data included and 295 
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if/how fast the results converge. In Figure 6 an example for Charchenga (Bangladesh) is shown. To verify the convergence, 

99,000 EVAs were performed on the time-series of wind speeds, wave heights and storm surge to estimate the 100-year return 

period value, while increasing the “X” numbers of years extracted from the available 1000-year time-series (i.e. X = 10, 20, 

30, …, 1000 years). Hereby for every “X” numbers of years extracted, these years are selected randomly and combined into 1 

new time-series after which an EVA is computed. This is repeated 1,000 times per “X” numbers of years included to get a 300 

stable estimate. Estimates of the 2.5th, 50th and 97.5th percentiles for a 100-year return period value were computed at each 

iteration. Therefore, per X years of data included, the 95% CI spread of the estimated median value was calculated over the 

1000 realizations, which is shown in Figures 6a,c,e as green fill. The estimated median value of this spread is included as 

orange line. The same was calculated for the 2.5th and 97.5th percentile values, with their respective median values of the spread 

shown as grey and black lines respectively and with their combined total spread as gray fill. Figures 6a,c,e show that the more 305 

years of synthetic data are included, the smaller the CIs become and the more the median values converge to a stable value. 

The number of years of data to be included to reach this stable value depends on the variable that is analyzed.  

 

To quantify how quickly each of the different variables converge, the relative (%) ratio between the median value of the 50th 

percentile (i.e. computed based on X years of data) and the same median value based on 1000 years of data (i.e. here assumed 310 

to be the “true value”), is presented as orange lines in Figures 6b,d, f. These results show that, for all variables, the convergence 

is exponential. While the variables wind speed and wave heights already have a relative difference of less than 5% (orange 

dashed line) compared to the “true value” after about 380 and 350 years respectively, for the storm surge this takes about 450 

years. On the same figure, the range describing the difference in spreading of the median value (i.e. the size of the green fill in 

panels 6a, 6c, 6e) is also shown as green line. This range indicates how ‘wrong’ the estimated median values can be after 315 

including a certain number of years of data. After including 200 years of data, the 95% spread of the median values is still 15 

m/s for the wind speed, 5 m for the wave height and 0.8 m for the storm surge. This reduces more rapidly for the wave heights, 

and more slowly for the wind speed and storm surge. The difference in convergence can be explained by the related probability 

distribution for each of the variables, also known as ‘tail dependence’ in probability theory. For wind speed and storm surges 

the range of possible values is generally larger (type I tail = no upper limit), while this is more limited for wave heights (type 320 

III tail = with upper limit). This can be explained physically by the influence area of variables wind speed and resulting storm 

surge that is limited to close to the landfall location of a TC. Swell waves generated by a TC can travel hundreds of kilometers 

and have a larger area of influence, so that higher wave heights are more often reached, and the range of possible values is 

more limited. Since all 3 variables reach a relative difference of maximum 5% within 450 years and a maximum difference of 

2% (orange dotted line) within using 830 years of data, we can assume that results have converged after including the full 1000 325 

years of data and these are further used in this analysis for comparison with the HTC data.  
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Figure 6 Verification of the convergence of the 100-year return period computed wind speed, wave height and storm surge as a function of 

the number of years of STCC tracks included in the analysis. Panels (a), (c), (e), respectively refer to wind speed, wave height and storm 330 
surge.  The 95% spread (97.5th - 2.5th percentile) is indicated by the grey fill, the median value of the 97.5th percentile is shown as black line 

and the median value of the 2.5th percentile is shown as grey line. The green fill shows the 95% spread of the median values, while the orange 

line indicates the median of the median value. Panel (b), (d), (f) show the range of the 95% spread of the median value (green line) and the 
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relative difference with respect to the ‘true value’, being the estimate based on 1,000 years of STCC tracks (orange line), respectively for 

wind speed, wave height and storm surge. 335 

3.3 Evaluation of predicted storm surge and wave heights for historical versus synthetic tracks  

3.3.1 Local differences based on one location 

To compare the results of predicted storm surge and wave heights based on historical and synthetic tracks for the current 

climate, first an EVA is performed and discussed for one example location at Charchenga. Afterwards, results for all points 

combined are presented as general differences based on all modelled locations (Section 3.3.2), as well as differences between 340 

regions within the BoB (Section 3.3.3). In all figures, results for HTC are shown in black, for STCC in blue and for STCF in 

red.  

