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Letter of response to comment on nhess-2021-18 

Dear Sigrid Roessner, 

We thank you for your valuable comments on our manuscript and appreciate the time and the 

efforts you have invested. Your feedback has helped us to see and clarify ambiguous areas to 

further improve our work.  

Based on your suggestions we have restructured the entire manuscript, especially 

introduction, study site description, discussion and conclusion. In addition, we have specified 

many conceptual and methodological concerns according to your more specific remarks. We 

have also rephrased several ambiguous paragraphs. 

Please find below the following colour coding for the review and your comments in black; our 

responses to the review are in blue and the changes made to the manuscript are in green 

(following RC2), orange (following RC1) and in blue by the authors. Reference to line 

numbers are based on the original preprint. 

General comments 

The paper represents an interesting contribution to process oriented remote sensing based 

monitoring of complex landslides with the aim of making a conceptual contribution to early 

warning. The paper is well written in language and structure and the figures are of good 

quality. Despite the overall good scientific relevance and presentation quality, in the current 

form the paper lacks a coherent scientific goal justifying the used approach. This problem 

already becomes apparent in L40 where the authors state that the study presents a new 

concept to systematically evaluate remote sensing techniques to optimize lead time for 

landslide early warning’. Although the presented work is very interesting, it does not fit the 

stated goal for the following reasons: 

 

• Concept of lead time and need for best possible reduction is not new. 

While we agree that the concept itself may not be knew, we find that using 

multispectral remote sensing products to assess and increase lead time to ensure the 

timely prediction of landslide early warning systems represents an important research 

gap that so far has rarely been addressed. We evaluate the capabilities of remote 

sensing to identify hot–spots and detect process behaviour changes based on the local 

conditions. Thus, the landslide process is the precondition. We want to estimate, based 

on the assumption that the particular sensor is able to deliver the necessary 

information, the time demand of each sensor for time to warning. 

We have now replaced the phrase optimising lead time with a more precise description 

of what we have done. Please see revision of the conclusion further below. 
L10–11: We introduce a novel conceptual approach for comprehensive to structure and quantitatively assess lead 

time assessment and optimisation for LEWS. 

[…] 

L39–41: This study presents a new concept to systematically evaluate remote sensing techniques to optimise 

estimate and increase lead time for landslide early warnings in these catchments. We do not start from the 

perspective of available data; instead, we define necessary time constraints to successfully employ remote–sensing 

data for to provideing early warnings. 

[…] 

L34: Lead time as defined in the context of LEWS is the interval between the issue of a warning (i.e. dissemination) 

and the forecasted landslide onset (Pecoraro et al. 2019) and thus crucially depends on time requirements in phases 
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(1)–(3). The success of an EWS therefore requires measurable pre–failure motion (or slow slope displacement) to 

allow for sufficient lead time for decisions on reactions and counter measures (Grasso, 2014; Hungr et al., 2014). 

 

• Remote sensing techniques themselves are not the bottleneck for shortening the lead 

time. 

The goal of our concept is not to refine remote sensing as a technique itself but to 

provide a tool for choosing the appropriate sensors based on time required for the time 

to warning phase. We thereby increase lead time. 

We do not agree with your objection to the word “bottleneck” especially given your 

comment below which says “In remote sensing based approaches lead time mostly 

depends on the available imaging constellation and data distribution to the end user.” 

 
L39–61: This study presents a new concept to systematically evaluate remote sensing techniques to optimise 

estimate and increase lead time for landslide early warnings in these catchments. We do not start from the 

perspective of available data; instead, we define necessary time constraints to successfully employ remote–

sensing data for to provideing early warnings. This approach reduces the to a small number the of suitable 

remote sensing products to a small number with high temporal and spatial resolution. With these constraints, 

we investigated the application of data from satellites and unmanned aerial systems (UAS) to allow the 

assessment of the data, after a spaceborne area–wide but low–resolution acquisition, into a downscaled detailed 

image recording. In so doing, we analysed the capability of these different passive remote sensing systems 

focusing on spatiotemporal capabilities for ground motion detection and landslide evolution to provide early 

warnings. 

[…] 

L94–102: In recent years, data provision for users has increased and today data hubs provide easy accessibility 

to rapid, pre–processed imagery. Knowledge of the most useful remote sensing data options is vital for 

complex, time–critical analyses such as ground motion monitoring and landslide early warning. Nonetheless, 

technological advances can be misleading as they promise high spatiotemporal data availability, which 

frequently does not reflect reality (Sudmanns et al., 2019). One key problem is the realistic net temporal data 

resolution which is often significantly reduced due to technical issues, such as image errors and non–existent 

data (i.e. data availability, completeness, reliability). Other problems include data quality and accuracy in terms 

of geometric, radiometric and spectral factors (Batini et al., 2017; Barsi et al., 2018). Knowledge of the most 

useful remote sensing data options is vital for complex, time–critical analyses such as ground motion 

monitoring and landslide early warning. Timely information extraction and interpretation are critical for 

landslide early warnings yet few studies have so far explicitly focused on time criticality and the influence of 

the net temporal resolution of remote sensing data.  

 

 

• In remote sensing based approaches lead time mostly depends on the available 

imaging constellation and data distribution to the end user and in case of optical data 

on the atmospheric conditions (clouds). Both factors are only to a very limited extent 

in control of the authors - only in case of the UAV data acquisitions. 

Thank you for your comment. We agree that the limitation of meteorological 

conditions including effects such as cloud shadow and snow are important constraints 

as we described in L45–55 and L158. We took this into consideration when estimating 
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the number of available PlanetScope images (Sect. 4.2.) and discussed atmospheric 

affected images with regard to displacement derivation results in L477–481. 

You are right that for UAS campaigns, most of the control is on the user side and only 

to a very limited part for other satellites. Today, some data providers promise new 

images daily, sometime even more frequently (e.g. PlanetScope).  

But this is the point we want to highlight with our study. In a real world situation, we 

wish to determine which satellites can provide useful timely information in terms of an 

effective repetition rate and real availability in the data hub (provider). In addition, the 

natural conditions such as atmospheric and site specific constraints can reduce the net 

image number. For this reason, we assess the capabilities of optical remote sensors in 

a spatiotemporal context for given circumstances to detect hot spots and identify 

possible changes in slope processes. 
L52–55: Previously, high spatial resolution satellite data was obtained at the expense of a reduction in the 

revisit rates (Aubrecht et al., 2017). Consequently, the return period between two images increased, limiting 

ground displacement assessment and the range of observable motion rates. The number of useful images was 

further reduced due to natural factors such as snow cover, cloud cover and cloud shadows. 

[…] 

L86–91: In general, sensor choice depends on the landslide motion rate with radar at the lower and optical 

instruments at the upper motion range (Crosetto et al., 2016; Moretto et al., 2017; Lacroix et al., 2019).  

However, Aa flexible, cost–effective alternative to spaceborne optical data are airborne optical images taken 

by UASs (unmanned aerial systems). Freely selectable flight routes and acquisition dates prevent enable 

avoiding shadows from clouds and topographic obstacles, and as well as allow avoiding unfavourable weather 

conditions and summer time snow cover, all of which frequently impair satellite images (Giordan et al., 2018; 

Lucieer et al., 2014). 

L96–102: […] technological advances can be misleading as they promise high spatiotemporal data availability, 

which frequently does not reflect reality (Sudmanns et al., 2019). One key problem is the realistic net temporal 

data resolution which is often significantly reduced due to technical issues, such as image errors and non–

existent data (i.e. data availability, completeness, reliability). Other problems include data quality and accuracy 

in terms of geometric, radiometric and spectral factors (Batini et al., 2017; Barsi et al., 2018). Knowledge of 

the most useful remote sensing data options is vital for complex, time–critical analyses such as ground motion 

monitoring and landslide early warning. Timely information extraction and interpretation are critical for 

landslide early warnings yet few studies have so far explicitly focused on time criticality and the influence of 

the net temporal resolution of remote sensing data. 

 

• The used data sources (planet and UAV) do not allow optimization of lead time in the 

context of early warning because of the scarcity of their availability which is reflected 

in the small number of only three multitemporal data takes between July and 

September analyzed in this study (Table 3) 

Thank you. With regard to this comment we assume this needs further clarification. 

First, we have changed the entire phrase on “optimising lead time” to be more precise 

in the description of our approach (see previous comment). Regarding the data takes, 

yes, we do have three UAS acquisitions but over the course of more than one year 

(7/2018–9/2019). For the purpose of this comparison we selected PlanetScope data at 

a similar time to UAS acquisitions, whereby one Planet image (02.07.2018, see Table 

5) showed low quality results why the time interval was excluded (see caption Fig. 4). 

In both UAS and PlanetScope DIC results we can see the general distinctive hot–spot 
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identification as well as changes in motion behaviour indicating an acceleration for the 

time intervals I and II. Second, we can obtain a higher frequency of UAS acquisitions 

if necessary. We have revised our conclusion to be more concise in our work with 

regard to both, the term optimisation as well as the total number of data takes. 
L567–569: This paper presents an innovative concept to compare the lead time for landslide early warnings, 

utilising of two optical remote sensing systems. We tested this temporal concept by applying UAS and PlanetScope 

images of temporal proximity as these are currently the sensors with the best spatiotemporal resolution. 

[…] 

L573–580: Our findings derived from DIC for this steep high–alpine case study show that high resolution UAS 

data (0.16 m) can be employed to identify and demarcate the main landslide process and reveal its heterogeneous 

motion behaviour as confirmed by single block tracking. Thus, validated total displacement ranges from 1–4 m 

and up to 14 m for 42 days. PlanetScope Ortho Scenes (3 m) can detect the displacement of the landslide central 

core, however, cannot accurately resolve represent its extent and internal behaviour. The signal–to–noise ratio, 

including multiple false–positive displacements, complicates the detection of hotspots at least in this very steep 

and heterogeneous alpine terrain.  

Coarse temporal data resolution, such as in the case study investigated here, represents an important restriction to 

the use of optical remote sensing data for landslide early warning applications. Acceleration (and the resulting 

failure) over short periods of time will likely go unnoticed due to large data acquisition intervals. However, for 

prolonged acceleration periods, such as observed at the Sattelkar slide and many other relevant hazard sites, the 

chosen data sources have been demonstrated to represent a formidable early warning approach capable of 

contributing to an improved risk analysis and evaluation in steep high–alpine regions. 

[…] 

L589–594: For continuous monitoring and early warning, the warning time window could be shortened by on–site 

drone ports with autonomous acquisition flights and automatic processing. Our systematic evaluation of the sensor 

potency capability can be applied and transferred to other optical remote sensing sensors, and the same is true for 

our conceptual approach optimising which extendsing the lead time. Future studies should focus on the 

applicability of complementary optical data to confirm the detection of landslide displacement and adjust UAS 

output resolution as this significantly increases the validity of DIC internal ground motion behaviour.  

 

• The missing sound conceptual approach is also reflected in the introduction in form of 

a lengthy summary of in principle available remote sensing methods and data showing 

no clear line of arguments (L20-100). Moreover, the new conceptual approach 

presented in Fig. 1 is very general and not specific to landslide and does not qualify as 

a novelty in the current form. 

1. Introduction 

We revised the abstract and the introduction , to be more precise with regard to our 

goal and implementation. In so doing we more clearly defined our approach to lead 

time and early warning systems for landslides. Further we did our best to improve the 

line of arguments and to show the historic limitations of optical remote sensing for 

LEWS up to the recent developments when it comes to options such as high 

spatiotemporal products and their usage for monitoring, early warning and time-series 

displacement analyses. 
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2. The conceptual approach 

We decided to keep this concept general, to employ it for other remote sensing 

techniques and maybe even other kind of instrumentation as well as different use cases 

of other time challenging issues. We revised and added some sentences to emphasise 

our approach/idea. Even after intense research we did not find good conceptual 

approaches challenging remote sensing in the direct context of landslide early warning 

systems. We therefore consider our approach novel. This concept forms the basis to 

employ this for the setup of ‘a real early warning system’.  
L21–102: Landslides are a major natural hazard leading to human casualties and socio–economic impacts, mainly 

by causing infrastructure damage (Dikau et al., 1996; Hilker et al., 2009). They are often triggered by earthquakes, 

intense short–period or prolonged precipitation, and human activities (Hungr et al., 2014; Froude and Petley, 

2018).  In a systematic review Gariano and Guzzetti (2016) report in a review study that 80 % of the papers 

examined papers  show causal relationships between landslides and climate change. The ongoing warming of the 

climate (IPCC, 2014) is likely to decrease slope stability and increase landslide activity (Huggel et al., 2012; 

Seneviratne et al., 2012), which .This indicates a vital need to improve the ability to detect, monitor and issue early 

warnings of landslides and thus to reduce and mitigate landslide risk.  

Early warning, as defined by the UN International Strategy for Disaster Reduction (UNISDR), refers to a set of 

capacities for the timely and effective provision of warning information through institutions, such that individuals, 

communities and organisations exposed to a hazard are able to take action with sufficient time to reduce or avoid 

risk and prepare an effective response (UNISDR, 2009). According to UNISDR (2006), an effective early warning 

system consists of four elements: (1) risk knowledge, the systematic data collection and risk assessment; (2) the 

monitoring and warning service; (3) the dissemination and communication of risk as well as early warnings; and 

(4) the response capabilities on local and national levels.  Incompleteness or failure of one element can lead to a 

breakdown of the entire system (ibid.). Lead time as defined in the context of LEWS is the interval between the 

issue of a warning (i.e. dissemination) and the forecasted landslide onset (Pecoraro et al. 2019) and thus crucially 

depends on time requirements in phases (1)–(3). The success of an EWS therefore requires measurable pre–failure 

motion (or slow slope displacement) to allow for sufficient lead time for decisions on reactions and counter 

measures (Grasso, 2014; Hungr et al., 2014). 

While remote sensing has been established for early warnings, remote sensing is not yet used for real early 

warnings of the onset of landslides in steep-alpine terrain (with a few exceptions), where geotechnical instruments 

are still preferred. Exceptions include terrestrial InSAR (Pesci et al., 2011; Walter et al. 2020) and terrestrial laser 

scanning with high repetition rates. However, repeated UAS (unmanned aerial systems) and optical satellite images 

(PlanetScope) with high repetition rates have so far not been applied for landslide early warning in steep-alpine 

catchments. In this regard, knowledge of sensor capabilities and limitations is essential, as it determines which 

rates and magnitudes of pre-failure motion can potentially be identified (Desrues et al., 2019). Our proposed 

framework refers to mass movements in steep–alpine catchments with significant pre–failure motion operating 

over a sufficient time periods and thus excludes instantaneous events triggered by processes such as heavy rainfalls 

or earthquakes.    

This study presents a new concept to systematically evaluate remote sensing techniques to optimise estimate and 

increase lead time for landslide early warnings in these catchments. We do not start from the perspective of 

available data; instead, we define necessary time constraints to successfully employ remote–sensing data for to 

provideing early warnings. This approach reduces the to a small number the of suitable remote sensing products 
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to a small with high temporal and spatial resolution. With these constraints, we investigated the application of data 

from satellites and unmanned aerial systems (UAS) to allow the assessment of the data, after a spaceborne area–

wide but low–resolution acquisition, into a downscaled detailed image recording. In so doing, we analysed the 

capability of these different passive remote sensing systems focusing on spatiotemporal capabilities for ground 

motion detection and landslide evolution to provide early warnings. 

Until Recently, the spatial and temporal resolution of optical satellite imagery has significantly improved 

requirements for accurate early warning purposes have not been met by optical satellite imagery (Scaioni et al., 

2014) and has allowed substantial advances in the definition of displacement rates and acceleration thresholds to 

approach requirements for early warning purposes. This is essential since spatial and temporal resolution 

determines whether landslide monitoring is possible with the detection allows defining of displacement rates and 

the approximation approximate acceleration thresholds, both of which are lacking if information is based solely 

on post–event studies (Reid et al., 2008; Calvello, 2017). Landslide monitoring offers the potential to significantly 

advance landslide early warning systems (LEWS) (Chae et al., 2017; Crosta et al., 2017). Previously, high spatial 

resolution satellite data was obtained at the expense of a reduction in the revisit rates (Aubrecht et al., 2017). 

Consequently, the return period between two images increased, limiting ground displacement assessment and the 

range of observable motion rates. The number of useful images was further reduced due to natural factors such as 

snow cover, cloud cover and cloud shadows. High–resolution remote sensing data was long restricted due to high 

costs and data volume (Goodchild, 2011; Westoby et al., 2012). Today Ccommercial very high resolution (VHR) 

optical satellites exist, but tasked acquisitions make them inflexible and very cost intensive, thus limiting research 

(Butler, 2014; Lucieer et al., 2014). There is a vast spectrum of available remote sensing data with high 

spatiotemporal resolution (Table 1). Complementary use of different remote sensing sources can significantly 

improve landslide assessment as demonstrated by Stumpf et al. (2018) and Bontemps et al. (2018), who draw on 

archive data and utilise different sensor combinations to analyse the evolution of ground motion. 

 

Table 1 Overview of different optical multispectral remote sensors with their corresponding resolution [m] and revisit rate 

[days]. The sensors are categorised into commercial and free data policy. 1free quota via Planet Labs Education and Research 

Program, 2PlanetScope Ortho Scene Product, Level 3B/Ortho Tile Product, Level 3A (Planet Labs, 2020b), 3reached end of 

life, 3/2020, archive data usable, 45 m Ortho Tile Level 3A (Planet Labs, 2020a), 50.5 m colour pansharpened, 6self–acquired. 

Source: (ESA, 2020). 

Sensor Temporal 

resolution [d] 

Spatial 

resolution [m] 

Free/ 

Commercial 

UAS flexible 0.08 F6 

WorldView 2 1.1 1.84 C 

WorldView 3 <1 1.24 C 

WorldView 4 <1 1.24 C 

GeoEye 2 5 1.24 C 

SkySat 1 1.5 C 

GeoEye–1 3 1.64 C 

Pléiades 1A/B 1 2.0 (0.5)5  C 

PlanetScope 1 3.0/3.1252 C/F1 

RapidEye3 5.5 54 F 

Sentinel–2 A/B 5 10 F 

Landsat 8 16 30 F 

 

The latest developments in earth observation programs include both the new Copernicus’ Sentinel fleet operated 

by the ESA, and a new generation of micro cube satellites, sent into orbit in large numbers by PlanetLabs Inc. 

These PlanetScope micro cube satellites, known as 'Doves'/PlanetScope (from now on referred to as PlanetScope 
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satellites), and Sentinel–2 a/b offer very high revisit rates of 1–5 days and high spatial resolutions from 3–10 m, 

respectively (Table 1), for multispectral imagery (Drusch et al., 2012; Butler, 2014; Breger, 2017). This opens up 

unprecedented possibilities based on these These high spatiotemporal resolutions open up unprecedented 

possibilities to study a wide range of landslide velocities and natural hazards through remote sensing. Future 

Continuing data access is fostered by PlanetLabs and by Copernicus (via its open data policy) providing affordable 

or free data for research. This leads to unprecedented possibilities for sturying natural hazards through remote 

sensing. Examples of landslide activity studies employing multi–temporal datasets of landslide activities based on 

this access to high spatiotemporal data are include Lacroix et al. (2018), using Sentinel–2 scenes to detect motions 

of the 'Harmalière' landslide in France, and Mazzanti et al. (2020), who applied a large stack of PlanetScope images 

for the active Rattlesnake landslide, USA.  

As forecasted landslides tend to accelerate beyond the deformation rate observable with radar systems before 

failure, we concentrate on optical image analysis (Moretto et al., 2016). One advantage of optical imagery is its 

temporally dense data (Table 1) compared to open data radar systems with sensor visits repeat frequency more than 

every six days and revisit frequency between three days at the equator, about two days over Europe and less than 

one day at high latitudes (Sentinel–1, ESA). Optical data allows direct visual impressions impression from the 

multispectral representation of the acquisition target and the option to employ this data for further complementary 

and expert analyses. While active radar systems overcome constraints posed by clouds and do not require daylight, 

data voids can be significant due to layover or shadowing effects in steep mountainous areas (Mazzanti et al., 

2012; Plank et al., 2015; Moretto et al., 2016). Moreover, north/south facing slopes are less suitable, thus limit the 

range of investigation (Darvishi et al., 2018). In general, sensor choice depends on the landslide motion rate with 

radar at the lower and optical instruments at the upper motion range (Crosetto et al., 2016; Moretto et al., 2017; 

Lacroix et al., 2019).  

However, Aa flexible, cost–effective alternative to spaceborne optical data are airborne optical images taken by 

UASs (unmanned aerial system). Freely selectable flight routes and acquisition dates prevent enable avoiding 

shadows from clouds and topographic obstacles, and as well allow avoiding as unfavourable weather conditions 

and summer time snow cover, all of which frequently impair satellite images (Giordan et al., 2018; Lucieer et al., 

2014). UAS–based surveys provide accurate very high resolution (few cm) orthoimages and digital elevation 

models (DEM) of relatively small areas, suitable for detailed, repeated analyses and geomorphological applications 

(Westoby et al., 2012; Turner et al., 2015).  

In recent years, data provision for users has increased and today data hubs provide easy accessibility to rapid, pre–

processed imagery. Knowledge of the most useful remote sensing data options is vital for complex, time–critical 

analyses such as ground motion monitoring and landslide early warning. Nonetheless, technological advances can 

be misleading as they promise high spatiotemporal data availability, which frequently does not reflect reality 

(Sudmanns et al., 2019). One key problem is the realistic net temporal data resolution which is often significantly 

reduced due to technical issues, such as image errors and non–existent data (i.e. data availability, completeness, 

reliability). Other problems include data quality and accuracy in terms of geometric, radiometric and spectral 

factors (Batini et al., 2017; Barsi et al., 2018). Knowledge of the most useful remote sensing data options is vital 

for complex, time–critical analyses such as ground motion monitoring and landslide early warning.  
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• L140: General applicability to optical data: This subheading does not fit the content of 

this section comprising a compilation of rather basic and general steps of remote 

sensing data processing. 

