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Abstract. In order to aid feature selection in thunderstorm nowcasting, we present an analysis of the utility of various sources

of data for machine-learning-based nowcasting of hazards related to thunderstorms. We considered ground-based radar data,

satellite-based imagery and lightning observations, forecast data from numerical weather prediction (NWP) and the topography

from a digital elevation model (DEM), ending up with 106 different predictive variables. We evaluated machine-learning

models to nowcast
:::::
storm

:::::
track radar reflectivity (representing precipitation), lightning occurrence, and the 45 dBZ radar echo5

top height that can be used as an indicator of hail, producing predictions for lead times up to 60min. The study was carried

out in an area in the northeast United States, where observations from the Geostationary Operational Environmental Satellite

16
:::::::::
Satellite-16 are available and can be used as a proxy for the upcoming Meteosat Third Generation capabilities in Europe.

The benefits of the data sources were evaluated using two complementary approaches: using feature importance reported by

the machine learning model based on gradient boosted trees, and by repeating the analysis using all possible combinations of10

the data sources. The two approaches sometimes yielded seemingly contradictory results, as the feature importance reported

by the gradient boosting algorithm sometimes disregards certain features that are still useful in the absence of more powerful

predictors, while at times it overstates the importance of other features. We found that the radar data is overall the most

important predictor, the
:
.
:::
The

:
satellite imagery is beneficial for all of the studied predictands, and the lightning data is

:::::::
therefore

:::::
offers

:
a
:::::
viable

:::::::::
alternative

::
in
:::::::
regions

:::::
where

:::::
radar

::::
data

:::
are

::::::::::
unavailable,

::::
such

::
as

::::
over

:::
the

::::::
oceans

:::
and

:::
in

::::::::::::
less-developed

::::
ares.

::::
The15

:::::::
lightning

::::
data

:::
are

:
very useful for nowcasting lightning but

::
are

:
of limited use for the other hazards. The benefits of the NWP

data are more limited
::::
While

:::
the

::::::
feature

::::::::::
importance

:::::
ranks

:::::
NWP

::::
data

::
as

::::::::
important

:::::
input,

::
an

::::::::
omission

::
of

:::::
NWP

::::
data

:::
can

:::
be

::::
well

::::::::::
compensated

:::
by

::::::::::
information

::
in

:::
the

:::::::::::
observational

::::
data

:
over the nowcast period, and

:
.
::::::
Finally,

:
we did not find evidence that the

nowcast benefits from the DEM data.
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1 Introduction

Thunderstorms regularly cause significant risk to human life and damage to property through lightning, heavy precipitation,

hail and strong winds. These hazards are highly localized and develop within time scales ranging from tens of minutes to a

few hours, which makes them difficult to forecast precisely using numerical weather prediction (NWP) models. NWP models

can typically forecast a general tendency for thunderstorms in a given region, but not exactly where and when the most severe25

impacts will occur. Thus, issuing localized short-term warnings of impacts is better achieved with nowcasting, statistical

prediction of near-term
::::
(0–1

:::::
hour) developments based on the latest available data,

::
in

::::::::
particular

:::::::::::
observations.

Various tracking and nowcasting systems for thunderstorms have been developed over the years since the 1960s, usually

primarily using radar but sometimes also combining other information such as lightning detection and location data. One par-

ticularly widely used radar-based system is Thunderstorm Identification, Tracking and Nowcasting (TITAN; Dixon and Wiener,30

1993), which tracks thunderstorms as objects defined as continuous regions of high radar reflectivity. A review of other meth-

ods developed before 1998 was given by Wilson et al. (1998). More recent radar-based approaches include the combined radar

and lightning tracker of and the radar-based algorithms Cell Model Output Statistics (CellMOS; Hoffmann, 2008), TRACE3D

(Handwerker, 2002), Thunderstorm Radar Tracking (TRT; Hering et al., 2004, 2005, 2006) and NowCastMIX (James et al.,

2018), while Steinacker et al. (2000) used radar and lightning data in combination. Other algorithms are designed to uti-35

lize satellite data instead; prominent examples of these include GOES-R Convective Initiation (Mecikalski and Bedka, 2006;

Mecikalski et al., 2015), the Rapid Developing Thunderstorm (RDT; Autonès and Claudon, 2012) algorithm of the Nowcasting

Satellite Application Facility (NWCSAF), and Cb-TRAM (Zinner et al., 2008)
::::::::::::::::::::::::::::::::::::::::::
(Zinner et al., 2008; Kober and Tafferner, 2009) and

::
the

:::::
work

::
of

:::::::::::::::::::::::::::::
Bedka and Khlopenkov (2016) and

::::::::::::::::
Bedka et al. (2018).

Like many other statistical data analysis and prediction tasks, nowcasting of thunderstorms and related hazards has benefited40

from the rapid advances in machine learning (ML) techniques in the last decade. ML has been popular for nowcasting precipi-

tation (e.g. Shi et al., 2015, 2017; Foresti et al., 2019; Ayzel et al., 2020; Kumar et al., 2020; Franch et al., 2020), and has also

been used to develop nowcasting methods for lightning (Mostajabi et al., 2019; Zhou et al., 2020), hail (Czernecki et al., 2019;

Huang et al., 2019) and windstorms (Sprenger et al., 2017; Lagerquist et al., 2017, 2020). However, studies so far have typically

used only one data source, though in some cases several are utilized. Furthermore, most studies concentrate on predicting only45

one variable. The variety of adopted methodologies complicates comparisons between the results from different studies.

In this study, our objective is to provide a systematic assessment of the value of various data sources for nowcasting hazards

caused by thunderstorms using a ML approach. As a particular goal, we seek to understand the impact on thunderstorm

nowcasting from the new generation of geostationary satellites, which, compared to the previous generation, provide higher-

resolution imagery, additional image channels and lightning data. Of these satellites, Geostationary Operational Environmental50

Satellite (GOES) -16 and -17 are currently operational, while the first of the Meteosat Third Generation (MTG) satellites

is expected to launch in 2022. Therefore, we conduct our study in the northeastern
:::::::::::
Northeastern US, where the climate is

similar to Central Europe (the primary focus of research at MeteoSwiss), and where GOES-16 has a clear field of view. We

include a variety of ground-based, satellite-based and model-derived data sources that are available for that region, and examine
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their value for nowcasting thunderstorms. We base our study on interpretable machine learning
:::
ML

:
using gradient boosting55

methods. With our results, we aim to provide guidelines for further research and development such that the investigators can

acquire and process the most relevant data sources and variables for their particular applications. Our approach is similar to that

of Mecikalski et al. (2021), but we complement that study with a larger number of samples (approximately 88000 vs. 2000),

the use of gradient boosting rather than random forests, the inclusion of NWP and digital elevation model (DEM) data, and a

more detailed analysis by excluding combinations of different data sources.60

This article is organized as follows: Sect. 2 describes the study region and the data sources, Sect. 3 explains the data pro-

cessing and ML methods used, Sect. 4 presents the results with discussion of their meaning. Finally, Sect. 5 summarizes and

synthesizes the results and their implications for future studies, concluding the article.

2 Data

2.1 Study area and period65

Considering the objectives of the research, we chose to focus on a study area in the northeast of the US, shown in Fig. 1. The

study region is a rectangle in azimuthal equidistant projection (Snyder, 1987), centered at 76◦ W, 42◦ N with an extent of

720 km in the west–east direction and 490 km in the north–south direction. The resolution of the grid is 1 km per pixel.