 

Focusing at the differences at one location first, Figure 7 shows a comparison of the EVA specifically for storm surge at 

Charchenga. The EVA for the HTC is based on 14 data points only, with just 4 points above a return period of 10 years. Given 345 

the length of the record equals 48 years, the maximum value of the dataset has an estimated return period of approximately 48 

years. Thus, in order to obtain values for longer return periods (e.g. 100-year return period) one needs to extrapolate from the 

fitted GPD. For the STCC, there are 100 data points that have a return period of at least 10 years and the maximum return 

period in the dataset is approximately 1000 years. This leads to a much smaller 95% CI for the STCC. In particular, the STCC 

has a 95% CI of 0.95 m for a return period of 100 years versus 2.34 m for the HTC.  350 

 

For return periods lower than 5 years the point estimates of the HTC and STCC convergence. This gives further confidence in 

the local validity of the STCC estimates, in addition to the verification as described in sections 3.1 and 3.2. The estimated 

storm surge for the 100-year return period are underestimated when using the HTC with respect to the use of the STCC. This 

underestimation is a result of a limited number of data points on which to fit the GPD (i.e. under sampling). This may lead to 355 

a different fit, as shown in Figure 7, where the lines of the HTC and STCC are approximately parallel but that of the STCC is 

shifted upwards (Figure 7Figure 7). The result is, for example, that the highest value modelled of the HTC, with a storm surge 

close to 2 meters, gets a return period estimate close to the length of the dataset of 48 years. However, based on the STCC 

results, this event has a return period of only 30 years. 

 360 

In the STCC the maximum modelled surge is 1.5 m higher than observed with historical events. Given that the CDF of the 

maximum wind speed for HTC and STCC are very similar and the maximum wind speed is only 4 m/s larger (Figure 5Figure 

5), this means that more disadvantageous (but statistically plausible) trajectories in terms of land fall location, heading and 

forward speed are included in the synthetic dataset compared to historic events, meaning that the worst event for this location 

may not have happened yet in recorded history. The same figure, but for wave heights, is shown in the appendix (Figure B5). 365 
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Figure 7 Example of an EVA for storm surge at Charchenga, Bangladesh, for HTC (black), STCC (blue) and STCF (red). The horizontal 

axis represents the return period in logarithmic scale, while the vertical axis represents the storm surge in meters. Shown are the data 

points with respective return periods (dots), the EVA fit (solid line) and the 95% confidence intervals (colored fills).  370 

3.3.2 General differences based on all locations  

Besides analyzing the difference in modelled values and CIs of the EVA at a specific location (Figure 7), this was also done 

for all 197 DIVA segments together, over the entire BoB. Figure 8 shows the results presented as scatter plots for different 

return periods both for storm surge (panel a) and wave height (panel b), where computed values based on HTC are shown on 

the x-axis and computed values based on STCC are shown on the y-axis. The figure shows that, with increasing return period, 375 

the Root-Mean-Square Difference (RMSD) also increases. Computed storm surges are in general slightly larger when using 

the STCC (increase of ~5 – 10% depending on the return period), while computed wave heights are in general larger when 

using the HTC (increase up to ~5% for larger return periods, though with more scatter). These increases for the HTC/STCC 

respectively are calculated as relative bias with respect to HTC, though since the values based on HTC are not the ‘true values’ 

(i.e. the length of the historical record is too short to reliably describe the current climate), this is referred to as a trend. In 380 

Figure 9, the same information is shown but for the 95% CI, computed as the difference between the 97.5th and the 2.5th 

percentile estimates. The 95% CI are significantly smaller for the STCC compared to the HTC with a trend between 60 and 

80%.  

 

 385 
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(a)  

(b)  

Figure 8 Scatterplots of computed storm surge (panel a) and wave heights (panel b), both resulting from HTC (x-axis) and STCC (y-axis), 

for return periods of 10, 25, 50 and 100 years, for all locations along the Bay of Bengal. Root-mean-square differences (RMSD) and trend 390 
(%) of STCC compared to HTC are also shown. 
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(a) 

(b) 

Figure 9 Scatterplots of 95% confidence intervals (97.5th minus 2.5th percentile) for storm surge (panel a) and wave heights (panel b), both 

resulting from HTC (x-axis) and STCC (y-axis), for return periods of 10, 25, 50 and 100 years, for all locations along the Bay of Bengal. 

Root-mean-square differences (RMSD) and trend (%) of STCC compared to HTC are also shown. 395 

3.3.3 Regional differences within the Bay of Bengal 

The differences between storm surge and wave heights computed based on HTC and STCC also vary spatially within the BoB. 

At locations where TCs occur more frequently, as for example Chittagong in Bangladesh (Section 3.3.1), the STCC results 

generally fall within the CI of the HTC, though still underestimations using the HTC underestimations are still presentpatterns 

as described in Section 3.3.1, for the predicted storm surge at Charchenga, can be observed (Figure 10Figure 10). At locations 400 

with a lower TC occurrence, as for instance Batticaloa (Sri Lanka), the use of HTC to estimate storm surge leads to much 

larger confidence intervals and lower values of the storm surge than the one predicted based on STCC, which could be an 

underestimation of the potential hazard using the HTC. Since the number of TCs making impact at these locations is very 

limited, TCs that could possibly hit these stretches of coast may not have occurred yet in the historical events. Therefore, using 
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a large synthetic dataset largely reduces the confidence intervals and improves the estimation of the coastal hazards of extreme 405 

events since a larger range of possible events is covered. For wave heights, the differences between using HTC and STCC are 

smaller (Figure 11Figure 11). This is because waves are in general a less local effect than storm surge with extreme waves at 

one location possibly being the result of a TC passing at a certain distance from a specific location, leading to more events for 

the HTC.  The estimated values for waves based on STCC also fall within the CI of the HTC estimates, while for storm surge 

this is not always the case.    410 

 

