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Abstract. Rainfall intensity-duration (ID) thresholds are commonly used to assess flash flood potential downstream of burned 9 
watersheds. High-intensity and/or long-duration rainfall is required to generate flash floods as landscapes recover from fire, 10 
but there is little guidance on how thresholds change as a function of time since burning. Here, we force a hydrologic model 11 
with radar-derived precipitation to estimate ID thresholds for post-fire flash floods in a 41.5 km2 watershed in southern 12 
California, USA. Prior work in this study area constrains temporal changes in hydrologic model parameters, allowing us to 13 
estimate temporal changes in ID thresholds. Results indicate that ID thresholds increase by more than a factor of 2 from post-14 
fire year 1 to post-fire year 5. Thresholds based on averaging rainfall intensity over durations of 15-60 minutes perform better 15 
than those that average rainfall intensity over shorter time intervals. Moreover, thresholds based on the 75th percentile of radar-16 
derived rainfall intensity over the watershed perform better than thresholds based on the 25th or 50th percentile of rainfall 17 
intensity. Results demonstrate how hydrologic models can be used to estimate changes in ID thresholds following disturbance 18 
and provide guidance on the rainfall metrics that are best suited for predicting post-fire flash floods. 19 
  20 



2 

1 Introduction 21 

Heightened hydrologic responses are common within and downstream of recently burned areas, resulting in an increased 22 
likelihood of flash floods. Rainfall intensity-duration (ID) thresholds are commonly used to assess the potential for flash floods 23 
(Moody and Martin, 2001; Cannon et al., 2008). Many past studies aimed at defining thresholds for flash floods focus on the 24 
first 1-2 years following fire (Cannon et al., 2008; Wilson et al., 2018). Since the hydrologic impacts of fire are transient, 25 
rainfall ID thresholds associated with flash floods are likely to change as a watershed recovers (Ebel and Martin, 2017; Ebel 26 
and Moody, 2017; Moreno et al., 2019; Ebel, 2020). It may take more than a decade for hydrologic responses to return to pre-27 
fire levels, yet there is limited guidance on how the magnitude and utility of rainfall ID thresholds change with time since 28 
burning. Given the increased frequency and size of fire in many geographic and ecological zones (e.g. Gillett et al., 2004; 29 
Westerling et al., 2006; Kitzberger et al., 2017), it is of growing importance to quantify the best metrics for assessing flash-30 
flood potential in the immediate aftermath of fire as well as how these metrics change throughout the recovery process (e.g. 31 
Ebel, 2020). 32 
 33 
Rainfall ID thresholds for flash floods are typically defined using historic data that relates rainfall over different intensities 34 
and durations to an observed hydrologic response, namely the presence or absence of flooding (e.g. Cannon et al., 2008). Due 35 
to the stochastic nature of rainfall over burned areas and limited observations throughout the recovery process, there is a 36 
paucity of data that can be used to derive empirical thresholds for flash flooding beyond one year of recovery. Hazards 37 
associated with flash flooding, however, may exist downstream of burned areas well beyond one year of recovery. Wildfire 38 
alters rainfall-runoff partitioning and flood routing by incinerating vegetation and reducing interception capacity (Stoof et al., 39 
2012, Saksa et al., 2020), decreasing hydraulic roughness, and reducing soil infiltration capacity (Larsen et al., 2009, Ebel and 40 
Moody, 2013). Reductions in infiltration capacity are often attributed to fire-induced soil water repellency (Ebel and Moody, 41 
2013), which is generally strongest immediately following a fire and then decays over time scales ranging from one year to 42 
more than five years (Dyrness, 1976; Huffman et al., 2001; Larsen et al., 2009), though surface soil sealing (Larsen et al., 43 
2009) and hyper-dry conditions (Moody and Ebel, 2012) are also known to play important roles. Vegetation recovery, which 44 
may influence temporal changes in hydraulic roughness and canopy interception, can take five years or longer. Cannon et al. 45 
(2008) collected sufficient data over a two-year time period following fire in southern California, USA, to define separate 46 
rainfall ID thresholds for post-fire debris flows and flash floods in the first- and second-years following fire. They found that 47 
the ID thresholds for flash floods and debris flows may increase by as much as 25 mm/h after one year of recovery, a change 48 
that they attributed to a combination of vegetation growth and sediment removal as a result of rainstorms during the first post-49 
fire year.  50 
 51 
Rainfall ID thresholds are often defined over a range of durations, though averaging rainfall intensity over a particular duration 52 
may provide a more reliable threshold. Post-fire hydrological response in the first few years is often best related to rainfall 53 
