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Abstract. Rainfall intensity-duration (ID) thresholds are commonly used to assess flash flood potential downstream of burned 10 

watersheds. High-intensity and/or long-duration rainfall is required to generate flash floods as landscapes recover from fire, 11 

but there is little guidance on how thresholds change as a function of time since burning. Here, we force a hydrologic model 12 

with radar-derived precipitation to estimate ID thresholds for post-fire flash floods in a 41.5 km2 watershed in southern 13 

California, USA. Prior work in this study area constrains temporal changes in hydrologic model parameters, allowing us to 14 

estimate temporal changes in ID thresholds. Results indicate that ID thresholds increase by more than a factor of 2 from post-15 

fire year 1 to post-fire year 5. Thresholds based on averaging rainfall intensity over durations of 30-60 minutes perform better 16 

than those that average rainfall intensity over shorter time intervals. Moreover, thresholds based on the 75th percentile of radar-17 

derived rainfall intensity over the watershed perform better than thresholds based on the 25th or 50th percentile of rainfall 18 

intensity. Results demonstrate how hydrologic models can be used to estimate changes in ID thresholds following disturbance 19 

and provide guidance on the rainfall metrics that are best suited for predicting post-fire flash floods. 20 
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1 Introduction 22 

Heightened hydrologic responses are common within and downstream of recently burned areas, resulting in an increased 23 

likelihood of flash floods. Rainfall intensity-duration (ID) thresholds are commonly used to assess the potential for flash floods 24 

(Moody and Martin, 2001; Cannon et al., 2008). Many past studies aimed at defining thresholds for flash floods focus on the 25 

first 1-2 years following fire (Cannon et al., 2008; Wilson et al., 2018). Since the hydrologic impacts of fire are transient, 26 

rainfall ID thresholds associated with flash floods are likely to change as a watershed recovers (Ebel and Martin, 2017; Ebel 27 

and Moody, 2017; Moreno et al, 2019; Ebel, 2020). It may take more than a decade for hydrologic responses to return to pre-28 

fire levels, yet there is limited guidance on how the magnitude and utility of rainfall ID thresholds change with time since 29 

burning. Given the increased frequency and size of fire in many geographic and ecological zones (e.g. Gillett et al., 2004; 30 

Westerling et al., 2006; Kitzberger et al., 2017), it is of growing importance to quantify the best metrics for assessing flash-31 

flood potential in the immediate aftermath of fire as well as how these metrics change throughout the recovery process (e.g. 32 

Ebel, 2020). 33 

 34 

Rainfall ID thresholds for flash floods are typically defined using historic data that relates rainfall over different intensities 35 

and durations to an observed hydrologic response, namely the presence or absence of flooding (e.g. Cannon et al., 2008). Due 36 

to the stochastic nature of rainfall over burned areas and limited observations throughout the recovery process, there is a 37 

paucity of data that can be used to derive empirical thresholds for flash flooding beyond one year of recovery. Hazards 38 

associated with flash flooding, however, may exist downstream of burned areas well beyond one year of recovery. Wildfire 39 

alters rainfall-runoff partitioning and flood routing by incinerating vegetation and reducing interception capacity (Stoof et al., 40 

2012, Saksa et al., 2020), decreasing hydraulic roughness, and reducing soil infiltration capacity (Larsen et al., 2009, Ebel and 41 

Moody, 2013). Reductions in infiltration capacity are often attributed to fire-induced soil water repellency (Ebel and Moody, 42 

2013), which is generally strongest immediately following a fire and then decays over time scales ranging from one year to 43 

more than five years (Dyrness, 1976; Huffman et al., 2001; Larsen et al., 2009), though surface soil sealing (Larsen et al., 44 

2009) and hyper-dry conditions (Moody and Ebel, 2012) are also known to play important roles. Vegetation recovery, which 45 

may influence temporal changes in hydraulic roughness and canopy interception, can take five years or longer. Cannon et al. 46 

(2008) collected sufficient data over a two-year time period following fire in southern California, USA, to define separate 47 

rainfall ID thresholds for post-fire debris flows and flash floods in the first- and second-years following fire. They found that 48 

the ID thresholds for flash floods and debris flows may increase by as much as 25 mm/h after one year of recovery, a change 49 

that they attributed to a combination of vegetation growth and sediment removal as a result of rainstorms during the first post-50 

fire year.  51 

 52 

Rainfall ID thresholds are often defined over a range of durations, though averaging rainfall intensity over a particular duration 53 

may provide a more reliable threshold. Post-fire hydrological response in the first few years is often best related to rainfall 54 
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intensity over short durations (less than 60 min) (Staley et al., 2017; Moody and Martin, 2001). In their efforts to define rainfall 55 

ID thresholds for post-fire debris flows, Staley et al. (2013) showed that averaging rainfall intensities over durations between 56 

15 minutes and 60 minutes resulted in thresholds that performed better relative to those associated with longer durations. One 57 

potential explanation for this observation is that post-fire debris flows are often triggered by runoff in steep, low-order 58 

drainages, which both Kean et al. (2011) and Raymond et al. (2020) have found to be highly correlated with rainfall intensities 59 

averaged over similarly short time intervals (10-15 minutes). Moody and Martin (2001) have also documented a substantial 60 

increase in peak discharge following wildfire once the 30-minute rainfall intensity (I30) crossed a threshold value, suggesting 61 

that I30 may be a consistent predictor of flash flood activity in recently burned watersheds. Moody and Martin (2001) suggest 62 

that peak I30 can be used to set the threshold for early-warning flood systems. The optimal duration for defining post-fire flash 63 

floods thresholds, as well as how it may change with time, remains relatively unexplored. 64 

 65 

Rain gage records are typically used to derive rainfall ID thresholds for flash flood and post-fires debris flows (Staley et al., 66 