The area is centered on the states of New York and Pennsylvania and also covers parts of the states of Connecticut, Mas-

sachusetts, New Hampshire, New Jersey, Rhode Island and Vermont, as well as an
:
a region of the Atlantic Ocean and a part of70

the Canadian province of Ontario. Although this region is not as convectively active as, for example, the US Great Plains or

the Southeastern US, we chose it because it still experiences considerable thunderstorm activity and the hazard profile of these

storms is similar to Central Europe: tornadoes are relatively uncommon, and the hazards consist mostly of hail, lightning, wind

gusts and heavy precipitation (Kelly et al., 1985; Changnon, 1993; Yeung et al., 2015). The latitude of the region is also similar

to Central and Southern Europe, and consequently the profiles of solar radiation and the view angles of satellite instruments on75

geostationary orbit are similar. The main difference between this region and Central Europe is the topography: much of Central

Europe is characterized by the Alps, while our study area is generally smoother and most of the variation in elevation is due to

the less-prominent Appalachian mountain range.

We collected data from data archives for the period ranging from April to September 2020, with a time resolution of up to

5 minutes depending on the source. The length of the study period and the size of the area were determined as a compromise80

between gathering an extensive dataset with a large number of samples, while keeping manageable the amount of data (already

around 7 terabytes of raw data) that needed to be downloaded and processed.

2.2 Data sources

Since the objective of the study was to investigate the utility of different types of data for nowcasting severe thunderstorms,

we selected multiple qualitatively different data sources for analysis. In order to constrain the complexity of the study, we tried85
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Figure 1. The study area in eastern North America. The blue rectangle indicates the area (720km× 490km) while the orange circles mark

the locations of the NEXRAD radars.

to avoid unnecessary overlap between the sources; thus, for example, we did not attempt to use similar data from multiple

satellites, nor did we obtain ground-based lightning data as that was already available from a satellite source. Moreover, in

order to avoid the complications of data intermittency, we preferred to focus on data sources that are regularly available, and

avoid sources such as low-Earth orbiting satellites that typically pass over a given area only 1-2 times per day. The final dataset

includes data from a ground-based operational radar network, multi-spectral imagery and lightning data from a geostationary90

satellite, NWP, and DEM data. The details for obtaining the data can be found under “Code and data availability” at the end of

the article. The data sources are described in more detail in the following sections.

2.2.1 Radar data: NEXRAD

The Next-Generation Radar (NEXRAD; Heiss et al., 1990) network is the US operational radar network operated by the

National Weather Service (NWS). It consists of S-band Doppler weather radars that cover most of the continental US as well95

as many other regions of the country. NEXRAD observations from multiple radars are processed by the National Severe Storms

Laboratory (NSSL) into composite products using the Multi-Radar/Multi-Sensor System (MRMS; Zhang et al., 2016; Smith

et al., 2016). Unfortunately, the MRMS data are currently only available in near-real time and not publicly archived for more

then
:::
than

:
24 hours. Therefore, we needed to process the data from individual radars, whose data are publicly archived on the
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long term, into a composite ourselves; the PyART library (Helmus and Collis, 2016) was used for this purpose. Although this100

solution has the drawback that we cannot expect to match the quality of a well-developed composite product within this study,

an advantage is that using the full three-dimensional measured radar observations allows to calculate any radar variable rather

than just those that are available from MRMS. In this work, we derived the column maximum reflectivity (MAXZ), echo top

heights at threshold reflectivities of 25 dBZ, 35 dBZ and 45 dBZ, as well as the vertically integrated liquid (VIL), calculated

as105

VIL = 3.44× 10−6Z4/7 (1)

where Z is the radar reflectivity given in mm−6m−3 (i.e., Z = 10ZdB/10 for ZdB in dBZ units) and VIL is in units kgm−2

(Greene and Clark, 1972). The radar data have a time resolution of 5min.

We selected radars in order to provide good data coverage throughout the study area. The parts of the area that are above

the
::::
over ocean and in Canada are within the range of the selected radars, and the entire region is covered with a minimum110

beam altitude of at most 6000 ft (1800 m), less than 3000 ft (900 m) in most of the region. NEXRAD radars operate using

rather shallow scan angles
:::::::
elevation

::::::
angles

::
of

:::::::::
0.5◦–19.5◦

:
and consequently each individual radar is blind to the region of the

atmosphere directly above it. This gap must be filled with nearby radars and therefore we also selected some radars outside the

study area in order to ensure adequate 3D data availability within the area. The radars used for the study are listed in Table A1,

and their locations are also shown as orange circles in Fig. 1.115

2.2.2 Satellite imagery: GOES ABI

GOES-16 is a new-generation geostationary satellite with advanced instruments for weather observations (Sullivan, 2020).

The primary GOES-16 instrument used in this study is the Advanced Baseline Imager (ABI), which includes 16 bands with

wavelengths ranging from 470 nm (visible) to 13.3 µm (thermal infrared), with resolutions from 0.5 to 2 km per pixel in optimal

viewing conditions. GOES-16 orbits
:
is

::::::
located

::::
over

:::
the

:::::::
equator at 75.2◦W, a longitude near the middle of our study area. The120

ABI provides a full-disk scan, a variable region of interest (used for hurricanes, for example), and a scan covering only the

contiguous US (CONUS) region. For this study, we use the CONUS scan, which is available at a five-minute time resolution.

We downloaded the level 1 (L1) data (given as reflectance or brightness temperature) for the GOES-16 ABI channels (Schmit

and Gunshor, 2020) as well as the level 2 (L2) cloud products cloud top height, cloud top pressure and cloud optical depth

(Heidinger et al., 2020) and the derived stability indices (DSI) product (Li et al., 2020), which includes retrievals of variables125

such as the convective available potential energy (CAPE). We would have preferred to use the cloud top temperature product

as well, but it is available only as a full disk product and not separately for the CONUS region. Consequently, we omitted the

cloud top temperature because the inferior time resolution (10 min) of the full-disk product would have caused compatibility

problems. We also computed the differences of various L1 channels (listed in Table A3) in order to provide better features; see,

for example, Mecikalski et al. (2010) for interpretations of the channel differences from geostationary visible/infrared imagers.130

The data was projected to our study grid with the PyTroll libraries (Raspaud et al., 2018), and corrected for parallax shift using

the L2 cloud top height product to determine the appropriate correction.
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2.2.3 Lightning data: GOES GLM

The GOES-16 satellite is also equipped with the Geostationary Lightning Mapper (GLM), which detects lightning strikes

(Rudlosky et al., 2020). The GLM L2 data consists of the coordinates and properties, such as energy, of individual strikes. Each135

strike consists of multiple lightning “events”, which are pixel-level detections of lightning; a set of adjacent and simultaneous

events is interpreted as a strike. The coordinates and properties of the events are also provided, thus providing information

about the spatial extent of each lightning strike.

We projected the data of the lightning strikes and events, as well
:
as

:
their energies, to the common grid. The original GLM

files contain 20 s of data each, but the files were aggregated such that we create the derived products at 5-min time resolution.140

The GLM L2 data are provided with parallax correction already performed, obviating the need for this step.

2.2.4 Numerical weather prediction: ECMWF

We provide the nowcasting system information about the state of atmosphere in the study area using the NWP products from

the integrated forecast system (IFS) of the European Center for Medium-Range Weather Forecasting (ECMWF). We chose to

use the global IFS rather than a local-area modeling system as our NWP data source because
:
,
:::::
unlike

::::
the

::::::
satellite

::::
and

:::::
radar145

::::
data,

:
it
::

is
:::
not

:::::::
limited

::
to

:
a
::::::::
particular

::::::
region,

::::
and we expected this to facilitate the later adaptation of our study methodology to

other regions
::::::::::
methodology

::::
and

:::::
results

::
to
:::::::
Europe

:::
and

:::::
other

::::::
regions

:::::::
beyond

:::
the

::::::
current

:::::
study

::::
area. We obtained a collection of

59 different variables provided by ECMWF; the variables are listed in Table A5.

We use the ECMWF archived forecast product rather than the analysis product in order to only use data that would be

available to an operational nowcasting system. We downloaded the ECMWF forecasts at intervals of 12-hours in forecast time,150

and the data in the forecasts have a 1-hour resolution. To each 5-min time step in our common spatiotemporal framework, we

assigned the closest 1-hour time step from the most recently issued forecast. ECMWF provides the data on a latitude–longitude

grid; we used the PyTroll tools to project them to our study grid.