To visualize these regional differences, the estimated regionally-averaged values for storm surge and wave heights along the 

BoB based on the STCC are presented respectively in Figure 12Figure 12a and Figure 13Figure 13a as well as summarized in 

Table 2able 2 of section 3.5. The regions with higher values for storm surge and wave heights are also the regions with a higher 

TC occurrence. Furthermore, the presence of a wide shallow continental shelf as in front of Bangladesh contributes to further 415 

amplifying the storm surge as a result of a larger wind-driven setup. Therefore, the highest storm surge can be found there. 

Over the entire BoB, the average storm surge due to TCs is estimated to be 1.2 m for a 100-year return period event. For waves 

(Figure 13a) there is relatively less regional variability because wave impact due to TC is a less local event than storm surge, 

though still some differences are visible. The largest wave heights are again found in front of the coast of Bangladesh. The 

averaged deep-water significant wave heights over the entire BoB is 9.5 m for a 100-year return period. 420 

 

The relative differences in estimated storm surge and wave heights computed as HTC compared to STCC are shown 

respectively in Figure 12Figure 12b and Figure 13Figure 13b. The largest differences are observed for the storm surge, and in 

particular in the southern part of the BoB, with differences of more than 50%. The storm surge is relatively small here and can 

be both relatively larger/smaller for storm surge derived based on STCC than those derived based on HTC (see also Table 2). 425 

In the northern part of the BoB (i.e. Bangladesh) differences are relatively smaller (less than 20%), however the difference in 

magnitude is much larger (see also Table 2). Storm surge estimated based on STCC are here consistently larger than those 

derived based on HTC for all return periods.  

 

For the wave heights the differences are in general smaller. In the south of the BoB (Sri Lanka, Andaman and Nicobar Islands), 430 

the use of HTC leads to an underestimation of the predicted wave height with respect to the use of STCC for larger return 

periods, while along the main continent an opposite behavior can be seen, although with relatively minor differences (see also 

Table 2).  

 

Comparing the sizes of the CI per region as percentage of the computed absolute value based on STCC (of Figure 12Figure 435 

12a and Figure 13Figure 13a), the size of the CI for storm surge is much smaller based on the STCC (Figure 12c) as opposed 

to based on the HTC (Figure 12d). The maximum size for the STCC is 35% compared to the computed 100-year return period 
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value, while for the HTC the CI can be just as large as the computed value or higher (>100%). The same holds for the wave 

heights (Figure 13c), which is with 25% for the STCC much smaller than the 80% based on HTC (Figure 13d). 

 440 

 

Figure 10 Extreme value analysis for 9 different locations for storm surge based on HTC (black), STCC (blue) and STCF (red). Per panel 

both the fit (solid line) and 95% confidence intervals (background fill) are included. The horizontal axis is return period in logarithmic scale, 

the vertical storm surge in meters. Note: orientation of locations goes in clockwise direction through the Bay of Bengal from Batticaloa to 

Port Blair and y-axis varies per location. 445 
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Figure 11 Extreme value analysis for 9 different locations for significant wave height based on HTC (black), STCC (blue) and STCF (red). 

Per panel both the fit (solid line) and 95% confidence intervals (background fill) are included. The horizontal axis is return period in 

logarithmic scale, the vertical significant wave height in meters. Note: orientation of locations goes in clockwise direction through the Bay 

of Bengal from Batticaloa to Port Blair and y-axis varies per location. 450 
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(a) 
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(b) 

 

(c) 

 

(d) 

Figure 12 Panel (a): regionally averaged storm surges along the Bay of Bengal estimated based on STCC for return periods of 10, 25, 50 

and 100 years. Panel (b): regionally averaged relative difference (in %) of storm surges estimated based on HTC compared to STCC of panel 

a. Panel (c): regionally averaged size of confidence interval of storm surge based on STCC as percentage (%) of absolute value of STCC of 

panel a. Panel (d): regionally averaged size of confidence interval of storm surge based on HTC as percentage (%) of absolute value of 455 
STCC of panel a. 