2013; Staley et al., 2017). Post-fire debris flows, however, tend to initiate in small (<1 km2), steep watersheds. In these small 67 

watersheds, the rainfall intensity responsible for initiating a debris flow can be characterized by a single rain gage installed 68 

near the initiation zone. Flash floods differ in that they tend to occur at larger spatial scales where rainfall is spatially variable 69 

and may not be adequately characterized by data from a single rain gage. Radar-derived precipitation estimates, which can 70 

provide high spatiotemporal resolution of rainfall intensity, present opportunities to develop basin-specific thresholds for post-71 

fire flash floods. However, high spatiotemporal variability in rainfall intensity also brings new challenges when employing 72 

radar-derived precipitation in flood warning practice. In particular, what is the best way to summarize spatially and temporally 73 

variable rainfall intensity information with a single metric that can be used as a threshold? How does hydrological recovery 74 

following fire influence the generation of flash floods and the metrics that are best suited for their prediction? Data-driven 75 

approaches to answering these and related questions may be hampered by limited monitoring of post-fire hydrologic response 76 

throughout the recovery period and the stochastic occurrence of rainfall over burned areas, which limits opportunities for 77 

observations. Given a well-constrained hydrologic model that accounts for changes associated with post-fire recovery, it is 78 

possible to use numerical experiments to understand relationships between time since burning, the spatiotemporal patterns of 79 

rainfall over a watershed, and the occurrence of flash floods. 80 

 81 

Here, we use realistic patterns of spatially and temporally varying radar-derived rainfall over a 41.5 km2 watershed in the San 82 

Gabriel Mountains of southern California, USA, to (1) determine the optimal method to define a rainfall ID threshold for flash 83 

floods, and (2) identify changes in rainfall ID thresholds for flash floods as a function of time since burning. The watershed, 84 

which we refer to as the upper Arroyo Seco, burned during the 2009 Station Fire (USDA Forest Service, 2009). Liu et al. 85 

(2021) used rain and stream gage data collected at different times following the fire to calibrate the KINEROS2 hydrologic 86 

model for this watershed, enabling them to quantify temporal changes in model parameters as a function of time since burning. 87 

Combining this calibrated model with spatially explicit, radar-derived estimates of rainfall intensity during 34 rainstorms, we 88 
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explore the utility of different rainfall ID metrics as flash flood thresholds and quantify temporal changes in those thresholds 89 

through the first five years of recovery. Results provide insight into the magnitude of temporal changes in flash flood thresholds 90 

in the densely populated, fire-prone region of southern California. More generally, results support the development of early 91 

warning systems for flash floods by identifying specific metrics that can be computed using spatially variable rainfall intensity 92 

estimates to assess the potential for flash flooding.  93 

2 Study Area 94 

 95 

Figure 1: Modified from figure 1 in Liu et al. (2021) (a) The location of the upper Arroyo Seco watershed within California. The red 96 

triangle indicates the location of the USGS stream gage (11098000); (b) Shaded relief showing the study watershed with the USGS 97 
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stream gage (red triangle; 34°13’20”, -118°10’36”); (c) Soil burn severity for the 2009 Station fire. Burn severity percentages are for 98 

planform area within each category. 99 

 100 

The upper Arroyo Seco watershed drains the 41.5 km2 area above USGS stream gage station (11098000) near Pasadena in the 101 

San Gabriel Mountains (Figure. 1). The upper Arroyo Seco was burned in the August-October 2009 Station Fire, which burned 102 

more than 80% of the watershed at moderate to high soil burn severity (USDA Forest Service, 2009). Dominant shrubs and 103 

chaparral, such as chamise (Adenostoma fasciculatum) and manzanita (Arctostaphylos spp.), were completely consumed with 104 

severe soil heating in isolated patches throughout many areas burned at moderate to high severity (USDA Forest Service, 105 

2009). Soils in this area are typically sand and silty-sand textured and thin (<1 m) with partial exposure of bedrock (Staley et 106 

al., 2014). The majority of rainfall in the study area typically occurs in the cool season, between December and March, while 107 

warm, dry conditions dominate from April to early November. The San Gabriel Mountains also experience some of the most 108 

frequent short-duration, high-intensity rainfall in the state (Oakley et al. 2018a). 109 

 110 

Due to wildfire-induced changes in surface conditions, including canopy cover and soil-hydraulic properties, runoff generation 111 

in the first year following the fire was likely dominated by infiltration excess overland flow (Schmidt et al., 2011, Liu et al., 112 

2021). Enhanced soil water repellency (SWR), which helps promote low infiltration capacity, and extensive dry ravel, which 113 

loads channels with fine-grained hillslope sediment, are both commonly observed after fires in the San Gabriel Mountains 114 

(e.g., Watson and Letey, 1970; Hubbert and Oriol, 2005; Lamb et al., 2011; Hubbert et al., 2012). Rengers et al. (2019) 115 

calibrated a hydrologic model using data from small watersheds (0.01-2 km2) burned by the Station Fire and found relatively 116 

low values for saturated hydraulic conductivity (Ks), generally between 2-10 mm/h. These results are consistent with values 117 

for saturated hydraulic conductivity inferred by Liu et al. (2021) via model calibration in the upper Arroyo Seco watershed. 118 

The impact of dry ravel, which reduces grain roughness in the channel network, and reduced vegetation density led to estimates 119 

of Manning’s n in the channels of the upper Arroyo Seco of approximately 0.09 s m-1/3 in the first year following fire (Liu et 120 

al., 2021). These hydrologic changes led to widespread flooding and debris flows during multiple rainstorms in the first winter 121 

after the fire (Kean et al., 2011; Oakley et al., 2017). As hydrologic recovery began over the next several years, the watershed-122 

scale Ks and Manning’s n generally increased and likely started to mitigate the flash flood risk (Liu et al., 2021).  123 

3 Data and Methods 124 

3.1 Radar-derived precipitation  125 

We sought to identify storms in the study area that produced moderate-to-high intensity rainfall to use as inputs to a hydrologic 126 

model to simulate flood responses. Storm events were selected within the period for which observations are archived for the 127 
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two operational NWS Next‐Generation Weather Radar installations (NEXRAD; NOAA 1991) that cover the study area, 128 