2.2.5 Digital elevation model: ASTER

Orography can affect the development of convective storms. In order to enable the nowcasting system to exploit information155

about the elevation and morphology of the terrain, we obtained the Advanced Spaceborne Thermal Emission and Reflection

Radiometer (ASTER) global DEM version 3 (Abrams et al., 2020). The resolution of the ASTER DEM is 30 m (the data

are provided at a resolution of 1 arcsecond), much finer than our grid pixel size of 1 km. This allows the computation of

subpixel properties of the elevation for each grid point. We computed the mean elevation, the elevation gradients and the

surface roughness, defined as the root-mean-square (RMS) deviation of points from the mean, for each pixel in our grid. As a160

combined variable, we also compute the upslope flow s, defined as a dot product of the surface
:::::::
elevation

:
gradient and the flow

velocity:

s=∇h ·v (2)
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where h is the elevation and v is the flow velocity, which in this case is derived from the radar motion vectors. A positive s

indicates that the air flows predominantly uphill, while a negative s corresponds to downhill flow. When we later discuss the165

importance of data sources in Sects. 4.2 and 4.3, we consider the information content of the upslope flow as one of the DEM

variables.

3 Methods

3.1 Data processing

The
:
In

:::::
order

::
to

:::::
keep

:::
the

::::::::::
conclusions

::
of

:::
the

:::::
study

::::::
general

::::
and

::::::::
applicable

:::
to

:::::::
different

:::::::::
operational

::::::::::::
environments,

:::
we

::::
have

:::::
used170

::::::
general

:::
and

::::::
widely

::::::::
available

::::::::
methods,

:::::
rather

::::
than

:
a
::::::::
particular

::::::::::
operational

:::::::::
nowcasting

:::::::
system,

::
in

:::
the data processing workflow

used in this study.
::
It
:
starts with identifying thunderstorm centers in the MAXZ field. The motion of these centers is then

tracked backward and forward in time in a Lagrangian framework by integrating the velocity field obtained with the optical

flow method. Once the motion of the center has been estimated, features from different data sources and variables are extracted

from the neighborhood of the center at each time step. These features are collected in the ML dataset that is used to train a175

gradient boosting model. Below, we describe each step of the workflow in more detail.

3.1.1 Extraction of storm centers and tracks

After processing the data into a single grid as described in Section 2.2, we identified regions of active thunderstorms in the

data based on the observed radar reflectivity. For each 5-minute time step in the data, we located centers of convective activity

using the following procedure.180

1. Start with an empty list of storm centers

2. Find the pixel pmaxZ with the highest MAXZ.
:
,
:::::::
denoted

::
as

:::::
pmaxZ:

3. If the MAXZ at pmaxZ is at least 37 dBZ:

– Add pmaxZ to the list of storm centers.

– Identify the 25-km diameter circular area surrounding pmaxZ and exclude the pixels in it from further search.185

– Restart the search from step 2.

Otherwise, end the search.

Thus, storms were identified as regions of high radar reflectivity.
:::
We

:::::
chose

:::
the

:::::::
37 dBZ

:::::::::
threshold,

:::::
which

:::::::::::
corresponds

::
to

::
a

::::::::
convective

:::::::::::
precipitation

::::
rate

::
of

::::::::::::
approximately

:::::::::
8 mmh−1,

::::::::
following

::::::
several

::::::::
previous

::::::
studies

::
in

:::::
which

::::::::::::
thunderstorms

:::
had

:::::
been

::::::::
identified

::
by

::::
radar

:::::::::
reflectivity

:::::::::
thresholds

::
of

::::::::::
30–40 dBZ

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Marshall and Radhakant, 1978; Wilson and Mueller, 1993; Roberts and Rutledge, 2003; Mueller et al., 2003; Hering et al., 2004; Kober and Tafferner, 2009).190

To prevent radar artifacts from being identified as storms, we discarded centers that had a valid MAXZ in fewer than 1/3 of

the pixels in the surrounding 25-km circle.
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Once the centers had been identified, we tracked their movement in the domain so that the temporal evolution of the

storm is separated from its movement. To estimate the motion, we computed the motion vectors of the reflectivity using the

autocorrelation-based optical flow method implemented in the PySteps package (Pulkkinen et al., 2019). This method yields a195

single motion vector; to allow the motion vector field to vary spatially, we computed a motion vector in this manner for each

point in a square grid with a spacing of 97 pixels, using the 200×200 pixel MAXZ neighborhood of each grid point to compute

the vector using the autocorrelation-based method. Once computed in this fashion, the motion vectors were then interpolated

to the storm centers. This method produces motion fields with very smooth gradients and is likely to fail to produce the correct

motion for regions with high wind shear. Although more advanced methods are available in PySteps, we found these to be200

more prone to producing artifacts. The procedure described above is more robust and therefore we found it more suitable for

the task, required in this study, of automated analysis of tens of thousands of samples.

For each center, we estimated the past location of the corresponding air parcel by backward integrating the motion vectors

using Heun’s method (also known as improved Euler’s method; Süli and Mayers, 2003). On each time step, the advected center

may be adjusted by up to 2 pixels to align it at the maximum MAXZ in the neighborhood (we found that 2 pixels was sufficient,205

and that larger adjustments sometimes caused the tracking to drift to the wrong storm center). For the future motion, only the

data that would be available in a real-time nowcasting scenario was used, and therefore we computed the future tracks using

the last available motion vectors at the reference time. Both the past and the future tracks are computed for 60 minutes from

the reference time. Any tracks that extended out of the study area were discarded. An example of centers and tracks extracted

in this manner is shown in Fig. 2.210

The storm identification and tracking scheme was implemented with the objectives of robustness and suitability for ML.

Therefore, we opted not to use, for instance, the thunderstorm radar tracking (TRT) cell identification method (Hering et al.,

2004, 2005, 2006) which produces variable-sized storm cells, which complicates analysis. Our scheme approximates the track-

ing of storm centers but may not always perfectly correspond to it. Therefore, one can state the objective of the ML prediction

task more precisely as follows: given the Lagrangian history of a storm centerpoint, selected based on a 37 dBZ reflectivity215

threshold, predict its future Lagrangian evolution.

3.1.2 Feature extraction

The evolution of a storm in time is described by the change in the variables in the circular neighborhood of the center. For each

variable derived from the data sources described in Section 2.2, we extracted the neighborhood mean, standard deviation and

the 10th and 90th percentiles. The percentiles are intended as a soft minimum and a soft maximum, less sensitive to outliers220

compared to taking the exact minimum and maximum. For Boolean variables such as lightning event occurrence, we also

computed binary features that are 1 if the variable was true at any pixel in the neighborhood and 0 otherwise.

3.1.3 Datasets

The final dataset, collected from the entire study period and study area, comprises 87626 data points
:::::::
samples that describe

the history and future of the detected storm centers. We divided the samples into a training set that is used to train the ML225
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Figure 2. An example of the extracted centers at time t= 0 (orange circles) and tracks from t−60 min to t+60 min (orange lines). MAXZ

in dBZ is shown in the colored map, with coastlines and state borders in the background.

algorithm, a validation set that is used to evaluate the generalization ability during training, and a test set that is used for final

evaluation. We found that simply sampling these sets randomly from the data made the training prone to overfitting because

storm tracks found at a similar time and location have similar evolution and thus are not independent samples. In order to

improve the independence of the training, validation and testing sets, we determined these sets such that the data from each

day (00–24 UTC) were assigned entirely to only one of these sets, mostly eliminating the overlap between them. We sampled230

the days randomly until at least 10% of the data were in the validation set and at least another 10% in the test set, and assigned

the remaining data to the training set. The final datasets are made up of 69594 training samples, 9160 validation samples and

8872 testing samples.