(a) 
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(b) 

 

(c) 

 

(d) 

Figure 13 Panel (a): regionally averaged wave heights along the Bay of Bengal estimated based on STCC for return periods of 10, 25, 50 

and 100 years. Panel (b): regionally averaged relative difference (in %) of wave heights estimated based on HTC compared to STCC of 

panel a. Panel (c): regionally averaged size of confidence interval of wave heights based on STCC as percentage (%) of absolute value of 

STCC of panel a. Panel (d): regionally averaged size of confidence interval of wave heights based on HTC as percentage (%) of absolute 460 
value of STCC of panel a. 
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3.4 Effects of a changed future climate on storm surge and wave heights 

The effect that a future climate with changes in cyclone wind speed (intensity) and frequency, possibly resulting from climate 

change, could have on resulting storm surge and wave heights was investigated using synthetic tracks (STCF, Section 2.3.1). 

Using the projected TC frequency and intensity changes of Knutson et al. (2015) for the NIO under RCP 4.5 for 2100, it was 465 

quantified how changes in the first-order hazard (wind speed), could result into changes in the second-order hazards (storm 

surge and waves). In particular, it was estimated that, as a result of a TC frequency increase of 25.6% and an increase in 

maximum wind speed of 1.6%, this could lead to a relative increase in predicted storm surge of 11% and 6% respectively for 

return periods of 10 and 100 years and an increase of 9% and 6% for the wave height (see Figures 10 and 11 and Table 2). 

Therefore, the increase of storm surge and wave height could be larger than the increase in TC intensity only, but lower than 470 

the increase in TC frequency, as a result of a combined effect resulting from an increase in TC intensity and frequency.  If only 

the TC intensity increase would be relevant one would expect an increase of second-order hazards of 2.56%, since storm surge 

and wave heights are in the limit proportional to the wind speed squared. Besides, the CIs remain approximately the same as 

for the STCC case due to the already large number of samples for that scenario (see Figure B67 in Appendix B).  

3.5 Summary of the results  475 

To summarize the results, the values of Figures 12 and 13 are combined into Table 2able 2, and also including the results 

estimated based on STCF. The values are presented for return periods of 10 and 100 years, both as averaged values over the 

entire BoB and per region. Included are the CI values (2.5th, 97.5th), indicating that the CI are significantly smaller based on 

synthetic tracks. 

 480 

Table 2 Storm surge and significant wave heights estimated based on STCC (black), HTC (in bold) and STCF (in italic) including confidence 

intervals (2.5th, 97.5th), for return periods of 10 and 100 years, averaged over the entire BoB and per region. Regions are as in Table 1; Sri 

Lanka (whole country), India (TN = Tamil Nadu, AP = Andra Pradesh, OWB = Odisha & West Bengal and AN is Andaman and Nicobar 

Islands), Bangladesh (KB = Khulna & Barisal, CH = Chittagong) and Myanmar (RA = Rakhaing & Ayeyarwady, YM = Yangon & Mon). 

A '-' is displayed if no 10-year return period could be determined.  485 
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 Country Sri Lanka India       Bangladesh   Myanmar     

Variable Region SL IN-TN IN-AP IN-OD IN-AN BA-KB BA-CH MY-RA MY-YM 
Averaged over 
Bay of Bengal 

Storm STCC - - 0.11 0.47 0.03 1.26 1.1 0.47 0.37 0.67 

surge CI (-,-) (-,-) (0.11,0.11) (0.46,0.49) (0.03,0.03) (1.23,1.29) (1.07,1.13) (0.45,0.49) (0.35,0.40) (0.65,0.69) 

10-year HTC 0.05 0.11 0.17 0.38 0.03 0.96 1.03 0.35 0.44 0.46 

return  CI (0.04,0.07) (0.08,0.14) (0.11,0.25) (0.27,0.51) (0.03,0.04) (0.71,1.26) (0.79,1.29) (0.24,0.51) (0.33,0.62) (0.34,0.62) 

period STCF - 0.13 0.16 0.53 0.04 1.35 1.26 0.54 0.4 0.71 

  CI (-,-) (0.13,0.13) (0.16,0.16) (0.50,0.55) (0.03,0.04) (1.32,1.39) (1.22,1.30) (0.52,0.57) (0.38,0.43) (0.69,0.74) 

Storm STCC 0.28 0.43 0.52 1.23 0.11 2.57 2.38 1 0.72 1.19 

surge CI (0.23,0.34) (0.37,0.49) (0.45,0.61) (1.08,1.40) (0.09,0.13) (2.32,2.82) (2.17,2.61) (0.88,1.12) (0.61,0.86) (1.06,1.33) 

100-year HTC 0.12 0.28 0.52 0.89 0.06 2.09 2.25 0.81 0.82 1.04 

return  CI (0.05,0.20) (0.16,0.43) (0.22,0.91) (0.49,1.35) (0.04,0.10) (1.30,3.04) (1.51,3.07) (0.44,1.29) (0.50,1.33) (0.62,1.56) 

period STCF 0.34 0.48 0.59 1.34 0.12 2.72 2.49 1.1 0.76 1.28 

  CI (0.28,0.40) (0.42,0.54) (0.51,0.67) (1.18,1.51) (0.10,0.15) (2.49,2.97) (2.28,2.70) (0.98,1.23) (0.66,0.89) (1.14,1.42) 