KSOX, (Santa Ana), and KVTX (Ventura). Though archives for the radars begin in 1997 and 1995, respectively.  129 

 130 

We compiled storm events starting with those known to have produced high intensity rainfall and a debris flow response in 131 

the San Gabriel Mountains (e.g., Table 1 in Oakley et al. 2017) as well as other storms that produced high-intensity rainfall in 132 

the region (e.g., Oakley et al. 2018b, Cannon et al. 2018). We then used hourly rainfall observations from the Clear Creek 133 

(2002-present), San Rafael Hills (2005-present), and Heninger Flats (2010-present) Remote Automated Weather Stations 134 

(RAWS, acquired from raws.dri.edu) as indicator gages for the study area. This further limited us to post-2002 events outside 135 

of the literature. All gages are <10 km from the watershed of interest; there were no long-record gages within the watershed. 136 

We used 15 mm/h as a threshold for moderate to high intensity rainfall and extracted all events from the gauge record meeting 137 

or exceeding this value to develop a list of events of interest. We reviewed the radar data for these events at which point some 138 

of the selected events could not be utilized due to radar outages or poor data quality. This exercise presented us with 34 storm 139 

events (Table S1). 140 

 141 

Various atmospheric processes may contribute to generation of moderate-to-high rainfall intensities (e.g., Oakley et al. 2017), 142 

resulting in differing spatial and temporal precipitation patterns over a burn area. To ensure the events selected captured 143 

variability in spatial and temporal precipitation characteristics, we evaluated the spatial characteristics of the events. We found 144 

rainfall patterns could generally be categorized into four main spatial patterns at the scale of several tens of kilometers: (1) a 145 

broad pattern, a contiguous area of moderate-to-high intensity precipitation (>45 dBZ) spanning tens of kilometers; (2) a 146 

scattered pattern with numerous cells of moderate to high precipitation that are not spatially continuous; (3) an isolated pattern, 147 

with one to a few isolated cells of moderate-to-high intensity rainfall separated by non-precipitating areas several to tens of 148 

kilometers in extent; (4) a narrow cold frontal rainband (NCFR)—a north-south oriented narrow band (~3-5 km wide, tens to 149 

100 km in length) of very high intensity rainfall (e.g., Oakley et al. 2018b; Cannon et al. 2020; Figure S1 in Supplement). At 150 

the <10 km horizontal scale (the scale of the watershed), it was harder to identify meaningful patterns and distinctions, though 151 

the larger scale signals imply varying spatial and temporal patterns of precipitation as each pass over the watershed. A table 152 

of storm events and their characteristics is available in Table S1 in the Supplement.  153 

 154 

An approximate start and end time were determined for each event using the Clear Creek RAWS gauge as an indicator. Start 155 

time was determined by identifying the time of maximum 1h rainfall in the event and going back in time to the first of three 156 

consecutive hours of >1.5 mm/h precipitation. The end of an event was determined as the last hour where precipitation dropped 157 

below 3 mm/h for at least two consecutive hours.  158 

 159 
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Level-II base reflectivity (https://www.ncdc.noaa.gov/wct/) between the start and end time of each event was downloaded 160 

from both the KSOX and KVTX radars. The data were used to generate spatially-distributed precipitation over the study area. 161 

Radar imagery concurrent with the gauge-based record of high intensity rainfall events was converted to a composite maximum 162 

reflectivity product at 250 m spatial and 5-minute temporal resolution. Conversion of radar reflectivity to rain rate required 163 

the application of an empirically derived reflectivity (Z) to rain rate (R) relationship (e.g. Marshall and Palmer 1948). The Z-164 

R relationship is conventionally represented by the equation Z = aRb, which includes parameters a and b to account for 165 

variations in precipitation for a given reflectivity arising from differences in the drop size distribution. Due to the lack of 166 

previous studies investigating Z-R relationships in precipitating conditions over the region of interest, there are no standard a 167 

and b parameters to apply to the reflectivity data analyzed here. Thus, five well-known and previously published Z-R 168 

relationships were applied to the gridded reflectivity values. Supplement S3 lists the different Z-R relationships applied here 169 

and the general conditions for which they are suitable. Although the Z-R relationships used here are not based on observations 170 

from the present study’s region of interest, the variation of a and b parameters yields an estimate of precipitation uncertainty. 171 

It is worth noting that a number of additional sources of radar measurement uncertainty exist that are not evaluated in depth 172 

here, including beam broadening, topographic blocking and scan elevation. However, this was not of primary concern since 173 

the goal of this study was to generate realistic spatial and temporal patterns of rainfall over the watershed with varying intensity 174 

that could be used to force the KINEROS2 hydrologic model. The goal was not to reproduce the observed hydrologic response 175 

resulting from a particular set of rainstorms. 176 

 177 

As a range of precipitation intensities for each storm result from the application of the five different Z-R relationships (e.g., 178 

Figure S2 in Supplement), we utilize these as realistic storms of varying precipitation intensity to increase our storm sample 179 

size, such that we apply 34 storms * 5 Z-R relations = 170 precipitation scenarios as inputs to KINEROS2. These 170 scenarios 180 

were then processed for ingestion into KINEROS2 (Figure. 2). 181 

 182 
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 183 

Figure 2: Delineation of rainfall intensity-duration threshold for post-fire flash flood 184 

 185 

3.2 Summary metrics for spatially and temporally varying rainfall 186 

In search of a spatiotemporel summary metric that may serve as a reliable flash flood threshold, we begin by describing a 187 

methodology to summarize spatially and temporally varying rainfall over a watershed. For a given rainstorm, the rainfall 188 

intensity time series at a single point, such as a single radar pixel, can be summarized by computing a moving average of 189 

intensity over a specified duration, D. Letting t denote time and R denote the cumulative rainfall (mm), we define the rainfall 190 

intensity over a duration D at any given pixel within the watershed as  191 

𝐼𝐷ሺ𝑡ሻ =
𝑅ሺ𝑡ሻ − 𝑅ሺ𝑡 − 𝐷ሻ

𝐷
 (1) 

