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Abstract. The Delft3D hydrodynamic and wave model is usedhitwlcast the storm surge and waves that impacted L
Rochelle, France and the surrounding area (Aythétéaillon-Plage, Yves, Fouras and llle du Re)rduStorm Xynthia.
These models are validated against tide and wawsunements. The models then estimate the footpfifibow depth,
speed, unit discharge, flow momentum flux, sigmifitwave height, wave energy flux, total water Hefiow depth plus
wave height), and total (flow plus wave) force la focations of damaged buildings for which insaeeaclaims data are
available. Correlation of the hydrodynamic and wassults with the claims data generates buildinmatge functions.
These damage functions are shown to be sensitivthgotopography data used in the simulation, ad wael the
hydrodynamic or wave forcing parameter chosen Herdorrelation. The most robust damage functiosslrérom highly

accurate topographic data, and are correlatedwdtker depth or total (flow plus wave) force.
1 Introduction

[In _theend of February a2010 the Xynthia extratropical storm caused danszagkcasualtiestatalongthe Atlantic coast of
Spain and France (Slomp et al., 2010, Chauveal 2041). The highstrongwinds-fields, andow atmospheric pressure

Rochelle and surroundingBertin et al., 2014.Yhe present paper develops damage curves forifgsldn the area where

the storm surge and waves$-from the Xynthia storm caused the most damage. We dnawnethods used to quantify
damage due to hurricanes and tsunamis in the USAJapan (Suppasri 2013, Hatzikyriakou et al., 208niczek et al.,
2017), but for the first time apply these to moderasonry structures in Europe affected by storrgesand waves from an

extratropical cycloneTherefore, the main objective of the present stisdip develop damage curves from damage ratio

claims supported by hydrodynamic modelling, but teopresent a new hydrodynamic model for this evenith has been
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damage ratio (DR) is defined as the ratio of darsag@med by each property, to the total insurddevaf that property.

More than 9% of the structures had a damage rBiR) higher than 0.5 (considerable damages), 30%Hadigher than
0.2 (medium damages) and 49% had low damédbesis a typical behaviour for damage data flie one reported in Fuchs,
‘{Comment [H3]: Reviewer 2, end point }
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Figure 1: Damage ratio histogram for insurance clains data in the region.

The damage curve is an important tool in risk agsest science related to the vulnerability of stmes (Pistrika et al.,

2010; Englhardt et al., 2019). From the structpa@iht of view, damage curves depend on the cortstruenaterials that
40| buildings are made of (Huizinga, et al., 2017; Roshini et al., 2029Viasoomi et al., 2099 Damage curves also depend
on construction methods, codes, and building layieatuding the distance between buildings (Sugpetsal., 2013; Jansen

| et al., 2020Masoomi et al., 2099 The current paper focuses on 1-2 story masomitglihgs under the effect of storm surge
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and wave forces produced by an extratropical stormorthwest France. The Xynthia storm providedaee rdataset of

empirical measured damage from coastal flooding Buropean countrya-the-same direction—inelusionSimilar analysis

damage fromother stormswith different return pericel happenedn the sameregion wouldhave hadhelp toreduce

uncertainty-seatter-the-extremes-uncerta(Breilh et al. 2014 and Bulteau et al. 2015)t for now-but-unferturatelno
- {Comment [MDL5]: Comment xavier ]

other claims dateverearéavailable.

[n flood risk assessment, the relation betweerddreage and the hazarddisplayed-by-means-ef-thequantified fioggility

curves andhe-depthdamage curves. The differesdeetween these two is thedefragility curves express the probability

that a structure is damagesto a eertainpropeortionspecified structural stéfesubaki R. et al., 2016grdwhile-the-depth

damage cun®insteadisfecused-teassess thpercentagecost ef-of-econondamagehatincurred byflooding of a-fleed

event can-leadgiven structuréEnglhardt J. et al., 2019 and Huizinga, J., et2017). For both cases it is important to
i i gre-of damagerely on the

highlight the fact that these curvessusually
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flood depth alone to quantify the hazg§Riegnolato M. et al., 2015rdwhilethere are fewer studies that attestptrelate
etherrepresent the hazard by othervariables dieslike the flow velocity, significant wave height erave erergyforce
(Kreibich H. et al., 2009 and De Risi R. et al.12p For instancen Tomiczek T. et al.(2017); ananalysis respectsrelated
the flow velodtyities andtothe structure damagstate (DS) in New Jersey for hurricane Sawdg-exeeutedn the present

study we relate eight different hydrodynamic valkéahto the damage ratio coming fraeelinsuranceclaimsloffollowing - ‘{Comment [MDL6]: Comment reviewer }
. 2 2 line 38
extratropical storm Xvnthld. 777777777777777777777777777777777777777777777777777777
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Damage curves are commonly developed by the ctioelaf field or laboratory measurements of damag#&) numerical

simulations of hazard level. Tsubaki et al. (20d@asured railway embankment and ballast scourirfi¢ld, and correlated

this damage with flood overflow surcharge calcudaby a hydrodynamic flood simulation. Englhardtagt (2019) and