Thank you for your comment. We agree that it describes general steps of the data 

processing chain; however, these steps are applied within each phase of the ‘time to 

warning’ of our proposed concept. Otherwise the steps would not be explained and 

thus the basis for the concept would be lacking. We have revised the subheading to 

“Practical implementation of multispectral data in the concept” which more accurately 

describes the content of this section. 

2.2. Practical implementation of multispectral data in the concept General applicability to optical data 

 

• The study site (starting at L175) represents a very complex landslide case leading to 

rather erratic mass movements in form of debris flows initiated by changing slope 

water conditions related to increased atmospheric precipitation. This situation is 

another obstacle for an early warning approach which is solely based on optical 

remote sensing data and thus making it impossible to make full use of the in principle 

daily temporal resolution of the planet data. Taking into account these natural 

conditions and the constraints introduced by the used imaging constellations, leaves no 

room for true optimization of lead time in the sense as stated in the overall scientific 

goal of this paper. 

We agree with your assessment and have replaced the term “optimisation” with a 

description that hopefully is more accurate in the entire manuscript. The chosen 

Sattelkar slide is one of the most relevant high-alpine geohazards in Austria and thus 

represents a compelling study site for natural hazard studies. While we agree that its 

complexity represents an obstacle, we nonetheless believe that the Sattelkar slide is 

well-suited for an investigation based on optical remote sensing because (i) we were 

clearly able to detect significant displacement and (ii) we were able to identify patches 

of increasing motion. In any case an increase in frequency of UAS flights is possible. 

L39–41: This study presents a new concept to systematically evaluate remote sensing techniques to optimise 

estimate and increase lead time for landslide early warnings in these catchments. We do not start from the 

perspective of available data; instead, we define necessary time constraints to successfully employ remote–sensing 

data for to provideing early warnings. 

 

• Any sensible early warning approach for slope movements requires a continuous and 

reliable high temporal resolution input of observation data related to parameters which 

are relevant for triggering the potential mass movements. Such information are mostly 

provided by ground based measurements. In this context, it is surprising that no 

relevant ground based monitoring information seem to be available to this study 

despite the longterm history of scientific work at this study site. The mentioned 

temperature loggers need to be explained in their function for early warning. The GPS 

measurements seem to only support the remote sensing based analysis. The described 

setting does not seem to be suitable for identification of precursory signs of ,slope 

preparation’ related to the triggering of potential mass movements at this site in a way 

which would be required in the context of early warning. 

Thank you for your feedback. We understand your arguments, yet we are not trying to 
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create an all-encompassing landslide early warning study that includes all state-of-the-

art methods. We have chosen the Sattelkar due to its scientific and societal relevance 

and its high-alpine location with very limited vegetation. This site was not selected to 

evaluate a wide range of remote sensing applications. Our goal was to determine if and 

how our conceptual approach is applicable to this highly complex study site. Due to its 

topographical characteristics no ground based technique can be implemented. 

Therefore, only air- and spaceborne sensors can be employed which we believe is the 

case for numerous potentially hazardous slides/creeps in mountain ranges worldwide. 

However, we have considered installing a camera on the opposite slope but currently 

the distance is a problem (3.5 km, selection of camera).  

 

We agree that the temperature data mentioned in the manuscript is not absolutely 

necessary to understand our conceptual approach. We still think that the (brief) 

inclusion of the temperature data makes sense as it suggests local permafrost 

presence/degradation which may be one of the main drivers of the Sattelkar slide. To 

clarify the role of the temperature data we amended the relevant sections in the study 

site section. 
L175 et seq. […] massive volumes of glacial and periglacial debris as well as rockfall deposits (Fig. 2b, c). 

Near-surface temperature data indicates sporadic permafrost distribution in the upper part of the cirque. 

[…] allowing visual block tracking and delimiting the active process area. High displacement was measured 

between 2012 and 2015 with up to 30 m a-1. 

[…] 

L200 et seq.: In the Sattelkar cirque, several monitoring components are installed to provide ongoing and long–

term monitoring. Nine permanent ground control points (GCPs) measured with a dGPS to provide stable and 

optimal conditions to derive orthophotos from highly accurate UAS images (GeoResearch, 2018). A total 

number of 15 near surface temperature loggers (buried at 0.1 m depth) recorded annual mean temperatures 

slightly above the freezing point (1–2 °C) in the period 2016 to 2019. Ground thermal conditions at depth react 

with significant lag times to recent warming and therefore are primarily determined by climatic conditions of 

the past (Noetzli et al., 2019). Significantly cooler climatic conditions in previous decades and centuries (Auer 

et al., 2007) thus likely contributed to the formation of (patchy) permafrost at the Sattelkar cirque. Recent 

empirical–statistical modelling of permafrost distribution in the Hohe Tauern Range confirms possible 

permafrost presence at the study site (Schrott et al., 2012).  

These components include 30 near surface temperature logger (NSTL) nine permanent ground control points 

(GCP) measured with a dGPS to provide stable and optimal conditions for the derivation of orthophotos from 

highly accurate UAS images (GeoResearch, 2018). Field–based mapping and measurements help to delimit 

the active process area. 

 

Correct, the dGPS measurements are only used for repeated UAS campaigns and their 

data derivation. As described earlier, with our technical approach we were able to not 

only detect hot spots of total displacement but also to see changes in motion and thus 

certain areas of accelerating behaviour. 

 

• L210: The complete dismissal of radar data is not justifiable in the current form since 

the authors only take into account InSAR based deformation analysis and neglect that 
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the technique of pixel offset tracking can be also be applied to the intensity component 

of radar data. For the mainly rainfall driven processes at the study site, the integration 

of radar data seems to be mandatory into any sensible remote sensing based early 

warning approach, since a combination of optical and radar data is required to 

establish an as continuous as possible time series of remote sensing observations. 

Thank you for mentioning radar data. We have described the application of 

InSAR/DInSAR in the introduction (L86–91) and placed the argument in section “4.1. 

Optical Imagery”. 

For this particular site radar data is not practical. Even if foreshortening and layover 

effects are a minor issue for this site, the main reason to not include this kind of data is 

the fact that the velocity shows rates exceeding the limits of radar data leading to a 

loss of coherence.  
L78 et seq.: As forecasted landslides tend to accelerate beyond the deformation rate observable with radar 

systems before failure, we concentrate on optical image analysis (Moretto et al., 2016). One advantage of 

optical imagery is its temporally dense data (Table 1) compared to open data radar systems with sensor visits 

repeat frequency more than every six days and revisit frequency between three days at the equator, about two 

days over Europe and less than one day at high latitudes (Sentinel–1, ESA). Optical data allows direct visual 

impressions from the multispectral representation of the acquisition target and the option to employ this data 

for further complementary and expert analyses. While active radar systems overcome constraints posed by 

clouds and do not require daylight, data voids can be significant due to layover or shadowing effects in steep 

mountainous areas (Mazzanti et al., 2012; Plank et al., 2015; Moretto et al., 2016). Moreover, north/south 

facing slopes are less suitable, thus limit the range of investigation (Darvishi et al., 2018). In general, sensor 

choice depends on the landslide motion rate with radar at the lower and optical instruments at the upper motion 

range (Crosetto et al., 2016; Moretto et al., 2017; Lacroix et al., 2019).  

 

• Moreover, taking into account the goal of lead time optimization, I consider it crucial 

to also include ground-based live-streamed time-lapse imagery in the proposed remote 

sensing based early warning approach (for an example see the Khan et al. (2021) paper 

,Low-Cost Automatic Slope Monitoring Using Vector Tracking Analyses on Live-

Streamed Time-Lapse Imagery’ published in Remote Sensing). 

Thank you for this idea and forwarding the information on the article of this useful 

approach for the ‘Rest and Be Thankful slope’, Scotland, with PIV on time–lapse 

imagery. For the Sattelkar we conducted preliminary investigations regarding the 

installation of a camera on the opposite slope. Due to the steep slope the camera would 

have to be mounted at the same altitude. This means a camera would have to be able 

to cover a horizontal distance of about 3.5 km. There is a higher chance of mobile 

network signal which is otherwise unavailable beginning at the entrance of the valley. 

Nevertheless, the power supply and issues such as rain drops and general pollution on 

the lense pose problems as Khan et al. (2021) also acknowledge. 
 

The materials and methods section (4.) as well as the result section (5) are sound and well 

written. Since reviewer 1 has already focused on this part of the paper as well as the accuracy 

assessment and made detailed suggestions for improving these parts, I only have a few 

comments left to make on these aspects of the paper. 

 

• L355: The authors state that core areas of the landslide are surrounded by wide fringes 

with no data. In this context the meaning of the term ,no data’ is not clear to me. 
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Please, explain, what do you mean by ,no data’ – either missing results or zero 

deformation. 
Thank you for pointing this out. Here by ‘no data’ we mean that there is zero 

deformation and we have revised the text accordingly. 
L354 et seq.: No motion was present in a fringe zone along the landslide front (west boundary), similar to results 

in Fig. 5a and Fig. 5b. In general, the displacement patterns are less smooth than at 0.16 m input resolution. Outside 

the landslide significant displacements exist at the eastern image border (Fig. 5e) and towards the west (h, i) 

(Fig. 5f). In comparison, total displacement rates derived from PlanetScope cover in large parts the active area for 

Ib (Fig. 5c); however, for II only the core area of the landslide shows displacement. In both results the core areas 

of the landslide are surrounded by wide fringes with zero deformation. 

 

• L370: Fig 6. The obtained deformation results show a very different degree of detail 

throughout the landslide. For better evaluation of the reasons for these differences the 

inclusion of an RGB UAV image of the same area would be helpful in order to be able 

to include surface texture properties in the evaluation of the obtained differences in the 

deformation patterns. 

Thank you for your good suggestion. We added the corresponding master and slave 

image below the presented DIC result. The caption has been adjusted accordingly. 
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Figure 1 (a) Displacement derived from UAS data at 0.16 m resolution for interval II (24.07.2019–04.09.2019, 42 

d) combined with boulder trajectories (in metres) manually measured in the UAS orthophotos in the same time 

period. The solid black line represents the boundary of the active landslide based on field mapping. Background: 

UAS hillshade, 24.07.2019 (0.08 m), orientation -3° from north. UAS orthophotos at 0.16 m resolution for the 

master (b) and slave image (c) for the corresponding time interval. 

 

• Conclusions related to the results presented until L370: The presented specific 

deformation results obtained from the analyzed planet and UAV data, represent a 

valuable contribution towards an improved area-wide process understanding of so far 

unprecedented detail for this study site. Conceptually, such investigations mainly 

contribute to the preparedness phase within the disaster management cycle. 

Continuation of monitoring of the study site using the described approach would 

represent a very valuable prerequisite for developing and setting up a true early 

warning system for this site combining ground based and remote sensing observations. 

However, the results presented in this paper do not allow optimization of lead times 

within an early warning approach being stated being as the goal of this paper. 
Our approach is not to set up a comprehensive early warning system, which includes 

all four elements defined by the UNISDR (2006) (see L35–38).  

We agree that optimisation of lead time does not accurately represent what we have 

done in our study. Thus we have revised our manuscript to make it more precise (see 
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changes to the manuscript here on p. 1, 3–4). Our concept enables us to evaluate lead 

time based on our proposed structure. 
Introduction, L10–11: We introduce a novel conceptual approach for comprehensive to structure and quantitatively 

assess lead time assessment and optimisation for LEWS. 

[…] 

L39–41: This study presents a new concept to systematically evaluate remote sensing techniques to optimise 

estimate and increase lead time for landslide early warnings in these catchments. We do not start from the 

perspective of available data; instead, we define necessary time constraints to successfully employ remote–sensing 

data for to provideing early warnings. 

[…] 

Conclusion, L578 et seq.: Coarse temporal data resolution, such as in the case study investigated here, represents 

an important restriction to the use of optical remote sensing data for landslide early warning applications. 

Acceleration (and the resulting failure) over short periods of time will likely go unnoticed due to large data 

acquisition intervals. However, for prolonged acceleration periods, such as observed at the Sattelkar slide and 

many other relevant hazard sites, the chosen data sources have been demonstrated to represent a formidable early 

warning approach capable of contributing to an improved risk analysis and evaluation in steep high–alpine regions. 

 

 

 

• L375: 5.3 Time required for collection, processing and evaluation. The presented 

analysis is rather meaningless, since the scarcity of the available time steps does not 

allow the detection of critical process stages. Taking into account the big temporal 

gaps between the data acquisitions, the time needed for handling the planet and UAV 

imagery is not really relevant for lead time optimization. The obtained times only 

allow a relative comparison between planet and UAV based data acquisition within 

the narrow limits of the chosen approach. However, true early warning would require 

setting up a semi-automated processing chain including automated download and 

screening of available remote sensing data as well as semi-automated subsequent 

deformation analysis reducing data handling time to a minimum. Under such 

conditions, primary remote sensing data availability becomes the crucial decisive 

factor determined by the data distribution procedures of the satellite data providers and 

the atmospheric conditions in case of optical imagery. In conclusion, it needs to be 

stated that the used parameter of time to warning is only applicable under the 

condition of a near real time continuous data stream of input information which is not 

available within the presented study. 

Thank you for your comment which helps to clarify your understanding of our text. 

We did not intend to create a ‘true early warning’ as you described. This was not the 

goal of our study. The repeated measurements allow the detection of spatial and 

temporal acceleration patterns and we believe the repeated measurements can be 

scaled to early warning demands. With regard to your comment on a semi-automated 

processing chain we do not fully agree. Based on our knowledge, even in case of most 

geotechnical investigations, the data is analysed by experts prior to issuing an early 

warning (e.g. https://www.bgu.tum.de/landslides/alpsense/projekt/, Leinauer et al. 

(2020): DOI: 10.1002/geot.202000027). 

 

• L390: In the current form of the paper the points raised in the discussion (6.) are only 

relevant in the frame of a process-oriented study and not for early warning purposes 

https://www.bgu.tum.de/landslides/alpsense/projekt/
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since the latter one requires the identification of precursors for critical process stages – 

tipping points – which are likely to trigger substantial complex mass movements later 

turning into potentially catastrophic debris flows. 

It is our understanding, we can only provide early warnings for processes we 

understand. The processual understanding is key to anticipating the magnitude, timing, 

and reach of alpine hazards, thus processual understanding and early warning cannot 

be separated. 

 

• L490: Estimating time to warning (6.3). This part of the discussion also suffers from 

the conceptual limitations which have already been pointed out earlier in this review. 

A comparison of lead times between the different example landslides would only be 

meaningful in case of continuous high resolution temporal information on deformation 

allowing the identification of precursory events which is usually only possible using 

ground based observations. The presented comparison between potential repeat rates 

of remote sensing data acquisitions and retrospectively derived lead times is too 

simplistic (Fig. 8), since the main remaining question is, whether the relevant 

deformation (cracks etc.) can be first, resolved by the used imagery and second, 

distinguished from other surface disturbances by the used analysis methods. 

In this paper, in contrast to remote sensing papers, the time scale required for effective 

early warnings is given by nature, i.e., the typical acceleration patterns of particular 

landslides. 

With regard to the comparison of historic events, we referred to their natural landslide 

processes which delimits the possible lead time. Unfortunately, a comparison to these 

historic examples is limited to a retrospective view. We agree with you regarding the 

detection of relevant deformations. If the sensors evaluated here could have identified 

the motion excluded disturbances, then in this temporal concept UAS and PlanetScope 

would have been able to show an acceleration in a timely fashion. 

We want to keep this concept simple to allow the transfer for required processing 

times from other sensors. The main question is, if the time is sufficient for the whole 

processing prior to landslide release.  
L:148–149 Natural processes and natural their developments constantly take place independently, thus 

dictate the technical approaches and methodologies researchers must can and must apply within a certain 

time period. 

 
 

Overall recommendation: 

The presented results comprise a very interesting process-oriented study evaluating the 

use of planet and UAV imagery for the derivation of spatiotemporally differentiated 

deformation information for a rather large and topographically pronounced terrain affected 

by complex mass wasting processes. I consider these findings well worth being published 

in this journal. However, the publication of these specific results requires a major conceptual 

reframing of the work which is targeted at the real potential usability of these results which 

cannot be early warning because of the reasons already stated in this review. 

 

However, the work presented in this study has the potential to form an important basis for the 

development of a true early warning concept / approach in the future combining remote 

sensing and ground based observations targeting at the same parameters allowing a multi-

scale assessment of surface deformation related to triggering potential catastrophic mass 

movements at the study site. 
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Letter of response to comment on nhess-2021-18 

Dear Jan Blöthe, 

We thank you and appreciate your valuable comments on our manuscript. Your feedback has 
helped us to improve our work and pointed to areas which were ambiguous and therefore 
needed clarification. 

Please find below the following colour coding for the review and your comments in black; our 
responses to the review are in blue and the changes made to the manuscript are in green. 

General comments 
 

A) Description of digital image correlation method and error assessment 

In my view, digital image correlation is not a trivial method and deserves a more detailed 
description in section 4.3. Especially because the conceptual approach presented here 
grounds on the detection of significant movement (or even acceleration) from optical 
imagery, the authors should elaborate the exact processing steps and include a detailed 
accuracy assessment. This can easily be achieved by:  

 The quantification of a level of detection between images, i.e. the residual mismatch 
of stable surfaces outside the landslide between consecutive images after image 
correlation, beyond which significant displacement can be detected with a given 
confidence. 

 Excluding spurious matching results (displacement vectors) on the basis of a 
correlation threshold. 

The description of section 4.3., Data Acquisition and Processing, has been modified by adding 
more details.  

The attached Online Supporting Material (OSM) contains the variety of results which show 
our approach to selecting the appropriate combination of UAS input data (orthophotos, DSM 
and hillshade derivates) and displacement vectors (see OSM Figs. 7, 8 and 9). In addition, 
signal to noise results and volume calculations are provided (see OSM Figs. 3, 5, 8, 9 and 11, 
12). The distribution of GCPs combined with DIC total displacement results of UAS are also 
presented (see OSM Fig. 1 and 4). 

In terms of the selection of appropriate parameter settings, we decided to use: 

- for a step size of one, as larger step sizes smoothed the velocity pattern, did not 
obviously improve the matching while decreasing the spatial resolution. Computation 
time would decrease if larger step sizes are employed. 

- UAS 128 x 32, as an initial window of 256 returned a general decrease in velocity. 
Furthermore, the smaller initial window of 64 matching was only partially successful 
with very low velocities. The final window size is important to detect small scale 
features. If set too large, features could be smoothed out. In our case there were no 
distinct differences, which is why we selected the smaller final window option: to 
necessary small scale features. 

However a detailed accuracy assessment requires comparable data which is not available such 
as in the verification process of DEM production based on stable surfaces. Therefore, we 
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added the signal to noise results as you requested in the OSM. An accuracy assessment 
similar to Travelletti et al. (2012) having GCPs within the active landslide cannot be 
conducted, as in contrast our GCPs are located on stable positions outside of the active 
landslide (see OSM Fig. 1 and 4). Our approach to this study is to compare manual block 
tracking with the calculated velocities from DIC as part of the data evaluation.  

 

B) Result of image correlation 
 

As stated above, digital image correlation and the extraction of displacement from correlated 
imagery is not a trivial task and many pitfalls can lead to spurious results (the authors term 
these decorrelated). I will outline my doubts regarding the validity of the obtained 
displacement values referring to Fig. 5, but have given many detailed comments on the 
respective text positions in the specific comments below. In large areas, the image correlation 
returns areas that are “decorrelated”, such as the western part of the landslide in (a) and (b), 
but also positions in (e) and (f) are affected by this. In my experience, such a pattern indicates 
that matching between images did not work, which should be visible by adjacent vectors 
having very different magnitudes and directions. Furthermore, the patchy nature of 
displacement values in the western part of (c) is very surprizing. Here very high total 
displacement of ~18 m is located in the vicinity of displacement on the order of 4-8 m. From 
an image matching procedure, I would expect a rather smooth picture here, such as in (d). But 
also from a geomorphic perspective, I am unsure how this pattern could be explained by a 
natural process. Finally, the results obtained from the downsampled UAS DEMs 
predominantly show high rates (16-18 m) that are interrupted by areas of no movement or 
very slow movement. My impression would be that these results are least reliable, because a) 
they show a completely different picture as (a) and (b), while being computed with the same 
data (just a different resolution), b) the displacement values are nearly the same for two very 
different time intervals (e = 376 days, f = 42 days), c) they are not matching the values 
obtained from manually tracking boulders (again, based on the same data), and d) I am unsure 
if such a pattern can be produced by a natural process. 

Having outlined my reservations regarding the image correlation results, let me suggest a 
couple of strategies to improve the results: 

 Use a hillshade not a DEM for tracking (not clear if this was done) 
Originally we used UAS orthoimages. Please see the OSM Fig. 8 for calculations 
using DSM and OSM Fig. 9 using hillshades. 

 Resample the DEM to a slightly coarser resolution (0.5 m?) 
We have tried a 0.5 m resolution for the UAS orthophotos with different parameter 
settings showing overall better matching with still some decorrelation. However, with 
this input resolution and the best suited parameter settings of 128 x 32 the extent is 
already decreased in its size to a smaller displacement area. 