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intensity over short durations (less than 60 min) (Staley et al., 2017; Moody and Martin, 2001). In their efforts to define rainfall 54 
ID thresholds for post-fire debris flows, Staley et al. (2013) showed that averaging rainfall intensities over durations between 55 
15 minutes and 60 minutes resulted in thresholds that performed better relative to those associated with longer durations. One 56 
potential explanation for this observation is that post-fire debris flows are often triggered by runoff in steep, low-order 57 
drainages, which both Kean et al. (2011) and Raymond et al. (2020) have found to be highly correlated with rainfall intensities 58 
averaged over similarly short time intervals (10-15 minutes). Moody and Martin (2001) have also documented a substantial 59 
increase in peak discharge following wildfire once the 30-minute rainfall intensity (I30) crossed a threshold value, suggesting 60 
that I30 may be a consistent predictor of flash flood activity in recently burned watersheds. Moody and Martin (2001) suggest 61 
that peak I30 can be used to set the threshold for early-warning flood systems. The optimal duration for defining post-fire flash 62 
floods thresholds, as well as how it may change with time, remains relatively unexplored. 63 
 64 
Rain gage records are typically used to derive rainfall ID thresholds for flash flood and post-fires debris flows (Staley et al., 65 
2013; Staley et al., 2017). Post-fire debris flows, however, tend to initiate in small (<1 km2), steep watersheds. In these small 66 
watersheds, the rainfall intensity responsible for initiating a debris flow can be characterized by a single rain gage installed 67 
near the initiation zone. Flash floods differ in that they tend to occur at larger spatial scales where rainfall is spatially variable 68 
and may not be adequately characterized by data from a single rain gage. Radar-derived precipitation estimates, which can 69 
provide high spatiotemporal resolution of rainfall intensity, present opportunities to develop basin-specific thresholds for post-70 
fire flash floods. However, high spatiotemporal variability in rainfall intensity also brings new challenges when employing 71 
radar-derived precipitation in flood warning practice. In particular, what is the best way to summarize spatially and temporally 72 
variable rainfall intensity information with a single metric that can be used as a threshold? How does hydrological recovery 73 
following fire influence the generation of flash floods and the metrics that are best suited for their prediction? Data-driven 74 
approaches to answering these and related questions may be hampered by limited monitoring of post-fire hydrologic response 75 
throughout the recovery period and the stochastic occurrence of rainfall over burned areas, which limits opportunities for 76 
observations. Given a well-constrained hydrologic model that accounts for changes associated with post-fire recovery, it is 77 
possible to use numerical experiments to understand relationships between time since burning, the spatiotemporal patterns of 78 
rainfall over a watershed, and the occurrence of flash floods. 79 
 80 
Here, we use observed patterns of spatially and temporally varying radar-derived rainfall estimates over a 41.5 km2 watershed 81 
in the San Gabriel Mountains of southern California, USA, to (1) determine the optimal method to define a rainfall ID threshold 82 
for flash floods, and (2) identify changes in rainfall ID thresholds for flash floods as a function of time since burning. The 83 
watershed, which we refer to as the upper Arroyo Seco, burned during the 2009 Station Fire (USDA Forest Service, 2009). 84 
Liu et al. (2021) used rain and stream gage data collected at different times following the fire to calibrate the KINEROS2 85 
hydrologic model for this watershed, enabling them to quantify temporal changes in model parameters as a function of time 86 
since burning. Combining this calibrated model with spatially explicit, radar-derived estimates of rainfall intensity during 34 87 
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rainstorms, we explore the utility of different rainfall ID metrics as flash flood thresholds and quantify temporal changes in 88 
those thresholds through the first five years of recovery. Results provide insight into the magnitude of temporal changes in 89 
flash flood thresholds in the densely populated, fire-prone region of southern California. Findings also provide guidance for 90 
the magnitude of change expected in rainfall ID thresholds for flash floods during the post-fire recovery period in chaparral-91 
dominated environments similar to southern California. More generally, results support the development of early warning 92 
systems for flash floods by identifying specific metrics that can be computed using spatially variable rainfall intensity estimates 93 
to assess the potential for flash flooding. The optimal rainfall ID metrics identified in this study could be helpful when issuing 94 
flash flood warnings based on radar-derived precipitation estimates or data from several real-time rain gages within a 95 
watershed. 96 

