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Abstract 

While optical remote sensing has demonstrated its capabilities for landslide detection and monitoring, spatial and temporal 

demands for landslide early warning systems (LEWS) were not met until recently. We introduce a novel conceptual 10 

approach to structure and quantitatively assess lead time for LEWS. We analysed “time to warning” as a sequence; (i) time 

to collect, (ii) to process and (iii) to evaluate relevant optical data. The difference between “time to warning” and 

“forecasting window” (i.e. time from hazard becoming predictable until event) is the lead time for reactive measures. We 

tested digital image correlation (DIC) of best–suited spatiotemporal techniques, i.e. 3 m resolution PlanetScope daily 

imagery, and 0.16 m resolution UAS derived orthophotos to reveal fast ground displacement and acceleration of a deep–15 

seated, complex alpine mass movement leading to massive debris flow events. The time to warning for UAS and 

PlanetScope totals 31h/21h and is comprised of (i) time to collect 12/14h, (ii) process 17/5h and (iii) evaluate 2/2h, which is 

well below the forecasting window for recent benchmarks and facilitates lead time for reactive measures. We show optical 

remote sensing data can support LEWS with a sufficiently fast processing time, demonstrating the feasibility of optical 

sensors for LEWS. 20 

1 Introduction 

Landslides are a major natural hazard leading to human casualties and socio–economic impacts, mainly by causing 

infrastructure damage (Dikau et al., 1996; Hilker et al., 2009). They are often triggered by earthquakes, intense short–period 

or prolonged precipitation, and human activities (Hungr et al., 2014; Froude and Petley, 2018).  In a systematic review 

Gariano and Guzzetti (2016) report that 80 % of the papers examined show causal relationships between landslides and 25 

climate change. The ongoing warming of the climate (IPCC, 2014) is likely to decrease slope stability and increase landslide 

activity (Huggel et al., 2012; Seneviratne et al., 2012), which indicates a vital need to improve the ability to detect, monitor 

and issue early warnings of landslides and thus to reduce and mitigate landslide risk.  

Early warning, refers to a set of capacities for the timely and effective provision of warning information through institutions, 

such that individuals, communities and organisations exposed to a hazard are able to take action with sufficient time to 30 

reduce or avoid risk and prepare an effective response (UNISDR, 2009). According to UNISDR (2006), an effective early 

warning system consists of four elements: (1) risk knowledge, the systematic data collection and risk assessment; (2) the 

monitoring and warning service; (3) the dissemination and communication of risk as well as early warnings; and (4) the 

response capabilities on local and national levels. Lead time as defined in the context of LEWS is the interval between the 

issue of a warning (i.e. dissemination) and the forecasted landslide onset (Pecoraro et al. 2019) and thus crucially depends on 35 

time requirements in phases (1)–(3). The success of an EWS therefore requires measurable pre–failure motion (or slow slope 

displacement) to allow for sufficient lead time for decisions on reactions and counter measures (Grasso, 2014; Hungr et al., 

2014). 
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While remote sensing has been established for early warnings, remote sensing is not yet used for real early warnings of the 

onset of landslides in steep–alpine terrain (with a few exceptions), where geotechnical instruments are still preferred. 40 

Exceptions include terrestrial InSAR (Pesci et al., 2011; Walter et al. 2020) and terrestrial laser scanning with high repetition 

rates. However, repeated UAS (unmanned aerial systems) and optical satellite images (PlanetScope) with high repetition 

rates have so far not been applied for landslide early warning in steep-alpine catchments. In this regard, knowledge of sensor 

capabilities and limitations is essential, as it determines which rates and magnitudes of pre-failure motion can potentially be 

identified (Desrues et al., 2019). Our proposed framework refers to mass movements in steep–alpine catchments with 45 

significant pre–failure motion over sufficient time periods and thus excludes instantaneous events triggered by processes 

such as heavy rainfalls or earthquakes.    

This study presents a new concept to systematically evaluate remote sensing techniques to estimate and increase lead time 

for landslide early warnings in these catchments. We do not start from the perspective of available data; instead, we define 

necessary time constraints to successfully employ remote–sensing data to provide early warnings. This approach reduces to a 50 

small number the suitable remote sensing products with high temporal and spatial resolution. With these constraints, we 

investigated the application of data from satellites and UAS to allow the assessment of the data, after a spaceborne area–wide 

but low–resolution acquisition, into a downscaled detailed image recording. In so doing, we analysed the capability of these 

different passive remote sensing systems focusing on spatiotemporal capabilities for ground motion detection and landslide 

evolution to provide early warnings. 55 

 

Recently, the spatial and temporal resolution of optical satellite imagery has significantly improved (Scaioni et al., 2014) and 

has allowed substantial advances in the definition of displacement rates and acceleration thresholds to approach requirements 

for early warning purposes. This is essential since spatial and temporal resolution determine whether landslide monitoring is 

possible with the detection of displacement rates and approximate acceleration thresholds, both of which are lacking if 60 

information is based solely on post–event studies (Reid et al., 2008; Calvello, 2017). Landslide monitoring offers the 

potential to significantly advance landslide early warning systems (LEWS) (Chae et al., 2017; Crosta et al., 2017). 

Previously, high spatial resolution satellite data was obtained at the expense of a reduction in the revisit rates (Aubrecht et 

al., 2017). Consequently, the return period between two images increased, limiting ground displacement assessment and the 

range of observable motion rates. The number of useful images was further reduced due to natural factors such as snow 65 

cover, cloud cover and cloud shadows. High–resolution remote sensing data was long restricted due to high costs and data 

volume (Goodchild, 2011; Westoby et al., 2012). Today commercial very high resolution (VHR) optical satellites exist, but 

tasked acquisitions make them inflexible and very cost intensive, thus limiting research (Butler, 2014; Lucieer et al., 2014). 

There is a vast spectrum of available remote sensing data with high spatiotemporal resolution (Table 1). Complementary use 

of different remote sensing sources can significantly improve landslide assessment as demonstrated by Stumpf et al. (2018) 70 

and Bontemps et al. (2018), who draw on archive data and utilise different sensor combinations to analyse the evolution of 

ground motion. 

 

Table 1 Overview of different optical multispectral remote sensors with their corresponding resolution [m] and revisit rate [days]. The 
sensors are categorised into commercial and free data policy. 1free quota via Planet Labs Education and Research Program, 2PlanetScope 75 
Ortho Scene Product, Level 3B/Ortho Tile Product, Level 3A (Planet Labs, 2020b), 3reached end of life, 3/2020, archive data usable, 45 m 
Ortho Tile Level 3A (Planet Labs, 2020a), 50.5 m colour pansharpened, 6self–acquired. Source: (ESA, 2020). 

Sensor Temporal 
resolution [d] 

Spatial 
resolution [m] 

Free/ 
Commercial 

UAS flexible 0.08 F6 
WorldView 2 1.1 1.84 C 
WorldView 3 <1 1.24 C 
WorldView 4 <1 1.24 C 
GeoEye 2 5 1.24 C 
SkySat 1 1.5 C 
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The latest developments in earth observation programs include both the new Copernicus’ Sentinel fleet operated by the ESA, 80 

and a new generation of micro cube satellites, sent into orbit in large numbers by PlanetLabs Inc. These micro cube 

satellites, known as 'Doves'/PlanetScope (from now on referred to as PlanetScope satellites), and Sentinel–2 a/b offer very 

high revisit rates of 1–5 days and high spatial resolutions from 3–10 m, respectively (Table 1), for multispectral imagery 

(Drusch et al., 2012; Butler, 2014; Breger, 2017). These high spatiotemporal resolutions open up unprecedented possibilities 

to study a wide range of landslide velocities and natural hazards through remote sensing. Continuing data access is fostered 85 

by PlanetLabs and by Copernicus (via its open data policy) providing affordable or free data for research. Examples of 

landslide activity studies employing multi–temporal datasets based on this access to high spatiotemporal data include 

Lacroix et al. (2018), using Sentinel–2 scenes to detect motions of the 'Harmalière' landslide in France, and Mazzanti et al. 

(2020), who applied a large stack of PlanetScope images for the active Rattlesnake landslide, USA.  