 Try a different software for image correlation, there are many and all have their 
advantages and disadvantages 
This was done with DIC–FFT and IMCOOR (please see OSM Fig. 10 for results of 
DIC–FFT). 
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 Have a detailed look into the correlation coefficients and the bearings of the 
displacement vectors and exclude spurious results. 
Please see OSM Fig. 3 (b) and (h) with displacement vectors and signal–to–noise 
maps in the OSM Fig. 3 (c), (i) and (d), (j), Fig. 5 (f) and (i) and a cross profile cutting 
the DIC total displacement for both intervals I and II, Fig. 6. 

Yes, indeed a mismatch of the initial and final search windows, i.e. a decorrelation, is visible 
for many areas but especially obvious in the western part of our DIC results. The current 
literature states among others that there is an upper limit regarding velocities of ground 
motion (Delacourt et al. 2007; Travelletti et al. 2012). In this area very high motion clusters of 
this complex landslide exhibit debris slide characteristics. We observed that acceleration of 
the landslide body takes place here. In contrast, in the eastern part of our DIC results, there 
are correlated areas and smooth motion patterns indicating that matching took place and the 
method was successful with the applied parameter settings. 

Additionally, in our case, the terrain surface is altered rapidly; big blocks with edge lengths of 
up to 10 m rotate and cause significant surface changes, which could be a further reason for 
decorrelation (see OSM Fig. 9 for results of DIC–FFT) (Lewis 2001; Stumpf et al. 2018). The 
geomorphic causes for the observed acceleration are unknown but could be related to 
permafrost degradation and increased infiltration of rain- and meltwater. 

In the OSM we support the result from DIC with the corresponding displacement vectors 
(OSM Fig. 3 (b) and (h)). 
With regard to the 3 m downsampled UAS orthophotos we are aware that these results are 
less trustworthy in terms of delineated velocities. Here, our purpose was to compare two 
different sensors in order to see how accurate PlanetScope data are for high alpine 
displacement calculations. Please see here our comment further below. 

 
 L22/23: While this is certainly true, the authors should elaborate in the introduction that 

events instantaneously triggered by earthquakes or heavy precipitation are beyond what 
their proposed framework can deliver an early warning for. The necessity of gathering and 
evaluating data prior to issuing a warning limits the analysis to mass movements that 
indeed show a pre-failure acceleration on the order of days. 
Thank you for highlighting this. We totally agree that this has to be mentioned in the 
beginning to complement our explanations in the discussion, L561/562. 
L31: This definition of an early warning system (EWS) contains a time component but includes no exact time 

scale reference. ‘Early’ suggests that events are detected before harm or damage occurs and thus stands in 

contrast to events which are only detected once they have begun (e.g. snow avalanches).  Thus, it is necessary 

to know sensor capabilities and limitations for pre–event mass movement observations (Desrues et al., 2019). 

The success of a warning requires that information is provided with enough lead time for decisions on reactions 

and counter measures (Grasso, 2014). The success of an EWS therefore requires measurable pre-failure motion 

(or slow transport velocities) to allow for sufficient lead time for decisions on reactions and counter measures 

(Grasso, 2014). In this regard, knowledge on sensor capabilities and limitations is essential, as it determines 

which rates and magnitudes of pre-failure motion can potentially be identified (Desrues et al., 2019). Our 

proposed framework refers to mass movements with significant pre-failure motion operating over a sufficient 

time periods and thus excludes instantaneous events triggered by processes such as heavy rainfalls or 

earthquakes.   
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 L25/26: Is this really just attributable to the warming of the climate? 

To the best of our understanding and following Gariano and Guzzetti in their review 
(2016) the global climate warming directly and indirectly impacts natural and human 
induced factors which can again directly or indirectly condition landslide activity, 
abundance and frequency of events. Other reasons for landslide triggers are included in 
L22/23, earthquakes, rainfall events and human interaction. 
 

 L47/50: I would think that also the rate of landslide movement defines whether or not it 
can be detected by optical imagery. 
Thank you for pointing out that detection is not restricted to sensor characteristics. This is 
very important to say, of course. 
Until rRecently, the spatial and temporal resolution of optical satellite imagery has significantly improved 

requirements for accurate early warning purposes have not been met by optical satellite imagery (Scaioni et 

al., 2014) and has allowed substantial advances in the definition of displacement rates and acceleration 

thresholds to approach requirements for early warning purposes. This is essential since spatial and temporal 

resolution determines whether landslide monitoring is possible with the detection allows defining of 

displacement rates and the approximation enables approximating of acceleration thresholds, which both are 

lacking if information is based solely on post–event studies (Reid et al., 2008; Calvello, 2017). 

 
 L79/80: This is the maximum revisit time at the equator, right? For the study area 

shown here, revisit time should be shorter. 
Yes, thank you for mentioning this. We will differentiate here between revisit frequency 
and repeat frequency, with the latter of importance for coherence. 
One advantage of optical imagery is its temporally dense data (Fehler! Verweisquelle konnte nicht gefunden 

werden.) compared to open data radar systems with sensor repeat frequency  every six days and revisit 

frequency between three days at the equator, about two days over Europe and less than one day at high latitudes 

(Sentinel–1, ESA). 

 
 L121: What do you mean by “natural developments” and how are these conditioned or 

different from natural processes? 
Thank you for this comment. We are sorry that this was not specific. We meant the 
development of natural processes.  
Natural processes and their developments constantly take place independently, thus dictate the technical 

approaches and methodologies researchers must apply within a certain time period. 

 
 Figure 1: While I like the idea behind this conceptual figure, I would recommend the 

authors add a time axis and limit the area of “significant acceleration” to a vertical line that 
coincides with t = 0. In the present form, the conceptual figure contradicts statements in the 
text, such as “The forecasting window is started […] following significant acceleration 
[…]” (L126), or “Simultaneously with the forecasting window, time to warning (twarning) 
starts (grey outline)” (L128/129). 
Thank you, you are right. We changed it to our best understanding of your feedback. 
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 L133/134: This also does not match what Fig. 1 is showing 
“The lead time is the difference between the forecasting window and the time to warning.”  

We want to express that tlead is the rest/remainder of the subtraction as follows 
𝑡୭୰ୣୡୟୱ୲୧୬ ୵୧୬ୢ୭୵  − 𝑡௪ =  𝑡ௗ  
Please let us clarify this as it seems to be some sort of misunderstanding here. 
As a suggestion, this could be replaced with L133/134, if you prefer “Lead time is the forecasting 

window minus the time to warning.” 

 

 L139: This also does not match what Fig. 1 is showing. In Fig. 1, tlead < treact. 
“An imperative for an effective EWS, the required time to take appropriate mitigation and response measures 
has to be within the lead time interval (tlead) (Pecoraro et al., 2019) with tlead ≥ treact”.  

Please let us try to clarify this: in best case, the lead time is longer than the time needed to 
take responsive measures and react to the impending event (treact), this is indicated by the 
shorter solid grey arrow. However, if the reaction time is as long as the lead time, see 
dashed extension of the grey arrow, then it is a coincident ending of both, treact and tlead 
prior the release and impact. 
 

 L215/127: In theory yes, but as you show later (Tab. 2), the effective revisit time of 
optical imagery might in fact be very similar. 
Unfortunately, we do not understand what you are referring to in L127. 
L215: Sentinel–1 does have a revisit time of about every second day over Europe. 
However, the repeat frequency for coherence to generate interferograms is every six days. 
This is the shortest possible temporal baseline. 
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In terms of optical satellite images, yes, this is what the author team finally wants to lead 
to. PlanetLabs claim to have daily acquisitions and thus can provide daily imagery supply. 
But upon a closer look the practitioner knows the reality is different. This has to be kept in 
mind if this kind of data is employed for the purpose of a reliable monitoring and process 
observation. For this reason, Table 1 and Table 2 have different and contradicting 
statements, in this case for PlanetScope.  
 
You are right in some way: free satellite images by Sentinel–2 are, at five days, very close 
to the six days for interferograms by Sentinel–1, given that both sensors are suitable for the 
given characteristics by the acquisition target (motion velocity, exposition). Apart from 
open data providers, there are many others providing even sub–daily acquisitions such as 
WorldView 3/4. 
 

 L242/248: It might be worth mentioning here that on average, only 11% of the images 
were usable, significantly reducing the theoretical revisit time, as you also outline in the 
discussion. 
Thank you, indeed this is worth to be mentioned and we changed accordingly. 
In this seven–month period, 43 images (20.1 %) had data voids or did not cover the AoI, thus the overall 

usability is limited to about 11 %. 

 
 L267/269: Please elaborate how you filtered for “errors of location, shift and spectral 

colour problems” (are the latter spectral differences between images?). 
We used QGIS software to manually select the satellite images with the reference UAS 
images at the base and the visual “show/hide” of the satellite slave images on top.  
Similarly, the application Map Swipe Tool plugin was employed by dragging the slider 
across the images. 
Spectral colour problems are shifts in the individual r, g and b bands within one single 
image: 

 
 
The other shifts which might occur cannot be corrected for. The first time these can be 
detected is in a GIS software with the visual check previously described: 
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Thereafter, a second selection (visually with the Map Swipe Tool plugin) from the downloaded images was 

filtered for errors of location, shift and spectral colour problems which were previously not clearly discernible 

in the online data hub. 

 
 L281/285: Please specify the accuracy of dGPS coordinates as measured for the GCPs and 

also include an accuracy information for the DEMs and their derivatives that were 
produced from UAS surveys. 
The accuracy of dGPS coordinates, which were employed for the processing of UAS data 
and DEM/orthophoto generation, range between 5 cm horizontally and 10 cm vertically. 
All UAS model calculations are based on the same dGPS measurements.  
The RMS errors from UAS image processing in Pix4Dmapper range between 4 and 8 cm. 
If generation reports are necessary, they can be provided on request later (due to current 
office access difficulties). 
These were repeatedly (1000 measurements/position) registered with the TRIMBLE R5 dGPS and corrected 

via the baseline data of the Austrian Positioning Service (APOS) provided by the BEV (Bundesamt für Eich– 

und Vermessungswesen). Horizontal root–mean–squared errors (RMSE) range from 0.05 m to 0.10 m for 

vertical RMSE. These GCPs were employed for georeferencing and further rectification of all UAS surveys.  

 
 L285/286: Please elaborate how image co-registration was achieved and state here the 

residual mismatch between co-registered images. 
DIC methods for estimating terrain movements require accurate geo-referencing of 
consecutive satellite images avoiding falsely detected systematic drifts. Although the 
investigated satellite sensors are equipped with high–quality geo-localization sensors, 
subtle deviations in the absolute geo-referencing rates are expected for different acquisition 
times.  
Therefore, a fine–registration between satellite image patches in the AoI was conducted 
based on a Matlab script (by Tobias Koch) applying a state–of–the–art image registration 
technique (Lowe 2004). Since radiometric differences between the different acquisition 
times and image distortions (e.g. clouds) could remain in the images, feature–based 
registration methods are preferable over correlation–based registration methods due to their 
ability to match local feature points instead of entire image areas.  
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To ensure that actual terrain movements in the AoI do not cause undesired shifts in the 
registration, the AoI was excluded from the feature point detection step. The remaining 
feature points were used for estimating a geometric similiarity transformation between the 
reference and all target images including a statistical outlier removal (RANSAC). This 
transformation was finally used to accurately register a target image towards the reference 
image. 
Regarding the registration quality in the test site, a satisfying amount of feature matches of 
at least 500 after outlier removal could be found for all reference (master) and target 
(slave) image pairs and for all investigated sensors. The mean distance of transformed 
inlier feature points of the target image to their corresponding feature matches in the 
reference image ranged between 0.6 and 0.8 pixels, confirming the high registration 
accuracy (see OSM Fig. 14).  
 

 L288/289: Usually matching between consecutive images is not achieved by matching 
“common pixels”, but by maximizing the correlation between pixel-value distributions of 
patches of pixels (i.e. your windows of different sizes in Tab. 6). 
Yes, you are correct it estimates first the pixelwise displacement between two patches 
based on correlation peaks and second, the final correlation is performed to retrieve the 
subpixel displacement. 
We added this information and reordered the processing steps according to the COSI–Corr 
manual (Ayoub et al. 2009). 
There are two correlators; in the frequency domain based on FFT algorithm (Fast Fourier Transformation) and 

a statistical one. Applying the more accurate frequential correlator engine, recommended for optical images, 

different parameter combinations of window sizes, direction step sizes and robustness iterations were tested.  

Parameter settings include the initial window size for the estimation of the pixelwise displacement between the 

images and the final window size for subpixel displacement computation in x, y; a direction step in x, y between 

the sliding windows; and several robustness iterations (Fehler! Verweisquelle konnte nicht gefunden 

werden.). 

[…] 

The results of each correlation computation returns a signal–to–noise ratio map (SNR) and displacement fields 

in east–west and north–south directions. These results were exported from ENVI classic as GTiff, and the total 

displacement was then calculated with QGIS. 

 
 L304/305: What is the uncertainty of these east-west and north-south displacement 

estimates? Did you check whether the bearing of the displacement matches the general 
slope of the Sattelkar? 
In the OSM we are providing the results of the correlation computations for our published 
results (east–west and north–south displacement fields as well as signal–to–noise maps). 
The results are consistent. We further provide total displacement results of other parameter 
combinations. 
Yes, we checked the overall orientation of the correlation based on computed directional 
vectors (with SAGA GIS software). We provide these vectors in the OSM, too 
(OSM Fig. 3 (b) and (h)). 
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 L307/308 and L440/442: This seems a bit arbitrary. How did you determine a cutoff–value 
of 4m displacement? How did you distinguish outliers from non-outliers? What is the 
confidence of your estimates? 
We determined the cutoff–value employing several criteria. First based on field experience 
we know the landslide extent and displayed the results in combination with the 
demarcation displayed as ‘Active area’ in Figs. 2, 3, 5 and 7. Then we checked the value 
distribution in the histograms for both the calculated total displacement as well as the 
signal–to–noise maps. These maps were further used to visually compare the total 
displacement results. This allowed us to identify outliers and unlikely displacement. Based 
on the histograms and the acquired experience for the results, the thresholds were tested 
and set for transparency and to display values. Please see the OSM (Fig. 13). 
 

 L308/309: This contradicts the descriptions of Fig. 5a, where you point out that 
“ambiguous, small-scale patterns with highly variable displacement rates” (L332/333) 
dominate the western part of the mass movement. 
Here we would like to differentiate between inconsistencies which we understand as 
artefacts and noise due to snow, vegetation, clouds, cloud shadows and terrain shadows. De–
correlation with its salt–and–pepper appearance due to velocities exceeding the correlation 
capability of DIC have a different origin and reason.  
However in the results, section 5, we described the appearance of these ambiguous signals, 
while in the discussion section they are explained. 
 

 L311/312: I am not convinced that manually tracking boulders in the same images that 
were used for image correlation can verify the results of this correlation. You can use these 
data to check if manual and automated tracking give consistent results. Comparing 
manually tracked boulders from UAS imagery could however be used to compare against 
the displacement estimates from satellite imagery. 
We are certain that the direct measurements of travelling distances from blocks of 10 m size 
for consecutive orthoimages, which were also employed for the DIC method, are a valid 
method to underpin the total displacement results by the DIC.  
Comparing these tracks with satellite imagery might be useful keeping in mind that the 
difference between UAS orthoimages of 0.16 m and PlanetScope satellite images of 3 m 
spatial resolutions is substantial and sensor type, image processing etc. can introduce further 
inaccuracies. 
 

 L320: As you present total displacement for different time intervals here, not rates in 
distance per unit time, I would suggest changing the title here. Same is true for L326, L346 
and L361. 
Yes, thank you for pointing this out. We changed the section title (see below) and in the 
text accordingly (L326, L346, L350, L354, L357 and L361).  
Section Title: 5.1. Total displacements Displacement Rates 

 
 L335/336 and L366: Did you check the direction of displacement for the areas of 

smallscale patterns of ambiguous signals? I would suspect that these are very heterogenous 
here as well. It would also be worth looking into the quality information (correlation 
coefficients) for these regions.  
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Yes, this is a good point. Indeed, we checked the direction based on displacement vectors as 
well as signal–to–noise maps. They both give the same indication of heterogeneous and 
ambiguous signals with no correlation for exactly the same areas with ambiguous signals in 
the total displacement calculation. Please see our OSM (OSM Fig. 3). 
 

 L397: For a comparison (and also for a better readability) you could convert your total 
displacement to average rates of m yr-1 or cm d-1. 
Yes, converting them into averaged rates is a good suggestion for the discussion section, 
see below. If you recommend this conversion for the results section 5 too, then the section 
title should be kept “Displacement rates” as before (see your previous comment for L320). 
For the (old) L417, 418 and 420, the values were added with yearly rates in brackets: 
trajectories up to 4 m (34.8 m yr-1) (d); a 16 m (139 m yr-1) trajectory (a); approximately 10 m (86.9 m yr-1)  

 
 L398/399 and L402/404: Given the large differences in total displacement between 

sensors and resolutions used for image cross-correlation, I do not think that you can make 
this claim. Please use an appropriate measure to quantify the agreement between manual 
boulder tracking and the three different approaches used for digital image correlation. 
These lines refer to the results of the total displacement derived from UAS orthophotos. 
Regarding L398/399 the parameters were tested and selected independent of others’ 
recommendations, but we arrived at the similar conclusions. With regard to L402/404 we 
believe that the travel distance measurements of field mapped boulders based on the same 
data (UAS orthophotos) are comparable to DIC derived total displacements. 
 

 L419/422: This might be the case, though you tested larger patch sizes (Tab. 6) that should 
have given you consistent results for this region then. 
In the OSM we provide results of our parameter tests for larger final window sizes (see 
OSM Fig. 5 and 7).  
 

 L433/434: This should be backed by a statistical measure. From a close look to Fig. 5, I 
rather get the impression that the only patches you can make this statement for is location a 
in Fig. 5 (b) and (d) and location c in Fig. 5 (a) and (c), but to a lesser extent. 
Thank you for pointing this out. In our opinion the first time interval with slightly more 
than one year of accumulated displacement, the frontal area and core body of the landslide 
are reflected in both DIC results of UAS and PlanetScope (locations (a) and (c), as well as 
(d) and slightly (e) and (f) in Fig. 5 a) for UAS and c) for PlanetScope I). In contrast to the 
second interval of 42 days, it seems that there is not enough accumulated displacement to 
be captured by PlanetScope DIC, as the middle to rear landslide body are only reflected in 
the UAS DIC result (locations (b)–(d) Fig. 5 c) and remain free of signal for these 
locations in Fig. 5 d) for PlanetScope. 
 

 L445/447: The size of the snow patches does not play an important role. The presence of 
snow in one image hampers correlation between images and leads to false patchmatching 
results. 
Yes, we absolutely agree and this is also described by Leprince et al. (2007; 2008), noting 
that variations, thus the difference in snow cover, limit the technology. In addition, they 
say that in images with high gains, the areas of snow coverage are saturated too, and as a 
result, do not allow for any correlation (Scherler et al. 2008). 



11 
 

Regarding the displacement for (j) as identified in both sensor combinations (see Fig. 5), 
there is a patch of snow (1–2 m height, length ~ 25 m, see OSM Fig. 10) in the UAS and 
PlanetScope images on 24.7.2019 while for the images on 13.7.2018/19.7.2018 
(UAS/PlanetScope) and 4.9.2019 (UAS and PlanetScope) there is no snow (see 
OSM Fig. 2 and 11). Thus, in this case, the existence of snow in one image but not in the 
other explains this false correlation and indication of displacement. 
Minor snow fields as visible in the images from 24.07.2019 for both, UAS and PlanetScope, likely explain the 

big cluster of incorrect displacement southeast of the lobe (j); nonetheless, in the satellite image they are smaller 

than the resulting DIC displacement.  

 
 L457/462: To be frank, I do not see much similarity between Fig. 5 (c) and (e) nor 

(d) and (f). I would be very cautious in interpreting these results as is. This is 
especially true for the resampled UAS results.  
Thank you for pointing this out. Yes, we agree in some part. Our purpose was to compare 
our high accuracy UAS orthophotos to PlanetScope satellite images, in order to estimate 
the goodness of fit and limitations of the latter.  
We are aware that this downsampling factor is large, and therefore the resulting 
displacement rates and inherent velocities have to be viewed with reservations.  
 
However, in terms of noise outside our defined active landslide area and the overall 
detection to the landslide boundary as delineated based on the 0.16 m UAS data: for the 
first, the noise is low to moderate, and there is generally a good fit for the 3 m 
downsampled UAS data similar to DIC results of UAS at 0.16 m, respectively. In contrast, 
DIC results of PlanetScope neither show likewise noise–free areas outside the active 
landslide regions nor do they reach the same extent total displacement extent as the 
downsampled UAS data. 
 

 L463/464: As the GCPs for referencing the UAS data are probably located close to the 
landslide, it is not surprising, but neither disturbing, that false displacement clusters appear 
outside the area of interest. 
Please see our map of GCP distribution as well as images thereof in the OSM (OSM Fig. 
1). Some GCPs are close to the landslide area, but installed on stable bedrock and to best 
of our knowledge, they are not moving and thus provide continuous usability and 
comparability. 
False displacement is indicated for a cluster outside of the boundary to the image border in the east for UAS 

interval I (Fig. 5e) and in the north western area (h, i) for interval II (Fig. 5f) contributing to changes in shading 

and illumination. 

 
 L468/470: Again, I would not trust the displacement estimates of the resampled UAS data. 

While it is true that your manual boulder tracking identified 2 boulders with displacement 
of 10 or more meters, the remaining 34 boulders show something different. 
Yes, you are right that not all of the 34 boulders are exactly reflecting the DIC total 
displacement result. However there are more than two which are in the same range of 
displacement, and others are very close to it, keeping in mind that there are some 
uncertainties and limitations when it comes to the threshold of identification of small 
ground motions in the DIC method. Please see here the section 6.1, discussion. We are 
happy to revise this further. 