2 Study Area 97 

Figure 1: Modified from figure 1 in Liu et al. (2021) (a) The location of the upper Arroyo Seco watershed within California. The red 98 
triangle indicates the location of the USGS stream gage (11098000); (b) Shaded relief showing the study watershed with the USGS 99 
stream gage (red triangle; 34°13 20”, -118°10 36”); (c) Soil burn severity for the 2009 Station fire. Burn severity percentages are for 100 

planform area within each category. 101 
 102 
The upper Arroyo Seco watershed drains the 41.5 km2 area above USGS stream gage station (11098000) near Pasadena in the 103 
San Gabriel Mountains (Figure 1). The upper Arroyo Seco was burned in the August-October 2009 Station Fire, which burned 104 
more than 80% of the watershed at moderate to high soil burn severity (USDA Forest Service, 2009). Dominant shrubs and 105 
chaparral, such as chamise (Adenostoma fasciculatum) and manzanita (Arctostaphylos spp.), were completely consumed with 106 
severe soil heating in isolated patches throughout many areas burned at moderate to high severity (USDA Forest Service, 107 
2009). Soils in this area are typically sand and silty-sand textured and thin (<1 m) with partial exposure of bedrock (Staley et 108 
al., 2014). The majority of rainfall in the study area typically occurs in the cool season, between December and March, while 109 
warm, dry conditions dominate from April to early November. The San Gabriel Mountains also experience some of the most 110 
frequent short-duration, high-intensity rainfall in the state (Oakley et al., 2018a). 111 
 112 
Due to wildfire-induced changes in surface conditions, including canopy cover and soil-hydraulic properties, runoff generation 113 
in the first year following the fire was likely dominated by infiltration excess overland flow (Schmidt et al., 2011, Liu et al., 114 
2021). Enhanced soil water repellency (SWR), which helps promote low infiltration capacity, and extensive dry ravel, which 115 
loads channels with fine-grained hillslope sediment, are both commonly observed after fires in the San Gabriel Mountains 116 
(e.g., Watson and Letey, 1970; Hubbert and Oriol, 2005; Lamb et al., 2011; Hubbert et al., 2012). Rengers et al. (2019) 117 
calibrated a hydrologic model using data from small watersheds (0.01-2 km2) burned by the Station Fire and found relatively 118 
low values for saturated hydraulic conductivity (Ks), generally between 2-10 mm/h. These results are consistent with values 119 
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for saturated hydraulic conductivity inferred by Liu et al. (2021) via model calibration in the upper Arroyo Seco watershed. 120 
The impact of dry ravel, which reduces grain roughness in the channel network, and reduced vegetation density led to estimates 121 
of Manning s n in the channels of the upper Arroyo Seco of approximately 0.09 s m-1/3 in the first year following fire (Liu et 122 

al., 2021). These hydrologic changes led to widespread flooding and debris flows during multiple rainstorms in the first winter 123 
after the fire (Kean et al., 2011; Oakley et al., 2017). As hydrologic recovery began over the next several years, the watershed-124 
scale Ks and Manning s n generally increased and likely started to mitigate the flash flood risk (Liu et al., 2021).  125 