As landslides tend to accelerate beyond the deformation rate observable with radar systems before failure, we concentrate on 90 

optical image analysis (Moretto et al., 2016). One advantage of optical imagery is its temporally dense data (Table 1) 

compared to open data radar systems with sensor repeat frequency every six days and revisit frequency between three days at 

the equator, about two days over Europe and less than one day at high latitudes (Sentinel–1, ESA). Optical data allows direct 

visual impressions from the multispectral representation of the acquisition target and the option to employ this data for 

further complementary and expert analyses. While active radar systems overcome constraints posed by clouds and do not 95 

require daylight, data voids can be significant due to layover or shadowing effects in steep mountainous areas (Mazzanti et 

al., 2012; Plank et al., 2015; Moretto et al., 2016). Moreover, north/south facing slopes are less suitable, thus limit the range 

of investigation (Darvishi et al., 2018). In general, sensor choice depends on the landslide motion rate with radar at the lower 

and optical instruments at the upper motion range (Crosetto et al., 2016; Moretto et al., 2017; Lacroix et al., 2019).  

However, a flexible, cost–effective alternative to spaceborne optical data are airborne optical images taken by UASs. Freely 100 

selectable flight routes and acquisition dates enable avoiding shadows from clouds and topographic obstacles as well as 

unfavourable weather conditions and summer time snow cover, all of which frequently impair satellite images (Giordan et 

al., 2018; Lucieer et al., 2014). UAS–based surveys provide accurate very high resolution (few cm) orthoimages and digital 

elevation models (DEM) of relatively small areas, suitable for detailed, repeated analyses and geomorphological applications 

(Westoby et al., 2012; Turner et al., 2015).  105 

In recent years, data provision for users has increased and today data hubs provide easy accessibility to rapid, pre–processed 

imagery. Nonetheless, technological advances can be misleading as they promise high spatiotemporal data availability, 

which frequently does not reflect reality (Sudmanns et al., 2019). One key problem is the realistic net temporal data 

resolution which is often significantly reduced due to technical issues, such as image errors and non–existent data (i.e. data 

availability, completeness, reliability). Other problems include data quality and accuracy in terms of geometric, radiometric 110 

and spectral factors (Batini et al., 2017; Barsi et al., 2018). Knowledge of the most useful remote sensing data options is vital 

for complex, time–critical analyses such as ground motion monitoring and landslide early warning. Timely information 

extraction and interpretation are critical for landslide early warnings yet few studies have so far explicitly focused on time 

criticality and the influence of the net temporal resolution of remote sensing data.  

In this investigation we propose both a conceptual approach to evaluating lead time as a time difference between the “time to 115 

predict” and the “forecasting time” and assess the suitability of UAS sensors (0.16 m) and PlanetScope (3 m) imagery (the 

latter with temporal proximity to the UAS acquisition) for LEWS. For this we have chosen the 'Sattelkar', a steep, high–

GeoEye–1 3 1.64 C 
Pléiades 1A/B 1 2.0 (0.5)5  C 
PlanetScope 1 3.0/3.1252 C/F1 
RapidEye3 5.5 54 F 
Sentinel–2 A/B 5 10 F 
Landsat 8 16 30 F 



 

4 
 

alpine cirque located in the Hohe Tauern Range, Austria (Anker et al., 2016). We estimate times for the three steps (i) 

collecting images, (ii) pre–processing and motion derivation by digital image correlation (DIC) and (iii) evaluating and 

visualizing. The results from the Sattelkar site – and from historic landslide events – will be discussed in terms of usability 120 

and processing duration for critical data source selection which directly influences the forecasting window. Accordingly, we 

try to answer the following research questions: 

1. How can we evaluate lead time as a time difference between the “time to predict” and the forecasting time for high 

spatiotemporal resolution sensors? 

2. How can we quantify “time to warning” as a sequence of (i) time to collect, (ii) to process and (iii) to evaluate 125 

relevant optical data? 

3. How can we practically derive profound “time to warning” estimates as a sequence of (i), (ii) and (iii) from UAS 

and PlanetScope high spatiotemporal resolution sensors? 

4. Are estimated “times to warning” significantly shorter than the forecasting time for recent well–documented 

examples and able to generate robust estimations of lead time available to enable reactive measures and evacuation?  130 

2 Lead time – a conceptual approach 

2.1. The conceptual approach 

Natural processes and their developments constantly take place independently, thus dictate the technical approaches and 

methodologies researchers can and must apply within a certain time period. For that reason, we hypothesise the forecasting 

window texternal is externally controlled, consequently the applicability of LEWS methods (tinternal) is restricted because they 135 

must be shorter than texternal. This approach is the framework of our time concept (Fig. 1).  

 

Figure 1 The novel conceptual approach for lead time, time to warning and the forecasting window for optical image analysis. 
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The forecasting window is started (texternal, green dashed outline) following significant acceleration exceeding a set 

displacement threshold, leading to a continuous process. Simultaneously with the forecasting window, time to warning 140 

(twarning) starts (grey outline). Time to warning is divided into a three–phase–process to allow time estimations for a 

comparative assessment of different types of remote sensing data. This process consists of the phases (1) time to collect, (2) 

time to process and (3) time to evaluate, each with their individual durations. Confidence in the forecasted event increases 

with time as process acceleration becomes more certain. Once a warning is released (orange box), the lead time begins (tlead) 

and is terminated by the following release and subsequent impact (red box). The lead time is the difference between the 145 

forecasting window and the time to warning. During the lead time, reaction time (treact) starts when appropriate counter 

measures are taken to prepare for and reduce risks ahead of the impending event, and ends with the final impact.  

The time to warning period (twarning) is defined by the time necessary to systematically collect data, analyse the available 

information and to evaluate it. Hence, the greater the lead time, the more extensive countermeasures can be implemented 

prior to the event. An imperative for an effective EWS, the required time to take appropriate mitigation and response 150 

measures has to be within the lead time interval (tlead) (Pecoraro et al., 2019) with tlead ≥ treact.  

2.2. Practical implementation of multispectral data in the concept 

The time to warning consists of a three–phase–process (see Sect. 2.1. and Fig. 1) to allow rough time estimations for a 

comparative assessment of different types of remote sensing data. Nevertheless, to realise this temporal concept an 

established, operating system is required, which includes reference data (DEM, previous results), experience from past field 155 

work and ready UAS flight plans with preparation for a UAS flight campaign, satellite data access, experience in the single 

software processing steps including final classification and visualisation templates and, if utilised for UAS, installed and 

measured ground control points. 

The first phase includes the collection of data starting from the acquisition by the sensor, the data transfer, image pre–

processing and provision to the end user. The user selects images online from the data hub, downloads and organises them. 160 

For a UAS campaign, the user must obtain flight permits, check flight paths and conduct the UAS flight. The second phase 

encompasses time to process for the complete data handling from the downloaded data to final analysis–ready image stacks 

in a GIS or a corresponding software. These preparatory steps may include image selection and renaming, atmospheric 

correction, co–registration, resampling and translation to other spatial resolutions and geographic projection systems, 

adjustments such as clipping, stacking of single bands into one multispectral image or the division into single bands, 165 

calculation of hillshade from DEM among others, depending on the requirements. Following this preparation, the data is 

processed with the appropriate software tools to derive ground motion, calculate total displacement and derive surface 

changes, e.g. volume calculations or profiles. In the third and last phase, time to evaluate, the results are compared to 

inventory data and, if available, ground truth data, displacement results of other sensors or different spatial resolutions, 

different time interval variations to observe changes in sensitivity to meteorological conditions. Additionally, filters may be 170 

applied to eliminate noise. Finally, the results are analysed and evaluated. In each phase quality management is carried out 

for data access and pre–and post–processing. In time to collect, the images must be selected manually prior to any download 

from the data hub, as its filter tool options on cloud and scene coverage are of limited help. Accordingly, the areal selection 

may be misleading as the region of interest (RoI) might not be fully covered, though the sought–for, smaller area of interest 

(AoI) is covered but not returned from the request. Concerning cloud filters, first, the filter refers to the RoI as a whole in 175 

terms of percentage of cloud coverage. The AoI can still be free of clouds or else be the only area covered by clouds in the 

total RoI. Therefore, an image is either not returned although usable, or returned but not useable. Second, clouds can create 

shadows for which no filter is available. As a result, affected images have to be manually removed by the user. Images which 

are of low quality due to snow cover have to be discarded, too. These actions indirectly represent first quality checks in the 

collection phase. In the following processing phase, the images in a GIS, are checked for quality and accuracy. Depending 180 
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on the data provider, some pre–processing such as radiometric, atmospheric and/or geometric corrections may have been 

conducted. During this phase, additional user–based steps will be checked if necessary. Finally, the results are compared to 

other data (e.g. DEM, dGPS), reviewed for their validity and may be supplemented by statistical evaluation. 