Huizinga et al. (2017) used big-data analyticsdoalate tabulated damages with estimated floodldegver a large scale.

Pregnolato et al. (2015) showed that most damaugifins are based on flood depth alone, thoughvaafso consider flow

speed (De Risi et al., 2017; Jansen et al., 2020pad duration. The water depth is an importaatiable since it accounts

for the static forces that act over a structureveMineless, in storm events, structures close # dbast at a

foreshore/backshore can be subjected to dynanuoegd like the action of flow and waves (Kreibi¢hak, 2009; Tomiczek

et al., 2017). For this reasdnl, in order to considler possible forces the following hydrodynamérameters are analysed: - ‘{Comment [MDL8]: Comment 2
reviewer 1

water depth/f), flow speed ¢), unit dischargeiv), flow momentum flux ¢hv?), significant wave height,), total water

depth @+ H,;,), wave energy fluxKy), and total forcegé+phvz). The wave energy flux is defined via Eq. (1)ims
g

Bricker et al. (2017).

1
Ef =Eng§igCg' (1)

whereH,;,(m) i the significant wave height, (m/s)_is the wave group velocity,(kg/nT) is the water density angl _ - {Comment [MDL9J: Comment 3 }
reviewer 1

2 Methods

- {Formatted: Heading 1 ]

Damage curves were developed by hindcasting thartiavith a meteorological model, followed by a hodiynamic (tides

and storm surge) and wave model, and then comgl#tie resulting flood conditions with claimed dayes (Figure 2).
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2.1.2 Meteorological model setup

To generate pressure and wind fields to drive tbevssurge model, dynamically downscaled surfaceearelogical data

were generated for the French Atlantic study redigure 3. This contains zonal and meridional winds 10 ravabground

(u10, v10) and surface pressures over sea and Vaitl,3.5 km spatial resolution and 3hrs tempoesotution. The
dynamical downscaling was performed with the regiatiimate model WRF (Skamarock et al., 2008), ase NCEP

CFSR renalaysis data (Saha et al., 2010). The mebiwon-hydrostatic WRF model (version 3.4) simedal5 February
2010 until 05 March 2010. The initial and laterabbdary conditions are taken from the CFSR reaisafts0.5° resolution,

updated every 6 h. The horizontal resolution isn7; kve use a vertical resolution of 35 sigma lewsith a top-of-

atmosphere at 50hPa. The simulation domain waseohtis be wide enough in latitude and longitude \ldRF to fully

simulate the large-scale atmospheric featureseoXynthia extratropical cyclone. A spin-up timeSoflays was considered

in the study to remove spurious effects of theléy@r soil moisture adjustment even though moghefanalyses here are

performed over the ocean. Land surface processagsolved by using the Noah Land Surface Modetrsehwith four sail

layers. Numerical schemes used in the Xynthia doalitey WRF simulation are the Multi-Scale Kain-Bdh scheme for

convection, the Yonsei University scheme for thenptary boundary layer, the WRF Single-Moment 8<slscheme for

microphysics, and the RRTMG scheme for shortwavklangwave radiation. WRF outputs are generatedye¥éours-As
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2.1 Hydrodynamic model of the Xynthia Storm

In order to capture the hydrodynamic storm charasttes, a regional model domain over the Atlantic Spargad French

coasts was builtAs shown schematically in Figure 2, Delft3D caltesanon-steady flow phenomena that result from tida

and meteorological forcing on a rectilinear or avdinear grid (Deltares, 2021). At the same tinaed coupled with

Delft3D, a spectral wave model (SWAN) calculategngicant wave height and period fields. Delft3DdaBWAN were

used to hindcast the physical forcing at the laretiof all claims in the database. Afterwards, @bability standardized

normal distribution function as proposed by Suppasral. (2013) was used to develop damage curyesobrelating

computation time;—Damain decompositiori2-way hydrodynamic nestingyas implemented with grids of resolution of
~2km over the open ocean, ~400m close to the sanelg and ~80m over the area of claims dﬁtgu(e Siigme—.?—g.ff = ‘{Comment [MDL14]: Comment 4 }

claimed damage with a variety of hydrodynamic fogcivariablds. To conserve computational resources raduce //‘{Comment [MDL13]: Comment on line }
48 reviewer 2

reviewer 1
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|
I
I
I
I

Comment [IB15]: no temporal
evolution if you don't have the track.

