Anonymous Referee #1: The paper "Spatial variability in the relation between fire weather and burned area: patterns and drivers in Portugal" aims at analysing large (>100 ha) summer forest fires in mainland Portugal. Although the dataset is sound and of potential interest, I found several flaws in the methods and results interpretations. The use of statistics is not always appropriate, especially the use of OA, UA and K (they are used for classification accuracy against a reference).

Answer: We want to start by thanking the reviewer; first, for the work and time spent on reviewing our manuscript, as we recognize the difficulties that the editors have in finding good reviewers; second because your comments and suggestions were very helpful in clarifying and strengthening the manuscript.

The reviewer states that the objective of this work was to “analyze large (>100 ha) summer forest fires in mainland Portugal”. We want to clarify that the three objectives of this study (as stated in lines 3-4 of the Abstract and lines 81-83 of the introduction) were to 1) assess if the DSR90p threshold is adequate to identify the bulk of burned area (BA) for mainland Portugal; 2) identify and characterize regional variations of the DSRp threshold that justify the bulk of BA, and; 3) analyze if vegetation cover can explain the spatial variability of the DSRp threshold.

We do not agree with the reviewer when he states that the use of OA, UA and K were not appropriate. Effectively, these statistics were used for classification accuracy against a reference as the reviewer proposes. This is explained in lines 151-153, together with a detailed explanation of the accuracy metrics and the citations of previous articles that defined and used the same statistics in similar conditions/situations. However, we accept that this reference is not clear and will change the manuscript accordingly, improving the explanation.

We appreciate the reviewer’s acknowledgement of the quality of the datasets. On one hand, the wildfire and land use data used in this manuscript are Portuguese official datasets, produced and provided by Portuguese national authorities. These datasets were used in many other studies, by a large number of authors for a wide variety of purposes (Bergonse et al., 2021, Tarín-Carrasco et al., 2021). On the other hand, the ERA5 is recognized as the best or one of the best global atmospheric reanalysis datasets (Huai et al., 2021, Muñoz-Sabater et al., 2021, Urban et al., 2021) and used worldwide (Chinita et al, 2021, Sianturi et al., 2020). Therefore, it is one of the most used meteorological datasets in the world.

Citations to include in the manuscript:

Anonymous Referee #1: Furthermore no analyses on the spatial pattern are provided, simply a description of the maps. The relationships between LULC and weather and fire occurrence need to be deeply analysed. The authors need to clarify and explain better the reason why they divided in cluster the data set, the significant differences between groups,… Other multivariate analysis methods can be adopted considering more variables (e.g. geographical gradients, inhabitants,…) in order to obtain a strong explanatory analysis and then building relationships or models to be tested.

Answer: We do not agree with the first phrase in this comment of the reviewer. First, we have some difficulty understanding it, because the reviewer does not specify what spatial pattern he refers to. Second, any spatial pattern that the reviewer may refer to are (the maps of) the results obtained with the selected methods that, obviously have to be described and discussed (in the adequate sections), but they do not necessarily have to be subject to additional analysis with another methodology, because they are obvious and easy to interpret. Third, the spatial pattern of the DSRp was deeply analyzed using cluster analysis, with an explanation of the dendrogram based on the correlation coefficient between FTBA and DSRp in each of the municipalities (Figure 6); and, additionally, showing and explaining the differences of the curve FTBA vs DSRp, in each cluster (Figure 7). We also validated the relationship between the LULC and the DSRp (and, consequently, with the clusters) using the contingency tables and statistical tests. We consider that this analysis was sufficient to explain and justify the results of this manuscript. However, we understand that the explanation was not clear and we will justify in the next lines and also in the manuscript.
It is important to underline that this study is not about the relationship between LULC and weather and fire occurrence. In summary, this study is about the relationship between extreme fire weather and high/extreme burnt area which slightly change spatially due to LULC. The relationship between fire weather and the fire incidence has been analyzed by many researchers for several years, as mentioned in the manuscript (please, see lines 17-26, 307-310). The role of LULC in the incidence of fire has also been analyzed and some references on this subject are cited in the manuscript. The authors of this manuscript are also authors of articles published on these relationships, but many more references could be provided. However, in this study, we intended to carry out a deeper analysis between fire weather and the incidence of fire and ended up discovering that this relationship depends on LULC, but does not depend on any of the other more important factors of fire incidence, as described in lines 174-186 and also motivated us for the analysis described in sections 3.2, 3.3 and 3.4.

It should be noted that, while LULC, topography, population statistics, etc. are structural (essentially fixed or stationary) wildfire hazard factors, the meteorological conditions are conjunctural (essentially variable or dynamic) wildfire hazard factors. Despite a few space-time analyses (e.g., Orozco et al., 2012; Pereira et al. 2015, Parente et al., 2016), usually, and for obvious reasons, the influence of these two types of factors on the fire incidence is studied separately.

However, it was precisely as a result of an in-depth analysis of the relationship between extreme fire weather (specifically DSRp) and fire incidence (specifically the burnt area) that it was possible to conclude that LULC - a structural factor - influences the impacts of meteorological conditions - a conjunctural factor of fire risk. As far as we know, this is the first study that identifies and establishes that the relationship between fire weather and fire incidence depends on LULC, for Portugal.