Wave  STCC 1.71 5.58 5.39 5.75 2.79 6.98 7.14 6.11 2.17 5.45 

height CI (1.69,1.72) (5.47,5.69) (5.31,5.47) (5.60,5.92) (2.74,2.83) (6.86,7.10) (7.01,7.27) (6.00,6.22) (2.13,2.21) (5.35,5.56) 

10-year HTC 2.44 5.33 5.74 6.17 2.34 6.6 6.83 5.52 2.34 5.36 

return  CI (1.97,3.08) (4.64,6.15) (4.81,6.85) (5.07,7.44) (2.04,2.67) (5.30,8.24) (5.44,8.42) (4.40,6.82) (2.01,2.81) (4.38,6.51) 

period STCF 3.27 6.14 5.96 6.59 3.05 7.52 7.67 6.72 2.38 5.97 

  CI (3.20,3.33) (5.97,6.31) (5.84,6.09) (6.41,6.77) (2.97,3.13) (7.36,7.70) (7.50,7.85) (6.56,6.89) (2.31,2.46) (5.83,6.12) 

Wave  STCC 6.47 10.15 9.5 10.8 5.28 11.97 11.99 10.26 3.82 9.47 

height CI (5.90,7.08) (9.38,10.96) (8.77,10.29) (10.01,11.63) (4.75,5.83) (11.09,12.89) (11.17,12.85) (9.49,11.06) (3.39,4.31) (8.75,10.23) 

100-year HTC 4.55 9.43 10.77 11.97 3.87 12.07 12.73 10.49 4.08 10.04 

return  CI (2.83,6.89) (6.84,12.56) (7.29,14.93) (8.38,16.11) (2.79,5.06) (8.58,16.48) (8.97,17.03) (7.18,14.39) (2.85,5.84) (6.97,13.68) 

period STCF 6.99 10.67 10.25 11.56 5.73 12.64 12.48 11.11 4.18 10.1 

  CI (6.38,7.63) (9.94,11.43) (9.51,11.05) (10.74,12.44) (5.21,6.30) (11.78,13.59) (11.71,13.35) (10.33,11.93) (3.76,4.67) (9.38,10.88) 
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4 Discussion 490 

For clarity, discussion points have been grouped under three main topics, namely: the generation of synthetic cyclone tracks, 

numerical modelling of storm surge and waves, and effects of a changed future climate on tropical cyclones. 

4.1 Generation of synthetic tropical cyclone tracks  

As shown by the reduction in the CI in the POT/GPD fit (see e.g. Figure 10), the uncertainty in modeling TC induced second-

order hazards (i.e. storm surge and wave heights) is greatly reduced by using synthetic tracks.  However, this is a reduction in 495 

the uncertainty of the fitting parameters and thus estimates of return values and periods. Uncertainties regarding the wind 

parametrization and the correct representation of the climate in the underlying dataset of the TC persist. The former source of 

modelling uncertainties can be quantified by comparison with locally observed data. The latter, however, is a known unknown. 

TCWiSE is constrained to reproduce the statistics of the historical record. This means that the tool will not be able to (fully) 

reproduce physically-credible and statistically-unlikely tracks that are not recorded in observations. Additionally, in regions 500 

of rare TC occurrence, the lack of multiple tracks in historical records as basis of the climate representation creates an unknown 

of how accurate the generated STC tracks represent the ‘real climate’ here. It will resemble the observed historical data with 

more realizations, where the historical data could in itself be biased within the limited time span of the observations compared 

to the ‘real climate’. This cannot be verified but means that, in these regions, the results should be handled with care. However, 

for determining design criteria it is very common to use datasets of this (limited) time span.  505 

 

Also, the STC have been generated using TCWiSE only once and used for both current and future climate conditions. When 

rerunning TCWiSE multiple times the generated tracks will be different (though with the same statistics). The effect of this 

difference in sampling has not been investigated. Additionally, using the HTC data, only one method to generate STC tracks 

was used while many more methods exist besides TCWiSE, e.g. Vickery et al. (2000), Hardy et al. (2003), James and Mason 510 

(2005), Emanuel et al. (2006), Haigh et al. (2014), Nakajo et al., 2014, Lee et al. (2018) and Bloemendaal et al. (2020). 

AlsoFfurthermore, looking at physics-based methods rather than historical track-based methods (e.g. Emanuel et al., 2008, 

Mori et al. 2019) could also lead toyield different results. Using these methods could potentially lead to different results, though 

it is expected that the main patterns and general conclusions will remain the same. 