 192 

Here, we compute 𝐼𝐷ሺ𝑡ሻ for each pixel for durations of 5, 10, 15, 30, and 60 minutes. Since the intensity in each radar pixel 193 

could have a unique value, we also need a way to summarize 𝐼𝐷ሺ𝑡ሻ in space. One option would be to take the median of 𝐼𝐷ሺ𝑡ሻ 194 

to determine a typical value of 𝐼𝐷 within the watershed at each time, t. However, the median may not be a good predictor of 195 

flash flooding since one could envision a scenario where it is only raining over 1/3 of the watershed, yet it is raining with 196 

sufficient intensity to generate a flash flood. We therefore compute the jth percentile of 𝐼𝐷ሺ𝑡ሻ at each time, t, for j between 1 197 

and 99. We denote the jth percentile of 𝐼𝐷ሺ𝑡ሻ as 𝐼𝐷
𝑗
ሺ𝑡ሻ. For each rainstorm, we focus our analysis on the peak value of 𝐼𝐷

𝑗
ሺ𝑡ሻ 198 
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which we denote as 𝐼𝐷
𝑗

. As an example, 𝐼30
50

 would be computed by defining I30 for all radar time steps within a rainstorm, 199 

determining the median value of I30 over the watershed at each of those time steps, and then taking the maximum of that time 200 

series of median I30 intensities. This analysis yields 495 different metrics (𝐼𝐷
𝑗

 for j=1,2,…,99 and D=5,10,15,30,60) that 201 

summarize spatially and temporally varying rainfall intensities over the watershed. In the following sections, we describe how 202 

we test the utility of each of these 495 different metrics as a flash flood threshold.  203 

3.3 Hydrological modeling 204 

We used the KINEROS2 (K2) hydrological model to simulate the rainfall partitioning, overland flow generation, and flood 205 

routing in the upper Arroyo Seco watershed. K2 is an event-scale, distributed-parameter, process-based watershed model, 206 

which has been used extensively for rainfall-runoff processes in semi-arid and arid watersheds (Smith et al., 1995; Goodrich 207 

et al., 2012). Liu et al (2021) used rain gage data in combination with the USGS stream gage installed at the outlet of the upper 208 

Arroyo Seco watershed to calibrate K2 during different stages of the post-fire recovery process. We use the same model setup 209 

for simulations in this study. In particular, the 41.5 km2 watershed was discretized into 1289 hillslope planes and these planes 210 

were connected by a stream network of 519 channel segments based on a one-meter LiDAR-derived digital elevation model 211 

(DEM). After accounting for a fixed interception depth of 2.97 mm based on land cover look-up table in the Automated 212 

Geospatial Watershed Assessment toolkit (AGWA; Miller et al., 2007), infiltration of rainfall into soil is represented using the 213 

Parlange et al. (1982) approximation. Overland flow and channel flow are modeled by kinematic wave equations. Both 214 

saturated hydraulic conductivity on hillslopes (Ksh) and hydraulic roughness in channels (nc) primarily determine runoff 215 

generation and the shape of hydrograph, including total runoff volume, peak discharge rate, time to peak (Canfield et al., 2005; 216 

Yatheendradas et al., 2008; Menberu et al., 2019). Other parameters, such as hydraulic roughness (nh) and capillary drive (Gh) 217 

on hillslopes, had a relatively minor impact on modelled runoff after the Station Fire in the upper Arroyo Seco watershed (Liu 218 

et al., 2021).  219 

 220 

Table 1. Summary of model parameters for post-fire year 1, 2, 3, and 5. The saturated hydraulic conductivity on 221 

hillslopes (Ksh) and hydraulic roughness in channels (nc) are the average of values calibrated in post-fire years 1, 2, 222 

3, and 5 (Liu et al., 2021)  223 

Post-fire Year Calibration Events Ksh (mm/hr) nc (s/[m1/3]) 

1 

12 Dec 2009 

  7.2 0.087 17 Jan 2010 

  5 Feb 2010 

2 
17 Dec 2010 

13.8 0.275 
20 Mar 2011 
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3 
17 Mar 2012 

18.5 0.320 
13 Apr 2012 

5 28 Feb 2014 23.8 0.280 

 224 
Liu et al. (2021) found that both Ksh and nc were lowest immediately after the fire. Ksh increased, on average, by approximately 225 

4 mm/h/yr during the first five years of recovery, whereas nc increased by more than a factor of two after 1 year of recovery 226 

and then remained relatively constant. We focus here on simulating the response to rainfall in the first five years following the 227 

fire where the watershed is likely most vulnerable to extreme responses. To represent the temporal changes in Ksh and n 228 

documented by Liu et al. (2021) following the fire, we used different values of Ksh and nc for each post-fire year (i.e. post-fire 229 

years 1, 2, 3, and 5) based on the values calibrated by Liu et al. (2021) in post-fire years 1, 2, 3, and 5 (Table. 1). Liu et al. 230 

(2021) were unable to calibrate the necessary K2 parameters in post-fire year 4 so we do not perform any simulations to 231 

constrain flash flood thresholds in that year. Initial soil moisture is set to a volumetric soil-water content of 0.1, following Liu 232 

et al. (2021). Other parameters were also given the same values as the calibrated K2 model, including saturated hydraulic 233 

conductivity of channels (1 mm/hr), net capillary drive of channels (5 mm), hydraulic roughness of hillslopes (0.1 s/(m1/3)), 234 

net capillary drive of hillslopes (50 mm), and soil porosity of 0.4. With this model set-up, we simulate the response to each of 235 

the 170 rainstorms for post-fire years 1, 2, 3, and 5.  236 

 237 

3.4 Rainfall intensity-duration thresholds 238 

Each K2 simulation results in a modeled hydrograph at the watershed outlet. As a first step towards defining a flash flood 239 

threshold, it is necessary to determine, based on the modeled time series of discharge, whether or not a flash flood would have 240 

occurred. We defined the flash flood level as the discharge required to exceed bankfull flow (Sweeney, 1992), which we 241 

assumed was equal to the two-year flood (Leopold et al., 1964). To determine the discharge associated with the two-year flood, 242 

we performed a flood frequency analysis using HEC-SSP v2.2 (Bartles et al., 2019) based on annual maximum records at the 243 