12 
 

 
 L471/476: While it might be true that the results obtained from image correlation of 

resampled 3m UAS data are better (internally) correlated and show a more homogeneous 
deformation pattern, this does not mean that the result is correct. As I outlined above, I 
have serious doubts regarding the interpretability of this data, as there is no agreement with 
the manually tracked boulder velocities (except 2 boulders). Also, from a geomorphic 
perspective, I am not sure how you would explain a velocity pattern where high velocities 
dominate throughout the entire landslide, but are speckled with lower to zero movement 
within (Fig. 5 e and f). 
We agree with the 3 m resolution to some extent. Please see comment above for L457/462 
the comparability of manual block tracking to UAS DIC result.  
The ‘speckled’ pattern, is due to decorrelation resulting from velocities too high to be 
captured with the DIC method; this combined with an observation period of 42 days delay 
(Delacourt et al. 2007; Travelletti et al. 2012) may be exceeding the accumulated 
displacement to be captured by the method, which could contribute to this pattern and 
explain the resulting limitation to some extent. In addition, we know that the surface 
changes significantly in the frontal part and these strong alterations also limit the DIC 
method (Lewis 2001; Travelletti et al. 2012). For more please see section 6.1, discussion, 
too. If this is not clear enough in the discussion, we would be happy to further revise this.  

 
 L485/488: Did you evaluate the proportion of false-positive displacements to truepositive 

displacements and if so, how did you do this and can you please include this data? Based 
on the image correlation results shown here, you can make this statement, but I would be 
cautious to make a general claim on the usability of the data. 
We approached our results by testing of different parameter settings and combinations 
based on visual comparison as is common in the field (Bontemps et al. 2018). The 
PlanetScope DIC results presented here are the most suitable master–slave image 
combinations. We could provide the other intervals of DIC results which are not 
meaningful for comparison if wished. 

 
 L552/554 / Table 7 / Figure 9: I do like the idea behind this, where the authors show that 

their proposed workflow would enable a timely warning in the case of historic landslides. 
However, in the case of Vajont, I think you should include a critical factor. While it is 
theoretically true that a “forecasting window” would allow for your workflow to be 
completed well before the failure, the slow deformation of Vajont (35 mm d-1) in the 30 
days will be well below the level of detection of your image correlation analysis, if you 
collect an image directly after the onset of “significant acceleration”. In order to be 
detectable, movement must have accumulated a critical distance before data collection of 
your workflow can set in (30 days = 1.05 m total displacement) – a factor that in my view 
would be important to include here.  
Thank you for mentioning this, you are absolutely right. We added the following sentence 
below to emphasise this critical detection capability limit of the DIC method. 
We assume that approximately 30 days before failure Vajont would have displayed a 
signal exceeding the noise at modern standards and would have become predictable. 
For Vajont, the 1/velocity plot by Petley and Petley (2006) (based on data from Semenza and Ghirotti (2000)) 

shows an increase in movement at about day 60 along with a transition from a linear to an asymptotic trend at 
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approximately day 30, defined as a transition from ductile to brittle. Therefore, we assumed 30 days of 

forecasting window for twarning and tlead until the impact of the hazardous event on 09.10.1963. However, it 

has to be kept in mind that velocities of about 35 mm d-1 are still low and at the minimum of the displacement 

recognition capability for the digital image correlation method.  

 

Technical corrections: 
 
 L1: Landslide 

Here we are referring to landslides in general, not to a specific landslide. 
 L103/105: Check grammar 

We did not add a comma as the text is in BE; in AE, however, a comma could be added (In 
this investigation,…). We added quotation marks to improve readability. 

 L185: Is this really the source the authors need to cite for the location map? 
Thank you, we modified in response to comment by RC1 (J. Blöthe) by changing Vienna 
to Wien. Otherwise this is according to the publishing company and the copyright 
statement from the online map. 
Figure 1 (a) Overview map Austria (Österreichischer Bundesverlag Schulbuch GmbH & Co. KG and 

Freytag–Berndt & Artaria KG, Wien). 

 L229: beginning of April 
Thank you, we inserted missing word. 
span from the beginning of April to the end of October in 2019 

 Table 3: Here you use a different date format than in the text 
Thank you, we corrected the format. In addition to that we also reformatted the dates in Table 6 
accordingly. 

 L257: UgCS-Software? 
Further information on the flightplanning Software UgCS can be found here: 
https://www.ugcs.com/photogrammetry-tool-for-land-surveying 

 Table 4: Unit for GSD missing 
Thank you, we added the GSD unit. 

 L273/274: Add this information to Table 5 and delete here 
This is a good suggestion and we followed it. 

 L299/300: I guess this is only relevant if you explicitly mention the image–processing 
times. 
Thank you, however we think this is relevant as the duration of image processing and DIC 
calculation are an important part of our temporal concept in the results section 5.3. and discussion 
section 6.3. 

 L398: can be compared 
We think that the repetition of ‘compared’ is not necessary; it follows from the logic of the 
sentence. 

 L409/410: resulting from significant morphological changes? 
Thank you for pointing this out. After a detailed verification of volumetric calculations, we can 
confirm changes of about 1 m. Please see our calculations and visualisations in the OSM. 
In Fig. 5a, the large southern patch (g) shows clear displacement values for the rear part and decorrelation for 

the front region resulting from morphological changes within the image pair of interval I.  

 L443: bracket missing? 
Yes you are right, thank you. 
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 L 460: check figure reference 
Thank you for pointing on this auto–correction mistake. 
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Letter of response to comment on nhess-2021-18 

Dear Sigrid Roessner, 

We thank you for your valuable comments on our manuscript and appreciate the time and the 

efforts you have invested. Your feedback has helped us to see and clarify ambiguous areas to 

further improve our work.  

Based on your suggestions we have restructured the entire manuscript, especially 

introduction, study site description, discussion and conclusion. In addition, we have specified 

many conceptual and methodological concerns according to your more specific remarks. We 

have also rephrased several ambiguous paragraphs. 

Please find below the following colour coding for the review and your comments in black; our 

responses to the review are in blue and the changes made to the manuscript are in green 

(following RC2), orange (following RC1) and in blue by the authors. Reference to line 

numbers are based on the original preprint. 

General comments 

The paper represents an interesting contribution to process oriented remote sensing based 

monitoring of complex landslides with the aim of making a conceptual contribution to early 

warning. The paper is well written in language and structure and the figures are of good 

quality. Despite the overall good scientific relevance and presentation quality, in the current 

form the paper lacks a coherent scientific goal justifying the used approach. This problem 

already becomes apparent in L40 where the authors state that the study presents a new 

concept to systematically evaluate remote sensing techniques to optimize lead time for 

landslide early warning’. Although the presented work is very interesting, it does not fit the 

stated goal for the following reasons: 

 

• Concept of lead time and need for best possible reduction is not new. 

While we agree that the concept itself may not be knew, we find that using 

multispectral remote sensing products to assess and increase lead time to ensure the 

timely prediction of landslide early warning systems represents an important research 

gap that so far has rarely been addressed. We evaluate the capabilities of remote 

sensing to identify hot–spots and detect process behaviour changes based on the local 

conditions. Thus, the landslide process is the precondition. We want to estimate, based 

on the assumption that the particular sensor is able to deliver the necessary 

information, the time demand of each sensor for time to warning. 

We have now replaced the phrase optimising lead time with a more precise description 

of what we have done. Please see revision of the conclusion further below. 
L10–11: We introduce a novel conceptual approach for comprehensive to structure and quantitatively assess lead 

time assessment and optimisation for LEWS. 

[…] 

L39–41: This study presents a new concept to systematically evaluate remote sensing techniques to optimise 

estimate and increase lead time for landslide early warnings in these catchments. We do not start from the 

perspective of available data; instead, we define necessary time constraints to successfully employ remote–sensing 

data for to provideing early warnings. 

[…] 

L34: Lead time as defined in the context of LEWS is the interval between the issue of a warning (i.e. dissemination) 

and the forecasted landslide onset (Pecoraro et al. 2019) and thus crucially depends on time requirements in phases 



2 

 

(1)–(3). The success of an EWS therefore requires measurable pre–failure motion (or slow slope displacement) to 

allow for sufficient lead time for decisions on reactions and counter measures (Grasso, 2014; Hungr et al., 2014). 

 

• Remote sensing techniques themselves are not the bottleneck for shortening the lead 

time. 

The goal of our concept is not to refine remote sensing as a technique itself but to 

provide a tool for choosing the appropriate sensors based on time required for the time 

to warning phase. We thereby increase lead time. 

We do not agree with your objection to the word “bottleneck” especially given your 

comment below which says “In remote sensing based approaches lead time mostly 

depends on the available imaging constellation and data distribution to the end user.” 

 
L39–61: This study presents a new concept to systematically evaluate remote sensing techniques to optimise 

estimate and increase lead time for landslide early warnings in these catchments. We do not start from the 

perspective of available data; instead, we define necessary time constraints to successfully employ remote–

sensing data for to provideing early warnings. This approach reduces the to a small number the of suitable 

remote sensing products to a small number with high temporal and spatial resolution. With these constraints, 

we investigated the application of data from satellites and unmanned aerial systems (UAS) to allow the 

assessment of the data, after a spaceborne area–wide but low–resolution acquisition, into a downscaled detailed 

image recording. In so doing, we analysed the capability of these different passive remote sensing systems 

focusing on spatiotemporal capabilities for ground motion detection and landslide evolution to provide early 

warnings. 

[…] 

L94–102: In recent years, data provision for users has increased and today data hubs provide easy accessibility 

to rapid, pre–processed imagery. Knowledge of the most useful remote sensing data options is vital for 

complex, time–critical analyses such as ground motion monitoring and landslide early warning. Nonetheless, 

technological advances can be misleading as they promise high spatiotemporal data availability, which 

frequently does not reflect reality (Sudmanns et al., 2019). One key problem is the realistic net temporal data 

resolution which is often significantly reduced due to technical issues, such as image errors and non–existent 

data (i.e. data availability, completeness, reliability). Other problems include data quality and accuracy in terms 

of geometric, radiometric and spectral factors (Batini et al., 2017; Barsi et al., 2018). Knowledge of the most 

useful remote sensing data options is vital for complex, time–critical analyses such as ground motion 

monitoring and landslide early warning. Timely information extraction and interpretation are critical for 

landslide early warnings yet few studies have so far explicitly focused on time criticality and the influence of 

the net temporal resolution of remote sensing data.  

 

 

• In remote sensing based approaches lead time mostly depends on the available 

imaging constellation and data distribution to the end user and in case of optical data 

on the atmospheric conditions (clouds). Both factors are only to a very limited extent 

in control of the authors - only in case of the UAV data acquisitions. 

Thank you for your comment. We agree that the limitation of meteorological 

conditions including effects such as cloud shadow and snow are important constraints 

as we described in L45–55 and L158. We took this into consideration when estimating 
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the number of available PlanetScope images (Sect. 4.2.) and discussed atmospheric 

affected images with regard to displacement derivation results in L477–481. 

You are right that for UAS campaigns, most of the control is on the user side and only 

to a very limited part for other satellites. Today, some data providers promise new 

images daily, sometime even more frequently (e.g. PlanetScope).  

But this is the point we want to highlight with our study. In a real world situation, we 

wish to determine which satellites can provide useful timely information in terms of an 

effective repetition rate and real availability in the data hub (provider). In addition, the 

natural conditions such as atmospheric and site specific constraints can reduce the net 

image number. For this reason, we assess the capabilities of optical remote sensors in 

a spatiotemporal context for given circumstances to detect hot spots and identify 

possible changes in slope processes. 
L52–55: Previously, high spatial resolution satellite data was obtained at the expense of a reduction in the 

revisit rates (Aubrecht et al., 2017). Consequently, the return period between two images increased, limiting 

ground displacement assessment and the range of observable motion rates. The number of useful images was 

further reduced due to natural factors such as snow cover, cloud cover and cloud shadows. 

[…] 

L86–91: In general, sensor choice depends on the landslide motion rate with radar at the lower and optical 

instruments at the upper motion range (Crosetto et al., 2016; Moretto et al., 2017; Lacroix et al., 2019).  

However, Aa flexible, cost–effective alternative to spaceborne optical data are airborne optical images taken 

by UASs (unmanned aerial systems). Freely selectable flight routes and acquisition dates prevent enable 

avoiding shadows from clouds and topographic obstacles, and as well as allow avoiding unfavourable weather 

conditions and summer time snow cover, all of which frequently impair satellite images (Giordan et al., 2018; 

Lucieer et al., 2014). 

L96–102: […] technological advances can be misleading as they promise high spatiotemporal data availability, 

which frequently does not reflect reality (Sudmanns et al., 2019). One key problem is the realistic net temporal 

data resolution which is often significantly reduced due to technical issues, such as image errors and non–

existent data (i.e. data availability, completeness, reliability). Other problems include data quality and accuracy 

in terms of geometric, radiometric and spectral factors (Batini et al., 2017; Barsi et al., 2018). Knowledge of 

the most useful remote sensing data options is vital for complex, time–critical analyses such as ground motion 

monitoring and landslide early warning. Timely information extraction and interpretation are critical for 

landslide early warnings yet few studies have so far explicitly focused on time criticality and the influence of 

the net temporal resolution of remote sensing data. 

 

• The used data sources (planet and UAV) do not allow optimization of lead time in the 

context of early warning because of the scarcity of their availability which is reflected 

in the small number of only three multitemporal data takes between July and 

September analyzed in this study (Table 3) 

Thank you. With regard to this comment we assume this needs further clarification. 

First, we have changed the entire phrase on “optimising lead time” to be more precise 

in the description of our approach (see previous comment). Regarding the data takes, 

yes, we do have three UAS acquisitions but over the course of more than one year 

(7/2018–9/2019). For the purpose of this comparison we selected PlanetScope data at 

a similar time to UAS acquisitions, whereby one Planet image (02.07.2018, see Table 

5) showed low quality results why the time interval was excluded (see caption Fig. 4). 

In both UAS and PlanetScope DIC results we can see the general distinctive hot–spot 
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identification as well as changes in motion behaviour indicating an acceleration for the 

time intervals I and II. Second, we can obtain a higher frequency of UAS acquisitions 

if necessary. We have revised our conclusion to be more concise in our work with 

regard to both, the term optimisation as well as the total number of data takes. 
L567–569: This paper presents an innovative concept to compare the lead time for landslide early warnings, 

utilising of two optical remote sensing systems. We tested this temporal concept by applying UAS and PlanetScope 

images of temporal proximity as these are currently the sensors with the best spatiotemporal resolution. 

[…] 

L573–580: Our findings derived from DIC for this steep high–alpine case study show that high resolution UAS 

data (0.16 m) can be employed to identify and demarcate the main landslide process and reveal its heterogeneous 

motion behaviour as confirmed by single block tracking. Thus, validated total displacement ranges from 1–4 m 

and up to 14 m for 42 days. PlanetScope Ortho Scenes (3 m) can detect the displacement of the landslide central 

core, however, cannot accurately resolve represent its extent and internal behaviour. The signal–to–noise ratio, 

including multiple false–positive displacements, complicates the detection of hotspots at least in this very steep 

and heterogeneous alpine terrain.  

Coarse temporal data resolution, such as in the case study investigated here, represents an important restriction to 

the use of optical remote sensing data for landslide early warning applications. Acceleration (and the resulting 

failure) over short periods of time will likely go unnoticed due to large data acquisition intervals. However, for 

prolonged acceleration periods, such as observed at the Sattelkar slide and many other relevant hazard sites, the 

chosen data sources have been demonstrated to represent a formidable early warning approach capable of 

contributing to an improved risk analysis and evaluation in steep high–alpine regions. 

[…] 

L589–594: For continuous monitoring and early warning, the warning time window could be shortened by on–site 

drone ports with autonomous acquisition flights and automatic processing. Our systematic evaluation of the sensor 

potency capability can be applied and transferred to other optical remote sensing sensors, and the same is true for 

our conceptual approach optimising which extendsing the lead time. Future studies should focus on the 

applicability of complementary optical data to confirm the detection of landslide displacement and adjust UAS 

output resolution as this significantly increases the validity of DIC internal ground motion behaviour.  

 

• The missing sound conceptual approach is also reflected in the introduction in form of 

a lengthy summary of in principle available remote sensing methods and data showing 

no clear line of arguments (L20-100). Moreover, the new conceptual approach 

presented in Fig. 1 is very general and not specific to landslide and does not qualify as 

a novelty in the current form. 

1. Introduction 

We revised the abstract and the introduction , to be more precise with regard to our 

goal and implementation. In so doing we more clearly defined our approach to lead 

time and early warning systems for landslides. Further we did our best to improve the 

line of arguments and to show the historic limitations of optical remote sensing for 

LEWS up to the recent developments when it comes to options such as high 

spatiotemporal products and their usage for monitoring, early warning and time-series 

displacement analyses. 
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2. The conceptual approach 

We decided to keep this concept general, to employ it for other remote sensing 

techniques and maybe even other kind of instrumentation as well as different use cases 

of other time challenging issues. We revised and added some sentences to emphasise 

our approach/idea. Even after intense research we did not find good conceptual 

approaches challenging remote sensing in the direct context of landslide early warning 

systems. We therefore consider our approach novel. This concept forms the basis to 

employ this for the setup of ‘a real early warning system’.  
L21–102: Landslides are a major natural hazard leading to human casualties and socio–economic impacts, mainly 

by causing infrastructure damage (Dikau et al., 1996; Hilker et al., 2009). They are often triggered by earthquakes, 

intense short–period or prolonged precipitation, and human activities (Hungr et al., 2014; Froude and Petley, 

2018).  In a systematic review Gariano and Guzzetti (2016) report in a review study that 80 % of the papers 

examined papers  show causal relationships between landslides and climate change. The ongoing warming of the 

climate (IPCC, 2014) is likely to decrease slope stability and increase landslide activity (Huggel et al., 2012; 

Seneviratne et al., 2012), which .This indicates a vital need to improve the ability to detect, monitor and issue early 

warnings of landslides and thus to reduce and mitigate landslide risk.  

Early warning, as defined by the UN International Strategy for Disaster Reduction (UNISDR), refers to a set of 

capacities for the timely and effective provision of warning information through institutions, such that individuals, 

communities and organisations exposed to a hazard are able to take action with sufficient time to reduce or avoid 

risk and prepare an effective response (UNISDR, 2009). According to UNISDR (2006), an effective early warning 

system consists of four elements: (1) risk knowledge, the systematic data collection and risk assessment; (2) the 

monitoring and warning service; (3) the dissemination and communication of risk as well as early warnings; and 

(4) the response capabilities on local and national levels.  Incompleteness or failure of one element can lead to a 

breakdown of the entire system (ibid.). Lead time as defined in the context of LEWS is the interval between the 

issue of a warning (i.e. dissemination) and the forecasted landslide onset (Pecoraro et al. 2019) and thus crucially 

depends on time requirements in phases (1)–(3). The success of an EWS therefore requires measurable pre–failure 

motion (or slow slope displacement) to allow for sufficient lead time for decisions on reactions and counter 

measures (Grasso, 2014; Hungr et al., 2014). 

While remote sensing has been established for early warnings, remote sensing is not yet used for real early 

warnings of the onset of landslides in steep-alpine terrain (with a few exceptions), where geotechnical instruments 

are still preferred. Exceptions include terrestrial InSAR (Pesci et al., 2011; Walter et al. 2020) and terrestrial laser 

scanning with high repetition rates. However, repeated UAS (unmanned aerial systems) and optical satellite images 

(PlanetScope) with high repetition rates have so far not been applied for landslide early warning in steep-alpine 

catchments. In this regard, knowledge of sensor capabilities and limitations is essential, as it determines which 

rates and magnitudes of pre-failure motion can potentially be identified (Desrues et al., 2019). Our proposed 

framework refers to mass movements in steep–alpine catchments with significant pre–failure motion operating 

over a sufficient time periods and thus excludes instantaneous events triggered by processes such as heavy rainfalls 

or earthquakes.    

This study presents a new concept to systematically evaluate remote sensing techniques to optimise estimate and 

increase lead time for landslide early warnings in these catchments. We do not start from the perspective of 

available data; instead, we define necessary time constraints to successfully employ remote–sensing data for to 

provideing early warnings. This approach reduces the to a small number the of suitable remote sensing products 
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to a small with high temporal and spatial resolution. With these constraints, we investigated the application of data 

from satellites and unmanned aerial systems (UAS) to allow the assessment of the data, after a spaceborne area–

wide but low–resolution acquisition, into a downscaled detailed image recording. In so doing, we analysed the 

capability of these different passive remote sensing systems focusing on spatiotemporal capabilities for ground 

motion detection and landslide evolution to provide early warnings. 

Until Recently, the spatial and temporal resolution of optical satellite imagery has significantly improved 

requirements for accurate early warning purposes have not been met by optical satellite imagery (Scaioni et al., 

2014) and has allowed substantial advances in the definition of displacement rates and acceleration thresholds to 

approach requirements for early warning purposes. This is essential since spatial and temporal resolution 

determines whether landslide monitoring is possible with the detection allows defining of displacement rates and 

the approximation approximate acceleration thresholds, both of which are lacking if information is based solely 

on post–event studies (Reid et al., 2008; Calvello, 2017). Landslide monitoring offers the potential to significantly 

advance landslide early warning systems (LEWS) (Chae et al., 2017; Crosta et al., 2017). Previously, high spatial 

resolution satellite data was obtained at the expense of a reduction in the revisit rates (Aubrecht et al., 2017). 