3.2 Prediction tasks

The predictands (i.e. the targets of the ML prediction) evaluated in this study were selected based on their relevance for thunder-235

storm hazard prediction. We examined qualitatively different predictands in order to assess the differences in the contributions

of various data sources to the prediction performance.

The first prediction task we define is the nowcasting of the evolution of the column maximum reflectivity on the storm track.

This variable is highly indicative of thunderstorm development and can function as an indicator of heavy precipitation and hail.

In particular, the radar reflectivity Z can be approximately related to the rain rate R by a relation of the form Z = aRb where a240
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and b are empirically determined constants. Hereafter, we refer to the task of predicting the evolution of the column maximum

reflectivity as MAXZ. We examine the prediction performance for lead times between 5 and 60 min.

Another important thunderstorm hazard that we can quantify using the available dataset is the occurrence of lightning. We

use the GLM measurements to identify lightning, and approach lightning prediction as a binary task of predicting whether or

not lightning will be present in the 25-km radius
:::::::
diameter

:
neighborhood of the storm center during a given time period. We245

refer to this task in short as LIGHTNING-OCC.

For hail, we do not have direct observations of its occurrence. However, the presence of hail has been found to be well

indicated by the height difference of the radar 45 dBZ echo top and the freezing height (Waldvogel et al., 1979; Foote et al.,

2005; Barras et al., 2019). Since the freezing level is obtained from NWP data, the principal task is to predict the echo top

height. This, of course, is dependent on a 45 dBZ reflectivity being present in the vertical column. Thus, we divide this task250

into two components: predicting whether a 45 dBZ echo top will be present (ECHO45-OCC) and, in cases where it is present,

predicting its height (ECHO45-HT).
::
In

::
an

::::::::::
operational

::::::
setting,

:::::
these

:::::
model

:::::
could

:::
be

::::
used

:::
by

::::
first

::::::::
evaluating

::::::::::::::
ECHO45-OCC;

:
if
::
it
::::::::
predicted

::::
that

:
a
:::
45

::::
dBZ

:::::::::
reflectivity

::::::
would

:::::
occur,

:::::::::::
ECHO45-HT

::::::
would

::::
then

:::
be

::::::::
predicted

:::
and

:::
the

:::::::
freezing

:::::
level

:::::
would

:::
be

::::::::
subtracted

:::::
from

:
it
::
in

:::::
order

::
to

::::::::
calculate

:::
the

:::
hail

::::::::::
probability.

3.3 Machine learning: Gradient tree boosting255

For the ML prediction, we use gradient boosting (GB) to learn the relationship between the features and the prediction targets.

GB is a ML technique that uses decision trees, training trees iteratively such that each successive tree corrects the errors of

the previous trees. The decision trees are regularized using several techniques in order to prevent overfitting. A review of GB

methods can be found in Natekin and Knoll (2013).

One particular advantage of GB for our study is that it allows the importance of the various input features to be quantified.260

Thus, it suits well our purpose of assessing the value of different data sources and variables for the prediction of thunderstorm

hazards. The results can be used to later guide the selection of appropriate features for different ML methods such as deep

learning where the feature importance is less straightforward to derive.

We used the open-source LightGBM implementation of the GB algorithm (Ke et al., 2017) as our ML framework. LightGBM

is designed to be computationally efficient and has a reduced memory footprint, facilitating the analysis of large datasets.265

3.4 Training

We tuned the GB training for each of the various prediction tasks. As described in Sect. 3.2, the learning tasks can be broadly

divided into two categories: regression tasks and binary classification tasks. In regression tasks, the objective is to predict

the future value of a variable that can be any real number, while in binary classification tasks the objective is to predict the

probability of an event occurring.270

After comparing the performance and robustness of mean square error (MSE) and mean absolute error (MAE), we decided

to use MAE as the training objective function for regression tasks as it tended to give slightly better results with the validation

set, with less overfitting.
::::::
Indeed,

:::::
when

:::
the

::::::
model

:::
was

:::::::
trained

::::
with

:::::
MAE

::::
loss,

::
it
::::::::
achieved

:::::
better

:::::
MSE

::
in

:::
the

:::::::::
validation

:::
set
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:::
than

:::
an

:::::::::
equivalent

:::::
model

:::::::
trained

::::
with

::::
MSE

:::::
loss.

::::::::::::::::::::::::::::
Willmott and Matsuura (2005) and

:::::::::::::::::::::
Chai and Draxler (2014),

::::::
among

::::::
others,

::::
have

::::::::
discussed

:::
the

::::::
relative

::::::
merits

::
of

:::::
MAE

:::
and

:::::
MSE

::
in

:::
the

:::::::::::
geoscientific

::::::
context.

:
We also found that, compared to training the275

GB model for the target variable directly, we can achieve superior training performance by first subtracting the bias-corrected

persistence prediction (discussed in more detail in Sect. 4.1) and then training the GB model to predict the residual. Binary

tasks are trained using the cross entropy as a cost function.

All tasks are trained using early stopping based on the validation dataset. That is, the training proceeds as long as the training

metric keeps improving not only in the training set, but also in the validation set which is not used for training. The early stop280

limits the overfitting of the GB model.

The performance with the validation dataset was also used to tune the hyperparameters of the GB model, most importantly

the depth of the trees, the number of leaf nodes, the learning rate and various regularization parameters. Although we were

able to achieve some improvements by fine-tuning these parameters, the performance on the validation set was not particularly

sensitive to changes over a reasonable range of parameters. As the principal goal of this study is not to strictly optimize the285

performance of the predictions but rather to assess the importance of the various data sources, we consider the hyperparameter

tuning to be of secondary importance in this context, and are content to use hyperparameters that produce reasonable results

after an informal manual search of the parameter space.

:::::
Using

:::
the

::::::
default

::::::::::::::
hyperparameters,

:::::::::::::
approximately

::::::
60 min

::::
was

:::::::
required

::
on

::
a
:::::::
modern

::::::::
computer

::::
with

:::
16

::::::
central

:::::::::
processing

:::
unit

::::::
(CPU)

:::::
cores

::
to

::::
train

:::
the

:::
all

:::
GB

:::::::
models:

:::
12

::::::
models

::::::::::::
corresponding

::
to

::::::::
different

::::
time

::::
steps

::
of
::::

the
::::::
MAXZ

:::::::::
prediction

:::
and

::
2290

::::::
models

:::::::::
(0–30 min

:::
and

::::::::::
30–60 min)

:::
for

::::
each

:::
of

:::
the

::::::::::::::::
LIGHTNING-OCC,

:::::::::::::
ECHO45-OCC

:::
and

::::::::::
ECHO-45.

:::::
Thus,

:::
one

::::::
model

::::
took

::::::::::::
approximately

:::::
3 min

::
to

:::::
train.

::::::::::
Evaluating

::
all

:::
of

:::
the

::::::::::::::
above-mentioned

:::::::
models

:::
for

:::
the

:::::
entire

::::::
testing

:::::::
dataset

::
of

:::::
8872

:::::::
samples

:::::::
required

:
a
::::
total

::
of

:::
6 s

:::
on

:::
the

::::
same

:::::::::
hardware;

:::
this

::
is

:::::::::
equivalent

::
to

:::::
35 µs

::
for

::::
one

::::::
sample

:::
and

::::
one

::::::
model.

4 Results and discussion

The results of the ML experiments are reported and discussed in the sections below. First, in Sect. 4.1 we give a general analysis295

of the prediction performance. Then, we assess the importance of different features and data sources using the GB feature

importance (Sect. 4.2) and data exclusion analysis (Sect. 4.3). All reported results are for the test dataset unless otherwise

mentioned.

4.1 Prediction performance

Before evaluating the importance of the various data sources, we quantify the performance of the models in the case where all300

data sources described in Sect. 2.2 are available.