Delete the title then.

145 We use two types of topography datasets: a gloftalsdt for the bathymetry/topography (GEBCO 2018ckvis based on

SRTM 15+ v2 over land), and a higher resolution yatstry (MNT — HOMONIM project) and topography (IGNstitute).

Additionally, a survey of the flood walls height svperformed during August of 2020 in order to igeuhem as thin weirs
inside the Delft3D model, and in this way overcadime fact that inside the high resolution 5m toppbsa thesés structures

are not representeds suggested by Bertin et §2014).

150 Luppichini et al. (2019) and Ettritcha et al. (2DT¥8und that the quality of bathymetry and topodmaplata has a large
effect on estimation of the hazard, and Brussed ¢2021) similarly found topography data quaéffects resulting damage
estimates. In order to investigate the effect @& tjuality of topographic and bathymetric data oa tesulting damage

functions, three scenarios are considered in ouk {@able 1).
8



155

160

165

170

175

Item Low resolution (a)

High resolution (b)

High resolution + structures (c)

Topography GEBCO (500m)

IGN (5m)

IGN (5m) + flood walls surveyed
by the authors with an RTK-GPS

Bathymetry GEBCO (500m)

GEBCO (500m) in
deep water + MNT
(100m) nearshore

GEBCO (500m) in deep water +
MNT (100m) nearshore

2.2 Hydrodynamic and Wave Model setup

reviewer 1 ‘no changes’, or should we

_ - - Comment [MDL16]: Comment 5
change this title?

Delft3dD was coupled together with SWAN &domain-decompeosition-mode-ander to hindcast storm tide and waves.

Model boundary conditions consisted of astrononticial water elevations from the Global Tide andgguModel (GTSM)
of Muis et al. (2016) for the period from 20 Febmuantil 1 March 2010. The hydrodynamic model was with a

computational time step of 30 sec and a uniform hitagis n of 0.025. The air-sea drag coefficientSohith and Banke

(1975) was used. Other model parameters retairgdddefault settings.
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2.3 Hydrodynamic and wave model validation
2.3.1 Storm tide validation

The hydrodynamic model was run from 20 Februaryl inMarch 2010, the duration of the meteorologifiating data,

with GTSM astronomical tide boundary conditions.
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Equation 3)Rrelative root square error (RRSE, Equation 4), aidRearson correlation coefficiept Equation 5). A[
T ()] —ny)2
RMSE = M 3)
_ Elor-»2 _ _3ly
RRSE = St V=7 (4)
o wv(y,y’)’ 5)
»y gy 0y

Mheréy' is the predicted valug,is the actual value andis the average of the actual values to predics, the number of _ /{
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values, andr_indicates the standard deviation

After 2 days of model spin-ufthe time required for the model to correct theigged initial condition)the comparison

between the observed water levels from SHOBtiolis tide gauges (http://www.coriolis.eu.org/)and modelled water

levels from Delft8D, during the whole simulation goedacceptabl@-igure 4)according to the results for the goodness of

fit indices atin table 2 If we compare these values with typical valueshia literaturdike-insuch asMatte et al. (P—et-al.,
2014 or Tranchant/—et al; (2021) we observe the current modelled water levelshfit dbservationgeedwell Note that

the Les Sables gauge failed at the peak of thenston 2010-02-28 03:00:00) so a data point is mgs#i the observations

at that time. At La Rochelle the difference betwtenobserved and modellediter levelis only 36cm at peak storm tide.

10
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Figure 4: Observed and modelled tide at La Rochelland Les Sables. Note that during the peak of the gto tide at Les Sables, the
tide measuring gauge was out of operation, resultgnin a missing data point in that data series.