USGS stream gage station (11098000). The discharge associated with the two-year flood at the stream gage station is 15.3 244 

m3/s, with a 95% confidence interval of 12.3-19.2 m3/s (Figure S3). A flash flood threshold by this definition can be viewed 245 

as conservative since it may only indicate the onset of minor flooding as water begins to spill out of the channel. Based on this 246 

definition, we then used two approaches to identify the rainfall ID threshold for flash floods (Figure 2).  247 

 248 

The first approach is based on a linear regression analysis that relates peak discharge with different rainfall ID metrics, namely 249 

𝐼𝐷
𝑗
 for different values of j and D. Using simulations of 170 rainfall-runoff events in each post-fire year, it is possible to 250 

determine a relationship for peak discharge (Q) as a function of 𝐼𝐷
𝑗
. Then, the rainfall ID threshold can be found by determining 251 
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the rainfall intensity at which the peak discharge exceeds the bankfull capacity. The simplest quantitative relation is a linear 252 

regression: 253 

𝑄 = 𝑚𝐼𝐷
𝑗 + 𝑘 (2) 

 254 

where Q is the peak discharge (m3/s) of a simulated hydrograph at the outlet, 𝐼𝐷
𝑗
 denotes rainfall intensity (mm/hr) for the 255 

rainstorm that produced the hydrograph, and m and k denote the slope and y-intercept of the linear regression, respectively. 256 

 257 

Considering the channel dimensions and resolution of the DEM used in the K2 model, we selected intensity-discharge (𝐼𝐷
𝑗
 -Q) 258 

pairs associated with Q greater than 2 m3/s. The parameters in the linear equation (1) with the maximum determination 259 

coefficient (R2
max) were estimated using least-squares linear regression in the SciPy Python library for the selected 𝐼𝐷

𝑗
-Q pairs. 260 

A total of 495 linear regressions were produced for each year because 𝐼𝐷
𝑗
 can take on 495 different values (5 durations, 99 261 

percentiles) for each rainstorm. For each post-fire year, we then identified the maximum R2 value for each duration as a 262 

function of percentile from 1st to 99th (Figure 3). The rainfall ID threshold for flash flooding in each year was found, for each 263 

duration, from the linear relation associated with the largest R2 (Figure 4). 264 

 265 

Figure 3: The determination coefficient (R2) associated with the linear regression between 𝑰𝑫
𝒋

and peak discharge in 266 

post-fire year 1, 2, 3, and 5. Data used to fit the linear relation is from events with peak discharge greater than 2 m3/s. 267 

 268 
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 269 

Fig. 4 The rainfall intensity threshold for flash flood derived from the best linear relation for different durations and 270 

percentiles of the most intensive rainfall field in post-fire year 1, 2, 3, and 5. 271 

 272 

The second approach for determining rainfall ID thresholds is based on a receiver operating characteristic (ROC) analysis 273 

following Staley et al. (2013). We assess the utility of a potential threshold (e.g. 𝐼30
50 = 20𝑚𝑚/ℎ𝑟), by computing the threat 274 

score (TS) associated with using that threshold to define the transition between rainstorms that produce flash floods and those 275 

that do not. The TS, as one of the ROC utility functions, measures the fraction of forecast events that were correctly predicted: 276 

𝑇𝑆 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (3) 

 277 
where TP, FP, and FN denote a true positive, false positive, and false negative, respectively. Flash flood occurrence (true or 278 

false) is determined by comparing the peak discharge of each simulated hydrograph with the flash flood level (15.3 m3/s). A 279 

TP represents an event where rainfall rates exceed the threshold (e.g. 𝐼30
50 = 20𝑚𝑚/ℎ𝑟), and a flash flood occurred. A FP 280 

represents an event where rainfall rates exceed the threshold, but no flash flood occurred. FN events occur when rainfall rates 281 

were below the threshold, yet a flash flood occurred. The optimal TS is 1, meaning use of the threshold resulted in no false 282 

positives or false negatives. 283 

 284 

For a given rainfall intensity metric (e.g. the peak 75th percentile of I30, 𝐼30
75, in year 1), we calculated TS for intensities ranging 285 

from 0-100 mm/hr at 0.01 mm/hr intervals (Figure 5). We then identified the threshold associated with the maximum TS 286 
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(TSmax). The intensity associated with TSmax is the optimal threshold for that rainfall metric (Figure 6). We determined the 287 

optimal threshold associated with each of the 495 rainfall metrics for each post-fire year (1,2,3, and 5) (Figure 7).   288 

 289 

 290 

Fig. 5 Threat score (TS) of the peak 75th percentile of I30 in post-fire year 1. (a) Relationship between rainfall intensity 291 

and TS; (b) Scatter plots of positive (flood, red circle) and negative (no flood, hollow circle) with the rainfall intensity 292 

associated with the maximum TS. 293 

 294 

 295 

Fig. 6 The threat scores (TSmax) associated with flood occurrence and 𝑰𝑫
𝒋

 in post-fire years 1, 2, 3, and 5. Data used to 296 

analyze is from events with peak discharge greater than 2 m3/s. 297 

 298 
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 299 

Fig. 7 The rainfall intensity threshold for flash flood derived from the maximum of TS for different durations and 300 

percentiles of the most intensive rainfall field in post-fire years 1, 2, 3, and 5. 301 

4 Results  302 

4.1 Optimal summary metrics for defining rainfall ID thresholds  303 

Linear regression analyses suggest that there is a stronger relationship between 𝐼𝐷
𝑗
 and peak discharge (Q) as j increases, with 304 

the exception of a rapid dropoff in R2
 for j>90 and durations (D) greater than 5 minutes (Figure 3). For durations of 5-15 min, 305 