Consequently, the return period between two images increased, limiting ground displacement assessment and the 

range of observable motion rates. The number of useful images was further reduced due to natural factors such as 

snow cover, cloud cover and cloud shadows. High–resolution remote sensing data was long restricted due to high 

costs and data volume (Goodchild, 2011; Westoby et al., 2012). Today Ccommercial very high resolution (VHR) 

optical satellites exist, but tasked acquisitions make them inflexible and very cost intensive, thus limiting research 

(Butler, 2014; Lucieer et al., 2014). There is a vast spectrum of available remote sensing data with high 

spatiotemporal resolution (Table 1). Complementary use of different remote sensing sources can significantly 

improve landslide assessment as demonstrated by Stumpf et al. (2018) and Bontemps et al. (2018), who draw on 

archive data and utilise different sensor combinations to analyse the evolution of ground motion. 

 

Table 1 Overview of different optical multispectral remote sensors with their corresponding resolution [m] and revisit rate 

[days]. The sensors are categorised into commercial and free data policy. 1free quota via Planet Labs Education and Research 

Program, 2PlanetScope Ortho Scene Product, Level 3B/Ortho Tile Product, Level 3A (Planet Labs, 2020b), 3reached end of 

life, 3/2020, archive data usable, 45 m Ortho Tile Level 3A (Planet Labs, 2020a), 50.5 m colour pansharpened, 6self–acquired. 

Source: (ESA, 2020). 

Sensor Temporal 

resolution [d] 

Spatial 

resolution [m] 

Free/ 

Commercial 

UAS flexible 0.08 F6 

WorldView 2 1.1 1.84 C 

WorldView 3 <1 1.24 C 

WorldView 4 <1 1.24 C 

GeoEye 2 5 1.24 C 

SkySat 1 1.5 C 

GeoEye–1 3 1.64 C 

Pléiades 1A/B 1 2.0 (0.5)5  C 

PlanetScope 1 3.0/3.1252 C/F1 

RapidEye3 5.5 54 F 

Sentinel–2 A/B 5 10 F 

Landsat 8 16 30 F 

 

The latest developments in earth observation programs include both the new Copernicus’ Sentinel fleet operated 

by the ESA, and a new generation of micro cube satellites, sent into orbit in large numbers by PlanetLabs Inc. 

These PlanetScope micro cube satellites, known as 'Doves'/PlanetScope (from now on referred to as PlanetScope 
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satellites), and Sentinel–2 a/b offer very high revisit rates of 1–5 days and high spatial resolutions from 3–10 m, 

respectively (Table 1), for multispectral imagery (Drusch et al., 2012; Butler, 2014; Breger, 2017). This opens up 

unprecedented possibilities based on these These high spatiotemporal resolutions open up unprecedented 

possibilities to study a wide range of landslide velocities and natural hazards through remote sensing. Future 

Continuing data access is fostered by PlanetLabs and by Copernicus (via its open data policy) providing affordable 

or free data for research. This leads to unprecedented possibilities for sturying natural hazards through remote 

sensing. Examples of landslide activity studies employing multi–temporal datasets of landslide activities based on 

this access to high spatiotemporal data are include Lacroix et al. (2018), using Sentinel–2 scenes to detect motions 

of the 'Harmalière' landslide in France, and Mazzanti et al. (2020), who applied a large stack of PlanetScope images 

for the active Rattlesnake landslide, USA.  

As forecasted landslides tend to accelerate beyond the deformation rate observable with radar systems before 

failure, we concentrate on optical image analysis (Moretto et al., 2016). One advantage of optical imagery is its 

temporally dense data (Table 1) compared to open data radar systems with sensor visits repeat frequency more than 

every six days and revisit frequency between three days at the equator, about two days over Europe and less than 

one day at high latitudes (Sentinel–1, ESA). Optical data allows direct visual impressions impression from the 

multispectral representation of the acquisition target and the option to employ this data for further complementary 

and expert analyses. While active radar systems overcome constraints posed by clouds and do not require daylight, 

data voids can be significant due to layover or shadowing effects in steep mountainous areas (Mazzanti et al., 

2012; Plank et al., 2015; Moretto et al., 2016). Moreover, north/south facing slopes are less suitable, thus limit the 

range of investigation (Darvishi et al., 2018). In general, sensor choice depends on the landslide motion rate with 

radar at the lower and optical instruments at the upper motion range (Crosetto et al., 2016; Moretto et al., 2017; 

Lacroix et al., 2019).  

However, Aa flexible, cost–effective alternative to spaceborne optical data are airborne optical images taken by 

UASs (unmanned aerial system). Freely selectable flight routes and acquisition dates prevent enable avoiding 

shadows from clouds and topographic obstacles, and as well allow avoiding as unfavourable weather conditions 

and summer time snow cover, all of which frequently impair satellite images (Giordan et al., 2018; Lucieer et al., 

2014). UAS–based surveys provide accurate very high resolution (few cm) orthoimages and digital elevation 

models (DEM) of relatively small areas, suitable for detailed, repeated analyses and geomorphological applications 

(Westoby et al., 2012; Turner et al., 2015).  

In recent years, data provision for users has increased and today data hubs provide easy accessibility to rapid, pre–

processed imagery. Knowledge of the most useful remote sensing data options is vital for complex, time–critical 

analyses such as ground motion monitoring and landslide early warning. Nonetheless, technological advances can 

be misleading as they promise high spatiotemporal data availability, which frequently does not reflect reality 

(Sudmanns et al., 2019). One key problem is the realistic net temporal data resolution which is often significantly 

reduced due to technical issues, such as image errors and non–existent data (i.e. data availability, completeness, 

reliability). Other problems include data quality and accuracy in terms of geometric, radiometric and spectral 

factors (Batini et al., 2017; Barsi et al., 2018). Knowledge of the most useful remote sensing data options is vital 

for complex, time–critical analyses such as ground motion monitoring and landslide early warning.  
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• L140: General applicability to optical data: This subheading does not fit the content of 

this section comprising a compilation of rather basic and general steps of remote 

sensing data processing. 

Thank you for your comment. We agree that it describes general steps of the data 

processing chain; however, these steps are applied within each phase of the ‘time to 

warning’ of our proposed concept. Otherwise the steps would not be explained and 

thus the basis for the concept would be lacking. We have revised the subheading to 

“Practical implementation of multispectral data in the concept” which more accurately 

describes the content of this section. 

2.2. Practical implementation of multispectral data in the concept General applicability to optical data 

 

• The study site (starting at L175) represents a very complex landslide case leading to 

rather erratic mass movements in form of debris flows initiated by changing slope 

water conditions related to increased atmospheric precipitation. This situation is 

another obstacle for an early warning approach which is solely based on optical 

remote sensing data and thus making it impossible to make full use of the in principle 

daily temporal resolution of the planet data. Taking into account these natural 

conditions and the constraints introduced by the used imaging constellations, leaves no 

room for true optimization of lead time in the sense as stated in the overall scientific 

goal of this paper. 

We agree with your assessment and have replaced the term “optimisation” with a 

description that hopefully is more accurate in the entire manuscript. The chosen 

Sattelkar slide is one of the most relevant high-alpine geohazards in Austria and thus 

represents a compelling study site for natural hazard studies. While we agree that its 

complexity represents an obstacle, we nonetheless believe that the Sattelkar slide is 

well-suited for an investigation based on optical remote sensing because (i) we were 

clearly able to detect significant displacement and (ii) we were able to identify patches 

of increasing motion. In any case an increase in frequency of UAS flights is possible. 

L39–41: This study presents a new concept to systematically evaluate remote sensing techniques to optimise 

estimate and increase lead time for landslide early warnings in these catchments. We do not start from the 

perspective of available data; instead, we define necessary time constraints to successfully employ remote–sensing 

data for to provideing early warnings. 

 

• Any sensible early warning approach for slope movements requires a continuous and 

reliable high temporal resolution input of observation data related to parameters which 

are relevant for triggering the potential mass movements. Such information are mostly 

provided by ground based measurements. In this context, it is surprising that no 

relevant ground based monitoring information seem to be available to this study 

despite the longterm history of scientific work at this study site. The mentioned 

temperature loggers need to be explained in their function for early warning. The GPS 

measurements seem to only support the remote sensing based analysis. The described 

setting does not seem to be suitable for identification of precursory signs of ,slope 

preparation’ related to the triggering of potential mass movements at this site in a way 

which would be required in the context of early warning. 

Thank you for your feedback. We understand your arguments, yet we are not trying to 
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create an all-encompassing landslide early warning study that includes all state-of-the-

art methods. We have chosen the Sattelkar due to its scientific and societal relevance 

and its high-alpine location with very limited vegetation. This site was not selected to 

evaluate a wide range of remote sensing applications. Our goal was to determine if and 

how our conceptual approach is applicable to this highly complex study site. Due to its 

topographical characteristics no ground based technique can be implemented. 

Therefore, only air- and spaceborne sensors can be employed which we believe is the 

case for numerous potentially hazardous slides/creeps in mountain ranges worldwide. 

However, we have considered installing a camera on the opposite slope but currently 

the distance is a problem (3.5 km, selection of camera).  

 

We agree that the temperature data mentioned in the manuscript is not absolutely 

necessary to understand our conceptual approach. We still think that the (brief) 

inclusion of the temperature data makes sense as it suggests local permafrost 

presence/degradation which may be one of the main drivers of the Sattelkar slide. To 

clarify the role of the temperature data we amended the relevant sections in the study 

site section. 
L175 et seq. […] massive volumes of glacial and periglacial debris as well as rockfall deposits (Fig. 2b, c). 

Near-surface temperature data indicates sporadic permafrost distribution in the upper part of the cirque. 

[…] allowing visual block tracking and delimiting the active process area. High displacement was measured 

between 2012 and 2015 with up to 30 m a-1. 

[…] 

L200 et seq.: In the Sattelkar cirque, several monitoring components are installed to provide ongoing and long–

term monitoring. Nine permanent ground control points (GCPs) measured with a dGPS to provide stable and 

optimal conditions to derive orthophotos from highly accurate UAS images (GeoResearch, 2018). A total 

number of 15 near surface temperature loggers (buried at 0.1 m depth) recorded annual mean temperatures 

slightly above the freezing point (1–2 °C) in the period 2016 to 2019. Ground thermal conditions at depth react 

with significant lag times to recent warming and therefore are primarily determined by climatic conditions of 

the past (Noetzli et al., 2019). Significantly cooler climatic conditions in previous decades and centuries (Auer 

et al., 2007) thus likely contributed to the formation of (patchy) permafrost at the Sattelkar cirque. Recent 

empirical–statistical modelling of permafrost distribution in the Hohe Tauern Range confirms possible 

permafrost presence at the study site (Schrott et al., 2012).  

These components include 30 near surface temperature logger (NSTL) nine permanent ground control points 

(GCP) measured with a dGPS to provide stable and optimal conditions for the derivation of orthophotos from 

highly accurate UAS images (GeoResearch, 2018). Field–based mapping and measurements help to delimit 

the active process area. 

 

Correct, the dGPS measurements are only used for repeated UAS campaigns and their 

data derivation. As described earlier, with our technical approach we were able to not 

only detect hot spots of total displacement but also to see changes in motion and thus 

certain areas of accelerating behaviour. 

 

• L210: The complete dismissal of radar data is not justifiable in the current form since 

the authors only take into account InSAR based deformation analysis and neglect that 
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the technique of pixel offset tracking can be also be applied to the intensity component 

of radar data. For the mainly rainfall driven processes at the study site, the integration 

of radar data seems to be mandatory into any sensible remote sensing based early 

warning approach, since a combination of optical and radar data is required to 

establish an as continuous as possible time series of remote sensing observations. 

Thank you for mentioning radar data. We have described the application of 

InSAR/DInSAR in the introduction (L86–91) and placed the argument in section “4.1. 

Optical Imagery”. 

For this particular site radar data is not practical. Even if foreshortening and layover 

effects are a minor issue for this site, the main reason to not include this kind of data is 

the fact that the velocity shows rates exceeding the limits of radar data leading to a 

loss of coherence.  
L78 et seq.: As forecasted landslides tend to accelerate beyond the deformation rate observable with radar 

systems before failure, we concentrate on optical image analysis (Moretto et al., 2016). One advantage of 

optical imagery is its temporally dense data (Table 1) compared to open data radar systems with sensor visits 

repeat frequency more than every six days and revisit frequency between three days at the equator, about two 

days over Europe and less than one day at high latitudes (Sentinel–1, ESA). Optical data allows direct visual 

impressions from the multispectral representation of the acquisition target and the option to employ this data 

for further complementary and expert analyses. While active radar systems overcome constraints posed by 

clouds and do not require daylight, data voids can be significant due to layover or shadowing effects in steep 

mountainous areas (Mazzanti et al., 2012; Plank et al., 2015; Moretto et al., 2016). Moreover, north/south 

facing slopes are less suitable, thus limit the range of investigation (Darvishi et al., 2018). In general, sensor 

choice depends on the landslide motion rate with radar at the lower and optical instruments at the upper motion 

range (Crosetto et al., 2016; Moretto et al., 2017; Lacroix et al., 2019).  

 

• Moreover, taking into account the goal of lead time optimization, I consider it crucial 

to also include ground-based live-streamed time-lapse imagery in the proposed remote 

sensing based early warning approach (for an example see the Khan et al. (2021) paper 

,Low-Cost Automatic Slope Monitoring Using Vector Tracking Analyses on Live-

Streamed Time-Lapse Imagery’ published in Remote Sensing). 

Thank you for this idea and forwarding the information on the article of this useful 

approach for the ‘Rest and Be Thankful slope’, Scotland, with PIV on time–lapse 

imagery. For the Sattelkar we conducted preliminary investigations regarding the 

installation of a camera on the opposite slope. Due to the steep slope the camera would 

have to be mounted at the same altitude. This means a camera would have to be able 

to cover a horizontal distance of about 3.5 km. There is a higher chance of mobile 

network signal which is otherwise unavailable beginning at the entrance of the valley. 

Nevertheless, the power supply and issues such as rain drops and general pollution on 

the lense pose problems as Khan et al. (2021) also acknowledge. 
 

The materials and methods section (4.) as well as the result section (5) are sound and well 

written. Since reviewer 1 has already focused on this part of the paper as well as the accuracy 

assessment and made detailed suggestions for improving these parts, I only have a few 

comments left to make on these aspects of the paper. 

 

• L355: The authors state that core areas of the landslide are surrounded by wide fringes 

with no data. In this context the meaning of the term ,no data’ is not clear to me. 
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Please, explain, what do you mean by ,no data’ – either missing results or zero 

deformation. 
Thank you for pointing this out. Here by ‘no data’ we mean that there is zero 

deformation and we have revised the text accordingly. 
L354 et seq.: No motion was present in a fringe zone along the landslide front (west boundary), similar to results 

in Fig. 5a and Fig. 5b. In general, the displacement patterns are less smooth than at 0.16 m input resolution. Outside 

the landslide significant displacements exist at the eastern image border (Fig. 5e) and towards the west (h, i) 

(Fig. 5f). In comparison, total displacement rates derived from PlanetScope cover in large parts the active area for 

Ib (Fig. 5c); however, for II only the core area of the landslide shows displacement. In both results the core areas 

of the landslide are surrounded by wide fringes with zero deformation. 

 

• L370: Fig 6. The obtained deformation results show a very different degree of detail 

throughout the landslide. For better evaluation of the reasons for these differences the 

inclusion of an RGB UAV image of the same area would be helpful in order to be able 

to include surface texture properties in the evaluation of the obtained differences in the 

deformation patterns. 

Thank you for your good suggestion. We added the corresponding master and slave 

image below the presented DIC result. The caption has been adjusted accordingly. 
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Figure 1 (a) Displacement derived from UAS data at 0.16 m resolution for interval II (24.07.2019–04.09.2019, 42 

d) combined with boulder trajectories (in metres) manually measured in the UAS orthophotos in the same time 

period. The solid black line represents the boundary of the active landslide based on field mapping. Background: 

UAS hillshade, 24.07.2019 (0.08 m), orientation -3° from north. UAS orthophotos at 0.16 m resolution for the 

master (b) and slave image (c) for the corresponding time interval. 

 

• Conclusions related to the results presented until L370: The presented specific 

deformation results obtained from the analyzed planet and UAV data, represent a 

valuable contribution towards an improved area-wide process understanding of so far 

unprecedented detail for this study site. Conceptually, such investigations mainly 

contribute to the preparedness phase within the disaster management cycle. 

Continuation of monitoring of the study site using the described approach would 

represent a very valuable prerequisite for developing and setting up a true early 

warning system for this site combining ground based and remote sensing observations. 

However, the results presented in this paper do not allow optimization of lead times 

within an early warning approach being stated being as the goal of this paper. 
Our approach is not to set up a comprehensive early warning system, which includes 

all four elements defined by the UNISDR (2006) (see L35–38).  

We agree that optimisation of lead time does not accurately represent what we have 

done in our study. Thus we have revised our manuscript to make it more precise (see 
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changes to the manuscript here on p. 1, 3–4). Our concept enables us to evaluate lead 

time based on our proposed structure. 
Introduction, L10–11: We introduce a novel conceptual approach for comprehensive to structure and quantitatively 

assess lead time assessment and optimisation for LEWS. 

[…] 

L39–41: This study presents a new concept to systematically evaluate remote sensing techniques to optimise 

estimate and increase lead time for landslide early warnings in these catchments. We do not start from the 

perspective of available data; instead, we define necessary time constraints to successfully employ remote–sensing 

data for to provideing early warnings. 

[…] 

Conclusion, L578 et seq.: Coarse temporal data resolution, such as in the case study investigated here, represents 

an important restriction to the use of optical remote sensing data for landslide early warning applications. 

Acceleration (and the resulting failure) over short periods of time will likely go unnoticed due to large data 

acquisition intervals. However, for prolonged acceleration periods, such as observed at the Sattelkar slide and 

many other relevant hazard sites, the chosen data sources have been demonstrated to represent a formidable early 

warning approach capable of contributing to an improved risk analysis and evaluation in steep high–alpine regions. 

 

 

 

• L375: 5.3 Time required for collection, processing and evaluation. The presented 

analysis is rather meaningless, since the scarcity of the available time steps does not 

allow the detection of critical process stages. Taking into account the big temporal 

gaps between the data acquisitions, the time needed for handling the planet and UAV 

imagery is not really relevant for lead time optimization. The obtained times only 

allow a relative comparison between planet and UAV based data acquisition within 

the narrow limits of the chosen approach. However, true early warning would require 

setting up a semi-automated processing chain including automated download and 

screening of available remote sensing data as well as semi-automated subsequent 

deformation analysis reducing data handling time to a minimum. Under such 

conditions, primary remote sensing data availability becomes the crucial decisive 

factor determined by the data distribution procedures of the satellite data providers and 

the atmospheric conditions in case of optical imagery. In conclusion, it needs to be 

stated that the used parameter of time to warning is only applicable under the 

condition of a near real time continuous data stream of input information which is not 

available within the presented study. 

Thank you for your comment which helps to clarify your understanding of our text. 

We did not intend to create a ‘true early warning’ as you described. This was not the 

goal of our study. The repeated measurements allow the detection of spatial and 

temporal acceleration patterns and we believe the repeated measurements can be 

scaled to early warning demands. With regard to your comment on a semi-automated 

processing chain we do not fully agree. Based on our knowledge, even in case of most 

geotechnical investigations, the data is analysed by experts prior to issuing an early 

warning (e.g. https://www.bgu.tum.de/landslides/alpsense/projekt/, Leinauer et al. 

(2020): DOI: 10.1002/geot.202000027). 

 

• L390: In the current form of the paper the points raised in the discussion (6.) are only 

relevant in the frame of a process-oriented study and not for early warning purposes 

https://www.bgu.tum.de/landslides/alpsense/projekt/
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since the latter one requires the identification of precursors for critical process stages – 

tipping points – which are likely to trigger substantial complex mass movements later 

turning into potentially catastrophic debris flows. 

It is our understanding, we can only provide early warnings for processes we 

understand. The processual understanding is key to anticipating the magnitude, timing, 

and reach of alpine hazards, thus processual understanding and early warning cannot 

be separated. 

 

• L490: Estimating time to warning (6.3). This part of the discussion also suffers from 

the conceptual limitations which have already been pointed out earlier in this review. 

A comparison of lead times between the different example landslides would only be 

meaningful in case of continuous high resolution temporal information on deformation 

allowing the identification of precursory events which is usually only possible using 

ground based observations. The presented comparison between potential repeat rates 

of remote sensing data acquisitions and retrospectively derived lead times is too 

simplistic (Fig. 8), since the main remaining question is, whether the relevant 

deformation (cracks etc.) can be first, resolved by the used imagery and second, 

distinguished from other surface disturbances by the used analysis methods. 

In this paper, in contrast to remote sensing papers, the time scale required for effective 

early warnings is given by nature, i.e., the typical acceleration patterns of particular 

landslides. 

With regard to the comparison of historic events, we referred to their natural landslide 

processes which delimits the possible lead time. Unfortunately, a comparison to these 

historic examples is limited to a retrospective view. We agree with you regarding the 

detection of relevant deformations. If the sensors evaluated here could have identified 

the motion excluded disturbances, then in this temporal concept UAS and PlanetScope 

would have been able to show an acceleration in a timely fashion. 

We want to keep this concept simple to allow the transfer for required processing 

times from other sensors. The main question is, if the time is sufficient for the whole 

processing prior to landslide release.  
L:148–149 Natural processes and natural their developments constantly take place independently, thus 

dictate the technical approaches and methodologies researchers must can and must apply within a certain 

time period. 