4.2 Numerical modeling of waves and storm surge 515 

The currently used numerical models still have a relatively coarse resolution near the shore (> 2 km) and therefore are not 

capable of representing nearshore bathymetric features and their effects on nearshore wave conditions (e.g. wave shoaling, 

refraction, breaking, etc.) or very local wind-induced setup changes to storm surge. The use of a higher resolution model would 

not be computationally feasible when run in combination with thousands of tracks and for a large domain as the BoB. For this 

reason, the estimated wave conditions were extracted at a water depth larger than 30 meters, under the assumption that waves 520 
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would not be affected by bathymetric features at this depth. Changing the extraction depth was not done for storm surge since 

this larger scale process generally is less sensitive to the exact extraction depth, though this being an assumptionwhich is 

thereforehowever an assumption ed in the model setup. 

 

As the scope of the paper lies on the comparison between hazards estimated by using historical and synthetic tracks and how 525 

the use of synthetic tracks can reduce the confidence intervals around the estimation of these hazards, the difference between 

simulated storm surge and wave heights versus observed values was not quantified. Combined with the limitations toof the 

model resolution nearshore, presented results should be considered as indicative results, not as values to be used directly in 

detailed design.  

 530 

Only wind and inverse barometric effect induced storm surge is considered for modeling extreme water levels, since tides are 

not included. This is justified by the purpose of the paper (i.e. comparison between hazards induced by historical and synthetic 

tracks) and makes the comparison easier. Nevertheless, tidal effects would be important for the simulation of the total extreme 

water levels (see e.g. Chiu and Small, 2016).  Additionally, river runoff due to extreme precipitation events could also increase 

local extreme water levels. 535 

4.3 Effects of changed changes in future climate on tropical cyclones 

The current approach of incorporating climate change induced effects via only including the change in TC intensity and 

frequency is still heuristic and limited in physical representation. Potential effects like changes in sea surface temperature that 

results in changes of the used statistics of locations of TC generation and termination, forward speed and heading are not 

incorporated yet. Also, changes to the central pressure of TCs are not forced directly, but only through the relation to the 540 

intensity increase in wind speed. Moreover, a multi-model ensemble of different climate models feeding into the model train 

could result in more robust findings.  However, tThe used cyclone frequency increase in this study based on Knutson et al. 

(2015) is inof a similar order of magnitude to that of e.g. Sugi et al.  (2017) that for the NOI describes a 21% frequency increase 

for category 3-5 TC and also other literature describing similar trends (e.g. Walsh et al., 2016). However, uncertainty remains 

as Aat the same time, for low wind speed categories Sugi et al. (2017) found a reduction in cyclone frequency. TherebyIn 545 

general, for specific regions/countries within the BoB the exact effects of climate change on TC are still argument of debate 

in literature, as for instance seen in the spread of the model results in Knutson et al. (2020). and, so far, historical data does not 

seem yet to suggest any clear local trend . Furthermore, Even in Knutson et al. (2015), different cyclone frequency increases 

are mentioned for different wind speed categories, not all being statistically significant. TheA 200% frequency increase for 

category 4-5 as mentioned in Knutson et al. (2015) would lead to even stronger increases of derived values of storm surge and 550 

wave height, but the likelihood of such an increase is uncertain and marked as statistically insignificant (Knutson et al., 2015). 

Also, so far, historical data does not seem yet to suggest any clear local trends. These predictions will also keep on being 
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extended and improved, as well as extended scenarios with stronger climate change effects based on RCP 8.5 rather than RCP 

4.5 onlyfor example to investigate more extreme relative changes (e.g. Bhatla et al. 2020; Knutson et al. 2020; Walsh et al., 

2019). For instance, Knutson et al. 2020 indicates, after comparing results from different studies, a small decrease in median 555 

frequency change for the NIO withfor categoriesy 0-5 combined, and a small frequency increase for more intense categoriesy 

4-5. For the intensity increase, the median increase is about 5% (Knutson et al. 2020). A large spread in projections remains, 

indicating that the results in this study following Knutson et al. (2015) alone should rather be interpreted with care.as a proof 

of concept on the possible effects of climate change, based on one of many possible and different future scenarios. 

5 Conclusions 560 

In this study, estimates of extreme storm surge and significant wave heights induced by tropical cyclones were derived along 

the Bay of Bengal, both based on historical (deterministic method) and synthetic tracks (probabilistic method). Synthetic 

tropical cyclones tracks were generated by means of the TCWiSE tool for a period of 1,000 years using the statistics of 

historical tropical cyclones as a basis but including a much larger number of realizations (i.e. 81 historical tracks versus 1745 

synthetic tracks). It is shown that the statistics of the first-order hazard of wind speed are well reproduced by the synthetic 565 

tracks. Consequently, created wind fields were used to simulate the second-order hazards, namely storm surge and wave 

heights, based on the coupled process-based models Delft3D FM and SWAN. The study shows that, for the Bay of Bengal, 

about 400 years of synthetic results are required to reach convergence in results for wind speed, wave heights and storm surges, 

with slight differences between the different variables. Since this is within 1,000 years, the synthetic tracks produce reliable 

estimates to compare the results based on historical tracks to. 570 

 

An extreme value analysis performed over the computed storm surge and wave heights showed that, for the Bay of Bengal, 

the 95% confidence intervals using the synthetic tracks are 70-80% smaller than the confidence intervals estimated based on 

historical tracks. The use of the deterministic method leads to an underestimation ranging between -31% and -13% for the 

estimated storm surge with return periods of 10 and 100 years and an under/overestimation between -2% and +6% for the 575 

wave heights for the same intervals. The use of synthetic tracks allows to better more robustly sample the full parameter space 

describing the tropical cyclones and to more accurately capture modelled extreme values, representing events with both more 

disadvantageous as advantageous trajectories which could statistically be plausible, but may not have happened yet historically. 