R2 were low in the first 20-30 percentiles, then increased to 0.61-0.82 between the 30th-90th percentiles. Whereas the high R2 306 

interval for durations of 30 min and 60 min were with the largest value between 0.92-0.96 between the 60th-90th percentiles in 307 

year 1-5. The optimal rainfall threshold for flash floods (based on regressions of Q as a function of 𝐼𝐷
𝑗
) increased from 13.3 308 

mm/hr of 𝐼60
89 (the 89th percentile of 60 min peak rainfall field) in year 1 to 33.2 mm/hr of 𝐼30

76 (the 76th percentile of 30 min 309 

peak rainfall field) in year 5 (Figure 4; Table 2). More generally, averaging rainfall intensity over a duration of 30 minutes and 310 

choosing a percentile, j, of approximately 75-85 leads to threat scores of approximately 0.8 or greater for all post-fire years. 311 

None of the other rainfall summary metrics performed this well across all post-fire years. 312 

 313 

Table. 2 The optimal metrics of rainfall ID and corresponding rainfall thresholds for flash floods in post-fire year 1-5 314 

 Linear regression Receiver operating characteristic (ROC)  
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Year Rainfall 

metric 

Equation R2
max Intensity 

(mm/hr) 

Rainfall metric TSmax Intensity 

(mm/hr) 

1 𝐼60
89 𝑄 = 10.25 ∗ 𝐼60

89–121.27 0.958 13.3 𝐼60
85– 𝐼60

86 0.89 13.1-13.2 

2 𝐼30
81 𝑄 = 2.38 ∗ 𝐼30

81– 42.64 0.916 24.4 𝐼60
76– 𝐼60

95 0.88 20.4-25.0 

3 𝐼30
81 𝑄 = 1.91 ∗ 𝐼30

81– 41.92 0.917 30.0 𝐼30
75– 𝐼30

85 0.94 33.5-37.3 

5 𝐼30
76 𝑄 = 2.38 ∗ 𝐼30

76– 63.70 0.919 33.2 𝐼30
75– 𝐼30

79 0.94 35.1-36.3 

 315 

Note: We denote the peak jth percentile of ID (rainfall intensity over a duration D) as 𝐼𝐷
𝑗
. For example, 𝐼30

81 is the peak value of 316 

the 81st percentile of I30 (rainfall intensity over 30-min). 317 

 318 

Thresholds derived using the ROC method yielded broadly similar trends. The maximum threat score, TSmax, generally 319 

increased with j up to a point (approximately j=90) and then began to decrease regardless of the choice of duration (D) (Figure 320 

6). The highest threat scores (TS), regardless of post-fire year or duration, were generally associated with the 60th-95th 321 

percentiles. For events in years 1-2, the TSmax (0.88-0.89) occurs around 𝐼60
85 (the 85th percentile of the peak I60 rainfall field); 322 

for events in years 3-5, the TSmax (0.94) occurs 𝐼30
75-𝐼30

79 (the 75th-79th percentile of the peak I30 rainfall field). The optimal 323 

rainfall threshold for flash flood increased from 13.1 mm/hr of 𝐼60
85-𝐼60

86 (the 85th-86th percentile of 60 min peak rainfall field) 324 

in year 1 to 36.3 mm/hr of 𝐼30
75-𝐼30

79 (the 75th-79th percentile of 30 min peak rainfall field) in year 5 (Table 2; Figure 6). As with 325 

thresholds derived using the linear regression analysis, averaging rainfall intensity over a duration of 30 minutes and choosing 326 

a percentile, j, of approximately 75-85 leads to threat scores of approximately 0.8 or greater for all post-fire years. Other 327 

metrics did not perform this well, on average, across all post-fire years. 328 

4.2 Increases in rainfall intensity thresholds with time since fire 329 

The rainfall intensity thresholds at each percentile significantly increased from post-fire year 1 to 5 (Figures 4 and 7). However, 330 

the increase from year 1 to 2 is considerably larger than that from year 2 to 3 or from year 3 to year 5. Taking the 𝐼30
75 (the 75th 331 

percentile of the peak I30 rainfall field) as an example due to its strong performance as a threshold for all post-fire years, the 332 

thresholds based on linear regression analyses in year 1, 2, 3, and 5 are 14.0, 22.6, 27.8, and 32.9 mm/hr, respectively; the 333 

ROC-based 𝐼30
75 thresholds in year 1, 2, 3, and 5 are 15.0, 28.5, 33.5, and 35.0 mm/hr, respectively (Figure 7).  334 

 335 

We are also able to use the model to assess the individual impacts of temporal changes in Ksh and nc on temporal variations in 336 

the flash flood threshold. If Ksh is allowed to vary from year to year (Table 1) and nc is held fixed at its calibrated value for 337 

year 1, then ROC analysis indicates that the optimal threshold of 𝐼30
75  still increases with time since burning (Figure 8). 338 
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However, it increases slower than the case where both Ksh and nc are allowed to vary with time (Figure 8). If nc is allowed to 339 

vary from year to year (Table 1) and Ksh is held fixed at its calibrated value for year 1, then ROC analysis indicates that the 340 

optimal threshold associated with 𝐼30
75 increases from year 1 to year 2 but then stays roughly constant as time increases (Figure 341 

8). Therefore, changes in Ksh and nc both play important roles in determining the degree to which the flash flood threshold 342 

increases from year 1 to year 2, but that further increases in the threshold in years three and five are driven mainly by increases 343 

in Ksh as a function of time since burning.  344 

 345 

Figure 8: The ROC (receiver operating characteristic) based thresholds for 𝑰30
75 in each year with different model 346 

settings. Pairs of Ksh (saturated hydraulic conductivity on hillslopes) and nc (Manning’s n in channels) in each model 347 

are along with the data points.  348 

5 Discussion 349 

5.1 Implication of optimal metrics of rainfall intensity for flood warning 350 

Rain gage records, which provide rainfall intensity data at a single point, are often used to define rainfall ID thresholds in 351 

debris-flow and flash flood studies (e.g. Moody and Martin, 2001; Cannon et al. 2008; Cannon et al. 2011; Guzzetti et al. 352 