 
 

Overall recommendation: 

The presented results comprise a very interesting process-oriented study evaluating the 

use of planet and UAV imagery for the derivation of spatiotemporally differentiated 

deformation information for a rather large and topographically pronounced terrain affected 

by complex mass wasting processes. I consider these findings well worth being published 

in this journal. However, the publication of these specific results requires a major conceptual 

reframing of the work which is targeted at the real potential usability of these results which 

cannot be early warning because of the reasons already stated in this review. 

 

However, the work presented in this study has the potential to form an important basis for the 

development of a true early warning concept / approach in the future combining remote 

sensing and ground based observations targeting at the same parameters allowing a multi-

scale assessment of surface deformation related to triggering potential catastrophic mass 

movements at the study site. 
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Abstract 

While optical remote sensing has demonstrated its capabilities for landslide detection and monitoring, spatial and temporal 

demands for landslide early warning systems (LEWS) were not met until recently. We introduce a novel conceptual approach 10 

for comprehensive to structure and quantitatively assess lead time assessment and optimisation for LEWS. We analysed “time 

to warning” as a sequence; (i) time to collect, (ii) to process and (iii) to evaluate relevant optical data. The difference between 

“time to warning” and “forecasting window” (i.e. time from hazard becoming predictable until event) is the lead time for 

reactive measures. We tested digital image correlation (DIC) of best–suited spatiotemporal techniques, i.e. 3 m resolution 

PlanetScope daily imagery, and 0.16 m resolution UAS derived orthophotos to reveal fast ground displacement and 15 

acceleration of a deep–seated, complex alpine mass movement leading to massive debris flow events. The time to warning for 

UAS and PlanetScope totals 31h/21h and is comprised of (i) time to collect 12/14h, (ii) process 17/5h and (iii) evaluate 2/2h, 

which is well below the forecasting window for recent benchmarks and facilitates lead time for reactive measures. We show 

optical remote sensing data can support LEWS with a sufficiently fast processing time, demonstrating the feasibility of optical 

sensors for LEWS. 20 

1 Introduction 

Landslides are a major natural hazard leading to human casualties and socio–economic impacts, mainly by causing 

infrastructure damage (Dikau et al., 1996; Hilker et al., 2009). They are often triggered by earthquakes, intense short–period 

or prolonged precipitation, and human activities (Hungr et al., 2014; Froude and Petley, 2018).  In a systematic review Gariano 

and Guzzetti (2016) report in a review study that 80 % of the papers examined papers show causal relationships between 25 

landslides and climate change. The ongoing warming of the climate (IPCC, 2014) is likely to decrease slope stability and 

increase landslide activity (Huggel et al., 2012; Seneviratne et al., 2012), which. This indicates a vital need to improve the 

ability to detect, monitor and issue early warnings of landslides and thus to reduce and mitigate landslide risk.  

Early warning, as defined by the UN International Strategy for Disaster Reduction (UNISDR), refers to a set of capacities for 

the timely and effective provision of warning information through institutions, such that individuals, communities and 30 

organisations exposed to a hazard are able to take action with sufficient time to reduce or avoid risk and prepare an effective 

response (UNISDR, 2009). According to UNISDR (2006), an effective early warning system consists of four elements: (1) 

risk knowledge, the systematic data collection and risk assessment; (2) the monitoring and warning service; (3) the 

dissemination and communication of risk as well as early warnings; and (4) the response capabilities on local and national 

levels. Incompleteness or failure of one element can lead to a breakdown of the entire system (ibid.).  Lead time as defined in 35 

the context of LEWS is the interval between the issue of a warning (i.e. dissemination) and the forecasted landslide onset 

(Pecoraro et al. 2019) and thus crucially depends on time requirements in phases (1)–(3). The success of an EWS therefore 

requires measurable pre–failure motion (or slow slope displacement) to allow for sufficient lead time for decisions on reactions 

and counter measures (Grasso, 2014; Hungr et al., 2014). 
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This definition of an early warning system (EWS) contains a time component but includes no exact time scale reference. 40 

‘Early’ suggests that events are detected before harm or damage occurs and thus stands in contrast to events which are only 

detected once they have begun (e.g. snow avalanches). Thus, it is necessary to know sensor capabilities and limitations for 

pre–event mass movement observations (Desrues et al., 2019). The success of a warning requires that information is provided 

with enough lead time for decisions on reactions and counter measures (Grasso, 2014). The success of an EWS therefore 

requires measurable prefailure motion (or slow transport velocities) to allow for sufficient lead time for decisions on reactions 45 

and counter measures (Grasso, 2014). While remote sensing has been established for early warnings, remote sensing is not yet 

used for real early warnings of the onset of landslides in steep–-alpine terrain (with a few exceptions), where geotechnical 

instruments are still preferred. Exceptions include terrestrial InSAR (Pesci et al., 2011; Walter et al. 2020) and terrestrial laser 

scanning with high repetition rates. However, repeated UAS (unmanned aerial systems) and optical satellite images 

(PlanetScope) with high repetition rates have so far not been applied for landslide early warning in steep-alpine catchments. 50 

In this regard, knowledge onf sensor capabilities and limitations is essential, as it determines which rates and magnitudes of 

pre-failure motion can potentially be identified (Desrues et al., 2019). Our proposed framework refers to mass movements in 

steep–alpine catchments with significant pre–failure motion operating over a sufficient time periods and thus excludes 

instantaneous events triggered by processes such as heavy rainfalls or earthquakes.   According to UNISDR (2006), an effective 

early warning system consists of four elements: (1) risk knowledge, the systematic data collection and risk assessment; (2) the 55 

monitoring and warning service; (3) the dissemination and communication of risk as well as early warnings; and (4) the 

response capabilities on local and national levels. Incompleteness or failure of one element can lead to a breakdown of the 

entire system (ibid.).  

This study presents a new concept to systematically evaluate remote sensing techniques to optimise estimate and increase lead 

time for landslide early warnings in these catchments. We do not start from the perspective of available data; instead, we define 60 

necessary time constraints to successfully employ remote–sensing data for to provideing early warnings. This approach reduces 

the to a small number theof suitable remote sensing products to a small number with high temporal and spatial resolution. With 

these constraints, we investigated the application of data from satellites and unmanned aerial systems (UAS) to allow the 

assessment of the data, after a spaceborne area–wide but low–resolution acquisition, into a downscaled detailed image 

recording. In so doing, we analysed the capability of these different passive remote sensing systems focusing on spatiotemporal 65 

capabilities for ground motion detection and landslide evolution to provide early warnings. 

 

Until rRecently, the spatial and temporal resolution of optical satellite imagery has significantly improved requirements for 

accurate early warning purposes have not been met by optical satellite imagery (Scaioni et al., 2014) and has allowed 

substantial advances in the definition of displacement rates and acceleration thresholds to approach requirements for early 70 

warning purposes. This is essential since spatial and temporal resolution determines whether landslide monitoring is possible 

with the detection allows defining of displacement rates and approximateenables approximating acceleration thresholds, both 

of which are lacking if information is based solely on post–event studies (Reid et al., 2008; Calvello, 2017). Landslide 

monitoring therefore not only deepens the understanding of landslide processes but also has offers the potential to significantly 

advance landslide early warning systems (LEWS) (Chae et al., 2017; Crosta et al., 2017). Previously, high spatial resolution 75 

satellite data was obtained at the expense of a reduction in the revisit rates (Aubrecht et al., 2017). Consequently, the return 

period between two images increased, limiting ground displacement assessment and the range of observable motion rates. The 

number of useful images was further reduced due to natural factors such as snow cover, cloud cover and cloud shadows. High–

resolution remote sensing data was long restricted due to high costs and data volume (Goodchild, 2011; Westoby et al., 2012). 

Today Ccommercial very high resolution (VHR) optical satellites exist, but tasked acquisitions make them inflexible and very 80 

cost intensive, thus limiting research (Butler, 2014; Lucieer et al., 2014). There is a vast spectrum of available remote sensing 

data with high spatiotemporal resolution (Table 1). Complementary use of different remote sensing sources can significantly 
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improve landslide assessment as demonstrated by Stumpf et al. (2018) and Bontemps et al. (2018), who draw on archive data 

and utilise different sensor combinations to analyse the evolution of ground motion. 

 85 

Table 1 Overview of different optical multispectral remote sensors with their corresponding resolution [m] and revisit rate [days]. The 

sensors are categorised into commercial and free data policy. 1free quota via Planet Labs Education and Research Program, 2PlanetScope 

Ortho Scene Product, Level 3B/Ortho Tile Product, Level 3A (Planet Labs, 2020b), 3reached end of life, 3/2020, archive data usable, 45 m 

Ortho Tile Level 3A (Planet Labs, 2020a), 50.5 m colour pansharpened, 6self–acquired. Source: (ESA, 2020). 

Sensor Temporal 

resolution [d] 

Spatial 

resolution [m] 

Free/ 

Commercial 

UAS flexible 0.08 F6 

WorldView 2 1.1 1.84 C 

WorldView 3 <1 1.24 C 

WorldView 4 <1 1.24 C 

GeoEye 2 5 1.24 C 

SkySat 1 1.5 C 

GeoEye–1 3 1.64 C 

Pléiades 1A/B 1 2.0 (0.5)5  C 

PlanetScope 1 3.0/3.1252 C/F1 

RapidEye3 5.5 54 F 

Sentinel–2 A/B 5 10 F 

Landsat 8 16 30 F 

 90 

The latest developments in earth observation programs include both the new Copernicus’ Sentinel fleet operated by the ESA, 

and a new generation of micro cube satellites, sent into orbit in large numbers by PlanetLabs Inc. These PlanetScope micro 

cube satellites, known as 'Doves'/PlanetScope (from now on referred to as PlanetScope satellites), and Sentinel–2 a/b offer 

very high revisit rates of 1–5 days and high spatial resolutions from 3–10 m, respectively (Table 1), for multispectral imagery 

(Drusch et al., 2012; Butler, 2014; Breger, 2017). This opens up unprecedented possibilities based on theseThese high 95 

spatiotemporal resolutions open up unprecedented possibilities to study a wide range of landslide velocities and natural hazards 

through remote sensing. Future Continuing data access is fostered by PlanetLabs and by Copernicus (via its open data policy) 

providing affordable or free data for research. This leads to unprecedented possibilities for studying natural hazards through 

remote sensing. Examples of  landslide activity such multi–temporal studies employing multi–temporal datasets  of landslide 

activities based on this access to high spatiotemporal data are include Lacroix et al. (2018), using Sentinel–2 scenes to detect 100 

motions of the 'Harmalière' landslide in France, and Mazzanti et al. (2020), who applied a large stack of PlanetScope images 

for the active Rattlesnake landslide, USA.  

As forecasted landslides tend to accelerate beyond the deformation rate observable with radar systems before failure, we 

concentrate on optical image analysis (Moretto et al., 2016). One advantage of optical imagery is its temporally dense data 

(Table 1) compared to open data radar systems with sensor visits repeat frequency more than every six days and revisit 105 

frequency between three days at the equator, about two days over Europe and less than one day at high latitudes (Sentinel–1, 

ESA). Optical data allows direct visual impressions  impression from the multispectral representation of the acquisition target 

and the option to employ this data for further complementary and expert analyses. While active radar systems overcome 

constraints posed by clouds and do not require daylight, data voids can be significant due to layover or shadowing effects in 

steep mountainous areas (Moretto et al., 2016;Mazzanti et al., 2012; Plank et al., 2015; Moretto et al., 2016). Moreover, 110 

north/south facing slopes are less suitable, thus limit the range of investigation (Darvishi et al., 2018).  

In general, sensor choice depends on the landslide motion rate with radar at the lower and optical instruments at the upper 

motion range (Crosetto et al., 2016; Moretto et al., 2017; Lacroix et al., 2019).  

However, Aa flexible, cost–effective alternative to spaceborne optical data are airborne optical images taken by UASs 

(unmanned aerial system). Freely selectable flight routes and acquisition dates prevent enable avoiding shadows from clouds 115 

and topographic obstacles, and as well asallow avoiding  unfavourable weather conditions and summer time snow cover, all 

of which frequently impair satellite images (Giordan et al., 2018; Lucieer et al., 2014). UAS–based surveys provide accurate 
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very high resolution (few cm) orthoimages and digital elevation models (DEM) of relatively small areas, suitable for detailed, 

repeated analyses and geomorphological applications (Westoby et al., 2012; Turner et al., 2015).  

In recent years, data provision for users has increased and today data hubs provide easy accessibility to rapid, pre–processed 120 

imagery. Knowledge of the most useful remote sensing data options is vital for complex, time–critical analyses such as ground 

motion monitoring and landslide early warning. Nonetheless, technological advances can be misleading as they promise high 

spatiotemporal data availability, which frequently does not reflect reality (Sudmanns et al., 2019). One key problem is the 

realistic net temporal data resolution which is often significantly reduced due to technical issues, such as image errors and 

non–existent data (i.e. data availability, completeness, reliability). Other problems include data quality and accuracy in terms 125 

of geometric, radiometric and spectral factors (Batini et al., 2017; Barsi et al., 2018). Knowledge of the most useful remote 

sensing data options is vital for complex, time–critical analyses such as ground motion monitoring and landslide early warning. 

Timely information extraction and interpretation are critical for landslide early warnings yet few studies have so far explicitly 

focused on time criticality and the influence of the net temporal resolution of remote sensing data.  

In this investigation we propose both a conceptual approach to evaluating lead time as a time difference between the “time to 130 

predict” and the “forecasting time” and assess the suitability of UAS sensors (0.16 m) and PlanetScope (3 m) imagery (the 

latter with temporal proximity to the UAS acquisition) for LEWS. For this we have chosen the 'Sattelkar', a steep, high–alpine 

cirque located in the Hohe Tauern Range, Austria (Anker et al., 2016). We estimate times for the three steps (i) collecting 

images, (ii) pre–processing and motion derivation by digital image correlation (DIC) and (iii) evaluating and visualizing. The 

results from the Sattelkar site – and from historic landslide events – will be discussed in terms of usability and processing 135 

duration for critical data source selection which directly influences the forecasting window. Accordingly, we try to answer the 

following research questions: 

1. How can we evaluate lead time as a time difference between the “time to predict” and the forecasting time for high 

spatiotemporal resolution sensors? 

2. How can we quantify “time to warning” as a sequence of (i) time to collect, (ii) to process and (iii) to evaluate relevant 140 

optical data? 

3. How can we practically derive profound “time to warning” estimates as a sequence of (i), (ii) and (iii) from UAS and 

PlanetScope high spatiotemporal resolution sensors? 

4. Are estimated “times to warning” significantly shorter than the forecasting time for recent well–documented examples 

and able to generate robust estimations of lead time available to enable reactive measures and evacuation?  145 

2 Lead time – a conceptual approach 

2.1. The conceptual approach 

Natural processes and natural their developments constantly take place independently, thus dictate the technical approaches 

and methodologies researchers must can and must apply within a certain time period. For that reason, we hypothesise the 

forecasting window texternal is externally controlled, consequently the applicability of LEWS methods (tinternal) is restricted 150 

because they must be shorter than texternal. This approach is the framework of our time concept (Fig. 1).  
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Figure 1 The novel conceptual approach for lead time, time to warning and the forecasting window for optical image analysis. 

The forecasting window is started (texternal, green dashed outline) following significant acceleration exceeding a set 

displacement threshold, leading to a continuous process. Simultaneously with the forecasting window, time to warning (twarning) 155 

starts (grey outline). Time to warning is divided into a three–phase–process to allow time estimations for a comparative 

assessment of different types of remote sensing data. This process consists of the phases (1) time to collect, (2) time to process 

and (3) time to evaluate, each with their individual durations. Confidence in the forecasted event increases with time as process 

acceleration becomes more certain. Once a warning is released (orange box), the lead time begins (tlead) and is terminated by 

the following release and subsequent impact (red box). The lead time is the difference between the forecasting window and 160 

the time to warning. During the lead time, reaction time (treact) starts when appropriate counter measures are taken to prepare 

for and reduce risks ahead of the impending event, and ends with the final impact.  

The time to warning period (twarning) is defined by the time necessary to systematically collect data, analyse the available 

information and to evaluate it. Hence, the greater the lead time, the more extensive countermeasures can be implemented prior 

to the event. An imperative for an effective EWS, the required time to take appropriate mitigation and response measures has 165 

to be within the lead time interval (tlead) (Pecoraro et al., 2019) with tlead ≥ treact .  

2.2. Practical implementation of multispectral data in the conceptGeneral applicability to optical data 

The time to warning consists of a three–phase–process (see Sect. 2.1. and Fig. 1) to allow rough time estimations for a 

comparative assessment of different types of remote sensing data. Nevertheless, to realise this temporal concept an established, 

operating system is required, which includes reference data (DEM, previous results), experience from past field work and 170 

ready UAS flight plans with preparation for a UAS flight campaign, satellite data access, experience in the single software 

processing steps including final classification and visualisation templates and, if utilised for UAS, installed and measured 

ground control points. 
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The first phase includes the collection of data starting from the acquisition by the sensor, the data transfer, image pre–

processing and provision to the end user. The user selects images online from the data hub, downloads and organises them. 175 

For a UAS campaign, the user must obtain flight permits, check flight paths and conduct the UAS flight. The second phase 

encompasses time to process for the complete data handling from the downloaded data to final analysis–ready image stacks in 

a GIS or a corresponding software. These preparatory steps may include image selection and renaming, atmospheric correction, 

co–registration, resampling and translation to other spatial resolutions and geographic projection systems, adjustments such as 

clipping, stacking of single bands into one multispectral image or the division into single bands, calculation of hillshade from 180 

DEM among others, depending on the requirements. Following this preparation, the data is processed with the appropriate 

software tools to derive ground motion, calculate total displacement and derive surface changes, e.g. volume calculations or 

profiles. In the third and last phase, time to evaluate, the results are compared to inventory data and, if available, ground truth 

data, displacement results of other sensors or different spatial resolutions, different time interval variations to observe changes 

in sensitivity to meteorological conditions. Additionally, filters may be applied to eliminate noise. Finally, the results are 185 

analysed and evaluated. In each phase quality management is carried out for data access and pre–and post–processing. In time 

to collect, the images must be selected manually prior to any download from the data hub, as its filter tool options on cloud 

and scene coverage are of limited help. Accordingly, the areal selection may be misleading as the region of interest (RoI) might 

not be fully covered, though the sought–for, smaller area of interest (AoI) is covered but not returned from the request. 

Concerning cloud filters, first, the filter refers to the RoI as a whole in terms of percentage of cloud coverage. The AoI can 190 

still be free of clouds or else be the only area covered by clouds in the total RoI. Therefore, an image is either not returned 

although usable, or returned but not useable. Second, clouds can create shadows for which no filter is available. As a result, 

affected images have to be manually removed by the user. Images which are of low quality due to snow cover have to be 

discarded, too. These actions indirectly represent first quality checks in the collection phase. In the following processing phase, 

the images in a GIS, are checked for quality and accuracy. Depending on the data provider, some pre–processing such as 195 

radiometric, atmospheric and/or geometric corrections may have been conducted. During this phase, additional user–based 

steps will be checked if necessary. Finally, the results are compared to other data (e.g. DEM, dGPS), reviewed for their validity 

and may be supplemented by statistical evaluation. 

3 Study Site 

The Sattelkar is a steep, high–alpine, deglaciated west–facing cirque at an altitude of between 2 130–2 730 m asl in the 200 

Obersulzbach valley, Großvenedigergruppe, Austria (Fig. 2a). Surrounded by a headwall of granitic gneiss, the cirque infill is 

characterised by massive volumes of glacial and periglacial debris as well as rockfall deposits (Fig. 2b, c). Near–surface 

temperature data indicates sporadic permafrost distribution in the upper part of the cirque. Since 2003 surface changes have 

taken place as evidenced by a massive degradation of the vegetation cover and the exposure and increased mobilisation of 

loose material. A terrain analysis revealed that a deep–seated, retrogressive movement in the debris cover of the cirque had 205 

been initiated (Anker et al., 2016; GeoResearch, 2018). High water (over)saturation is assumed to be causing the spreading 

and sliding of the glacial and periglacial debris cover on the underlying, glacially smoothed bedrock cirque floor forming a 

complex landslide (Hungr et al., 2014). Detailed aerial orthophoto analyses, witness reports and damage documentations 

indicate a steady increase in mass movement and debris flow activity over the last decade (Anker et al., 2016).  
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In August 2014, heavy ongoing precipitation triggered massive debris flow activity of 170 000 m³ in volume, of which 

approximately 70 000 m³ derived from the catchment above 2 000 m. A further 100 000 m³ was mobilised in the channel 215 

within the cone. The consequence was that the Obersulzbach river was blocked leading to a general flooding situation in the 

catchment, resulting in substantial destruction in the middle and lower reaches (Fig. 3).  

 

Figure 3 Obersulzbach valley, flood event September 2014. (a) Flooding situation in the Obersulzbach valley with the Sattelkar landslide 

cone deposit (image centre). (b) Flood area at the valley mouth in Sulzau and Schaffau. The Salzach river is at the bottom of the image. 220 
©Salzburger Nachrichten/Anton Kaindl. 

The Sattelkar has been the focus of international research projects such as “PROJECT Sattelkar“ (GeoResearch, 2018) and 

AlpSenseBench (TUM, Chair of Landslide Research, 2020) since 2018. In 2015 preliminary findings revealed a mass 

movement coverage of 130 000 m² with approximately 1 mio. m³ of debris and displacement rates of more than 10 m a-1. The 

debris consists of boulders up to 10 m in diameter (Fig. 2c, d) allowing visual block tracking and delimiting the active process 225 

area. High displacement was measured between 2012 and 2015 with up to 30 m a-1. 