3 Study Site 

The Sattelkar is a steep, high–alpine, deglaciated west–facing cirque at an altitude of between 2 130–2 730 m asl in the 185 

Obersulzbach valley, Großvenedigergruppe, Austria (Fig. 2a). Surrounded by a headwall of granitic gneiss, the cirque infill 

is characterised by massive volumes of glacial and periglacial debris as well as rockfall deposits (Fig. 2b, c). Since 2003 

surface changes have taken place as evidenced by a massive degradation of the vegetation cover and the exposure and 

increased mobilisation of loose material. A terrain analysis revealed that a deep–seated, retrogressive movement in the debris 

cover of the cirque had been initiated (Anker et al., 2016; GeoResearch, 2018). High water (over)saturation is assumed to be 190 

causing the spreading and sliding of the glacial and periglacial debris cover on the underlying, glacially smoothed bedrock 

cirque floor forming a complex landslide (Hungr et al., 2014). Detailed aerial orthophoto analyses, witness reports and 

damage documentations indicate a steady increase in mass movement and debris flow activity over the last decade (Anker et 

al., 2016).  

 195 

 

 

 

In August 2014, heavy ongoing precipitation triggered massive debris flow activity of 170 000 m³ in volume, of which 

approximately 70 000 m³ derived from the catchment above 2 000 m. A further 100 000 m³ was mobilised in the channel 200 

within the cone. The consequence was that the Obersulzbach river was blocked leading to a general flooding situation in the 

catchment, resulting in substantial destruction in the middle and lower reaches (Fig. 3).  

Figure 2 (a) Overview map Austria (Österreichischer Bundesverlag Schulbuch GmbH & Co. KG and Freytag-Berndt & Artaria KG, 
Wien). (b) Sattelkar, 30.6.2019 with the debris cone of the 2014 debris flow event and (c) UAS orthophoto (04.09.2019, 1:1.000) showing 
boulder sizes of 5–10 m used for manual motion tracking, (d) active boulder blocks from the central AoI.  
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Figure 3 Obersulzbach valley, flood event September 2014. (a) Flooding situation in the Obersulzbach valley with the Sattelkar landslide 
cone deposit (image centre). (b) Flood area at the valley mouth in Sulzau and Schaffau. The Salzach river is at the bottom of the image. 205 
©Salzburger Nachrichten/Anton Kaindl. 

The Sattelkar has been the focus of international research projects such as “PROJECT Sattelkar“ (GeoResearch, 2018) and 

AlpSenseBench (TUM, Chair of Landslide Research, 2020) since 2018. In 2015 preliminary findings revealed a mass 

movement coverage of 130 000 m² with approximately 1 mio. m³ of debris and displacement rates of more than 10 m a-1. 

The debris consists of boulders up to 10 m in diameter (Fig. 2c, d) allowing visual block tracking and delimiting the active 210 

process area. High displacement was measured between 2012 and 2015 with up to 30 m a-1. 

In the Sattelkar cirque, several monitoring components are installed to provide ongoing and long–term monitoring. Nine 

permanent ground control points (GCPs) measured with a dGPS to provide stable and optimal conditions to derive 

orthophotos from highly accurate UAS images (GeoResearch, 2018). A total number of 15 near surface temperature loggers 

(buried at 0.1 m depth) recorded annual mean temperatures slightly above the freezing point (1–2 °C) in the period 2016 to 215 

2019. Ground thermal conditions at depth react with significant lag times to recent warming and therefore are primarily 

determined by climatic conditions of the past (Noetzli et al., 2019). Significantly cooler climatic conditions in previous 

decades and centuries (Auer et al., 2007) thus likely contributed to the formation of (patchy) permafrost at the Sattelkar 

cirque. Recent empirical–statistical modelling of permafrost distribution in the Hohe Tauern Range confirms possible 

permafrost presence at the study site (Schrott et al., 2012).  220 

  

The Sattelkar is a suitable case study as it is in the early stages of the landslide development and thus fits best to this 

conceptual approach. Here, processes take place on time scales appropriate for long–term observation to provide sufficient 

warning time. The active part of the cirque has accelerated in recent years allowing the analysis of EWS concepts based on 

multispectral optical remote sensing data supported by complementary block tracking. 225 

4 Materials and Methods 

4.1. Optical imagery 

Optical satellite imagery is more appropriate for high deformation studies than radar applications due to the high spatial 

resolution as well as the short time span between acquisitions (Delacourt et al., 2007). Although the west–facing slope is 

favourable for the application of radar derivatives (InSAR/DInSAR), the choice to use optical imagery is based on the 230 

observed high displacement rates, which cause decorrelation when using radar technologies as they are more sensitive than 

optical technologies. Complex and/or large displacement gradients make the phase ambiguity difficult to solve for radar 

interferometry (Kääb et al., 2017). Revisit times of current radar satellites (e.g. Sentinel–1) are longer than those of optical 

satellites, and if time periods between image acquisition become too long, ground motion may accumulate such that the 
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displacement is too high to be measured. Several studies on displacements of faults and landslides have shown the potential 235 

of optical data to provide detailed displacement measurements based on image correlation techniques (DIC) (Leprince et al., 

2007; Rosu et al., 2015). A further advantage of optical images for geomorphological processes in steep terrain is their 

viewing geometry (close to nadir) (Lacroix et al., 2019). Here we employ DIC to compare the spatiotemporal resolution of 

multispectral optical imagery (UAS and PlanetScope) and to assess its suitability for early warning purposes. UAS images 

offer excellent spatial resolution and accuracy at the centimetre scale (Turner et al., 2015) and complement large scale 240 

satellite or airborne acquisitions (Lucieer et al., 2014). PlanetScope imagery provides the highest temporal resolution among 

available sensors with daily acquisitions, guaranteed data availability, and free and open access for research purposes. In this 

study the PlanetScope Analytic Ortho Scene SR (surface reflectance) imagery (16–bit, geometric–, sensor– and radiometric 

corrections) was employed (Planet Labs, 2020b) and was supported by the Planet Labs Education and Research Program. 

4.2. Data availability of PlanetScope 245 

Research on the availability and usability of PlanetScope imagery was conducted on the Planet Explorer data hub for the 

time span from the beginning of April to the end of October in 2019, as during these months snow cover should be 

negligible. Filter parameters were solely set for 4–band PlanetScope Ortho Scenes and the Sattelkar AoI. In order to obtain 

all available images, no filters (e.g. sun azimuth, off nadir angle) were applied. We defined four categories i) meteorological 

constraints due to snow cover, cloud cover and cloud shadow; ii) image (coverage) errors made by the provider, iii) no data 250 

availability and iv) the remainder of usable data (Table 2). The output request was evaluated according to the defined 

categories and was compared to the provider’s guaranteed daily image provision, which is comprised of 213 days for the 

time period (01.04.2019–31.10.2019). We calculated percentages for the above categories based on days per month as well 

as a seven–month sum and percentage average. The availability analysis did not include an examination of the data with 

regard to its spatial usability: positional accuracy and/or image shifts.  255 

 

 

Table 2 PlanetScope 4–band data availability and usability for Sattelkar AoI for April to October 2019. 