3 Data and Methods 126 

3.1 Radar-derived precipitation  127 

Weather radar coverage is adequate for estimating rainfall over the study area (NOAA 2021), and radars have been operational 128 
since the mid-1990s. This allows us to utilize observed data to capture temporal and spatial characteristics of storms impacting 129 
the study area, a region of complex terrain. We sought to identify storms in the study area that produced moderate-to-high 130 
intensity rainfall to use as inputs to a hydrologic model to simulate flood responses. Storm events were selected within the 131 
period for which observations are archived for the two operational NWS Next‐Generation Weather Radar installations 132 
(NEXRAD; NOAA 1991) that cover the study area, KSOX, (Santa Ana), and KVTX (Ventura). Archives for the radars begin 133 
in 1997 and 1995, respectively.  134 
 135 
We compiled storm events starting with those known to have produced high intensity rainfall and a debris flow response in 136 
the San Gabriel Mountains (e.g., Table 1 in Oakley et al., 2017) as well as other storms that produced high-intensity rainfall 137 
in the region (e.g., Oakley et al., 2018b, Cannon et al., 2018). We then used hourly rainfall observations from the Clear Creek 138 
(2002-present), San Rafael Hills (2005-present), and Heninger Flats (2010-present) Remote Automated Weather Stations 139 
(RAWS, acquired from raws.dri.edu) as indicator gages for the study area. This further limited us to post-2002 events outside 140 
of the literature. All gages are <10 km from the watershed of interest; there were no long-record gages within the watershed. 141 
We used 15 mm/h as a threshold for moderate to high intensity rainfall and extracted all events from the gage record meeting 142 
or exceeding this value to develop a list of events of interest. This threshold generally corresponds with a 1-year average 143 
recurrence interval storm event in the study area (NOAA Atlas 14). This value falls between the California-Nevada River 144 
Forecast Center’s flash flood guidance for unburned areas in the region (~22-25 mm/h; CNRFC 2021) and regional thresholds 145 
for post-wildfire debris flows in this region at a point (12.7 mm/h, Cannon et al. 2008; Staley et al. 2013). This threshold 146 
allows us to focus on storms that have a high potential to generate floods, while keeping the number of storms to a manageable 147 
level for data processing. We reviewed the radar data for these events at which point some of the selected events could not be 148 
utilized due to radar outages or poor data quality. This exercise presented us with 34 storm events (Table S1). 149 
 150 
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Various atmospheric processes may contribute to generation of moderate-to-high rainfall intensities (e.g., Oakley et al., 2017), 151 
resulting in differing spatial and temporal precipitation patterns over a burn area. To ensure the events selected captured 152 
variability in spatial and temporal precipitation characteristics, we evaluated the spatial characteristics of the events. We found 153 
rainfall patterns could generally be categorized into four main spatial patterns at the scale of several tens of kilometers: (1) a 154 
broad pattern, a contiguous area of moderate-to-high intensity precipitation (>45 dBZ) spanning tens of kilometers; (2) a 155 
scattered pattern with numerous cells of moderate to high precipitation that are not spatially continuous; (3) an isolated pattern, 156 
with one to a few isolated cells of moderate-to-high intensity rainfall separated by non-precipitating areas several to tens of 157 
kilometers in extent; (4) a narrow cold frontal rainband (NCFR)—a north-south oriented narrow band (~3-5 km wide, tens to 158 
100 km in length) of very high intensity rainfall (e.g., Oakley et al., 2018b; Cannon et al., 2020; Figure S1 in Supplement). At 159 
the <10 km horizontal scale (the scale of the watershed), it was harder to identify meaningful patterns and distinctions, though 160 
the larger scale signals imply varying spatial and temporal patterns of precipitation as each pass over the watershed. A table 161 
of storm events and their characteristics is available in Table S1 in the Supplement.  162 
 163 
An approximate start and end time were determined for each event using the Clear Creek RAWS gauge as an indicator. Start 164 
time was determined by identifying the time of maximum 1h rainfall in the event and going back in time to the first of three 165 
consecutive hours of >1.5 mm/h precipitation. The end of an event was determined as the last hour where precipitation dropped 166 
below 3 mm/h for at least two consecutive hours.  167 
 168 
Level-II base reflectivity (https://www.ncdc.noaa.gov/wct/) between the start and end time of each event was downloaded 169 
from both the KSOX and KVTX radars. The data were used to generate spatially-distributed precipitation over the study area. 170 
Radar imagery concurrent with the gauge-based record of high intensity rainfall events was converted to a composite maximum 171 
reflectivity product at 250 m spatial and 5-minute temporal resolution. Conversion of radar reflectivity to rain rate required 172 
the application of an empirically derived reflectivity (Z) to rain rate (R) relationship (e.g. Marshall and Palmer 1948). The Z-173 
R relationship is conventionally represented by the equation Z = aRb, which includes parameters a and b to account for 174 
variations in precipitation for a given reflectivity arising from differences in the drop size distribution. Due to the lack of 175 
previous studies investigating Z-R relationships in precipitating conditions over the region of interest, there are no standard a 176 
and b parameters to apply to the reflectivity data analyzed here. Thus, five well-known and previously published Z-R 177 
relationships were applied to the gridded reflectivity values. Supplement S3 lists the different Z-R relationships applied here 178 
and the general conditions for which they are suitable. Although the Z-R relationships used here are not based on observations 179 
from the present study’s region of interest, the variation of a and b parameters yields an estimate of precipitation uncertainty. 180 
It is worth noting that a number of additional sources of radar measurement uncertainty exist that are not evaluated in depth 181 
here, including beam broadening, topographic blocking and scan elevation. However, this was not of primary concern since 182 
the goal of this study was to generate realistic spatial and temporal patterns of rainfall over the watershed with varying intensity 183 

https://urldefense.com/v3/__https:/www.ncdc.noaa.gov/wct/__%3B!!Mih3wA!X1DvmIuCmYzbxak9chC-fd2x1dYcJ4t0PLmeEUkPtwNaPDr89sq4sswsogMHR4U$
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that could be used to force the KINEROS2 hydrologic model. The goal was not to reproduce the observed hydrologic response 184 
resulting from a particular set of rainstorms. 185 
 186 
As a range of precipitation intensities for each storm result from the application of the five different Z-R relationships (e.g., 187 
Figure S2 in Supplement), we utilize these as plausible storms of varying precipitation intensity to increase our storm sample 188 
size, such that we apply 34 storms * 5 Z-R relations = 170 precipitation scenarios as inputs to KINEROS2. These 170 scenarios 189 
were then processed for ingestion into KINEROS2 (Figure 2). 190 
 191 
Figure 2: Delineation of rainfall intensity-duration threshold for post-fire flash flood 192 