Hereby, regional differences occur where regions in the south of the Bay of Bengal (e.g. Sri Lanka), that generally have a 

lower probability/numbers of historical cyclone events, show the largest underestimation of extreme waves computed based 580 

on the deterministic method compared to the probabilistic method. For extreme storm surge there is more variability from 

region to region, indicating that also in regions with a higher tropical cyclone probability using a deterministic method, could 

lead to an under- or overestimation of predicted values. The probabilistic method of deriving tropical cyclone induced coastal 
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hazards using synthetic tracks of TCWiSE can thereby improve the derivation of local design values anywhere in the world 

where tropical cyclone hazards exist. 585 

 

Simulations were carried out both for current climate conditions as well as assuming changes in frequency and intensity of 

tropical cyclones, representing a future climate including possible effects of climate change. Literature values were used to 

describe possible changes in tropical cyclone frequency and intensity by the year 2100 and there was modelled what this could 

imply in terms of changes in storm surge and wave heights. By assuming a possible increase in tropical cyclone frequency of 590 

+25.6% and tropical cyclone intensity of +1.6%, results show that this could result into an increase in the second-order hazard 

storm surge ranging between +11% and +6%, respectively for return periods of 10 and 100 years, and +9% and +6% for the 

wave heights. Thus, the combination of an increase in tropical cyclone frequency and intensity could result into a much larger 

increase in second-order hazards (storm surges and wave heights) than the actual increase in tropical cyclone intensity only 

(first-order hazard wind speed), though lower than the increase in tropical cyclone frequency. However, the exact quantification 595 

of the effects of climate change on future tropical cyclones is still subject to debate and these differences are still smaller than 

the governing confidence intervals or differences in results when using a deterministic approach. Presented results regarding 

the future climate hazards therefore only provide a first insight into the possible mechanismschanges and should be interpreted 

as proof of concept. 

 600 

Since for local studies the followed approach of modeling thousands of synthetic tropical cyclones is (probably) not feasible 

considering that the (relatively coarse) numerical models of this study had a running time of about an hour per tropical cyclone, 

future work should focus on defining and reducing the needed number of synthetic tropical cyclone tracks or using faster 

methods to derive storm surge and wave height values (e.g. van Ormondt et al., 2021).  

Appendix A – Used software 605 

TCWiSE 

Code revision 66 of TCWiSE has been used, which is the same as described in Nederhoff et al. (2021). The open source tool 

is available at the following link: https://www.deltares.nl/en/software/tcwise/.  

Used settings: 

• basinid = ‘NI’ 610 

• dx = 0.1 

• source = ’usa’ 

• window_KDE = 300 

• window_dx = 15 

• nyears = 1000 615 

• exclude_land_map_KDE = 1 

• methodlandv_KDE = 2 

https://www.deltares.nl/en/software/tcwise/
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• deleteclosezeros_KDE = [1 1 0] 

• merge_frac = 0.5 

• dt = 3 620 

• coupled_allowed = [0 0] 

• decoupled_allowed = [1 1] 

• latitude_allowed = [0 0 0] 

• additional_landeffect = 1 

• coefficientdecay = 0.0155 625 

• termination_method = 1 

• stochastic_radii = [0 0] 

• wind_conversion_factor = 0.93 

• cutoff_windspeed = 0 

• cutoff_sst = 0 630 

 
Delft3D Flexible Mesh Suite 

The version of Delft3D FM used in this study is 1.2.8.62394. The Delft3D FM model is based on the grid of the GTSM (Muis 

et al., 2016), with the coarsest resolution of 25 km on the ocean and the finest resolution along the coast of about 3 km.  

 635 

The applied wind drag coefficient is not linearly increasing with wind speed. As described by Vatvani et al. (2012) the drag 

coefficient first increases linearly up to a wind speed of 25 m/s (with Cd,max = 0.005), then it decreases linearly again up to a 

wind speed of 50 m/s (with Cd = 0.0025). For even higher wind speeds the drag coefficient remains constant at this last value. 

 

SWAN 640 

The version of SWAN used in this study is 40.91AB. For the SWAN model a rectilinear grid with a resolution of 0.2 degrees 

was used (~2 km). The model was run in non-stationary mode with a time-step of 10 minutes. At the southern boundary at the 

open ocean no information was applied and therefore all waves were generated internally as a result of the forced cyclones. 