2008; Kean et al., 2011; Staley et al., 2013; Raymond et al., 2020; McGuire and Youberg, 2020). Using point source data to 353 

define thresholds for debris flows and flash floods is ideal when rainfall intensity does not vary substantially over the 354 

watershed, an assumption that is most appropriate for watershed areas less than several square kilometers. Radar-derived 355 

rainfall data has the advantage of providing spatially explicit information over an entire watershed at a high-temporal resolution 356 

(e.g. 5 minute).  However, one challenge in using radar-derived precipitation to define thresholds is the need to condense 357 

spatially and temporally variable rainfall intensity information down to a single rainfall intensity metric. Regardless of whether 358 

the approach to determining an ID threshold involves fitting empirical relationships (e.g., Moody and Martin, 2001; Cannon 359 
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et al., 2008) or using ROC analysis (e.g., Staley et al., 2013), a single metric is required to represent the rainfall intensity for 360 

each duration.  361 

 362 

We summarized spatially variable rainfall intensity data over the watershed by computing the peak value of 𝐼𝐷
𝑗 ሺ𝑡ሻ, the jth 363 

percentile of 𝐼𝐷ሺ𝑡ሻ for each rainstorm. We used two different techniques, one based on a linear regression analysis and one 364 

based on ROC analysis (Figure 2), to define thresholds for flash floods in post-fire years 1, 2, 3, and 5. Although the optimal 365 

metrics produced by the two approaches are not identical, they are generally similar in each post-fire year. In particular, high 366 

R2
 and TSmax values are associated with metrics of the peak 75th-85th percentile of rainfall intensity averaged over 30-60 minutes 367 

(𝐼𝐷
𝑗
 for 75 ≤ 𝑗 ≤ 85, 𝐷 = 30,60ሻ. In other words, a good indicator of the potential for a flash flood is the presence of intense 368 

pulses of rainfall over durations of 30-60 minutes that cover at least 15%-25% of the watershed (Figure 9). This finding 369 

highlights the ability of rainstorms to produce flash floods even if they don’t cover the majority of the watershed with intense 370 

rainfall. If rainfall over the majority of the watershed was required to produce flash floods, then we would expect that 𝐼𝐷
𝑗
 with 371 

j<50 would be a better predictor of flash floods. Previous work has also identified that 30-minute rainfall intensity works well 372 

for predicting flash floods and debris flows (Moody and Martin, 2001; Kean et al., 2011; Staley et al., 2013). The finding that 373 

𝐼30
𝑗

 and 𝐼60
𝑗

 work best as thresholds when 75 ≤ 𝑗 ≤ 85 could be helpful when issuing flash flood warnings based on radar-374 

derived precipitation estimates or data from several real-time rain gages within a watershed. Current operational forecast 375 

models such as the High Resolution Rapid Refresh model have a horizontal resolution of 3km and minimum temporal 376 

resolution of 15 minutes (Benjamin et al. 2016; NOAA 2021a), such that it is feasible to use 𝐼30
𝑗

 and 𝐼60
𝑗

  in an operational 377 

forecast setting. Where sufficient operational NEXRAD weather radar coverage is present, radar-derived precipitation 378 

estimates such as the MRMS (Zhang et al. 2016) can provide near-real-time precipitation estimates at 1 km and as fine as 15 379 

min temporal resolution (NOAA 2021b). In the case of poor radar coverage, gap-filling radars may be temporarily deployed 380 

or installed (e.g., Jorgensen et al. 2011; Cifelli et al. 2018) to provide information necessary for accurate precipitation estimates. 381 

While the magnitude of rainfall thresholds estimated here may only work for similar, recently burned watersheds within the 382 

San Gabriel Mountains, the use of metrics such as 𝐼30
75 as a reliable predictor of post-fire flash floods may be more general. 383 

Further testing is needed in watersheds with different watershed size, topographic characteristics, landscape, and burn severity 384 

patterns. 385 

 386 
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 387 

Figure 9: Snapshots of the spatial patterns of 𝑰30
75 of 34 unique storms. The peak jth percentile of ID (rainfall intensity 388 

over a duration D) is denoted as 𝑰𝑫
𝒋

. 𝑰30
75 is the peak value of the 75st percentile of I30 (rainfall intensity over 30-min). 389 

Red contours delineate the pixels with rainfall intensities larger than 𝑰30
75 of each storm. 390 

 391 

Several limitations are present in this work. First, we assess a small number of storm events (34) in the area as we are limited 392 

by the length of radar and gage records as well as and the number of events that impact the indicator rain gages. However, the 393 

advantage of using observed storms rather than using a rainfall generator (e.g., Zhao et al., 2019; Evin et al., 2018) is that our 394 

results represent spatial and temporal precipitation patterns that are physically realistic. Second, the challenges of radar 395 

observations and application of Z-R relationships to convert reflectivity to precipitation also presents challenges in accurately 396 

representing precipitation values. This can be addressed in future work through studies to constrain Z-R relationships for 397 
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storms producing intense rainfall in this region and through the deployment or installation of high-resolution gap-filling radars 398 

(e.g., Johnson et al. 2019).   399 

5.2 Increasing rainfall intensity thresholds with time since fire 400 

In this study we employed the K2 model calibrated by Liu et al. (2021) to parameterize hydrologic changes affecting Hortonian 401 

overland flow within a five-year period following fire. Hillslope saturated hydraulic conductivity (Ksh = 7.2 mm/hr) and 402 

hydraulic roughness in channels (nc = 0.087 s/m1/3) were lowest immediately after fire (Table 1), resulting in high runoff 403 

coefficients and low rainfall thresholds in post-fire year 1. In later years, with Ksh and nc gradually increasing (Table 1), more 404 

rainfall infiltrated into soil and there was increased attenuation of flood peaks. Simulations indicate that the number of flash-405 

flood-producing rainstorms decreased from 59 in year 1 to 25, 18, and 16 in years 2, 3, and 5, respectively. Runoff coefficients 406 

and peak discharge of simulated hydrographs also decreased with time since fire (Figure 10). Given the same precipitation 407 

ensemble, the likelihood of flash floods significantly decreased with time. The peak discharge produced by the highest intensity 408 

rainfall event with 𝐼60
75 of 51.8 mm/hr was 554.0 m3/s in the first year after the fire, which is three times greater than the peak 409 

discharges of 157.5 m3/s in year 3 and 161.2 m3/s in year 5 produced by the same rainstorm. From a flood hazard perspective, 410 

the downstream area may be exposed to a 1000-year flood under the recently burned condition (less than one year since the 411 

fire), whereas the discharge produced in years three and five would amount to roughly a 30- to 40-year flood (Figure S3).  412 