Month   
April 

(%) 

May 

(%) 

June 

(%) 

July 

(%) 

August 

(%) 

September 

(%) 

October 

(%) 

7 month 

sum 

7 month 

avg (%) 

usable   0.0 % 0.0 20.0 22.6 9.7 13.3 9.7 23 10.7 
unusable   

         

 cloud cover/shadow 16.7 6.5 0.0 19.4 32.3 16.7 9.7 31 14.5 
 snow cover 10.0 0.0 33.3 0.0 0.0 3.3 3.2 15 7.0 
 image errors 23.3 25.8 16.7 12.9 29.0 20.0 19.4 45 21.0 
 no coverage/data voids 10.0 12.9 16.7 32.3 16.1 20.0 32.3 43 20.1 
 not available no upload 40.0 54.8 13.3 9.7 12.9 26.7 25.8 56 26.2 
 

Unfavourable meteorological influences of cloud cover/shadow and snow cover affected up to 32.3 % and up to 33.3 %, 260 

respectively, on all 213 days; on average 14.5 % and 7 % of the days were not usable (Table 2). For 10 days in June snow 

influence had the greatest negative share (33.3 %), for April there were three days of snow coverage and the months 

September and October each had one day of snow coverage. Cloud cover/shadow exerted a higher impact on data usability 

by 14.5 %. Problems on the part of PlanetLabs made much of the data unusable due to image errors; between four and nine 

images per month were not usable (21 %). On average for 26.2 % of the analysed time period no image data was available. 265 

In this seven–month period, 43 images (20.1 %) had data voids or did not cover the AoI, thus the overall usability is limited 

to about 11 %.  

4.3. Data Acquisition and Processing 

In line with the concept in Fig. 1 (Sect. 1), the following processing steps are categorised and described.  
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(1) tcollect: UAS data acquisition was preceded by detailed flight route planning and checks of local weather and snow 270 

conditions. UAS flights were carried out with a DJI Phantom4 UAS on 13.07.2018, 24.07.2019 and 04.09.2019 (see Table 3, 

Fig. 4, Fig. 6b, c). 

Table 3 Acquisition dates of UAS and PlanetScope images, in chronological order. 

Acquisition set UAS PlanetScope 
(1) 13.07.2018 02.07.2018 (a), 19.07.2018 (b) 
(2) 24.07.2019 24.07.2019 
(3) 04.09.2019 04.09.2019 
 

For each acquisition, the total area was covered by four flights which were started on different elevations (Table 4). Flight 275 

planning was done with UgCS maintaining a high overlap (front: 80 %, side: 70 %) and a target ground sampling distance 

(GSD) of 7 cm. The area covered was approximately 3.4 km² and with a flight speed of about 8 m/s total flight time took 

3.5 hours. The images were captured in RAW format. In the Planet Explorer Data Hub, PlanetScope Ortho Scenes were 

selected for usability; imagery affected by snow cover, cloud cover, cloud shadow and partial AoI coverage was discarded 

(Table 5). 280 

 

Table 4 UAS Flight plans. 

Flight plan 

parts 

Length of 

flightpath [km] 

Flight time 

[min] 

Passes No. of 

images 

GSD 

[cm] 

Altitude start 

point [m] 

Highest flight 

position [m] 

Lowest terrain 

point [m] 

Top 6.8 17 6 121 7 2630 3120 2365 

Middle 7.5 19 6 135 7 2200 2682 1820 

Low 1 7.3 17 6 130 7 1768 2115 1620 

Low 2 5.6 14 6 81 7 1768 2110 1620 

Total 27.2 67 24 467 7   3120 1620 

 

Table 5 Planet Scope Ortho Scenes. 

Acquisition 
Date 

Acquisition 
time (local) 

Identifier Incidence Angle  
[deg] 

02.07.2018 11:34 20180702_093434_0f3f_3B_AnalyticMS_SR 2.18E-01 

19.07.2018 11:35 20180719_093512_0f3f_3B_AnalyticMS_SR 2.36E-01 

24.07.2019 11:42 20190724_094200_1014_3B_AnalyticMS_SR 5.57E+00 

04.09.2019 11:36 20190904_093632_0e20_3B_AnalyticMS_SR 4.24E+00 
 285 

(2) tprocess: In phase two (time to process) the PlanetScope images were visualised in QGIS. Thereafter, a second selection 

(visually with the ‘Map Swipe Tool’ plugin) from the downloaded images was filtered for errors of location, inter–tile shift 

and shifts in the individual bands which were previously not clearly discernible in the online data hub. The final selection of 

images was made based on the temporal proximity to the UAS data to guarantee the best comparability. For acquisition set 

(1), there are two PlanetScope images (02.07.2018 and 19.07.2018) which differed from the UAS acquisition date 290 

(13.07.2018) by 11 and 6 days, respectively. For acquisition sets (2) and (3), PlanetScope and UAS acquisition dates were 

identical (24.07.2019 and 04.09.2019). The acquired data sets were categorised in chronological intervals I/Ia/Ib and II (see 

Fig. 4).  
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Figure 4 Acquisition dates of UAS and PlanetScope images within the investigated time period. Calculated interval I for UAS images 295 
(13.07.2018–24.07.2019, 376 d) and interval Ib for PlanetScope images (19.07.2018–24.07.2019, 370 d), interval II for UAS and 
PlanetScope images (24.07.2019–04.09.2019, 42 d). Note: Ia PlanetScope interval was discarded. 

 

The UAS images in RAW format were modified using Adobe Exposer to improve contrast, highlights, shadows and clarity. 

Thereafter, they were exported as JPG (compression 95 %) and processed with Pix4Dmapper to 0.08 m resolution and 300 

orthorectified based on nine permanent ground control points (GCP, 30 x 30 cm). These were repeatedly (1000 

measurements/position) registered with the TRIMBLE R5 dGPS and corrected via the baseline data of the Austrian 

Positioning Service (APOS) provided by the BEV (Bundesamt für Eich– und Vermessungswesen). Horizontal root–mean–

squared errors (RMSE) range from 0.05 m to 0.10 m for vertical RMSE. These GCPs were employed for georeferencing and 

further rectification of all UAS surveys.  305 

Next, the data was clipped to a common area of interest (AoI) and resampled with GDAL and the cubic convolution method 

to 0.16 m to enhance processing time and increased reliability of image correlation. PlanetScope Satellite images were co–

registered in Matlab relative to a reference image (https://gitlab.lrz.de/tobi.koch/satelliteregistration.git). A feature point 

detection step was applied to estimate a geometric similarity transformation between the reference (master) and all target 

(slave) image pairs excluding the AoI with its terrain motion. Thereafter feature point outliers were statistically removed 310 

(RANSAC) and the similarity transformation of the slave images to the master image was performed. After removing the 

outliers, more than 500 feature matches were found for the entire image pair dataset. The mean distance of transformed inlier 

feature points from the target image to their corresponding feature matches in the reference image ranged between 0.6 and 

0.8 pixels, confirming the high registration accuracy (see OSM Fig. 14). We used digital image correlation (DIC) to measure 

the displacement for the active landslide body of the Sattelkar and to assess the suitability of the PlanetScope and UAS data. 315 

This method employs optical and elevation data and calculates the distance between an image pair, based on the spatial 

distance of the highest correlation peaks between an initial search and a final reference window. The result provides 

displacement and ground deformation in 2 D on a sub–pixel level. COSI–Corr (Co–registration of Optically Sensed Images 

and Correlation), a widely used software in landslide and earthquake studies was used for sub–pixel image correlation 

(Stumpf, 2013; Lacroix et al., 2015; Rosu et al., 2015; Bozzano et al., 2018). COSI–Corr is an open source software add–on 320 

developed by CALTECH (Leprince et al., 2007), for ENVI classic. There are two correlators; in the frequency domain based 

on FFT algorithm (Fast Fourier Transformation) and a statistical one. Applying the more accurate frequential correlator 

engine, recommended for optical images, different parameter combinations of window sizes, direction step sizes and 

robustness iterations were tested. Parameter settings include the initial window size for the estimation of the pixelwise 

displacement between the images and the final window size for subpixel displacement computation in x, y; a direction step 325 

in x, y between the sliding windows; and several robustness iterations (Table 6). We utilised recommended window sizes as 

suggested by Leprince et al. (2007) and Bickel et al. (2018). Step size one showed good results while keeping the original 

spatial resolution for the output; robustness iterations of two to four were sufficient for our purposes. Initial and final 

window sizes were systematically tested (see Table 6). For computing a state–of–the–art powerstation was employed (AMD 

Ryzen 9 3950X 16–core processor, 3.70 GHz, 128 GB RAM). 330 

 

Table 6 COSI–Corr input parameters for intervals of UAS and PlanetScope. 