 193 

3.2 Summary metrics for spatially and temporally varying rainfall 194 

In search of a spatiotemporel summary metric that may serve as a reliable flash flood threshold, we begin by describing a 195 
methodology to summarize spatially and temporally varying rainfall over a watershed. For a given rainstorm, the rainfall 196 
intensity time series at a single point, such as a single radar pixel, can be summarized by computing a moving average of 197 
intensity over a specified duration, D. Letting t denote time and R denote the cumulative rainfall (mm), we define the rainfall 198 
intensity over a duration D at any given pixel within the watershed as  199 

𝐼𝐼𝐷𝐷(𝑡𝑡) =
𝑅𝑅(𝑡𝑡) − 𝑅𝑅(𝑡𝑡 − 𝐷𝐷)

𝐷𝐷
 (1) 

 200 
Here, we compute 𝐼𝐼𝐷𝐷(𝑡𝑡) for each pixel for durations of 5, 10, 15, 30, and 60 minutes. Since the intensity in each radar pixel 201 
could have a unique value, we also need a way to summarize 𝐼𝐼𝐷𝐷(𝑡𝑡) in space. One option would be to take the median of 𝐼𝐼𝐷𝐷(𝑡𝑡) 202 
to determine a typical value of 𝐼𝐼𝐷𝐷 within the watershed at each time, t. However, the median may not be a good predictor of 203 
flash flooding since one could envision a scenario where it is only raining over 1/3 of the watershed, yet it is raining with 204 
sufficient intensity to generate a flash flood. We therefore compute the jth percentile of 𝐼𝐼𝐷𝐷(𝑡𝑡) at each time, t, for j between 1 205 

and 99. We denote the jth percentile of 𝐼𝐼𝐷𝐷(𝑡𝑡) as 𝐼𝐼𝐷𝐷
𝑗𝑗 (𝑡𝑡). For each rainstorm, we focus our analysis on the peak value of 𝐼𝐼𝐷𝐷

𝑗𝑗 (𝑡𝑡) 206 

which we denote as 𝐼𝐼𝐷𝐷
𝑗𝑗 . As an example, 𝐼𝐼30

50 would be computed by defining I30 for all radar time steps within a rainstorm, 207 
determining the median value of I30 over the watershed at each of those time steps, and then taking the maximum of that time 208 

series of median I30 intensities. This analysis yields 495 different metrics (𝐼𝐼𝐷𝐷
𝑗𝑗  for j=1,2,…,99 and D=5,10,15,30,60) that 209 

summarize spatially and temporally varying rainfall intensities over the watershed. In the following sections, we describe how 210 

we test the utility of each of these 495 different metrics as a flash flood threshold. A threshold defined by 𝐼𝐼𝐷𝐷
𝑗𝑗  would denote a 211 

threshold where (100-j)% of the watershed experiences rainfall of duration D with an intensity of I or greater. 212 
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3.3 Hydrological modeling 213 