Figure 3 shows examples of the real and predicted time series for MAXZ.
::
We

::::
note

::::
that

::
in

::::
this

:::::
figure,

:::
the

:::::::
MAXZ

::
at

:::::
t= 0

:::
may

:::
be

::::
less

::::
than

:::
the

:::::::
37 dBZ

::::::::
threshold

:::::::
because

:::
the

:::::::
MAXZ

::::::
shown

::
is

:::
the

:::::
mean

::::
over

:::
the

::::::
25-km

::::::::
diameter

:::::
region

:::
of

:::::::
interest,

::::
while

:::::::
MAXZ

:::::::::
exceeding

:::::::
37 dBZ

::
in

::
a
:::::
single

:::::
pixel

::
is

:::::::
enough

:::
for

:
a
::::
case

:::
to

::
be

::::::::
selected.

:
Meanwhile, Fig. 4 shows the error,

averaged over all events and data points, of the MAXZ predictand as a function of the lead time t.
:
In

:::::
order

:::
to

:::::::
provide305
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Figure 3. Examples of the prediction of MAXZ. The figure show the curves of observed and predicted MAXZ
:::
(the

::::
mean

::::
over

::
the

::::::
25-km

::::::
diameter

:::::
region

::
of
:::::::
interest) for four different tracked centers. The solid lines show the development of MAXZ while the dashed lines show

the predictions after t= 0.

:
a
:::::
more

:::::::
concrete

:::::
error

::::::
figure,

:::
we

::::
also

:::::
show

::::
the

::::::::::::
corresponding

:::::::
relative

::::
error

:::
in

:::
the

::::
rain

::::
rate

::::::::
estimated

::::::
using

:::
the

:::::::
relation

:::::::::::
Z = 300R1.4,

::::::
where

::
Z

::
is

:::
the

::::::::::
reflectivity

::
on

:::
the

::::::
linear

:::::
scale,

::::::
derived

::::
for

:::::::::
convective

:::::::::::
precipitation

:::
and

:::::::::
frequently

::::
used

:::::
with

::::::::
NEXRAD

::::::::::::::::::::::
(e.g. Martner et al., 2008). As a baseline prediction, we use the persistence assumption in a Lagrangian framework,

that is, it is assumed that the variable will remain the same as it was at time t= 0. We found that the persistence assumption

is biased: the MAXZ at t > 0 is, on average, lower than at t= 0; this can also be seen in most of the examples of Fig. 3. This310

reflectivity bias is caused by a combination of two sources: first, sampling bias which occurs because we select centers of

intensive thunderstorms with MAXZ> 37 dBZ, and second, the thunderstorm track drifting off the actual center of the storm

due to inaccuracies in the tracking procedure. The bias is small at short lead times and reaches 3.5 dBZ at t= 60 min.

We can considerably reduce the error of the persistence assumption by correcting for this bias. In contrast, it is rather difficult

to improve from the bias-corrected persistence assumption using the GB model, even if we train the GB model on its residual.315

In Fig. 4, it is apparent that the bias correction improves the MAE by approximately 1.2 dB at t= 60 min while the GB model

only gives a further 0.3 dB of improvement. Nevertheless, the improvement gained with the ML prediction is consistent and

increases with longer lead times.

For the lightning prediction, the model has an error rate of 8.1% for LIGHTNING-OCC in the 0–30 min time period

and 14.3% for the 30–60 min period. We can compare these numbers to the climatological occurrence, which would be the320

error rate of a prediction that lightning never occurs — or conversely, the climatological non-occurrence would be the error

rate of a prediction that it always occurs. The climatological occurrence of lightning in the data is 40.7% for 0–30 min and

29.2% for 30–60 min in the test dataset (the difference in these is likely due to the same bias that we discussed in the context of

MAXZ above). These results suggest that the nowcasting framework developed here could potentially be adapted to operational

lightning nowcasting. Full confusion matrices are shown in Fig. 5a–b.325
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Figure 4. Errors in dBZ of the prediction of MAXZ as a function of lead time, using all the available data. The solid lines show the mean

absolute error (MAE) while the dashed lines show the root-mean-square error (RMSE)
:
as
::::::

shown
::
on

:::
the

::::
scale

::
on

:::
the

:::
left. The

::::
scale

::
on

:::
the

:::
right

:::::
shows

:::
the

:::::::::
logarithmic

::::::::
reflectivity

::::
error

::::::::
converted

::
to

::
the

::::::
relative

::::
error

::
in

:::
rain

::::
rate

::
R.

:::
The

:
blue lines show the result from the GB tree,

the orange lines show the Lagrangian persistence assumption and the red lines show the bias-corrected Lagrangian persistence.

For the presence of the 45 dBZ echo (ECHO45-OCC), we find error rates of 12.7% for the 0–30 min range and 16.5% for

the 30–60 min range. The corresponding climatological occurrences in the test set are 38.3% for 0–30 min and 20.0% for the

30–60 min range. Thus, we achieve a considerable improvement with the ML approach for the near-term prediction but a far

more marginal one for the longer term, which implies a more limited ability to predict hail, and other features associated with

the 45 dBZ echo top, using the approach used in this study at lead times over 30 min. The confusion matrices for ECHO45-330

OCC can be found in Fig. 5c–d. In the subset of the test dataset where the 45 dBZ echo is present, the height of the 45 dBZ

echo is predicted with a MAE of 693 m for 0–30 min and 841 m for 30–60 min. According to the formula of Foote et al.

(2005) for the probability of hail (POH), these correspond to roughly 16 and 19 percentage point errors in POH, respectively.

Meanwhile, the standard deviations of ECHO45-HT in the test set are 1365 m for 0–30 min and 1404 m for 30–60 min.

4.2 Feature importance335

The importance of features to the GB model can be extracted from the LightGBM library after training. In this section, we show

the “gain” of various features, i.e. their contribution to improving the training objective
:::
the

::::
total

::::::::
reduction

::
of

:::
the

:::::::
training

::::
loss

:::::::
function

:::::::::
attributable

::
to
::::

that
::::::
feature. For clarity and brevity of presentation, we sum together the contributions from different

feature types (e.g. mean, standard deviation) and different past time steps. We also separately consider the total contribution
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Figure 5. Confusion matrices for (a–b) the LIGHTNING-OCC prediction task and (c–d) the ECHO45-OCC task.

from all features of a given data source
:
,
:::::
which

:::
can

::::
give

::
a

:::::
clearer

::::::::::
impression

::
of

:::
the

::::
total

:::::::::
importance

:::
of

:
a
::::::
source

:::
that

:::::::
includes

::
a340

::::
large

:::::::
number

::
of

::::::::
correlated

:::::::
features.

Figures 6 and 7 show the importance of the various predictors and data sources (e.g. ABI, NWP model or radar) for each of

the ML objectives defined in Sect. 3.2. In Fig. 6, we show the feature and source importances of the MAXZ and LIGHTNING-

OCC objectives, while Fig. 7 displays the same for ECHO45-OCC and ECHO45-HT.

The statistics of feature importance for nowcasting MAXZ, in Fig. 6a, demonstrate that the most important features for345

predicting this target variable come from the NEXRAD radar data. The most significant feature is the column maximum

reflectivity, the same variable that is being predicted, but the other radar variables also seem to be utilized. The importances

grouped by data source, displayed in Fig. 6b, show a slightly different view, as there the NWP data are of similar importance

compared to the radar. There is some noise in the relative importance between the radar and NWP data between time steps, but

in general the importance of the NWP data tends to increase with longer lead times. The reason for the apparent discrepancy350

between the importances of individual features and the total source importance is that
::::::::::
contribution

::
of

:
the NWP data are

::
is
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Figure 6. The importance of the various features and data sources for the MAXZ (panels a and b) and LIGHTNING-OCC (panels c and

d) predictands according to LightGBM. The top panels show the 20 most important source variables for each predictand. The importances

have been summed together from all features and time steps and normalized such that the most important variable is scaled to 1. The bottom

panels show the total importance of the various data sources as a function of lead time (in panel b) or the prediction time range (in panel d).
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Figure 7. As Fig 6, but for the ECHO45-OCC (panels a and b) and ECHO45-HT (panels c and d) predictands.