Sensor Resolution Input interval Initial window 
[pix] 

Final window 
[pix] 

Robustness 
iteration 

Step size 

UAS  
[0.16 m] 

I: 13.07.2018–24.07.2019 
II: 24.07.2019–04.09.2019 

128x128 32x32 2 1x1 

PlanetScope 
[3.0 m] 

Ib: 19.07.2018–24.07.2019 
II: 24.07.2019–04.09.2019 

64x64 32x32 4 1x1 
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The results of each correlation computation returns a signal–to–noise ratio map (SNR) and displacement fields in east–west 

and north–south directions. These results were exported from ENVI classic as GTiff and the total displacement was then 335 

calculated with QGIS.  

(3) tevaluate: In the last phase (time to evaluate) the results of various parameter settings were compared in QGIS and ArcGIS 

along with different combinations of visualisation. Displacement below a 4 m threshold was discarded from the PlanetScope 

datasets due to aberrant values (noise, outliers). The threshold definition was defined on (i) the value distribution in both the 

total displacement and the corresponding SNR result, and (ii) a visual comparison of the maps for the total displacement and 340 

the SNR. This definition allowed us to identify outliers and unlikely displacement. Apart from this threshold no other filters 

were employed, and we kept the output raw (see for raw DIC on PlanetScope OSM Fig. 13). Very few inconsistencies were 

present in the UAS–derived displacement results, which were accepted without modification.  

Additional analyses were performed to estimate the DIC outputs of both, the UAS orthophotos and PlanetScope satellite 

imagery. Visual tracking of 36 single blocks, identifiable in the UAS orthophoto series allowed deriving direction and 345 

amount of movement; this supported the confirmation process for (i) the total displacement and (ii) the results of automated 

and manual tracking. In the next section we present this approach only for time interval II.  

5. Results 

In Sect. 5.1. we present ground motion results from DIC for the original input resolution for i) UAS, 0.16 m and ii) 

PlanetScope, 3 m input resolution based on parameters in Table 6. In Sect. 5.2. DIC results for UAS, 0.16 m are analysed 350 

with regard to displacement of visual single block tracking. Finally, in Sect. 5.3. required times for tcollection, tprocessing and 

tevaluation for each sensor are presented. 

5.1. Total displacements 

 

Figure 5 Results of DIC total displacement of orthoimages UAS for (a) and (b) at 0.16 m resolution and PlanetScope (c) and (d) at 3 m 355 
resolution. Time intervals for UAS image pair (a) I (13.07.2018–24.07.2019, 376 d), (b) II (24.07.2019–04.09.2019, 42 d), for 
PlanetScope (c) Ib (19.07.2018–24.07.2019, 370 d) and (d) II (24.07.2019–04.09.2019, 42 d).Explanation of inconsistently tracked 
features (a), a and b, and (b), b and the northwestern landslide head, are described in 5.2. The solid black line represents the boundary of 
the active landslide based on field mapping. Background: hillshade of Lidar DEM, 1 m resolution (© SAGIS). 
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Figure 5a and Fig. 5b show the total displacements derived from UAS orthophotos at 0.16 m resolution for time intervals I 360 

and II (see Table 6). Apart from several minor displacement patches, no motion is visible outside the active body in either 

period. Time interval I (376 d) (Fig. 5a) shows mean displacement values from 6 to 14 m for a coherent area in the eastern 

half of the lobe from the centre (c) to the eastern boundary of the active area. The highest displacement rates (up to 20 m) are 

observed within small high–velocity clusters in the northwest section (d). Lower velocities occur along the southern 

boundary (e, f), ranging from zero to 6 m with smooth transitions. Ambiguous, small–scale patterns with highly variable 365 

displacement rates are present in the western half (a) and along the northern boundary (b). No motion is detected along the 

western fringe (i.e. at the landslide head) which is 20 m in width. South of the landslide (g) there is a small patch of minor 

displacement with continuous (up to 3.5 m) and ambiguous signals. Furthermore, we observed small–scale patterns of 

ambiguous signals in the east (j) and in the west of the active area in the drainage channels (h, i).  

Time interval II (42 d) (Fig. 5b) shows great similarity to time interval I with ambiguous signals in the same areas such as 370 

the drainage channels (h, i) and within the western half of the active area (b). In contrast to interval I (Fig. 5a), within the 

active area a homogenous higher velocity patch (up to 6 m) near the landslide head is evident (a). In the eastern half large 

homogenous patches extend from the landslide centre (c) to the root zone (d) showing coherent displacement values of zero 

to 4 m. During this shorter time interval II, no displacement is detected along the south eastern boundary (e) and for large 

parts of the root zone (f) previously covered in I. Similar to I, the landslide head has a 20 m rim free of signal (also see Fig. 6 375 

x, y). In the central part of the lobe (c) total displacements are significantly reduced. 

Figure 5c and Fig. 5d demonstrate total displacement for similar time intervals to UAS (see Table 3 and Fig. 4). For 

interval Ib (370 d) (Fig. 5c) wide fringes with no motion were detected around an actively moving core area, which consists 

of small–scale clusters with variable total displacement in the western part, coherent high velocities in the middle, and 

coherent low velocities east of this core area. Outside the landslide, northeast and immediately south (j), high–velocity 380 

patches are observed.  

In interval II (42 d) (Fig. 5d) the detected displacement is restricted to the western half of the landslide (a) and shows the 

same significant fringes with no motion as in I. Compared to interval I the motion pattern of this core area is more 

homogeneous with increasing displacement towards the east. Outside the active area several patches show medium to high 

total displacement, the largest of which is located 300 m northwest of the landslide (i).  385 

5.2. Single Block Tracking  

Figure 6a illustrates the total displacement derived from the UAS data at high resolution (0.16 m) for interval II (42 d). UAS 

orthoimages were used to manually measure single block displacement for 36 clearly identifiable boulders on the landslide 

surface. Block displacements of 1 m are visible in the eastern part (f), whereas DIC does not reveal any displacement below 

1 m. Boulder tracks longer than 2 m in the central and western part of the landslide are reflected by DIC–derived 390 

displacement values. Near the front a 6 m displacement of one block (a) is represented in the DIC result. The highest values 

(6 m, 10 m, 16 m) were observed in regions where DIC delivered ambiguous, small–scale patterns of highly variable 

displacements. Displacement vectors show consistent bearings in the downslope direction of the landslide motion for 

homogeneous areas of the DIC result (a, c, d); there are short vectors with chaotic bearings in areas of ambiguous patterns 

(b), some of which are pointing upslope. The vectors show no displacement in stable areas outside the active area and where 395 

no DIC signal is returned. 
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Figure 6 (a) Displacement derived from UAS data at 0.16 m resolution for interval II (24.07.2019–04.09.2019, 42 d) combined with 
boulder trajectories (in metres) manually measured in the UAS orthophotos in the same time period. Displacement vectors showing 
landslide flow (black). Origin of inconsistently tracked features (a) for b and the northwestern landslide head are described in 5.2. The 400 
solid black line represents the boundary of the active landslide based on field mapping. Background: UAS hillshade, 24.07.2019 (0.08 m), 
orientation -3° from north. UAS orthophotos at 0.16 m resolution for the master (b) and slave image (c) of the corresponding time interval. 

 

5.3. Time required for collection, processing and evaluation 

In Sect. 2 we introduced a novel concept to extend lead time, consisting of three phases within the warning time window (see 405 

Fig. 1). This concept is based on DIC results, thus every step comprised in each phase has been previously undertaken. On 

this basis, knowledge of required time for a further process iteration of the three phases is given.  

Time required for collection, processing and evaluation of UAS and PlanetScope data are estimated and summed in Fig. 7. 

PlanetLabs specifies 12 hours from image acquisition to the provision in the data hub, which includes to a large amount data 

pre–processing (Planet Labs, 2020b). Adding two hours for the selection, order and download process, we assume that time 410 

required for the collection phase is approximately the same for both sensors, with 14 hours for PlanetScope and 12 hours for 
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UAS. With regard to the time needed for the processing phase, the sensors differ with UAS requiring 17 hours and 

PlanetScope five hours. Time for the evaluation phase is estimated to be about two hours. In sum, twarning for UAS is 

approximately 31 hours compared to 21 hours for PlanetScope.  