We used the KINEROS2 (K2) hydrological model to simulate the rainfall partitioning, overland flow generation, and flood 214 
routing in the upper Arroyo Seco watershed. K2 is an event-scale, distributed-parameter, process-based watershed model, 215 
which has been used extensively for rainfall-runoff processes in semi-arid and arid watersheds (Smith et al., 1995; Goodrich 216 
et al., 2012). Liu et al. (2021) used rain gage data in combination with the USGS stream gage installed at the outlet of the 217 
upper Arroyo Seco watershed to calibrate K2 during different stages of the post-fire recovery process. We use the same model 218 
setup for simulations in this study. In particular, the 41.5 km2 watershed was discretized into 1289 hillslope planes and these 219 
planes were connected by a stream network of 519 channel segments based on a one-meter LiDAR-derived digital elevation 220 
model (DEM). After accounting for a fixed interception depth of 2.97 mm based on land cover look-up table in the Automated 221 
Geospatial Watershed Assessment toolkit (AGWA; Miller et al., 2007), infiltration of rainfall into soil is represented using the 222 
Parlange et al. (1982) approximation. Overland flow and channel flow are modeled by kinematic wave equations. Both 223 
saturated hydraulic conductivity on hillslopes (Ksh) and hydraulic roughness in channels (nc) primarily determine runoff 224 
generation and the shape of hydrograph, including total runoff volume, peak discharge rate, time to peak (Canfield et al., 2005; 225 
Yatheendradas et al., 2008; Menberu et al., 2019). Other parameters, such as hydraulic roughness (nh) and capillary drive (Gh) 226 
on hillslopes, had a relatively minor impact on modelled runoff after the Station Fire in the upper Arroyo Seco watershed (Liu 227 
et al., 2021).  228 
 229 
Table 1. Summary of model parameters for post-fire year 1, 2, 3, and 5. The saturated hydraulic conductivity on 230 
hillslopes (Ksh) and hydraulic roughness in channels (nc) are the average of values calibrated in post-fire years 1, 2, 231 
3, and 5 (Liu et al., 2021)  232 
 233 
Liu et al. (2021) found that both Ksh and nc were lowest immediately after the fire. Ksh increased, on average, by approximately 234 
4 mm/h/yr during the first five years of recovery, whereas nc increased by more than a factor of two after 1 year of recovery 235 
and then remained relatively constant. We focus here on simulating the response to rainfall in the first five years following the 236 
fire where the watershed is likely most vulnerable to extreme responses. To represent the temporal changes in Ksh and n 237 
documented by Liu et al. (2021) following the fire, we used different values of Ksh and nc for each post-fire year (i.e. post-fire 238 
years 1, 2, 3, and 5) based on the values calibrated by Liu et al. (2021) in post-fire years 1, 2, 3, and 5 (Table. 1). Liu et al. 239 
(2021) were unable to calibrate the necessary K2 parameters in post-fire year 4 so we do not perform any simulations to 240 
constrain flash flood thresholds in that year. Initial soil moisture is set to a volumetric soil-water content of 0.1, following Liu 241 
et al. (2021). Other parameters were also given the same values as the calibrated K2 model, including saturated hydraulic 242 
conductivity of channels (1 mm/hr), net capillary drive of channels (5 mm), hydraulic roughness of hillslopes (0.1 s/(m1/3)), 243 
net capillary drive of hillslopes (50 mm), and soil porosity of 0.4. With this model set-up, we simulate the response to each of 244 
the 170 rainstorms for post-fire years 1, 2, 3, and 5.  245 
 246 
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3.4 Rainfall intensity-duration thresholds 247 

Each K2 simulation results in a modeled hydrograph at the watershed outlet. As a first step towards defining a flash flood 248 
threshold, it is necessary to determine, based on the modeled time series of discharge, whether or not a flash flood would have 249 
occurred. We defined the flash flood level as the discharge required to exceed bankfull flow (Sweeney, 1992), which we 250 
assumed was equal to the two-year flood (Leopold et al., 1964). To determine the discharge associated with the two-year flood, 251 
we performed a flood frequency analysis using HEC-SSP v2.2 (Bartles et al., 2019) based on annual maximum records at the 252 
USGS stream gage station (11098000). The discharge associated with the two-year flood at the stream gage station is 15.3 253 
m3/s, with a 95% confidence interval of 12.3-19.2 m3/s (Figure S3). A flash flood threshold by this definition can be viewed 254 
as conservative since it may only indicate the onset of minor flooding as water begins to spill out of the channel. Based on this 255 
definition, we then used two approaches to identify the rainfall ID threshold for flash floods (Figure 2).  256 
 257 
The first approach is based on a linear regression analysis that relates peak discharge with different rainfall ID metrics, namely 258 
𝐼𝐼𝐷𝐷
𝑗𝑗  for different values of j and D. Using simulations of 170 rainfall-runoff events in each post-fire year, it is possible to 259 

determine a relationship for peak discharge (Q) as a function of 𝐼𝐼𝐷𝐷
𝑗𝑗 . Then, the rainfall ID threshold can be found by determining 260 

the rainfall intensity at which the peak discharge exceeds the bankfull capacity. The simplest quantitative relation is a linear 261 
regression: 262 

𝑄𝑄 = 𝑚𝑚𝐼𝐼𝐷𝐷
𝑗𝑗 + 𝑘𝑘 (2) 

 263 
where Q is the peak discharge (m3/s) of a simulated hydrograph at the outlet, 𝐼𝐼𝐷𝐷

𝑗𝑗  denotes rainfall intensity (mm/hr) for the 264 
rainstorm that produced the hydrograph, and m and k denote the slope and y-intercept of the linear regression, respectively. 265 
 266 
Considering the channel dimensions and resolution of the DEM used in the K2 model, we selected intensity-discharge (𝐼𝐼𝐷𝐷

𝑗𝑗  -Q) 267 
pairs associated with Q greater than 2 m3/s. The flow depth associated a with Q less than 2 m3/s would be very small and any 268 
impact from such flow would be negligible. The parameters in the linear equation (1) with the maximum determination 269 
coefficient (R2

max) were estimated using least-squares linear regression in the SciPy Python library for the selected 𝐼𝐼𝐷𝐷
𝑗𝑗 -Q pairs. 270 