2.3.2 Wave model validation

The wave model was validated against data from $OM-CORIOHSoriolis operational oceanography center

(http://www.coriolis.eu.org/About-Coriol)sin Figure 5.Important to mention is that the data availabléhatbuoys stations

do not include the significant wave height, therefthe swell heightrerewasextracted to compare the results from
Delft3D-SWAN. The uncertainty produced by the meddmgical downscaling by means of the WRF modethig hindcast
of the winds can add errors in the results. Unfaataly, no more meteorological information is aafié

. If we again
compare the indices from table 2 to those founthe literaturelikesuch asBaron-Hyppoliteet al. -C-2019, we find

comparable goodness of fit between modelled andsoned wavessee-that-thebig-difference—is—probdbly-to-the
comparison-of two different variables

11
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235 3 Results

After determining the model hydrodynamic and waesults (Figure 6) at the location of each clainatam, the data were
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3.4 Damage curves from each digital elevation model

In order to buildthe-damage curves with equation (2), the median vaduwesextracted from the boxplots of appendix A

(figures Al to A3) for each variable.
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Figure 7Figure-7Figure the damage curves for each hydrodynamic paranaegedisplayedn-as 3 lines, one for each

in the first 5m of flood depth.
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Figure Damage curves for the surge and wave vatbles (h,v,hv,phv? Hgg h+ Hgg, Ef, ot phv*),__and different

9 _ _ _ _ _ _ _ _ _ _
bathymetry/topography conditions (table 1) ia-detsMarkers indicate the observed data and lines the fitted statisticalistribution s.

Table 3Table-3Fable g8hows that among the hydrodynamic parametersetetatly to storm surge, the water depth best fits
Equation (2), with the lowest errors (RMSE and RR&BE) the highest Pearson coefficiep). (n-thesame-way—the
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‘ variable-that-correlates-the-best-withAmdhg combined surge and wave parametiies best correlatiors the total (flow
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plus wave) force, using the IGN+Structures topolgyapnd bathymetry (Tablg3). This is reIatedLowmr{the fact that this _ - Ic.,mment [MDL30]: Comment
270 digital elevation model includes thin flood wallsat contribute to protection, and which can suliithy modify the flow

| and wave fields over land.

Table 332 Goodness of fit for the flow only, and flow plusvave, parameters. The best fits for flow-only paramers are indicated
in greenbold, and the best fits for flow plus wave parametersra indicated in bluebold/italic.
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280 4 Discussion

The present paper considered the influence of Bhaly- variables &, v, hv, phv?), and combined flow-wave parameters
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functions. Goodness of fit to damage curves impavigh quality of the topographic data used (TableHowever, when
applying damage curves in practice, it is importtntbase predictions off a similar model setup hattused when

285 calculating the damage curves in the first placeigBee et al., 2021). For example, if damage suave built using coarse
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315

topography that neglects the presence of thin deagi. sheetpile/cantilever walls, or T- or Lall), then the buildings
protected by these walls might experience morengadnydrodynamic conditions in the simulation tHahe walls had been
present in the simulation. Since the actual reabrdamage does not depend on the model used tolatalctne
hydrodynamic forcing conditions, damage curves biped using the coarse resolution topography vélishifted to the
right relative to damage curves generated withthie floodwalls present. If these damage curvesgErd using a coarse
resolution simulation are then applied for damageigtion by an external user who applies a higiolteion simulation
that resolves floodwalls, the reduced forcing (tuthe presence of these floodwalls) will geneeat®n-conservative result
(too little damage), because the damage curvesbleat generated using forcing data from a simulatibrere the
floodwalls had not been present. Therefore, whenadg curves are reported in the literature, itigdrtant to quantify how
these vary with the topography used in the simaetion which the damage curves are based. Howieve current paper,
Figure 7 shows that damage curves do not vary stemly leftward or rightward as topographic da&@ ianproved. This is
because the response of forcing to the presentieesé walls is more complex than simply reducingevaeight. If not
overflowed, walls reduce damage greatly. Howeveatew depth can be exacerbated in front of wallsl #fow can be
channelled and intensified along walls, all inciregshydrodynamic forcing in some locations, preugnta simple relation

between topographic resolution and damage curugstobss.

In addition to the general sensitivity of damageves to topographic data quality, the damage cudisgslayed in Figure 7
do not consider certain physical wave-driven phesmensuch as wave overtopping of structures (Lasttley., 2020aKe
et al., 202} or infragravity waves generated by waves breakinghallow water (Roeber and Bricker, 2015). Fmtance
Lashley et al. (2019) discussed the importancekaf dvertopping due to infragravity waves on nearstdevelopments that
can induce wave-driven coastal inundation. The waeelel used here, SWAN, does not include infragyawiaves, nor
does the combined Delft3D/SWAN flow/wave model siate wave overtopping of dikes, possibly leading ao
underestimation of the hydrodynamic forces on lugd, which would affect the resulting damage fiorg. However,
consideration of wave overtopping and infragraffects requires either phase-resolving wave sitina or empirical
relations specific to the local topography (Lashé¢wl., 2020b), though this is beyond the scopth@fcurrent study, and is
similarly neglected by most other large-scale iratiwh studies (i.e., Sebastian et al, 2014; Kress. e2016: Kowaleski et
al., 2020). Nonetheless, the effect of infragrawascillations and wave overtopping on resultingnedge is an important

item for future research.