In the Sattelkar cirque, several monitoring components are installed to provide ongoing and long–term monitoring. Nine 

permanent ground control points (GCPs) measured with a dGPS to provide stable and optimal conditions to derive orthophotos 

from highly accurate UAS images (GeoResearch, 2018). A total number of 15 near surface temperature loggers (buried at 

0.1 m depth) recorded annual mean temperatures slightly above the freezing point (1–2 °C) in the period 2016 to 2019. Ground 230 

thermal conditions at depth react with significant lag times to recent warming and therefore are primarily determined by 

climatic conditions of the past (Noetzli et al., 2019). Significantly cooler climatic conditions in previous decades and centuries 

(Auer et al., 2007) thus likely contributed to the formation of (patchy) permafrost at the Sattelkar cirque. Recent empirical–

Figure 2 (a) Overview map Austria (Österreichischer Bundesverlag Schulbuch GmbH & Co. KG and Freytag-Berndt & Artaria KG, 

ViennaWien). (b) Sattelkar, 30.6.2019 with the debris cone of the 2014 debris flow event and (c) UAS orthophoto (04.09.2019, 1:1.000) 

showing boulder sizes of 5–10 m used for manual motion tracking, (d) active boulder blocks from the central AoI.  
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statistical modelling of permafrost distribution in the Hohe Tauern Range confirms possible permafrost presence at the study 

site (Schrott et al., 2012).  235 

These components include 30 near surface temperature loggers (NSTLs) and nine permanent ground control points (GCPs) 

measured with a dGPS to provide stable and optimal conditions for the derivation of orthophotos from highly accurate UAS 

images (GeoResearch, 2018). Field–based mapping and measurements help to delimit the active process area. 

The Sattelkar is a suitable case study as it is in the early stages of the landslide development and thus fits best to this conceptual 

approach. Here, processes take place on time scales appropriate for long–term observation to provide sufficient warning time. 240 

The active part of the cirque has accelerated in recent years allowing the analysis of EWS concepts based on multispectral 

optical remote sensing data supported by complementary block tracking. 

4 Materials and Methods 

4.1. Optical imagery 

Optical satellite imagery is more appropriate for high deformation studies than radar applications due to the high spatial 245 

resolution as well as the short time span between acquisitions (Delacourt et al., 2007). Although the west–facing slope is 

favourable for the application of radar derivatives (InSAR/DInSAR), the choice to use optical imagery is based on the observed 

high displacement rates, which cause decorrelation when using radar technologies as they are more sensitive than optical 

technologies. Complex and/or large displacement gradients make the phase ambiguity difficult to solve for radar interferometry 

(Kääb et al., 2017). Revisit times of current radar satellites (e.g. Sentinel–1) are longer than those of optical satellites, and if 250 

time periods between image acquisition become too long, ground motion may accumulate such that the displacement is too 

high to be measured. Several studies on displacements of faults and landslides have shown the potential of optical data to 

provide detailed displacement measurements based on image correlation techniques (DIC) (Leprince et al., 2007; Rosu et al., 

2015). A further advantage of optical images for geomorphological processes in steep terrain is their viewing geometry (close 

to nadir) (Lacroix et al., 2019). Here we employ DIC to compare the spatiotemporal resolution of multispectral optical imagery 255 

(UAS and PlanetScope) and to assess its suitability for early warning purposes. UAS images offer excellent spatial resolution 

and accuracy at the centimetre scale (Turner et al., 2015) and complement large scale satellite or airborne acquisitions (Lucieer 

et al., 2014). PlanetScope imagery provides the highest temporal resolution among available sensors with daily acquisitions, 

guaranteed data availability, and free and open access for research purposes. In this study the PlanetScope Analytic Ortho 

Scene SR (surface reflectance) imagery (16–bit, geometric–, sensor– and radiometric corrections) was employed (Planet Labs, 260 

2020b) and was supported by the Planet Labs Education and Research Program. 

4.2. Data availability of PlanetScope 

Research on the availability and usability of PlanetScope imagery was conducted on the Planet Explorer data hub for the time 

span from the beginning of April to the end of October in 2019, as during these months snow cover should be negligible. Filter 

parameters were solely set for 4–band PlanetScope Ortho Scenes and the Sattelkar AoI. In order to obtain all available images, 265 

no filters (e.g. sun azimuth, off nadir angle) were applied. We defined four categories i) meteorological constraints due to snow 

cover, cloud cover and cloud shadow; ii) image (coverage) errors made by the provider, iii) no data availability and iv) the 

remainder of usable data (Table 2Table 2). The output request was evaluated according to the defined categories and was 

compared to the provider’s guaranteed daily image provision, which is comprised of 213 days for the time period (01.04.2019–

31.10.2019). We calculated percentages for the above categories based on days per month as well as a seven–month sum and 270 

percentage average. The availability analysis did not include an examination of the data with regard to its spatial usability: 

positional accuracy and/or image shifts.  
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Table 2 PlanetScope 4–band data availability and usability for Sattelkar AoI for April to October 2019. 275 

Month   
April 

(%) 

May 

(%) 

June 

(%) 

July 

(%) 

August 

(%) 

September 

(%) 

October 

(%) 

7 month 

sum 

7 month 

avg (%) 

usable   0.0 % 0.0 20.0 22.6 9.7 13.3 9.7 23 10.7 

unusable   
         

 cloud cover/shadow 16.7 6.5 0.0 19.4 32.3 16.7 9.7 31 14.5 

 snow cover 10.0 0.0 33.3 0.0 0.0 3.3 3.2 15 7.0 

 image errors 23.3 25.8 16.7 12.9 29.0 20.0 19.4 45 21.0 

 no coverage/data voids 10.0 12.9 16.7 32.3 16.1 20.0 32.3 43 20.1 

 not available no upload 40.0 54.8 13.3 9.7 12.9 26.7 25.8 56 26.2 

 

Unfavourable meteorological influences of cloud cover/shadow and snow cover affected up to 32.3 % and up to 33.3 %, 

respectively, on all 213 days; on average 14.5 % and 7 % of the days were not usable (Table 2Table 2). For 10 days in June 

snow influence had the greatest negative share (33.3 %), for April there were three days of snow coverage and the months 

September and October each had one day of snow coverage. Cloud cover/shadow exerted a higher impact on data usability by 280 

14.5 %. Problems on the part of PlanetLabs made much of the data unusable due to image errors; between four and nine images 

per month were not usable (21 %). On average for 26.2 % of the analysed time period no image data was available. In this 

seven–month period, 43 images (20.1 %) had data voids or did not cover the AoI, thus the overall usability is limited to about 

11 %.  

4.3. Data Acquisition and Processing 285 

In line with the concept in Fig. 1 (Sect. 1), the following processing steps are categorised and described.  

(1) tcollect: UAS data acquisition was preceded by detailed flight route planning and checks of local weather and snow 

conditions. UAS flights were carried out with a DJI Phantom4 UAS on 13.07.2018, 24.07.2019 and 04.09.2019 (see Table 3, 

Fig. 4). 

Table 3 Acquisition dates of UAS and PlanetScope images, in chronological order. 290 

Acquisition set UAS PlanetScope 

(1) 13.07.201813 July 2018 

02.07.2018 02 July 2018 (a), 19.07.2018 

19 July 2018 (b) 

(2) 24.07.201924 July 2019 24.07.201924 July 2019 

(3) 

04.09.201904 September 

2019 04.09.201904 September 2019 

 

For each acquisition, the total area was covered by four flights which were started on different elevations (Table 4). Flight 

planning was done with UgCS maintaining a high overlap (front: 80 %, side: 70 %) and a target ground sampling distance 

(GSD) of 7 cm. The area covered was approximately 3.4 km² and with a flight speed of about 8 m/s total flight time took 

3.5 hours. The images were captured in RAW format. In the Planet Explorer Data Hub, PlanetScope Ortho Scenes were 295 

selected for usability; imagery affected by snow cover, cloud cover, cloud shadow and partial AoI coverage was discarded 

(Table 5). 

 

Table 4 UAS Flight plans. 

Flight plan 

parts 

Length of 

flightpath [km] 

Flight 

time [min] 

Passes No. of 

images 

GSD 

[cm] 

Altitude start 

point [m] 

Highest flight 

position [m] 

Lowest terrain 

point [m] 

Top 6.8 17 6 121 7 2630 3120 2365 

Middle 7.5 19 6 135 7 2200 2682 1820 

Low 1 7.3 17 6 130 7 1768 2115 1620 

Low 2 5.6 14 6 81 7 1768 2110 1620 
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Total 27.2 67 24 467 7   3120 1620 

 300 

Table 5 Planet Scope Ortho Scenes. 

Acquisition 

Date 

Acquisition 

time (local) 

Identifier Incidence Angle  

[deg] 

02.07.2018 11:34 20180702_093434_0f3f_3B_AnalyticMS_SR 2.18E-01 

19.07.2018 11:35 20180719_093512_0f3f_3B_AnalyticMS_SR 2.36E-01 

24.07.2019 11:42 20190724_094200_1014_3B_AnalyticMS_SR 5.57E+00 

04.09.2019 11:36 20190904_093632_0e20_3B_AnalyticMS_SR 4.24E+00 

 

(2) tprocess: in phase two (time to process) the PlanetScope images were visualised in QGIS. Thereafter, a second selection 

(visually with the ‘Map Swipe Tool’ plugin) from the downloaded images was filtered for errors of location, shift and spectral 

colour problems which were previously not clearly discernible in the online data hub. The final selection of images was made 305 

based on the temporal proximity to the UAS data to guarantee the best comparability. For acquisition set (1), there are two 

PlanetScope images (02.07.2018 and 19.07.2018) which differed from the UAS acquisition date (13.07.2018) by 11 and 6 

days, respectively. For acquisition sets (2) and (3), PlanetScope and UAS acquisition dates were identical (24.07.2019 and 

04.09.2019). The acquired data sets were categorised in chronological intervals I/Ia/Ib and II (see Fig. 4). The PlanetScope 

images (19.07.2018, 24.07.2019 and 04.09.2019) were taken between 11:35 and 11:42 local time. 310 

 

Figure 4 Acquisition dates of UAS and PlanetScope images within the investigated time period. Calculated interval I for UAS images 

(13.07.2018–24.07.2019, 376 d) and interval Ib for PlanetScope images (19.07.2018–24.07.2019, 370 d), interval II for UAS and 

PlanetScope images (24.07.2019–04.09.2019, 42 d). Note: Ia PlanetScope interval was discarded. 

 315 

The UAS images in RAW format were modified using Adobe Exposer to improve contrast, highlights, shadows and clarity. 

Thereafter, they were exported as JPG (compression 95 %) and processed with Pix4Dmapper to 0.08 m resolution and 

orthorectified based on nine permanent ground control points (GCP, 30 x 30 cm). These were repeatedly (1000 

measurements/position) registered with the TRIMBLE R5  dGPS and corrected via the baseline data of the Austrian 

Positioning Service (APOS) provided by the BEV (Bundesamt für Eich– und Vermessungswesen). Horizontal root–mean–320 

squared errors (RMSE) range from 0.05 m to 0.10 m for vertical RMSE. These GCPs were employed for georeferencing and 

further rectification of all the UAS imagessurveys.  

Next, the data was clipped to a common area of interest (AoI) and resampled with GDAL and the cubic convolution method 

to 0.16 m to enhance processing time and increased reliability of image correlation. PlanetScope Satellite images were co–

registered in Matlab relative to a reference image (https://gitlab.lrz.de/tobi.koch/satelliteregistration.git).  325 

We used digital image correlation (DIC) to measure the displacement for the active landslide body of the Sattelkar and to 

assess the suitability of the PlanetScope and UAS data. This method employs optical and elevation data and calculates the 

distance between an image pair, based on the spatial distance of highest correlation peaks between an initial search and final 

reference windowlocation changes of common pixels. The result provides displacement and ground deformation in 2 D on a 

sub–pixel level. COSI–Corr (Co–registration of Optically Sensed Images and Correlation), a widely used software in landslide 330 

and earthquake studies was used for sub–pixel image correlation (Stumpf, 2013; Lacroix et al., 2015; Rosu et al., 2015; 
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Bozzano et al., 2018). COSI–Corr is an open source software add–on developed by CALTECH (Leprince et al., 2007), for 

ENVI classic. There are two correlators; in the frequency domain based on FFT algorithm (Fast Fourier Transformation) and 

a statistical one. Applying the more accurate frequential correlator engine, recommended for optical images, different 

parameter combinations of window sizes, direction step sizes and robustness iterations were tested. Parameter settings include 335 

the initial window size for the estimation of the pixelwise displacement between the images and the final window size for 

subpixel displacement computation s in x, y; a direction step in x, y between the sliding windows; and several robustness 

iterations (Table 6). There are two correlators; in the frequency domain based on FFT (Fast Fourier Transformation) and a 

statistical one. Applying FFT, different parameter combinations of window sizes, direction step sizes and robustness iterations 

were tested. We utilised recommended window sizes as suggested by Leprince et al. (2007) and Bickel et al. (2018). Step size 340 

one showed good results while keeping the original spatial resolution for the output; robustness iterations of two to four were 

sufficient for our purposes. Initial and final window sizes were systematically tested (see Table 6). For computing a state–of–

the–art powerstation was employed (AMD Ryzen 9 3950X 16–core processor, 3.70 GHz, 128 GB RAM). 

 

Table 6 COSI–Corr input parameters for intervals of UAS and PlanetScope. 345 

Sensor Resolution Input interval Initial window 

[pix] 

Final window 

[pix] 

Robustness 

iteration 

Step size 

UAS  

[0.16 m] 

I: 13.07.201813 July 2018–

24.07.201924 July 2019 

II: 24.07.201924 July 2019–

04.09.201904 September 2019 

128x128 32x32 2 1x1 

UAS  

[3.0 m] 

I: 13.07.201813 July 2018–

24.07.201924 July 2019 

II: 24.07.201924 July 2019–

04.09.201904 September 2019 

32x32 16x16 2 1x1 

PlanetScope 

[3.0 m] 

Ib: 19.07.201819 July 2018–

24.07.201924 July 2019 

II: 24.07.201924 July 2019–

04.09.201904 September 2019 

64x64 32x32 4 1x1 

 

The results of each correlation computation returns a signal–to–noise ratio map (SNR) and displacement fields in east–west 

and north–south directions. These resultsthe signal–to–noise ratio (SNR), east–west and north–south displacements were 

exported from ENVI classic as GTiff and the total displacement was then calculated with QGIS.  

(3) tevaluate: in the last phase (time to evaluate) the results of various parameter settings were compared in QGIS and ArcGIS 350 

along with different combinations of visualisation. Displacement below a 4 m threshold was discarded from the PlanetScope 

datasets due to aberrant values (noise, outliers); no other filters were employed, and we maintained the output raw. Very few 

inconsistencies were present in the UAS–derived displacement results, which were accepted without modification.  

Additional analyses were performed to estimate the DIC outputs of both, the UAS orthophotos and PlanetScope satellite 

imagery. Visual tracking of 36 single blocks, identifiable in the UAS orthophoto series allowed deriving direction and amount 355 

of movement; this supported the verification process of the total displacement. We employed this approach for the time 

interval I. In order to assess the information value and validity of the satellite imagery, UAS orthophotos were downsampled 

to 3 m (cubic convolution) for comparison purposes prior image correlation. 

5. Results 

In Sect. 5.1. we present ground motion results from DIC for the original input resolution for i) UAS, 0.16 m and ii) PlanetScope, 360 

3 m input resolution based on parameters in Table 6. Second, for iii) DIC results of UAS downsampled to 3 m and of 

PlanetScope are compared. In Sect. 5.2. DIC results for UAS, 0.16 m are analysed with regard to displacement of visual single 

block tracking. Finally, in Sect. 5.3. required times for tcollection, tprocessing and tevaluation for each sensor are presented. 
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5.1. Total displacementsDisplacement Rates 

 365 

Figure 5 Results of DIC total displacement of orthoimages UAS for (a) and (b) at 0.16 m resolution, (e) and (f) downsampled to 3 m 

resolution, and PlanetScope (c) and (d) at 3 m resolution. Time intervals for UAS image pairs (a) and (e) are I (13.07.2018–24.07.2019, 

376 d), (b) and (e) II (24.07.2019–04.09.2019, 42 d), for PlanetScope (c) Ib (19.07.2018–24.07.2019, 370 d) and (d) II (24.07.2019–

04.09.2019, 42 d). The Ssolid black line represents the boundary of the active landslide based on field mapping. Background: hillshade of 

Lidar DEM, 1 m resolution (© SAGIS). 370 

Figure 5a and Fig. 5b show the total displacements rates derived from UAS orthophotos at 0.16 m resolution for time intervals 

I and II (see Table 6). Apart from several minor displacement patches, no motion is visible outside the active body in either 

period. Time interval I (376 d) (Fig. 5a) shows mean displacement values from 6 to 14 m for a coherent area in the eastern half 

of the lobe from the centre (c) to the eastern boundary of the active area. The highest displacement rates (up to 20 m) are 

observed within small high–velocity clusters in the northwest section (d). Lower velocities occur along the southern boundary 375 

(e, f), ranging from zero to 6 m with smooth transitions. Ambiguous, small–scale patterns with highly variable displacement 

rates are present in the western half (a) and along the northern boundary (b). No motion is detected along the western fringe 

(i.e. at the landslide head) which is 20 m in width. South of the landslide (g) there is a small patch of minor displacement with 

continuous (up to 3.5 m) and ambiguous signals. Furthermore, we observed small–scale patterns of ambiguous signals in the 

east (j) and in the west of the active area in the drainage channels (h, i).  380 

Time interval II (42 d) (Fig. 5b) shows great similarity to time interval I with ambiguous signals in the same areas such as the 

drainage channels (h, i) and within the western half of the active area (b). In contrast to interval I (Fig. 5a), within the active 

area a homogenous higher velocity patch (up to 6 m) near the landslide head is evident (a). In the eastern half large homogenous 
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patches extend from the landslide centre (c) to the root zone (d) showing coherent displacement values of zero to 4 m. During 

this shorter time interval II, no displacement is detected along the south eastern boundary (e) and for large parts of the root 385 

zone (f) previously covered in I. Similar to I, the landslide head has a 20 m rim free of signal (also see Fig. 6 x, y). In the central 

part of the lobe (c) total displacements rates are significantly reduced. 

Figure 5c and Fig. 5d demonstrate total displacement for similar time intervals to UAS (see Table 3 and Fig. 4). For interval Ib 

(370 d) (Fig. 5c) wide fringes with no motion were detected around an actively moving core area, which consists of small–

scale clusters with variable total displacement in the western part, coherent high velocities in the middle, and coherent low 390 

velocities east of this core area. Outside the landslide, northeast and immediately south (j), high–velocity patches are observed.  

In interval II (42 d) (Fig. 5d) the detected displacement is restricted to the western half of the landslide (a) and shows the same 

significant fringes with no motion as in I. Compared to interval I the motion pattern of this core area is more homogeneous 

with increasing displacement towards the east. Outside the active area several patches show medium to high total displacement, 

the largest of which is located 300 m northwest of the landslide (i).  395 

In Fig. 5e and Fig. 5f displacement results of UAS downsampled to 3 m are compared to PlanetScope at 3 m for both time 

intervals, I and II. Overall, the results demonstrate high rates displacements (~ 18–20 m) across the entire landslide interrupted 

by scattered speckles of low to medium total displacement (a, b, e). No motion was present in a fringe zone along the landslide 

front (west boundary), similar to results in Fig. 5a and Fig. 5b. In general, the displacement patterns are less smooth than at 

0.16 m input resolution. Outside the landslide significant displacements exist at the eastern image border (Fig. 5e) and towards 400 

the west (h, i) (Fig. 5f). In comparison, total displacement rates derived from PlanetScope cover in large parts the active area 

for Ib (Fig. 5c); however, for II only the core area of the landslide shows displacement. In both results the core areas of the 

landslide are surrounded by wide fringes with no data zero deformation.  

5.2. Single Block Tracking  

Figure 6 illustrates the total displacement rates derived from the UAS data at high resolution (0.16 m) for interval II (42 d). 405 

UAS orthoimages were used to manually measure single block displacement for 36 clearly identifiable boulders on the 

landslide surface. Block displacements of 1 m are visible in the eastern part (f), whereas DIC does not reveal any displacement 

below 1 m. Boulder tracks longer than 2 m in the central and western part of the landslide are reflected by DIC–derived 

displacement values. Near the front a 6 m displacement of one block (a) is represented in the DIC result. The highest values 

(6 m, 10 m, 16 m) were observed in regions where DIC delivered ambiguous, small–scale patterns of highly variable 410 

displacements.  
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Figure 6 (a) Displacement derived from UAS data at 0.16 m resolution for interval II (24.07.2019–04.09.2019, 42 d) combined with boulder 

trajectories (in metres) manually measured in the UAS orthophotos in the same time period. The solid black line represents the boundary 

of the active landslide based on field mapping. Background: UAS hillshade, 24.07.2019 (0.08 m), orientation -3° from north. UAS 415 
orthophotos at 0.16 m resolution for the master (b) and slave image (c) of the corresponding time interval. 

 

5.3. Time required for collection, processing and evaluation 

In Sect. 2 we introduced a novel concept to extend lead time, consisting of three phases within the warning time window (see 

Fig. 1Figure 1). This concept is based on DIC results, thus every step comprised in each phase has been previously undertaken. 420 

On this basis, knowledge of required time for a further process iteration of the three phases is given.  

Time required for collection, processing and evaluation of UAS and PlanetScope data are estimated and summed in Fig. 7. 