 415 

Figure 7 Time to warning is composed of three phases: time to collect, to process and to deliver. Time to warning (subsequent to 
acceleration) is 21 h for PlanetScope and 31 h for UAS. Thus, any hazard process that takes longer than 21/31 h to prepare the release and 
impact can be forecasted. 

6 Discussion 

To systematically analyse the predictive power of the UAS and PlanetScope data, we will (i) evaluate ambiguous signals, 420 

error sources and output performance, (ii) assess obtainable temporal and spatial resolution and (iii) derive a systemic 

estimate of the minimum obtainable warning times. 

6.1. Error sources and output performance 

To evaluate error sources and output performance, we compared results of digital image correlation results from optical data 

with (i) high resolution UAS orthophotos, (ii) mapped mass movement boundary and (iii) visual block tracking for UAS 425 

orthophotos. The approximately one year evaluation period encompassed all seasons, hence freezing/thawing conditions and 

a wide range of meteorological influences, e.g. thunderstorms and heavy rainfall, are included. The two investigated time 

intervals are I/Ib and II, covering 376/370 days and 42 days (typical high–alpine summer season), respectively (Fig. 4). 

Interval II exclusively covers (high–alpine) summer conditions, with negligible to no contribution from freezing conditions. 

As these inclusion periods are inconsistent, the amount of total displacement cannot be directly compared; however the 430 

relative motion patterns can be. Accordingly, we can confirm the suggested parameter settings of earlier studies on window 

sizes, steps and robustness iterations (Ayoub et al., 2009; Bickel et al., 2018).  

In terms of the mass movement boundary, the total displacement derived from the DIC of the UAS data generally matches 

the field–mapped landslide boundary for both intervals (I, II) (Fig. 5a, b), and is supported by the absence of significant 

noise outside the AoI. Mapped boulder trajectories for interval II (see Fig. 6) are consistent with the calculated total 435 

displacement and thus confirm COSI–Corr as a reliable DIC tool to derive ground motion for this study site and UAS 

orthophotos as suitable input data. Nevertheless, there are several areas with ambiguous signals. Here we follow Leprince et 
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al. (2007) describing a correlation loss as ‘decorrelation’ with signal–to–noise values of low/null (i.e. no convergence of the 

correlation algorithm) and/or large offsets, either unrealistic in nature or beyond the valid matching window distance. 

Decorrelation in our understanding exhibits a salt–and–pepper appearance in the DIC result with random displacement 440 

vectors, related to inconsistently tracked features. The software is not able to find the corresponding, correlated surface 

pattern, leading to a misfit (i.e. misrepresentation) and/or mismatch (i.e. blunders) of the matching windows and finally 

resulting in noise (Debella-Gilo, 2011; Guerriero et al., 2020). Nevertheless, this decorrelation signal is still a valuable 

observation that might be related to surface processes and not only to erroneous limitations of the DIC method. There are 

three main reasons that might cause these effects: (i) significant temporal change of the surface, i.e. revolving and/or 445 

rotational deformation, (ii) high displacements exceeding the matching window size being smaller than the offset, (iii) land 

cover changes such snow cover, vegetation cover and alluvial processes, among others, and (iv) changes related to 

illumination (e.g. shadow) or image errors (e.g. orthorectification, shifts in individual bands) (Leprince, 2008; Debella-Gilo, 

2011; Lucieer et al., 2014; Stumpf et al., 2016). In our study, the decorrelated salt–and–pepper areas include to a large 

degree the landslide head (a), the drainage channel (h) (Fig. 5a, b), a larger patch south of the active area boundary (g) 450 

(Fig. 5a), and some smaller ones in little depressions (g) (Fig. 5a) and (j) (Fig. 5a, b). The patches (j) and east of (j) are 

identified as snow fields in the orthophotos and the noise results from decorrelation. In Fig. 5a, the large southern patch (g) 

shows clear displacement values for the rear part and decorrelation for the front region resulting from morphological changes 

within the image pair of interval I (see OSM Fig. 12). This is due to a gain between 1 and 2 m for an area of about 250 m².  

The decorrelation in the drainage channel (h) could stem from massive changes in pixel values, similar to the decorrelation 455 

on the basis of alluvial processes, as described by Leprince et al. (2007). Decorrelations in the areas with the fastest ground 

motions also lead to high pixel changes (Stumpf et al., 2016): these are observable in the active landslide area within the 

lobe, where large areas of decorrelation may be explained by high displacements in the leading landslide head (a) with 

redetected, hence correlated pixels in the trailing areas (c, d, e, f). These findings can be transferred to the landslide interior 

area (a, b), the frontal western regions and the northern margin (b). The observation is confirmed by geomorphological 460 

mapping (see OSM Fig. 11) and measured boulder block trajectories from the orthophotos (Fig. 6a). Several patches of 

correlation (c, f) with corresponding boulder trajectories up to 4 m (34.8 m yr-1) (d) can be detected in the rear areas. A 

correlated patch with a 16 m (34.8 m yr-1) trajectory (a) is located in the flow direction behind the foremost boulder. In this 

case the method was able to partially capture the displacement as the distinct boulder block supported the detection, which 

probably led to correlation. Similarly there is another example with a trajectory of 10 m (86.9 m yr-1) outside a homogeneous 465 

correlated area. This leads to the assumption that for the calculated time period, with 63 pixels or more at a resolution of 0.16 

m, no pixel matching is possible and probably reached the correlation capacity due to the too high displacement. With a 

correlation window smaller than the displacement, the algorithm cannot capture the displacement (Stumpf et al., 2016). 

However as field observations provide evidence that the rock masses are deforming, and the surface is altering due to the 

high mobility and rotational behaviour of some boulder blocks. This leads to changed pixel values and spectral 470 

characteristics of the block surface and the surrounding area, which can also result in poor correlations, and even random 

errors and mismatches (Debella-Gilo and Kääb, 2011). This finding is similar to observations in a rock glacier study by 

Debella-Gilo and Kääb (2011). Similar results were observed by Lucieer et al. (2014), who described a loss of recognisable 

surface patterns if revolving and rotational displacements occur, causing decorrelation and a noise as output. These results 

show that with COSI–Corr and UAS orthophotos of 0.16 m, it is possible to detect the total displacement of the landslide in 475 

both extent and internal process behaviour even in this steep, heterogeneous terrain. Nevertheless, high displacement rates 

and rotational surface behaviour in the cirque limit the DIC method. A decrease of the time interval for this particular highly 

mobile study site would likely reveal an enhanced correlation since for shorter time periods the total displacement decreases, 

and surface changes are reduced, which can be controlled by shortening the temporal baseline (Debella-Gilo and Kääb, 
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2011). In sum, though the results contain heterogeneous, noisy, decorrelated areas, the combination with homogeneous 480 

displacement areas still offers valuable insights into this and other internal landslide structures and complex behaviours.  

6.2. Comparison of temporal and spatial resolution 

We compared the COSI–Corr total displacement results of PlanetScope (Ib and II, Fig. 5c, d) and UAS images (I and II, 

Fig. 5a, b and Fig. 6a) for the same time periods at different spatial resolutions (see Table 6). For the PlanetScope DIC result 

the main part of the landslide is detected, and its area is generally consistent with the results of the UAS DIC, which is 485 

additionally confirmed by boulder trajectories. The frontal part (a) reveals correlation signals (I and II); while for the same 

time intervals and parts, the UAS DIC results show a decorrelation (Ib and II). The correlation is likely to be attributable to 

the coarser spatial resolution of 3 m PlanetScope input data, hence a smaller number of pixels to be captured at this site with 

the DIC method. Similar texture of rock clast surfaces could lead to false positives resulting in correlation as patches appear 

similar in matching windows. However, in contrast to the UAS result (Fig. 5a, b), the outcome on a large scale fails to detect 490 

the entire actual active area (b), (f) as well as its internal motion behaviour. Nevertheless, for the visualisation and analysis of 

the PlanetScope results, the range of total displacements had to be restricted to values equal to and greater than 4 m due to 

noise and outliers over large areas, as applied and described by Bontemps et al. (2018). Even then, noise and several 

misrepresented displacement patches are observed for (i, j) and in the northeast image corner (Fig. 5). We can identify 

several reasons for these large clusters of high motion values. Massive cloud and snow coverage hampered both first images 495 

of interval Ib (19.07.2018) (Fig. 5c) and II (24.07.2019) (Fig. 5d), leading to a 20 m fringe of false displacements in the 

north–eastern part of the image. Minor snow fields as visible in the images from 24.07.2019 for both, the UAS and 