A total of 495 linear regressions were produced for each year because 𝐼𝐼𝐷𝐷
𝑗𝑗  can take on 495 different values (5 durations, 99 271 

percentiles) for each rainstorm. For each post-fire year, we then identified the maximum R2 value for each duration as a 272 
function of percentile from 1st to 99th (Figure 3). The rainfall ID threshold for flash flooding in each year was found, for each 273 
duration, from the linear relation associated with the largest R2 (Figure 4). 274 
 275 
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Figure 3: The determination coefficient (R2) and 95% confidence interval associated with the linear regression between 276 
𝑰𝑰𝑫𝑫
𝒋𝒋 and peak discharge in post-fire year 1, 2, 3, and 5. Data used to fit the linear relation are from events with peak 277 

discharge greater than 2 m3/s. 278 
 279 
Figure 4: The rainfall intensity-duration threshold for flash flood derived from the best linear relation for different 280 
durations and percentiles of the most intense rainfall field in post-fire year 1, 2, 3, and 5. 281 
 282 
We also estimated the 95% confidence interval (CI) of both R2 and the rainfall ID threshold by performing bootstrapping 283 
resampling on 170 rainfall-runoff events for each year. The number of replications is 50. The 95% CI was constructed with 284 
the 2.5 percentile and the 97.5 percentile of the ranked R2 or rainfall ID threshold.  285 
 286 
The second approach for determining rainfall ID thresholds is based on a receiver operating characteristic (ROC) analysis 287 
following Staley et al. (2013). We assess the utility of a potential threshold (e.g. 𝐼𝐼3050 = 20 𝑚𝑚𝑚𝑚/ℎ𝑟𝑟), by computing the threat 288 
score (TS) associated with using that threshold to define the transition between rainstorms that produce flash floods and those 289 
that do not. The TS, as one of the ROC utility functions, measures the fraction of forecast events that were correctly predicted: 290 

𝑇𝑇𝑇𝑇 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹
 (3) 

 291 
where TP, FP, and FN denote a true positive, false positive, and false negative, respectively. Flash flood occurrence (true or 292 
false) is determined by comparing the peak discharge of each simulated hydrograph with the flash flood level (15.3 m3/s). A 293 
TP represents an event where rainfall rates exceed the threshold (e.g. 𝐼𝐼3050 = 20𝑚𝑚𝑚𝑚/ℎ𝑟𝑟), and a flash flood occurred. A FP 294 
represents an event where rainfall rates exceed the threshold, but no flash flood occurred. FN events occur when rainfall rates 295 
were below the threshold, yet a flash flood occurred. The optimal TS is 1, meaning use of the threshold resulted in no false 296 
positives or false negatives. 297 
 298 
For a given rainfall intensity metric (e.g. the peak 75th percentile of I30, 𝐼𝐼3075, in year 1), we calculated TS for intensities ranging 299 
from 0-100 mm/hr at 0.01 mm/hr intervals (Figure 5). We then identified the threshold associated with the maximum TS 300 
(TSmax). The intensity associated with TSmax is the optimal threshold for that rainfall metric (Figure 6). We determined the 301 
optimal threshold associated with each of the 495 rainfall metrics for each post-fire year (1,2,3, and 5) (Figure 7). We also 302 
estimated the 95% CI of TS and rainfall ID threshold for each year by performing bootstrapping resampling with 50 303 
replications.  304 
 305 
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Figure 5: Threat score (TS) of the peak 75th percentile of I30 in post-fire year 1. (a) Relationship between rainfall 306 
intensity and TS; (b) Scatter plots of positive (flood, red circle) and negative (no flood, hollow circle) with the rainfall 307 
intensity associated with the maximum TS. 308 
 309 
Figure 6: The threat scores (TSmax) associated with flood occurrence and 𝑰𝑰𝑫𝑫

𝒋𝒋  in post-fire years 1, 2, 3, and 5. Data used 310 
to analyze is from events with peak discharge greater than 2 m3/s. 311 
 312 
Figure 7: The rainfall intensity threshold for flash flood derived from the maximum of TS for different durations and 313 
percentiles of the most intensive rainfall field in post-fire years 1, 2, 3, and 5. 314 

4 Results  315 

4.1 Optimal summary metrics for defining rainfall ID thresholds  316 

Linear regression analyses suggest that there is a stronger relationship between 𝐼𝐼𝐷𝐷
𝑗𝑗  and peak discharge (Q) as j increases, with 317 

the exception of a rapid dropoff in R2
 for j>95 (Figure 3). In post-fire year 1, the maximum R2 increases with duration (D) 318 

from a value of 0.72 associated with 𝐼𝐼0595, to 0.75 associated with 𝐼𝐼1085, 0.80 associated with 𝐼𝐼1572 − 𝐼𝐼1587, 0.87 associated with 𝐼𝐼3081, 319 
to 0.89 associated with 𝐼𝐼6089. In post-fire years 2-5, the R2 values associated with durations of 5 min, 10 min, and 15 min were 320 
maximized (0.79-0.86) within a window from the 60th-95th percentiles. The optimal rainfall threshold for flash floods (based 321 
on regressions of Q as a function of 𝐼𝐼𝐷𝐷