16



divided over a large number of variables that are correlated to varying degrees, and which .
::::::::

Because
::
of

:::
the

:::::::::::
correlations,

:::
the

:::::::::::
contributions

::::
from

:::::::::
individual

::::::::
variables

::::::
appear

:::::
small

::
as

:::
the

::::
GB

::::::
model

:::::
splits

:::
the

::::
gain

:::::::
between

:::
the

:::::::::
correlated

::::::::
variables,

::::
but

::
the

::::::::::::
contributions combine to an importance comparable to the radar variables when summed together.

:::::
Figure

::
6b

::::::
shows

:::::
some

:::::::
variation

::
in

:::
the

:::::::
relative

:::::::::
importance

:::::::
between

:::
the

:::::
radar

:::
and

:::::
NWP

::::
data

:::::::
between

::::
time

:::::
steps,

::::::
which

:::
we

:::::::
consider

::
to

::
be

:::::
most

:::::
likely355

::::
mere

:::::::
random

:::::
noise;

::
as

:::
the

:::::::
different

::::
time

:::::
steps

:::
are

::::::::
predicted

::
by

::::::::
different,

::::::::::::
independently

::::::
trained

:::::::
models,

::::
they

::::
may

:::
end

:::
up

::::
with

::::::
slightly

:::::::
different

::::::
values

:::
for

:::
the

::::::
feature

::::::::::
importance.

::
In

:::::::
general,

:::
the

:::::::::
importance

:::
of

::
the

:::::
NWP

::::
data

:::::
tends

::
to

:::::::
increase

:::::::
slightly

::::
with

:::::
longer

::::
lead

:::::
times,

:::
as

:::
was

::::
also

:::::
found

:::
by

::::::
earlier

:::::::::
nowcasting

:::::::
studies

::::::::::::::::::::
(e.g. Kober et al., 2012). The GOES-16 ABI data are also

utilized to a significant degree, while the GLM
:::
and

:::::::
ASTER data contribute to a lesser extentand ASTER is largely ignored by

the algorithm.360

The feature and source importances for LIGHTNING-OCC, shown in Fig. 6c–d, are dominated by contributions of the GLM

lightning data. This is largely because a region that is already producing lightning is likely to continue to do so in the future, thus

providing a reliable predictor, but past occurrence can also indicate temporal tendencies in lightning activity. The NEXRAD,

ABI and ECMWF data are considered approximately equally important, with their total importance (Fig. 6d) relative to GLM

increasing with longer lead times.365

Figure 7 shows the feature importances for ECHO45-OCC and ECHO45-HT. Similar to the nowcasting of MAXZ, the most

important features are from the NEXRAD radar data. Again, this is not unexpected given that the target variables are defined

using the radar. The ECMWF and ABI data contribute less to the prediction of the echo top than to the prediction of MAXZ.

According to this analysis, the GLM data are hardly used, while the ASTER DEM data seems to provide a small contribution to

the prediction of echo top height. However, as we shall discuss in Sect. 4.3, GLM actually provides useful data in the absence370

of other predictors, while the importance of the DEM may be due to overfitting.

4.3 Exclusion studies

An alternative way to assess the importance of various data sources is to remove one or more data sources from the training

data, retrain the model, and evaluate the change in prediction performance. This approach may give later studies a clearer

picture of the value of various data sources in thunderstorm nowcasting applications. Unlike the feature importance, such an375

exclusion study also allows the use of the testing set for evaluation, showing which variables are important in practice and

allowing us to better distinguish generalizing learning ability from overfitting. The results of the exclusion experiments are

shown in Figs. 8 (MAXZ and LIGHTNING-OCC) and 9 (ECHO45-OCC and ECHO45-HT).
:::
We

::::
also

:::::
show

:::
the

:::::::::
equivalent

:::::
results

:::
for

:::
the

:::::::
training

:::
and

:::::::::
validation

::::::
datasets

::
in
:::
the

:::::::::
Appendix

::::
Figs.

:::::::
A1–A4.

:

The results for the MAXZ predictand at 60 min lead time can be found in Fig. 8a–b. There is some noise in the results,380

so small differences in the metrics should not be overinterpreted, but certain general patterns are apparent. Most noticeably,

the two leftmost columns, which correspond to models that have the NEXRAD radar data available, show consistently lower

errors than the two columns on the right. The ABI data also have a positive effect, as can be seen by comparing the first column

to the second, or the third to the fourth. Examining the differences between the rows, GLM data have a slight positive effect

especially when few other data sources are available, while it is difficult to discern any consistent effect from including the385
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Figure 8. The results of exclusion experiments on the MAXZ and LIGHTNING-OCC predictands. Each square in the panels a–d corresponds

to a combination of data sources, which can be found by combining sources listed for the row and the column. For example, the top left

square of each panel shows the error metric obtained using all five data sources, while the second column of the second row shows the

metric for ECMWF, GLM and NEXRAD data. The predictand and the error are shown on top of each panel; RMSE indicates the root-mean-

square error and MAE the mean absolute error. In panels a and b, the bottom right corner shows the result obtained with the bias-corrected

persistence assumption (see Sect. 4.1), while in panel d, the bottom right corner shows the baseline climatological occurrence. The results

for LIGHTNING-OCC are shown for the 30–60min time interval.

ECMWF data, and including the ASTER data sometimes even appears to make the metrics slightly worse. The latter result may

be caused by the GB training process overfitting to the DEM features during training, degrading the results obtained during

testing. Among the predictions obtained using only one data source, the one with NEXRAD data yields the best results and

is almost as good as using all data sources together, the ABI and GLM data provide slight improvements over the baseline

case (shown in the bottom right corner), while the model using only the NWP data from ECMWF yields results approximately390

equal to the persistence baseline. The latter result is quite surprising considering the large weight assigned to the ECMWF

features in the feature importance analysis (Fig. 6a–b). For unclear reasons, the single best combination seems to be that which

uses all data sources except GLM; we suspect that this result is merely coincidental and due to random variation because the

other results in Fig. 8a–b do not suggest in any way that the GLM data is detrimental to prediction performance.
:::
The

::::::
results

:::
for

::
the

:::::::
training

::::
and

::::::::
validation

::::
sets

:::::::::
(Appendix

:::::
Figs.

::::::
A1a–b

:::
and

:::::::
A3a–b)

::::::
support

::::
this

:::::::::::
interpretation

:::::
since

::
in

:::
the

:::::::::
validation

::::::
dataset395
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Figure 9. As Fig. 8, but for the ECHO45-OCC and ECHO45-HT predictands. In panel b, the bottom right corner shows the climatological

occurrence
:::::
(unlike

::::
with

::::::
MAXZ,

:::
we

::
do

:::
not

:::
use

::
the

:::::::::
persistence

:::::::::
assumption

:
as
::

a
::::::
baseline

:::
for

::::::::::
ECHO45-HT,

:::
and

:::::::
therefore

::::::
nothing

::
is

:::::
shown

::
in

::
the

::::::
bottom

::::
right

:::::
corner

::
of

:::::
panels

:
c
:::
and

:
d
::
in

::::::
contrast

::
to

:::
Fig.

:::::
8a–b).

:
The results are shown for the 0–30min time interval.

::
the

::::
best

:::::::::::
combination

:
is
::::
that

::
of

:::::::::
NEXRAD

:::
and

::::::
GLM.

:::::
More

::::::::
generally,

:::
the

::::::
results

::
for

:::
the

:::::::
training

:::
and

:::::::::
validation

:::::::
datasets

::::::
exhibit

::::::
patterns

::::::
similar

::
to

:::::
those

::
in

:::
the

:::
test

:::
set,

:::::
which

::::::::
suggests

:::
that

:::::
while

::::::::
individual

::::::::::
differences

:::
may

:::
be

:::::::::
attributable

::
to

:::::
noise,

:::
the

:::::::
broader

:::::::::
conclusions

:::
of

:::
the

::::::
analysis

:::
are

::::::
robust.