It is also important to underline that, to establish this relationship, we used objective methods and adequate statistics that ensure the robustness and statistical significance of the results. The description of the study carried out also includes the chronology of the performed analysis. In a previous study/paper (Calheiros et al., 2020), the relationship between fire weather and fire incidence was analyzed in-depth for the entire Iberian Peninsula. Among other results, we found that the DSR90p is a good indicator of extreme fire weather and well related to the burnt area in the Iberian Peninsula, as mentioned in lines 42-43. In this study, we started by verifying whether the relationship between DSRp and BA found, in general terms, for the Iberian Peninsula, was also verified in Mainland Portugal, at municipality level, and what is the spatial variability of the extreme value of DSRp above which most of the burned area is registered (objective 1 and 2 of this manuscript). To assess the spatial variability, we based our analysis on the 278 municipalities of mainland Portugal. To objectively interpret the obtained spatial patterns (figure 4), we complemented and deepened the analysis with the use of clustering algorithms, to classify the municipalities into statistically different groups in terms of the relationship between FTBA and DSRp. Based on our knowledge and experience, we tested all the most likely factors that could help to explain the obtained results. The emerging patterns showed that all of those most likely factors, such as topography [altitude (figure 1 of the manuscript; figure 2 of Parente and Pereira 2016), slope (figure 5 of Parente and Pereira 2016)], population density (figure 2, Pereira et al., 2011 or figure 2 of Parente and Pereira 2016), Rural and urban area type (figure 3, Pereira et al., 2011), road density/distance to the nearest road (figure 2a of Parente et al., 2018), climate type (figure 1a of Parente et al., 2016) were not able to explain the obtained spatial patterns. The only factor with a similar spatial pattern was the LULC, which is the reason why we decide to explore this possibility more deeply, with contingency tables and several accuracy metrics to assess the influence of the type of vegetation cover on the relationship
between DSRp and TBA (as described in lines 147-163). Therefore, we agree that the explanation was not clear in the text, so we will change the manuscript accordingly.

One of the objectives of this manuscript was to identify and characterize regional variations of the DSRp threshold that justifies the bulk of BA. The analysis was performed on the spatial basis of the municipalities. The high number (278) of these administrative regions difficults the interpretation of the results and the objective and statistically significant assessment of differences between the results obtained for different municipalities. The cluster analysis was performed to execute and simplify this task, but also to identify the major macro scale patterns. We agree with the reviewer that this procedure was not clear and added a phrase to clarify and explain better the reason why we use cluster analysis in subchapter 2.3. We want to underline that the significant differences between groups were clarified and explained along with the dendrogram, in Figure 6, the spatial distribution of the clusters, in Figure 7, as well as in the text, especially in subchapter 3.3.

Moreover, the explanation of the dendrogram and clustering procedure will be provided in the new version of the manuscript, as follows:

The following notation describes the linkages (the distance between two clusters) used in the complete clustering method:

- Cluster r is formed from clusters p and q.
- n_r is the number of objects in cluster r.
- x_{ri} is the ith object in cluster r.
- Complete linkage, also called the farthest neighbour, uses the largest distance between objects in the two clusters.

$$d(r,s) = \max(dist(x_{ri}, x_{sj})), i \in (1, ..., n_r), j \in (1, ..., n_s)$$

A distance metric is a function that defines a distance between two observations. The Matlab function pdist used in this study, that computes the pairwise distance between pairs of observations, supports various distance metrics, namely: Euclidean distance, standardized Euclidean distance, Mahalanobis distance, city block distance, Minkowski distance, Chebychev distance, cosine distance, correlation distance, Hamming distance, Jaccard distance, and Spearman distance. We used the correlation distance in this article:

Given an m-by-n data matrix X, which is treated as m (1-by-n) row vectors x_1, x_2, \ldots, x_m, the correlation distance between the vector x_i and x_j are defined as follows:
The selected \((1-r^2)\) threshold was 0.35, meaning that the coefficient of determination in the municipalities within the same cluster is higher than 0.65. This value was selected after the analysis of the dendrogram and results from the balance between the correlation between municipalities and the total number of clusters. For example, on one hand, if we have chosen 5 clusters, the correspondent correlation between municipalities within the same cluster will be larger than 0.5, a value that we considered too low for this analysis. On the other hand, for a higher correlation, for example, 0.75, which corresponds to \(1-r^2=0.25\), the number of clusters will be much higher, increasing the difficulty of interpreting the maps and dendrogram.

Finally, as appointed in manuscript (lines 34-37), we want to highlight that: “Cluster analysis for the Iberian Peninsula has identified several regions with similar fire regime, using several variables related to fire, as intra-annual pattern of burnt area (Trigo et al., 2016; Calheiros et al., 2020; Calheiros et al., 2021), fire activity and weather risk (Jimenez-Ruano et al., 2018), large fire-weather typologies (Rodrigues et al., 2020) or burnt area tendency (Silva et al., 2019)”.

\[d_{ij} = 1 - \frac{(x_i - \bar{x}_i)(x_j - \bar{x}_j)}{\sqrt{(x_i - \bar{x}_i)(x_i - \bar{x}_i)} \sqrt{(x_j - \bar{x}_j)(x_j - \bar{x}_j)}} \]

where
\[\bar{x}_i = \frac{1}{n} \sum_{j} x_{ij} \text{ and } \bar{x}_j = \frac{1}{n} \sum_{j} x_{ij} \]
We agree with the reviewer that the first part of the discussion belongs to the Methods section and, therefore, we will change the manuscript accordingly.

Anonymous Referee #1: The conclusion is redundant, repeating results and discussion elements.

Answer: We agree that the text has repeated ideas, results and conclusions. Consequently, we will change this section according to the suggestion of the reviewer.