 413 

 414 

Figure 10: Box plots showing the runoff coefficient and peak discharge of flash floods in post-fire year 1, 2, 3, and 5. 415 

The numbers of flash floods in each year are displayed next to the box. 416 
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We were also able to perform numerical experiments to quantify the relative importance of temporal changes in Ksh and nc on 417 

temporal variations in the flash flood threshold (Figure 8). Results suggest that changes in vegetation and grain roughness, 418 

which are likely to influence nc, throughout the recovery process are less important for determining flash flood potential in our 419 

study area relative to changes to saturated hydraulic conductivity on hillslopes. It is worth noting that temporal changes in 420 

other model parameters (e.g., hydraulic roughness on hillslopes, capillary drive) may play more of a role in driving changes 421 

in post-fire flash flood thresholds in other settings. In this study, however, we focus on changes in Ksh and nc because Liu et 422 

al. (2021) were able to detect temporal changes in nc and Ksh through time and unable to detect similar temporal changes in 423 

other hydrologic parameters (e.g., hydraulic roughness on hillslopes, capillary drive) due to their relatively minor influence on 424 

runoff in the study watershed. 425 

 426 

In this study, the optimal flash flood thresholds increased from 𝐼30
75 =14.0-15.0 mm/hr in post-fire year 1, to 22.6-28.5 mm/hr 427 

in year 2, and 22.9-35.1 mm/hr in post-fire year 5 (Figure 4 and 7; Table 2). In the San Gabriel Mountains and nearby San 428 

Bernardino and San Jacinto Mountains, Cannon et al. (2008) estimated rainfall thresholds of I30=9.5 mm/hr and for flash floods 429 

and debris flows in the first winter rainy season following fire. They found that the thresholds for flash floods and debris flows 430 

increased to I30=19.8 mm/hr in post-fire year 2. The thresholds that we infer from hydrological modeling are greater than those 431 

reported by Cannon et al. (2008), which may be partly due to differences in (1) data and methods used and (2) the size of the 432 

studied watersheds. Our results are driven by a hydrologic model, forced with a radar precipitation ensemble that consists of 433 

170 rainstorms that contain a variety of storm types that impact southern California. The occurrence of a flash flood is based 434 

on exceedance of the maximum channel capacity and we summarize temporal changes in the rainfall ID threshold using 𝐼30
75 435 

since we find this to be a reliable metric for all post-fire years included in this study. In contrast, Cannon et al. (2008) 436 

established rainfall ID relations by using observations of rainstorms and hydrological response in the two years following fire 437 

in 87 small watersheds (0.2-4.6 km2). They base their thresholds on rainfall characteristics that produced either flash floods or 438 

debris flows whereas we focus solely on flash floods. In their dataset, flash floods and debris flows were identified by 439 

investigating flood and debris flow deposits at the outlet of those small watersheds in the field. Despite differences in the 440 

magnitude of the thresholds, the increase in the threshold from post-fire year 1 to year 2 in both studies are quite close. This 441 

agreement provides support for the use of simulation-based approaches to inform temporal shifts in rainfall ID thresholds.  442 

 443 

During the recovery process, increasing thresholds for flash floods and debris flows have also been identified in other areas at 444 

different scales by either observation- or simulation-based studies, such as hillslopes in the Colorado Front Range (Ebel, 2020) 445 

and small watersheds in Australia (Noske et al., 2016). The consistent increase in rainfall ID thresholds with time since fire in 446 

different geographic and ecological zones implies that hydraulic and hydrologic models may be useful tools for exploring how 447 

transient effects of fire translate into changes in water-related hazards. Particularly when historic data is limited and traditional 448 

empirical methods are impractical for defining thresholds, the role of hydraulic and hydrological models becomes more 449 

important.  450 
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6 Conclusions 451 

We used 250 m, 5-minute radar-derived precipitation estimates over a 41.5 km2 watershed in combination with a calibrated 452 

hydrological model to estimate the rainfall intensity thresholds for post-fire flash floods as a function of time since burning. 453 

The optimal threshold for predicting the occurrence of a flash flood in our study areas is the 75th-85th percentile of peak rainfall 454 

intensity averaged over 30-60 minutes, i.e., 𝐼30
75-𝐼30

85. In other words, a flash flood tends to be produced when rainfall intensity 455 

over 15%-25% of the watershed area exceeds a critical value. A threshold based on 𝐼30
75  performs consistently well for post-456 

fire years 1, 2, 3, and 5, although the magnitude of the threshold increases with time since burning. For the watershed studied, 457 

the 𝐼30
75 threshold increases from 14.0-15.0 mm/hr for year 1 to 22.6-28.5 mm/hr, 27.8-33.5 mm/hr, and 32.9-35.1 mm/hr, for 458 

years 2, 3, and 5 respectively. Increases in the threshold value of 𝐼30
75 can be primarily attributed to increases in Ksh rather than 459 

nc during the hydrological recovery process. The increase in the magnitude of the threshold from year 1 to year 2 is consistent 460 

with previous observations from nearby areas in southern California. Results provide a methodology for using radar-derived 461 

precipitation estimates and hydrological modeling to estimate flash flood thresholds for improved warning and mitigation of 462 

post-fire hydrologic hazards. Thresholds developed through these methods can then be built into operational tools that use 463 

incoming radar data to evaluate flash flood hazard in near-real time or precipitation forecasts to evaluate potential for flash 464 

flood hazard in burned watersheds.  465 
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