:

The metrics for LIGHTNING-OCC, shown in Fig. 8c–d for the 30–60min time interval, also show a clear pattern. Here, the

first, second, fourth and sixth row, which correspond to the GLM data being available, show better metrics than the other rows.400

Indeed, prediction using only the GLM data performs very well, achieving an error rate of 15.5%. However, it is interesting to

note that good results can be obtained without the direct lightning data as well: For example, the error rate obtained using only

the ABI and NEXRAD (15.3%) data is better than the GLM-only error rate, and only 1.2 percentage points worse than the

best result (14.1%). This shows that the feature importance analysis shown in Sect. 4.2 is only valid for a specific combination

of predictors. When one data source is removed, the missing information can often be substituted by other data sources that405

were much less used in the case in which everything was available. In general, both the ABI and NEXRAD data improve

the prediction results for LIGHTNING-OCC, as can be seen by comparing the columns to each other: The first column (with

both ABI and NEXRAD available) has the best results overall, the comparison between the second (NEXRAD only) and

the third (ABI only) is mixed, and the fourth (neither ABI nor NEXRAD available) has the worst results. The results with
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the ECMWF data are rather odd: First, in contrast to the MAXZ prediction, the ECMWF data has some skill on its own in410

lightning prediction, as the ECMWF-only prediction has an error rate 2.7 percentage points better than the climatological

average of 29.2%. Second, the prediction with both ECMWF and ABI perform
:::::::
performs

:
4.6 percentage points better than the

ABI prediction alone, but meanwhile adding the ECMWF data to NEXRAD does not offer an improvement over the NEXRAD-

only scores.
:
;
:::
this

:::::
result

::::
may

::
be

::::::
simply

:::::
noise

::
as

::
in

:::
the

::::::::
validation

::::::
dataset

:::::::::
(Appendix

::::
Fig.

::::
A3d)

:::
the

:::::::
addition

::
of

:::
the

::::::::
ECMWF

::::
data

:::
also

::::::::
improves

:::
the

::::::
results

::::
with

::::::::::
NEXRAD. The ASTER data does not add much information, and the ASTER-only prediction415

with 38.7% error rate actually performs worse than the climatology. This happens because the climatological occurrence in the

training dataset, at 42.5%, is coincidentally significantly higher than in the test dataset. The ASTER-only model is unable to

generalize with the scarce data available to it, and only learns to roughly reproduce the climatological error rate in the training

dataset, which leads to overestimation of occurrence in the test set.
::::::
Indeed,

:::
the

::::::::::
degradation

::
of

:::
the

::::::
metrics

:::::
with

::
the

::::::::
addition

::
of

::::::
ASTER

:::::
does

::::
not

::::
occur

:::
in

::
the

::::
test

:::
and

:::::::::
validation

:::::::
datasets.420

For both ECHO45-OCC and ECHO45-HT (Fig. 9, shown for the 0–30min interval), the clearest pattern is the importance

of the radar data for prediction, consistently with the feature importance analysis. Indeed, as long as the NEXRAD data are

available, the benefit of adding further data sources is negligible compared to the NEXRAD-only case (error rate of 12.5%).

However, without the NEXRAD data (e.g. in oceanic regions without radar coverage) the other data sources still provide

meaningful improvements in ECHO45-OCC over the climatological occurrence of 38.3%. For example, ABI alone achieves425

an error rate of 25.3%, ECMWF alone yields 27.8%, and GLM alone achieves 21.4%, while these three sources together reach

20.0%. Similar patterns are found in ECHO45-HT. These results further demonstrate that the benefits of features and data

sources cannot be evaluated in isolation and depend on what other data sources are used.

5 Conclusions

For machine-learning methods to be utilized effectively for thunderstorm nowcasting, it is necessary that the benefits of the430

various available data sources be well understood and quantified. Large amounts of data that are potentially related to convective

processes can be obtained from numerous sources, yet it is not always obvious how much benefit one should expect from adding

an additional data source, and therefore additional complexity, to a ML model. This study provides guidance for future work to

better select data sources for
:::::::::
nowcasting

:
particular thunderstorm hazards

::::
along

::::::::
predicted

:::::
storm

:::::
tracks. We obtained data from

ground-based radar (NEXRAD), satellite spectrographic imagery (GOES-16 ABI), satellite-based lightning detection (GOES-435

16 GLM), a numerical weather prediction model (ECMWF IFS) and a digital elevation model (ASTER), for a total of over 100

input variables. We applied this data to nowcast variables related to precipitation, lightning and hail formation.

We have based our evaluation of the importance of various features on two complementary approaches: first, using the feature

importance provided by the gradient boosted tree algorithm, and second, retraining the GB algorithm repeatedly using different

subsets of the input variables. Testing all possible combinations of input features would have quickly become implausible as440

the number of features increased, but grouping the features by data source , as we have done in this study, helped overcome

this problem. Grouping by data source also reflects most of the
::::::
allowed

::
us

::
to
::::::

cover
:::
the

::::
most

:
realistic situations of missing
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data, where an entire data source is unavailable due to either geographical limitations (for example, operational weather radar

networks do not cover the oceans) or irregular data outages.

Each of the investigated data sources proved to be useful for predicting at least some of the target variables, except for445

the DEM that provides no detectable benefit for any of the predictands. The radar variables are strong predictors for all pre-

dictands, and are particularly dominant for the targets defined using the radar data. The satellite imagery from ABI provides

moderate performance improvements to all predictands, though it is generally less significant than the radar data in this ap-

plication. The
::::
GLM

:
lightning data are highly useful for lightning prediction, but provide only modest benefitsto the other

targets
:
;
:::
for

:::::
other

::::::
targets,

:::::
they

::::::
provide

:::::
more

:::::::
modest

:::::::
benefits,

::::::::
although

::::
they

::::
can

::::
still

::::::
provide

:::::::::::::
improvements

::
to

::::::::::
nowcasting450

::::::::::
performance

::::::::::
particularly

:::::
when

::::
radar

::::
data

:::
are

:::
not

:::::::::
available.

:::::
More

::::::::
generally,

:::
the

::::::
results

::::::
confirm

::::
that

:::::::
satellite

::::
data

:::
can

::
be

:::::
used

::
to

::::::
provide

:::::::::
ML-based

::::::::
nowcasts

::
in

::::
areas

:::::::
without

:::::
radar

::::::::
coverage,

::::
such

::
as

::::
over

:::
the

::::::
oceans

::::
and

::
in

::::::::::::
less-developed

::::::
regions

:::::::
lacking

:::::::::::
ground-based

:::::
radar

::::::::
networks. Meanwhile, the ECMWF forecast data, despite being considered of moderate to high

::::
some

importance by the ML algorithm, do not benefit the nowcast according to the data exclusion analysis, as for the lead times

investigated here, the necessary information content is already contained in the other observations.455

The results show that the feature importance from the GB algorithms may provide seemingly contradictory results compared

to the more comprehensive analysis achieved by testing different combinations of features and evaluating the results. Although

the two evaluation methods largely agreed on which data sources are the most important, some important differences emerged

on closer inspection. This highlights the pitfalls of analyzing the importance of features and data sources in an ML setting when

the data sources are partially redundant. A given feature may be beneficial when used alone, but virtually useless when used in460

conjunction with another, more powerful predictor. For instance, when trained for lightning prediction, the ML algorithm only

gains a modest improvement (approximately 10%) in the error rate from auxiliary data sources when direct lightning data are

available, but when trained without lightning data, good prediction performance can still be achieved utilizing the other data

sources. This has important implications for real-time nowcasting in time-critical applications such as aviation, as it indicates

that ML-based nowcasting can be performed robustly when some input data are missing or delayed.465

Based on the results, we conclude that investigators should be cautious with applying the brute-force strategy of providing

ML algorithms with all the available data and letting the training process decide which data are useful. While this may some-

times reveal unexpectedly useful input variables, using data sources that contain little or no generalizable information may also

expose to the training process to the problem of overfitting, thus actually degrading the results. This can be mitigated by early

stopping and by using hyperparameters designed to prevent overfitting, but it is better for both accuracy and training time to470

simply drop the counterproductive data sources.