PlanetScope, likely explain the big cluster of incorrect displacement southeast of the lobe (j); nonetheless, in the satellite 

image they are smaller than the resulting DIC displacement. High cloud coverage in two input images with large areas of 

white pixels may exert an influence leading to high gains due to sensor saturation (Leprince, 2008). Illumination changes in 500 

interval II (Fig. 5d) may cause unrealistic displacements outside the boundary with slightly darker colours due to shadows in 

the first satellite image (24.07.2019) and large parts within the second image (04.09.2019) are also in the shade. A 

comparison of the acquisition times and true sun zenith, e.g. for the second image, reveals a difference of 01:34 h between 

the image acquisition at 11:36 LT (local time) and the true local solar time at 13:10 LT. As the study site is located in a 

high–alpine terrain with a west facing cirque, at this time of day there are shadows of considerable length which have a 505 

significant influence on the result of digital image correlations. One clear advantage of the UAS images is that their 

acquisition is plannable according to the best illumination conditions with the sun at its zenith. Moreover, the UAS flight 

path as well as the system itself remained the same for all three acquisitions, while PlanetScope employs various satellites.  

Despite different input resolutions and time intervals (Ib vs. I and II vs. II, see Table 3) with different sensors (UAS, 

PlanetScope) there is a similarity for the landslide head which indicates that the displacement is restricted to a smaller area 510 

than the previously demarcated boundary, based on our field investigations. This is clearer for the time interval I (376/370 d) 

(Fig. 5a vs. c) as for the longer temporal baseline the total displacement accumulation is higher, thus better captured by 

COSI–Corr for PlanetScope 3 m resolution. Due to the shorter interval II (42 d) (Fig. 5b vs. d) with less accumulated total 

displacement, the rear of the landslide is not represented; no signal is shown as the total displacement for PlanetScope was 

restricted to values above 4 m. Values below 4 m had to be discarded for PlanetScope DIC results as they were lost in noise, 515 

i.e. for the entire DIC results there is total displacement between 0 m and 4 m (cf. the online supplementary material (OSM) 

Fig. 13). Hence, when applying a minimum threshold of 4 m, the satellite image detects large parts of the main active core 

area but widths of 50–80 m from the boundary show no displacement. However, false large clusters of high total 

displacement are within the PlanetScope result interval I for (j) and the northeast image corner (Fig. 5c), and interval II for 

(i) (Fig. 5d).  520 
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Measured ground motion of block tracking and PlanetScope results indicate and support existing high ground motions. In 

addition there are morphologically significant volumetric turnovers with areas of large gains and losses between ± 5 m (see 

OSM Fig. 11). These observations might explain the resulting decorrelation at the finer resolution of 0.16 m for the landslide 

head: the matching window is smaller than the offset and texture surface changes are too complex to be re–detected, i.e. 

matched, and thus correlated, leading to decorrelation and noise. Homogeneous correlated patches are in the front of the 525 

landslide body for the shorter time interval; there may have been some displacement just below the detection threshold for 

this high ground motion or some boulders and their surroundings might have been matched, or both (Fig. 6a (a)). In this case 

for the complex ground motion with high spatial resolution data, the previous assumption based on a shorter time interval 

likely leads to improved detection of inherent process behaviour (see Sect. 6.1.). Generally, with high resolution images, 

such as UAS, we recommend first calculating displacements based on a coarser input resolution (1–3 m) to examine the 530 

overall situation and detect changes, and second to calculate displacements at a finer resolution in order to focus on relevant 

details of the AoI. With regard to PlanetScope data, a 3 m resolution seems to be in a good spatial range to assess ground 

displacements even of this steep and heterogeneous study site with its high motion. Nonetheless, constraints such as 

illumination due to early daytime acquisitions leading to shadows, meteorological influences by clouds, cloud shadows and 

snow decrease the quality of the satellite images and reduce their applicability. Sensor saturation, shadow length, size and 535 

direction as well as changes in snow, cloud or vegetation cover impose limitations (Delacourt et al., 2007; Leprince et al., 

2008) and accord with our observations. The authors identify additional limitations such as radiometric noise, sensor 

aliasing, man–made changes and co–registration errors (ibid.). All these limitations have a negative impact on the input 

image, which leads to impaired DIC calculations and results, and (partially or wholly) inaccurate analysis of the 

displacement. These might have played a role in our results. In our experience, the usability of the DIC result may be 540 

influenced by the input image quality. This restricts the application of PlanetScope images to a certain degree. They can be 

employed as input data to detect displacements, but as there are in the present setting too many signals of false–positive 

displacements, which can solely be discarded on the basis of field evidence, this data is currently of limited use. It should be 

handled with caution and we recommend combining it with complementary data and ground truth. 

6.3. Estimating time to warning 545 

Early warning is essentially defined as being earlier than the event and thus puts high external time constraints on 

observation and decision. The time window between the detection of an accelerating movement preparing for final failure 

and the final failure itself is determined by the environment. Therefore, two sensors with the highest available spatiotemporal 

resolution were evaluated and compared with regard to their applicability to the early warning of landslides. We made rough 

assumptions and assessed the time needed for the phases of time (i) to collect, (ii) to process, and (iii) to evaluate relevant 550 

data (summarised in the time to warning window, see Fig. 7).  

Despite different underlying technologies the time required for the collection phase is approximately the same for both 

sensors. For UAS, we estimated about 12 hours under ideal circumstances, while for PlanetScope 12 hours (Planet Labs, 

2020b) plus two hours for image selection, download and initial analysis, adding up to 14 hours in total (see Sect. 5.3.). In 

the second phase, time to process, deriving orthophotos from raw UAS images is time consuming. The subsequent DIC 555 

calculations demand significantly more processing time for the UAS images than for lower resolution PlanetScope images. 

The final phase, time to deliver, takes about two hours for each sensor. In our case study, the estimated time to warning 

(twarning) was 10 h longer for the UAS approach (31 h) in comparison to the Planet Scope approach (21 h). These time 

calculations are based on ideal environmental conditions and data availability. Assuming good conditions exist to conduct 

the UAS flight and no constraints limit the utilisation of satellite images, in theory a daily deployment is possible. In reality, 560 

unfavourable weather conditions, cloud and snow cover as well as limited data availability will increase the actual twarning 

significantly. From the available images in the Planet Data hub (besides other exclusions) meteorological influences reduced 
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for April–October 2019 the usability by 14.5 % and 7 % for cloud cover and snow cover, respectively (Table 2). The 

flexibility of a UAS can serve as a practical remote sensing tool for the investigation of ground motion behaviour in a 

spatiotemporal context. Nonetheless, weather influences can make a UAS flight impossible or impractical as the result might 565 

be useless. Depending on the level of illumination, the same may apply for satellite images. Regardless of any 

meteorological constraints, the promised daily availability by PlanetScope is unrealistic, due to data gaps and provider 

issues; our study showed that for the Sattelkar from April to October 2019 only 11 % of the captured images during this time 

were usable. Hence, PlanetScope data has a temporal availability similar to Sentinel–1 with a 6–day revisit time. In time–

critical early warning scenarios, when time is running out, all available even partly usable images will be utilised and 570 

fieldwork may be conducted, even if the prevailing conditions are suboptimal but will increase data availability. The 

comparison of two selected remote sensing options demonstrates that the comprehensive knowledge on the available remote 

sensing data sources and their respective time requirements can substantially reduce the time to warning (twarning) and to 

extend the lead time (tlead).  

Significant observations of the temporal evolution of historic landslides are presented in Table 7 and described below. These 575 

include (i) the Preonzo rock slope failure, CH (Sättele et al., 2016; Loew et al., 2017), (ii) the Vajont rock slide, ITA (Petley 

and Petley, 2006) and (iii) the Sattelkar complex slide, AUT (Anker et al., 2016). These landslides have specific evolution 

histories, e.g. early observed crack developments, increased movement and minor events like Preonzo (2002 and 2010) 

(Sättele et al., 2016); Sattelkar, with large volume mass wasting processes since 2005 and a debris slide event in 2014 (see 

Sect. 3 Study Site) (Anker et al., 2016); and Vajont, with ductile failures in 1960 and 1962 and a transition from ductile to 580 

brittle behaviour in 1963 (Petley and Petley, 2006; Barla and Paronuzzi, 2013).  