PlanetLabs specifies 12 hours from image acquisition to the provision in the data hub, which includes to a large amount data 

pre–processing (Planet Labs, 2020b). Adding two hours for the selection, order and download process, we assume that time 

required for the collection phase is approximately the same for both sensors, with 14 hours for PlanetScope and 12 hours for 425 

UAS. With regard to the time needed for the processing phase, the sensors differ with UAS requiring 17 hours and PlanetScope 
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five hours. Time for the evaluation phase is estimated to be about two hours. In sum, twarning for UAS is approximately 31 hours 

compared to 21 hours for PlanetScope.  

 

Figure 7 Time to warning is composed of three phases: time to collect, to process and to deliver. Time to warning (subsequent to acceleration) 430 
is 21 h for PlanetScope and 31 h for UAS. Thus, any hazard process that takes longer than 21/31 h to prepare the release and impact can be 

forecasted. 

6 Discussion 

To systematically analyse the predictive power of the UAS and PlanetScope data, we will (i) evaluate error sources and output 

performance, (ii) assess obtainable temporal and spatial resolution and (iii) derive a systemic estimate of the minimum 435 

obtainable warning times. 

6.1. Error sources and output performance 

To evaluate error sources and output performance, we compared results of digital image correlation results from optical data 

with (i) mapped mass movement boundary, (ii) visual block tracking for UAS and (iii) 3 m downsampled UAS orthophotos. 

The approximately one year evaluation period encompassed all seasons, hence freezing/thawing conditions and a wide range 440 

of meteorological influences, e.g. thunderstorms and heavy rainfall, are included. The two investigated time intervals are I/Ib 

and II, covering 376/370 days and 42 days (typical high–alpine summer season), respectively (Fig. 4). Interval II exclusively 

covers (high–alpine) summer conditions, with negligible to no contribution from freezing conditions. As these inclusion 

periods are inconsistent, the amount of total displacement cannot be directly compared; however the relative motion patterns 

can be. Accordingly, we can confirm the suggested parameter settings of earlier studies on window sizes, steps and robustness 445 

iterations (Ayoub et al., 2009; Bickel et al., 2018).  

In terms of the mass movement boundary, the total displacement derived from the DIC of the UAS data generally matches the 

field–mapped landslide boundary for both intervals (I, II) (Fig. 5a, b), and is supported by the absence of significant noise 

outside the AoI. Mapped boulder trajectories for interval II (see Fig. 6) are consistent with the calculated total displacement 

and thus confirm COSI–Corr as a reliable DIC tool to derive ground motion for this study site and UAS orthophotos as suitable 450 

input data. Nevertheless, there are several areas with ambiguous signals. Leprince (2008) describes snow cover, vegetation 

cover and alluvial processes, among others, as potential explanations for these decorrelations. In our study, the decorrelated 
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areas include to a large degree the landslide head (a), the drainage channel (h) (Fig. 5a, b), a larger patch south of the active 

area boundary (g) (Fig. 5a), and some smaller ones in little depressions (g) (Fig. 5a) and (j) (Fig. 5a, b). Most patches are 

identified as snow fields in the orthophotos and the noise results from decorrelation. In Fig. 5a, the large southern patch (g) 455 

shows clear displacement values for the rear part and decorrelation for the front region resulting from significant 

morphologicaltemporal changes within an the image pair of interval I, limiting the ability to measure ground displacements. 

The decorrelation in the drainage channel (h) could stem from massive changes in pixel values, similar to the decorrelation on 

the basis of alluvial processes, as described by Leprince et al. (2007). Decorrelations in the areas with the fastest ground 

motions also lead to high pixel changes (Stumpf et al., 2016). These are observable in the active landslide area within the lobe, 460 

where large areas of decorrelation may be explained by high displacements in the leading part (a) with redetected, hence 

correlated pixels in the trailing part (c, d, e, f). These findings can be transferred to the landslide interior area (a, b), the frontal 

western regions and the northern margin (b). The observation is confirmed by geomorphological mapping and measured 

boulder block trajectories from the orthophotos (Fig. 6). Several patches of correlation (c, f) with corresponding boulder 

trajectories up to 4 m (34.8 m yr-1) (d) are detected in the rear part. A correlated patch with a 16 m (34.8 m yr-1) trajectory (a) 465 

is in flow direction behind the foremost boulder. In this case the method was able to capture the displacement partially as the 

distinct boulder block supported the detection, hence correlation. This allows us to conclude that displacements exceeding 

approximately 10 m (86.9 m yr-1) for the calculated time period, thus 63 pixels or more at a resolution of 0.16 m, are definitely 

outside of a possible correlation and no pixel matching is possible. With a correlation window smaller than the displacement, 

the algorithm is not able to capture the displacement (Stumpf et al., 2016). Field observations provide evidence that the surface 470 

alters due to the high mobility and rotational behaviour of some boulder blocks, which leads to changed pixel values and 

spectral characteristics. Similar results were observed by Lucieer et al. (2014), who described a loss of recognisable surface 

patterns if revolving and rotational displacements occur, causing decorrelation and a noise as output. These results show that 

with COSI–Corr and UAS orthophotos of 0.16 m, it is possible to detect the total displacement of the landslide in both extent 

and internal process behaviour even in this steep, heterogeneous terrain. Nevertheless, high displacement rates and rotational 475 

surface behaviour in the cirque limit the DIC method. A decrease of the time interval for this particular highly mobile study 

site would likely reveal an enhanced correlation since for shorter time periods the total displacement decreases, and surface 

changes are reduced, which can be controlled by shortening the temporal baseline.  

6.2. Comparison of temporal and spatial resolution 

We compared the COSI–Corr total displacement results of PlanetScope (Ib and II, Fig. 5c, d) and UAS images (I and II, 480 

Fig. 5a, b) for the same time periods at different spatial resolutions (see Table 6). For the PlanetScope DIC result the main part 

of the landslide is detected, and its area is generally consistent with the results of the UAS DIC, which is additionally confirmed 

by boulder trajectories. The frontal part (a) reveals correlation signals (I and II); while for the same time intervals and parts, the 

UAS DIC results show a decorrelation (Ib and II). The correlation is likely to be attributable to the coarser spatial resolution 

of 3 m input data, hence a smaller number of pixels to be captured at this site with the DIC method. Similar texture of rock 485 

clast surfaces could lead to false positives resulting in correlation as patches appear similar in matching windows. However, 

in contrast to the UAS result (Fig. 5a, b), the outcome on a large scale fails to detect the entire actual active area (b), (f) as well 

as its internal motion behaviour. Nevertheless, for the visualisation and analysis of the PlanetScope results, the range of total 

displacements had to be restricted to values equal to and greater than 4 m due to noise and outliers over large areas, as applied 

and described by Bontemps et al. (2018). Even then, noise and several misrepresented displacement patches are observed for 490 

(i, j) and in the northeast image corner (Fig. 5). We can identify several reasons for these large clusters of high motion values. 

Massive cloud and snow coverage hampered both first images of interval Ib (19.07.2018) (Fig. 5c) and II (24.07.2019) 

(Fig. 5d), leading to a 20 m fringe of false displacements in the north–eastern part of the image. Minor snow fields as visible 

in the images from 24.07.2019 for both, the UAS and PlanetScope, could likely explain the big cluster of incorrect displacement 
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southeast of the lobe (j); nonetheless, in the satellite image they are smaller than the resulting DIC displacement. High cloud 495 

coverage in two input images with large areas of white pixels may exert an influence leading to high gains due to sensor 

saturation (Leprince, 2008). Illumination changes in interval II (Fig. 5d) may cause unrealistic displacements outside the 

boundary with slightly darker colours due to shadows in the first satellite image (24.07.2019) and large parts within the second 

image (04.09.2019) are also in the shade. A comparison of the acquisition times and true sun zenith, e.g. for the second image, 

reveals a difference of 01:34 h between the image acquisition at 11:36 LT (local time) and the true local solar time at 13:10 500 

LT. As the study site is located in a high–alpine terrain with a west facing cirque, at this time of day there are shadows of 

considerable length which have a significant influence on the result of digital image correlations. One clear advantage of the 

UAS images is that their acquisition is plannable according to the best illumination conditions with the sun at its zenith. 

Moreover, the UAS flight path as well as the system itself remained the same for all three acquisitions, while PlanetScope 

employs various satellites.  505 

Despite similar input resolutions and time intervals (Ib vs. I and II vs. II, see Table 3) with different sensors (UAS, 

PlanetScope), considerably divergent DIC outputs (Fig. 5c vs. e, d vs. f) are returned. To a large degree the active ground 

motion inside the mapped landslide boundary is represented by the 3 m UAS DIC result, while the same fringe remains free 

of signal for both UAS DIC results at different input resolutions (Fig. 5Figure 5a, b vs. Fig. 5e, f). This similarity with overall 

good agreement indicates that the displacement is restricted to a smaller area than the previously demarcated boundary, based 510 

on our field investigations. The satellite image detects large parts of the main active core area but widths of 50–80 m from the 

boundary show no displacement. False displacement is indicated for a cluster outside of the boundary to the image border in 

the east for UAS interval I (Fig. 5e) and in the north western area (h, i) for interval II (Fig. 5d5f) contributing to changes in 

shading and illumination. Apart from these false signals, there is minor noise compared to false large clusters of high 

displacement within the PlanetScope result interval I for (j) and northeast image corner (Fig. 5c) and interval II (i) (Fig. 5d).  515 

However, two striking differences with correlation/decorrelation and ground motion values are observed for the two UAS 

input resolutions; the coarser resolution of 3 m returns a correlation signal with values typically exceeding 18 m of 

displacement as the value range is extended, due to previous high factor downsampling. Measured ground motion of block 

tracking and PlanetScope results indicate and support existing high ground motions. This observation might be the explanation 

for the observed decorrelation at the finer resolution of 0.16 m for the landslide head. For this reason, the previous assumption 520 

using a shorter time interval leading to improved detection of inherent process behaviour (see Sect. 6.1.), can be complemented 

with a coarser resolution showing a clear improvement in the form of better correlations and returned signals. Generally, with 

high resolution images, such as UAS, we recommend first calculating displacements based on a coarser input resolution (1–

3 m) to examine the overall situation and detect changes, and second to calculate displacements at a finer resolution in order 

to focus on relevant details of the AoI. With regard to PlanetScope data, a 3 m resolution seems to be in a good spatial range 525 

to assess ground displacements even of this steep and heterogeneous study site with its high motion. Nonetheless, constraints 

such as illumination due to early daytime acquisitions leading to shadows, meteorological influences by clouds, cloud shadows 

and snow decrease the quality of the satellite images and reduce their applicability. Sensor saturation, shadow length, size and 

direction as well as changes in snow, cloud or vegetation cover impose limitations (Delacourt et al., 2007; Leprince et al., 

2008) and accord with our observations. The authors identify additional limitations such as radiometric noise, sensor aliasing, 530 

man–made changes and co–registration errors (ibid.). All these limitations have a negative impact on the input image, which 

leads to impaired DIC calculations and results, and (partially or wholly) inaccurate analysis of the displacement. These might 

have played a role in our results. In our experience, the usability of the DIC result may be influenced by the input image 

quality. This restricts the application of PlanetScope images to a certain degree. They can be employed as input data to detect 

displacements, but as there are in the present setting too many signals of false–positive displacements, which can solely be 535 

discarded on the basis of field evidence, this data is currently of limited use. It should be handled with caution and we 

recommend, and combining it with complementary data and ground truth is recommended. 
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6.3. Estimating time to warning 

Early warning is essentially defined as being earlier than the event and thus puts high external time constraints on observation 

and decision. The time window between the detection of an accelerating movement preparing for final failure and the final 540 

failure itself is determined by the environment. Therefore, two sensors with the highest available spatiotemporal resolution 

were evaluated and compared with regard to their applicability to the early warning of landslides. We made rough assumptions 

and assessed the time needed for the phases of time (i) to collect, (ii) to process, and (iii) to evaluate relevant data (summarised 

in the time to warning window, see Fig. 7).  

Despite different underlying technologies the time required for the collection phase is approximately the same for both sensors. 545 

For UAS, we estimated about 12 hours under ideal circumstances, while for PlanetScope 12 hours  (Planet Labs, 2020b) plus 

two hours for image selection, download and initial analysis, adding up to 14 hours in total (see Sect. 5.3.). In the second 

phase, time to process, deriving orthophotos from raw UAS images is time consuming. The subsequent DIC calculations 

demand significantly more processing time for the UAS images than for lower resolution PlanetScope images. The final phase, 

time to deliver, takes about two hours for each sensor. In our case study, the estimated time to warning (twarning) was 10 h longer 550 

for the UAS approach (31 h) in comparison to the Planet Scope approach (21 h). These time calculations are based on ideal 

environmental conditions and data availability. Assuming good conditions exist to conduct the UAS flight and no constraints 

limit the utilisation of satellite images, in theory a daily deployment is possible. In reality, unfavourable weather conditions, 

cloud and snow cover as well as limited data availability will increase the actual twarning significantly. From the available images 

in the Planet Data hub (besides other exclusions) meteorological influences reduced for April–October 2019 the usability by 555 

14.5 % and 7 % for cloud cover and snow cover, respectively (Table 2Table 2). The flexibility of a UAS can serve as a practical 

remote sensing tool for the investigation of ground motion behaviour in a spatiotemporal context.  Nonetheless, weather 

influences can make a UAS flight impossible or impractical as the result might be useless. Depending on the level of 

illumination, the same may apply for satellite images. Regardless of any meteorological constraints, the promised daily 

availability by PlanetScope is unrealistic, due to data gaps and provider issues; our study showed that for the Sattelkar from 560 

April to October 2019 only 11 % of the captured images during this time were usable. In time–critical early warning scenarios, 

when time is running out, all available even partly usable images will be utilised and fieldwork may be conducted, even if the 

prevailing conditions are suboptimal but will increase data availability. The comparison of two selected remote sensing options 

demonstrates that the comprehensive knowledge on the available remote sensing data sources and their respective time 

requirements can substantially reduce the time to warning (twarning) and to extend the lead time (tlead).  565 

Significant observations of the temporal evolution of historic landslides are presented in Table 7 and described below. These 

include (i) the Preonzo rock slope failure, CH (Sättele et al., 2016; Loew et al., 2017), (ii) the Vajont rock slide, ITA (Petley 

and Petley, 2006) and (iii) the Sattelkar complex slide, AUT (Anker et al., 2016). These landslides have specific evolution 

histories, e.g. early observed crack developments, increased movement and minor events like Preonzo (2002 and 2010) (Sättele 

et al., 2016); Sattelkar, with large volume mass wasting processes since 2005 and a debris slide event in 2014 (see Sect. 3 570 

Study Site) (Anker et al., 2016); and Vajont, with ductile failures in 1960 and 1962 and a transition from ductile to brittle 

behaviour in 1963 (Petley and Petley, 2006; Barla and Paronuzzi, 2013).  

 

Table 7 Relevant dates for historic failures of Vajont (ITA), Preonzo (CH) and Sattelkar (AUT). Time period in italics–bold used for Fig. 9. 

Time intervals in days (~ for rough estimations) and years in square brackets; sum of days based on the first day of the month, if only month 575 
as reference is available from literature (Petley and Petley, 2006; Anker et al., 2016; Sättele et al., 2016; Loew et al., 2017). Further 

explanation below. 
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Figure 9 is the extension of our concept (see Sect. 1, Fig. 1Figure 1) systematically supplemented with our estimated time to 

warning (UAS, PlanetScope), and compared to the few data series predating larger slope failures.  580 

Following a significant acceleration, the forecasting window is opened and twarning starts, which is composed of phases (i) time 

to collect, (ii) time to process and (iii) time to evaluate. To ascertain a significant acceleration one further observation is 

required. Hence, one complete cycle of the three phases, previous analyses and processing iterations are given. Our analysis 

showed that UAS and Planet Scope can approach times as short as 31/21 h, as a result tlead is increased and so is treact.  

 585 

 

Figure 8 Conceptual approach with estimated twarning for UAS and PlanetScope. Phases of collection, processing and evaluation (indicated 

as arrows of relative length in orange, blue and green, respectively) (see phases in Fig. 1 and Fig. 7) with their total duration time (grey 

dashed arrows). In twarning, one additional observation requires in sum 31 h for UAS and 21 h for PlanetScope data. Above, major landslides 

are compared from the onset or displacement detection (solid line) (Petley and Petley, 2006; Anker et al., 2016; Sättele et al., 2016). 590 

Assuming both sensors reliably estimate ground motion, solely based on their time requirement, this concept was applied to 

the temporal development of historic landslide events, thus from measured increased displacements and/or massive 

accelerations to the final event (Table 7). On this basis we simplified the graph and what we defined as “significant 

acceleration” using dates of observations such as increased crack opening (Vajont), critical displacement (Preonzo) and the 

beginning of active ground motion (Sattelkar). Therefore, the opening of twarning and forecasting window are concrete 595 

observations of the particular site, independent of any intensity described by the corresponding authors and allows more 

freedom for temporal evaluations without going into details.  

For the Preonzo case, the entire 2012 spring period was characterised by high displacement rates. We defined the first of May 

2012, when geologists operating the warning system informed local authorities and assembled a crisis team, as the onset or 

‘increased movement’ and the 15.05.2012 with 300 000 m³ as the impact (Sättele et al., 2016), in total approximately 15 days. 600 

For Vajont, the 1/velocity plot by Petley and Petley (2006) (based on data from Semenza and Ghirotti (2000)) shows an 

increase in movement at about day 60 along with a transition from a linear to an asymptotic trend at approximately day 30, 

defined as a transition from ductile to brittle. Therefore, we assumed 30 days of forecasting window for twarning and tlead until 

the impact of the hazardous event on 09.10.1963. However, it has to be kept in mind that velocities of about 35 mm d-1 are still 

low and at the minimum of the displacement recognition capability for the digital image correlation method. For the Sattelkar 605 
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site, the observed mass displacement increase is presumed to have started in 2005 with the 170 000 m³ debris flow event on 

31.07.2014 as the impact, thus about 3 498 days (Anker et al., 2016). 

Even for the Preonzo event, with its short forecasting window of 15 days, the ground motion assessment based on the evaluated 

optical remote sensing images, would have been possible under the assumption of reasonably good UAS flying conditions and 

the provision of usable PlanetScope images. For twarning there is enough temporal leeway to repeat at least three to four 610 

successive measurements comprising the three phases. However, as single accelerations are possible in very short time 

intervals of less than two days, it is impossible to capture these accelerations by means of optical remote sensing methods, 

given a time requirement of 31 hours for UAS and 21 hours for PlanetScope. Nevertheless, this comparison shows that for 

larger and long–preparing slope failures the technical twarning may well be shorter than the forecasting window starting at the 

time at which the process became predictable.  615 

7 Conclusions and outlook 

This paper presents an innovative concept to compare the lead time for landslide early warnings, utilising of two optical remote 

sensing systems. We tested this temporal concept by applying UAS and PlanetScope images of temporal proximity as these 

are currently the sensors with the best spatiotemporal resolution. We assessed the sensors’ capability to identify hot spots and 

to recognise behaviour by delineating ground motion employing digital image correlation (DIC). In so doing, knowing the 620 

necessary processing time enabled us to estimate the time requirement and finally to incorporate it into the concept to evaluate 

sensors with regard to ongoing landslide processes of the Sattelkar as well as historic landslide events. 

Our findings derived from DIC for this steep high–alpine case study show that high resolution UAS data (0.16 m) can be 

employed to identify and demarcate the main landslide process and reveal its heterogeneous motion behaviour as confirmed 

by single block tracking. Thus, validated total displacement ranges from 1–4 m and up to 14 m for 42 days. PlanetScope Ortho 625 

Scenes (3 m) can detect the displacement of the landslide central core, however, cannot accurately resolve represent its extent 

and internal behaviour. The signal–to–noise ratio, including multiple false–positive displacements, complicates the detection 

of hotspots at least in this very steep and heterogeneous alpine terrain.  

Coarse temporal data resolution, such as in the case study investigated here, represents an important restriction to the use of 

optical remote sensing data for landslide early warning applications. Acceleration (and the resulting failure) over short periods 630 

of time will likely go unnoticed due to large data acquisition intervals. However, for prolonged acceleration periods, such as 

observed at the Sattelkar slide and many other relevant hazard sites, the chosen data sources have been demonstrated to 

represent a formidable early warning approach capable of contributing to an improved risk analysis and evaluation in steep 

high–alpine regions. 

With regard to the temporal aspect for early warning purposes, PlanetScope satellite images require less time compared to 635 

UAS for the time phases of collection, processing and analysing. As a consequence, when time is of the essence, the UAS 

acquisition cannot compete with the high frequency of PlanetScope daily revisit rates. In general, both are limited in their use 

as they are passive optical sensors dependent on favourable weather conditions. Nevertheless, with a realistic 10 % of usable 

data for our study site, PlanetScope cannot provide daily data as promised.  

To conclude, in methodological terms DIC is a reliable tool to derive total displacement of gravitational mass movements even 640 

for steep terrain. Given the high reliability of UAS data, its temporal resolution is the key in future attempts to overcome 

decorrelation due to high ground motions. In addition, a slightly coarser resolution reduces the time needed for total processing, 

enhances correlation while maintaining spatial accuracy and reliability. PlanetScope is especially interesting as a 

complementary sensor when UAS employment is restricted e.g. inaccessible and/or dangerous sites or for areas too extensive 

to be covered. For continuous monitoring and early warning, the warning time window could be shortened by on–site drone 645 

ports with autonomous acquisition flights and automatic processing. Our systematic evaluation of the sensor potency capability 
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can be applied and transferred to other optical remote sensing sensors, and, the same is true for our conceptual approach 

optimising which extendsing the lead time. Future studies should focus on the applicability of complementary optical data to 

confirm the detection of landslide displacement and adjust UAS output resolution as this significantly increases the validity of 

DIC internal ground motion behaviour.  650 
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