Another important factor mentioneshby Bertin et ak (2015) was the particular track direction of the stormattfor the

Xynthia event induced a young sea state, enhanbigurface strees and adding up to 40 cm to the theoretical surge a

tide of their model.
h’he uncertainty and variability within this methdalgy can be explained by two factors: 1) the hygrmaiic modelling,

and consequently, uncertainty in the hydrodynaraigables, and 2) uncertainty in the claims datayaRéing the first point,
20
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350

there is a trend that indicates that better to épathymetry data gives hydrodynamic variables dorrelate better with

the damage ratio. The explanation of this is béigitecause higher resolution data brings generaliye accurate results of

the real flood conditions (Luppichini et al., 2089d Ettritcha et al., 2018). Damage curves developgh a better

representation of the topography (IGN + structunegrove the accuracy indicatorBable 3Fable-Bable?2), though scatter

in the data itself (Figures Al, A2 or A3) is larfye all togograghieglnsidé this first point we can also mention the imes - ‘{Comment [MDL33]: Line 99 revewer 2 }

resolution and the roughness coefficient assignatiince has been proven that these two variatdesimfluence the comment

hydrodynamic variables assessmenhe second point, deals with the gquality of the dgen ratio data. It is—well
identifiecknown that insuranceclaims -arean sometimes bsubject to fraud—amat information distortion. Also variables

related with the vulnerability of the assets like ttonstruction characteristics, the materials ginaity and the age of the

structures (Paprotny et al., 2021) play an impdrtate in whether for a particular hydrodynamic ighie value damage

occurs or not. This adds a degree of complexith¢canalyss - 1 Comment [MDL34]: Comment 8

reviewer 1 and part of comment 4 reviewer
2

5 Conclusions

Using insurance claims to build damage curves fthm structures located in La Rochelle and surrowgsliprovides
valuable information on the future damages thatlmamexpected from an extratropical storm striket@n French Atlantic
coast. In the present study, the best correlateiwéden the damage ratio and the hydrodynamic Vesase the flow depth

and the total (flow plus wave) force for the afossiioned flow-only and flow-plus-wave variablespestively.|

A | -~ {Formatted: Font: (Asian) Japanese ]

_ — - | Comment [MDL35]: Comment 8
reviewer 1

{an addition to the sensitivity of results to resadutiof the topographic and bathymetric data, théusion of thin flood

walls via a land survey carried out by the authads® had a significant effect on the damage funstigenerated. This is
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important to note, as thin steel or concrete stinest like rood wallsst aretypically only a fem&@%—ef—een&eimetresljhigki, _ - ‘[Comment [MDL36]: Comment
and sethereforedo not appear in digital elevation models. Theeaffof these thin structures on the resulting damag

functions shows the importance of locally sourcaigvation data for the thin structures that aresgmé when conducting
355 risk analyses for coastal regions, though it isémafive to keep in mind agreement between the siioms used for

developing the damage relations in the first plag#) those where the damage relations are apfiefiirther risk analysis.
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Appendix A
Whisker plots from which damage curves are devel@re shown in Figures Al, A2, and A3. Digital Elgen Models are
as described in Table 1. The damage curves of Eiguise the median values (red lines) from eadhefigures in this

appendix.
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Figure Al: Box-Wwhisker plots for the variables @, v, hv, phv?, Hgig, h + Hg;g, Ej, ? + phv?) with the GEBCO DEM.
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Figure A2: Box-Wwhisker plots for the variables @, v, hv, phv?, Hgig, h + Hg;g, Ef, ? + phv?) with the IGN DEM.
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520| Figure A3: Box-Wwhisker plots for the variables @, v, hv, phv? Hgig, h + Hg;g, Ef, ? + phv?) with the IGN+Structures DEM.
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Appendix B
Probability distribution comparison for the bathymé&opography of IGN+structures.
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Figure B1: Comparison of three typical statistical dstributions used en-for damage function developmentThe points correspond
to the observed data and lines for different statigcal distributions.
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