 

Table 7 Relevant dates for historic failures of Vajont (ITA), Preonzo (CH) and Sattelkar (AUT). Time period in italics–bold used for 
Fig. 9. Time intervals in days (~ for rough estimations) and years in square brackets; sum of days based on the first day of the month, if 
only month as reference is available from literature (Petley and Petley, 2006; Anker et al., 2016; Sättele et al., 2016; Loew et al., 2017). 585 
Further explanation below. 

  

Figure 9 is the extension of our concept (see Sect. 1, Fig. 1) systematically supplemented with our estimated time to warning 

(UAS, PlanetScope), and compared to the few data series predating larger slope failures.  

Following a significant acceleration, the forecasting window is opened and twarning starts, which is composed of phases (i) 590 

time to collect, (ii) time to process and (iii) time to evaluate. To ascertain a significant acceleration one further observation is 

required. Hence, one complete cycle of the three phases, previous analyses and processing iterations are given. Our analysis 

showed that UAS and Planet Scope can approach times as short as 31/21 h, as a result tlead is increased and so is treact.  
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 595 

Figure 8 Conceptual approach with estimated twarning for UAS and PlanetScope. Phases of collection, processing and evaluation (indicated 
as arrows of relative length in orange, blue and green, respectively) (see phases in Fig. 1 and Fig. 7) with their total duration time (grey 
dashed arrows). In twarning, one additional observation requires in sum 31 h for UAS and 21 h for PlanetScope data. Above, major 
landslides are compared from the onset or displacement detection (solid line) (Petley and Petley, 2006; Anker et al., 2016; Sättele et al., 
2016). 600 

Assuming both sensors reliably estimate ground motion, solely based on their time requirement, this concept was applied to 

the temporal development of historic landslide events, thus from measured increased displacements and/or massive 

accelerations to the final event (Table 7). On this basis we simplified the graph and what we defined as “significant 

acceleration” using dates of observations such as increased crack opening (Vajont), critical displacement (Preonzo) and the 

beginning of active ground motion (Sattelkar). Therefore, the opening of twarning and forecasting window are concrete 605 

observations of the particular site, independent of any intensity described by the corresponding authors and allows more 

freedom for temporal evaluations without going into details.  

For the Preonzo case, the entire 2012 spring period was characterised by high displacement rates. We defined the first of 

May 2012, when geologists operating the warning system informed local authorities and assembled a crisis team, as the 

onset or ‘increased movement’ and the 15.05.2012 with 300 000 m³ as the impact (Sättele et al., 2016), in total 610 

approximately 15 days. For Vajont, the 1/velocity plot by Petley and Petley (2006) (based on data from Semenza and 

Ghirotti (2000)) shows an increase in movement at about day 60 along with a transition from a linear to an asymptotic trend 

at approximately day 30, defined as a transition from ductile to brittle. Therefore, we assumed 30 days of forecasting 

window for twarning and tlead until the impact of the hazardous event on 09.10.1963. However, note that velocities of about 35 

mm d-1 are still low and at the minimum of the displacement recognition capability for the digital image correlation method. 615 

For the Sattelkar site, the observed mass displacement increase is presumed to have started in 2005 with the 170 000 m³ 

debris flow event on 31.07.2014 as the impact, thus about 3 498 days (Anker et al., 2016). 

Even for the Preonzo event, with its short forecasting window of 15 days, the ground motion assessment based on the 

evaluated optical remote sensing images, would have been possible under the assumption of reasonably good UAS flying 

conditions and the provision of usable PlanetScope images. For twarning there is enough temporal leeway to repeat at least 620 

three to four successive measurements comprising the three phases. However, as single accelerations are possible in very 

short time intervals of less than two days, it is impossible to capture these accelerations by means of optical remote sensing 

methods, given a time requirement of 31 hours for UAS and 21 hours for PlanetScope. Nevertheless, this comparison shows 
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that for larger and long–preparing slope failures the technical twarning may well be shorter than the forecasting window starting 

at the time at which the process becomes predictable. For this type of slope failures recent developments such as the ESA’s 625 

Geohazards Exploitation Platform (GEP), developed and operated by Terradue, supports on–demand services such as the 

Thematic Exploitation Platforms (TEPs) and has the potential to decrease twarning: The service provides an archive of 

Copernicus’ Sentinel–1 and –2, Pléiades and Spot 6/7 data, and access to cloud computing resources to support large scale 

geohazard mapping and monitoring (Volat et al., 2017; Foumelis et al., 2019; Lacroix et al., n.d.). Therefore, the time critical 

phases of time to collect and time to process, which in our example are attributed to the larger share of the total time 630 

requirement for twarning, could be significantly reduced as the data is directly accessible through high performance cloud 

computing. What remains is the third phase, time to evaluate, where a relatively short time is required, thus tlead is extended. 

7 Conclusions and outlook 

This paper presents an innovative concept to compare the lead time for landslide early warnings, of two optical remote 

sensing systems. We tested this temporal concept by applying UAS and PlanetScope images of temporal proximity as these 635 

are currently the sensors with the best spatiotemporal resolution. We assessed the sensors’ capability to identify hot spots 

and to recognise behaviour by delineating ground motion employing digital image correlation (DIC). In so doing, knowing 

the necessary processing time enabled us to estimate the time requirement and finally to incorporate it into the concept to 

evaluate sensors with regard to ongoing landslide processes of the Sattelkar as well as historic landslide events. 

Our findings derived from DIC for this steep high–alpine case study show that high resolution UAS data (0.16 m) can be 640 

employed to identify and demarcate the main landslide process and reveal its heterogeneous motion behaviour as confirmed 

by single block tracking. Thus, validated total displacement ranges from 1–4 m and up to 14 m for 42 days. PlanetScope 

Ortho Scenes (3 m) can detect the displacement of the landslide central core, however, cannot accurately represent its extent 

and internal behaviour. The signal–to–noise ratio, including multiple false–positive displacements, complicates the detection 

of hotspots at least in this very steep and heterogeneous alpine terrain.  645 

Coarse temporal data resolution, such as in the case study investigated here, represents an important restriction to the use of 

optical remote sensing data for landslide early warning applications. Acceleration (and the resulting failure) over short 

periods of time will likely go unnoticed due to large data acquisition intervals. However, for prolonged acceleration periods, 

such as observed at the Sattelkar slide and many other relevant hazard sites, the chosen data sources have been demonstrated 

to represent a formidable early warning approach capable of contributing to an improved risk analysis and evaluation in 650 

steep high–alpine regions. 

With regard to the temporal aspect for early warning purposes, PlanetScope satellite images require less time compared to 

UAS for the time phases of collection, processing and analysing. As a consequence, when time is of the essence, the UAS 

acquisition cannot compete with the high frequency of PlanetScope daily revisit rates. In general, both are limited in their 

use as they are passive optical sensors dependent on favourable weather conditions. Nevertheless, with a realistic 10 % of 655 

usable data for our study site, PlanetScope cannot provide daily data as promised.  

To conclude, in methodological terms DIC is a reliable tool to derive total displacement of gravitational mass movements 

even for steep terrain. Given the high reliability of UAS data, its temporal resolution is the key in future attempts to 

overcome decorrelation due to high ground motions. In addition, a slightly coarser resolution reduces the time needed for 

total processing, enhances correlation while maintaining spatial accuracy and reliability. PlanetScope is especially interesting 660 

as a complementary sensor when UAS employment is restricted e.g. inaccessible and/or dangerous sites or for areas too 

extensive to be covered. For continuous monitoring and early warning, the warning time window could be shortened by on–

site drone ports with autonomous acquisition flights and automatic processing. Our systematic evaluation of the sensor 

capability can be applied to other optical remote sensing sensors, and the same is true for our conceptual approach which 
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extends the lead time. Future studies should focus on the applicability of complementary optical data to confirm the 665 

detection of landslide displacement and adjust UAS output resolution as this significantly increases the validity of DIC 

internal ground motion behaviour.  
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