No background wind is included either for non-tropical cyclone conditions. A drag coefficient limiter was used with maximum 

value Cd,cap = 0.002 [-] as can be interpreted from (Zijlema et al., 2012) to limit the wave growth for very high wind speeds. 645 

For the whitecapping the formula of van der Westhuysen et al. (2007) was used. The bottom friction was set to a constant 

bottom friction coefficient χ=0.038 m2s-3 as advised in (Zijlema et al., 2012). 

Water levels and flow velocities were coupled with the wave model and updated every 30 min. The directional grid covers the 

full circle (360°), allowing for waves to travel to and from all directions. The number of directional bins was 36, which results 

in a directional resolution of 10°. The spectral grid covers a frequency range from 0.033 Hz to 0.5 Hz, allowing for wave 650 

periods from 2 to 33.3 s. The number of frequency bins is 30.  
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Appendix B – Additional figures results 

(a) 

  

(b) 

 

(c) 

 

(d) 
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(e) 

 

(f) 

Figure B1  Probability of TC genesis: (a) historical; (b) synthetic. Probability of TC termination: (c) historical; (d) synthetic. Yearly 

probability of a passing TC: (e) historical; (f) synthetic (STCC). Indicated error statistic is the correlation parameter R based on Kirchhofer  

(1974). 655 
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Figure B2 Comparison between CDFs of forward speed for HTC (black line) with 75% confidence intervals (dashed line) and STCC (blue 

line) at nine locations along the Bay of Bengal. The functions are estimated based on TCs within a 200 km radius from each location. The 

number of samples (timesteps of a TC) within the 200 km radius is indicated (#HTC and #STCC), alongside several statistical parameters 660 
comparing the HTC and STCC distributions (i.e. absolute difference in maxima (∆max), normalized Mean Absolute Error (nMAE), the 

relative bias of the median value (bias), and the Root Mean Square Error (RMSE) of the whole CDF function. The nine locations are shown 

in Figure 1.    
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 665 

Figure B3 Comparison between CDFs of heading direction for HTC (black line) with 75% confidence intervals (dashed line) and STCC 

(blue line) at nine locations along the Bay of Bengal. The functions are estimated based on TCs within a 200 km radius from each location. 

The number of samples (timesteps of a TC) within the 200 km radius is indicated (#HTC and #STCC), alongside several statistical parameters 

comparing the HTC and STCC distributions (i.e. absolute difference in maxima (∆max), normalized Mean Absolute Error (nMAE), the 

relative bias of the median value (bias), and the Root Mean Square Error (RMSE) of the whole CDF function. The nine locations are shown 670 
in Figure 1.    
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Figure B43 Comparison between CDFs of central pressure for HTC (black line) with 75% confidence intervals (dashed line) and STCC 

(blue line) at nine locations along the Bay of Bengal. The functions are estimated based on TCs within a 200 km radius from each location. 675 
The number of samples (timesteps of a TC) within the 200 km radius is indicated (#HTC and #STCC), alongside several statistical parameters 

comparing the HTC and STCC distributions (i.e. absolute difference in minima (∆min), normalized Mean Absolute Error (nMAE), the 

relative bias of the median value (bias), and the Root Mean Square Error (RMSE) of the whole CDF function. The nine locations are shown 

in Figure 1.    

 680 
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Figure B54 Example of an Extreme Values Analysis for significant wave height at Charchenga, Bangladesh, for HTC (black), STCC 

(blue) and STCF (red). The horizontal axis represents the return period in logarithmic scale, while the vertical axis represents the 

significant wave height in meters. Shown are the data points with respective return periods (dots), the EVA fit (solid line) and the 95% 

confidence intervals (colored fills). 685 

(a)  
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(b)  

Figure B65 Scatterplots of computed storm surge (panel a) and wave heights (panel b), both resulting from STCC (x-axis) and STCF (y-

axis), for return periods of 10, 25, 50 and 100 years, for all locations along the Bay of Bengal. Root-mean-square differences (RMSD) and 

trend (%) of STCF compared to STCC are also shown. 

 

(a) 
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(b) 

Figure B76 Scatterplots of 95% confidence intervals (97.5th minus 2.5th percentile) for storm surge (panel a) and wave heights (panel b), 690 
both resulting from STCC (x-axis) and STCF (y-axis), for return periods of 10, 25, 50 and 100 years, for all locations along the Bay of 

Bengal. Root-mean-square differences (RMSD) and trend (%) of STCF compared to STCC are also shown. 

Code availability 

The ORCA toolbox to derive POT GPD is not open source but available through: https://www.deltares.nl/en/software/orca/ 

The TCWiSE tool is available through: https://www.deltares.nl/en/software/tcwise/ 695 

The Delft3D Flexible Mesh Suite is available through:  https://www.deltares.nl/en/software/delft3d-flexible-mesh-suite/  
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