Future work can take advantage of the results achieved in this study to build more accurate and efficient ML models for the

nowcasting of thunderstorm hazards of heavy precipitation, lightning and hail. It also allows the estimation of the degradation

of the result if one observation system is missing. Nevertheless, this work is constrained to a particular set of data sources, a

single study area and a specific ML method: the gradient boosted tree. Although we have selected five commonly utilized data475

sources, all qualitatively different from each other, later work should extend the analysis to other data sources such as polar-

orbiting satellites and ground-based lightning networks. It may also
:::::
Given

:::::::
suitable

::::
data

:::::::
sources,

:::
the

:::::::::::
methodology

:::::
could

::::
also
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::
be

::::::::
extended

::
to

::::
other

:::::::
hazards

:::
like

:::::
wind

:::::::
damage

:::
and

:::::::
tornado

::::::
events.

::
It

::::
may

::::::::::
furthermore be interesting to investigate additional

regions: For instance, the DEM data may be more significant in regions with higher mountains. With regard to alternative

ML methods, the performance of neural networks should be evaluated in a future study, preferably using the same dataset to480

facilitate comparisons, as convolutional neural networks are expected to be able to better utilize spatial features such as the

high-resolution imagery from the ABI instrument.
:::::
Neural

::::::::
networks

::::
may

::::
also

:::
be

:::
able

:::
to

:::::
utilize

:::::
large

:::::::
numbers

::
of

:::::::
samples

::::
and

::::
input

::::::::
variables

:::::
better.

:

Code and data availability. The ML code used to produce the results is available at https://github.com/meteoswiss-mdr/ts-nowcast-datasources.

The feature dataset used to train the ML models can be found at Leinonen et al. (2021).485

The original datasets are described, with instructions for downloading and reading, in the following sources in the References:

– NEXRAD radar data: NOAA National Weather Service (NWS) Radar Operations Center (1991)

– GOES ABI L1b data: GOES-R Calibration Working Group and GOES-R Series Program (2017)

– GOES ABI L2 products:

– Cloud top height: GOES-R Algorithm Working Group and GOES-R Series Program Office (2018a)490

– Cloud optical depth: GOES-R Algorithm Working Group and GOES-R Series Program Office (2018b)

– Cloud top pressure: GOES-R Algorithm Working Group and GOES-R Series Program Office (2018c)

– Derived stability indices: GOES-R Algorithm Working Group and GOES-R Series Program Office (2018d)

– ASTER GDEM Version 3: NASA/METI/AIST/Japan Spacesystems and U.S./Japan ASTER Science Team (2019)

The ECMWF forecast archive is available only to licensed users and participating national meteorological services; these can obtain the data495

through the ECMWF Meteorological Archival and Retrieval System (MARS).

Appendix A:
::::::::
Exclusion

:::::::
studies

::
on

::::::::
training

:::
and

:::::::::
validation

::::::::
datasets

:::
We

:::
also

:::::::::
performed

:::
the

::::::::
exclusion

::::::::
analyses,

::::::
shown

::
in

::::
Sect.

:::
4.3

:::
for

:::
the

:::
test

::::::
dataset,

::::
with

:::
the

:::::::
training

:::
and

:::::::::
validation

:::::::
datasets.

::::
The

:::::
results

:::
are

::::::
shown

::
in

::::
Figs.

:::::::
A1–A2

:::
for

:::
the

::::::
training

:::
set

:::
and

::
in
:::::
Figs.

::::::
A1–A2

:::
for

:::
the

::::::::
validation

::::
set.

Appendix B: Further information on the datasets500

Table A1 lists the radars used to compile the NEXRAD dataset we used. Tables A2–A6 list the predictors from the various data

sources that were used in this study.
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Figure A1.
::
As

:::
Fig.

::
8,

::
but

:::
for

:::
the

::::::
training

::::::
dataset.

Table A1. NEXRAD radars used to produce the dataset used in this study.

Location Code

Albany, New York KENX

Binghamton, New York KBGM

Buffalo, New York KBUF

Burlington, Vermont KCXX

Boston, Massachusetts KBOX

Fort Drum, New York KTYX

New York City, New York KOXZ

Philadelphia, Pennsylvania KDIX

Portland, Maine KGYX

Pittsburgh, Pennsylvania KPBZ

State College, Pennsylvania KCCX
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Figure A2.
::
As

:::
Fig.

::
9,

::
but

:::
for

:::
the

::::::
training

::::::
dataset.

Table A2. Variables from the NEXRAD radar adopted in this study.

25 dBZ echo top height

35 dBZ echo top height

45 dBZ echo top height

Maximum reflectivity

Vertically integrated liquid

Motion U/V components from from optical flow
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Figure A3.
::
As

:::
Fig.

::
8,

::
but

:::
for

:::
the

:::::::
validation

::::::
dataset.

Table A3. Variables from the GOES-16 ABI instrument adopted in this study.

Level 1 Level 2

ABI band 01 (0.47 µm) ABI band 09 (6.9 µm) Difference 07-08 Cloud top height

ABI band 02 (0.64 µm) ABI band 10 (7.3 µm) Difference 07-09 Cloud top pressure

ABI band 03 (0.86 µm) ABI band 11 (8.4 µm) Difference 07-10 Cloud optical depth

ABI band 04 (1.37 µm) ABI band 12 (9.6 µm) Difference 08-09 CAPE

ABI band 05 (1.6 µm) ABI band 13 (10.3 µm) Difference 08-10 K-index

ABI band 06 (2.2 µm) ABI band 14 (11.2 µm) Difference 11-13 Lifted index

ABI band 07 (3.9 µm) ABI band 15 (12.3 µm) Difference 12-13 Showalter index

ABI band 08 (6.2 µm) ABI band 16 (13.3 µm) Total totals index

Table A4. Variables from the GOES-16 GLM instrument adopted in this study.

Flash density

Flash energy density

Event density

Event energy density
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Table A5. Variables from the ECMWF model output adopted in this study.

0◦C isothermal level Mean sea level pressure

10 m U /V wind components Medium cloud cover

100 m U /V wind components Potential evaporation

200 m U /V wind components Precipitation type

2 m dewpoint temperature Skin reservoir content

2 m temperature Skin temperature

Boundary layer dissipation Snowfall

Boundary layer height Surface latent heat flux

Cloud base height Surface pressure

Convective available potential energy Surface net solar radiation

Convective available potential energy shear Surface net solar radiation, clear sky

Convective inhibition Surface net thermal radiation

Convective precipitation Surface net thermal radiation, clear sky

Convective rain rate Surface sensible heat flux

Convective snowfall rate water equivalent Total cloud cover

Evaporation Total column cloud ice water

Friction velocity Total column cloud liquid water

Geopotential Total column rain water

Height of convective cloud top Total column snow water

Height of 1◦C wet-bulb temperature Total column supercooled liquid water

Height of 0◦C wet-bulb temperature Total column water

High cloud cover Total column water vapour

K index Total precipitation

Large-scale precipitation Total precipitation rate

Large-scale precipitation fraction Total totals index

Large scale rain rate Vertically integrated moisture divergence

Large scale snowfall rate water equivalent Vertical integral of eastward water vapour flux

Low cloud cover Vertical integral of northward water vapour flux

Table A6. Variables from the ASTER DEM adopted in this study.

Mean elevation

Roughness

Surface gradient

Upslope flow
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