𝑗𝑗 ) increased from 10.1 mm/hr of 𝐼𝐼6089 (the 89th percentile of 60 min peak rainfall field) in 322 
year 1 to 44.6 mm/hr of 𝐼𝐼1590 (the 90th percentile of 15 min peak rainfall field) in year 5 (Figure 4; Table 2). More generally, 323 
averaging rainfall intensity over a duration of 15 minutes and choosing a percentile, j, of approximately 75-90 produced an R2 324 
of approximately 0.80 or greater for all post-fire years (Figure 3). None of the other rainfall summary metrics performed this 325 
well across all post-fire years.  326 
 327 
Table. 2 The linear regression-based optimal rainfall ID metrics and corresponding rainfall thresholds for flash floods 328 
in post-fire years 1-5 329 
 330 
Table. 3 The ROC-based optimal metrics of rainfall ID and corresponding rainfall thresholds for flash floods in post-331 
fire year 1-5 332 
 333 
Thresholds derived using the ROC method yielded broadly similar trends. The maximum threat score, TSmax, generally 334 
increased with j up to a point (approximately j=90) and then began to decrease regardless of the choice of duration (D) (Figure 335 
6). The highest threat scores (TS), regardless of post-fire year or duration, were generally associated with the 70th-95th 336 
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percentiles. For events in years 1-2, TSmax (0.90) occurs between 𝐼𝐼6076 and 𝐼𝐼6086 (the 76th -86th percentile of the peak I60 rainfall 337 
field); for events in years 3-5, the TSmax (0.94-0.96) occurs around 𝐼𝐼3075 (the 75th percentile of the peak I30 rainfall field). The 338 
optimal rainfall threshold for a flash flood increased from 𝐼𝐼6086 = 12.9 mm/hr  (the 86th percentile of 60 min peak rainfall field) 339 
in year 1 to 𝐼𝐼3076 = 34.9 mm/hr (the 76th percentile of 30 min peak rainfall field) in year 5 (Table 3; Figure 6). Averaging 340 
rainfall intensity over a duration of 30 minutes and choosing a percentile, j, of approximately 75-90 leads to threat scores of 341 
approximately 0.8 or greater for all post-fire years. Other metrics did not perform this well, on average, across all post-fire 342 
years. 343 

4.2 Increases in rainfall intensity thresholds with time since fire 344 

The rainfall intensity thresholds at each percentile increased substantially from post-fire year 1 to 5 (Figures 4 and 7). However, 345 
the increase from year 1 to 2 is considerably larger than that from year 2 to 3 or from year 3 to year 5. Taking the 𝐼𝐼3075 (the 75th 346 
percentile of the peak I30 rainfall field) as an example due to its strong performance as a threshold for all post-fire years, the 347 
thresholds based on linear regression analyses in year 1, 2, 3, and 5 are 16.8, 23.2, 26.9, and 27.6 mm/hr, respectively; the 348 
ROC-based 𝐼𝐼3075 thresholds in year 1, 2, 3, and 5 are 16.0, 26.9, 32.6, and 34.5 mm/hr, respectively (Figure 7).  349 
 350 
We are also able to use the model to assess the individual impacts of temporal changes in Ksh and nc on temporal variations in 351 
the flash flood threshold. If Ksh is allowed to vary from year to year (Table 1) and nc is held fixed at its calibrated value for 352 
year 1, then ROC analysis indicates that the optimal threshold of 𝐼𝐼3075 still increases with time since burning (Figure 8). 353 
However, it increases slower than the case where both Ksh and nc are allowed to vary with time (Figure 8). If nc is allowed to 354 
vary from year to year (Table 1) and Ksh is held fixed at its calibrated value for year 1, then ROC analysis indicates that the 355 
optimal threshold associated with 𝐼𝐼3075 increases from year 1 to year 2 but then stays roughly constant as time increases (Figure 356 
8). Therefore, changes in Ksh and nc both play important roles in determining the degree to which the flash flood threshold 357 
increases from year 1 to year 2, but further increases in the threshold in years three through five are driven mainly by increases 358 
in Ksh as a function of time since burning.  359 
 360 
Figure 8: The ROC (receiver operating characteristic) based thresholds for 𝑰𝑰3075 in each year with different model 361 

settings. Pairs of Ksh (saturated hydraulic conductivity on hillslopes) and nc (Manning s n in channels) in each model 362 

are along with the data points.  363 
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5 Discussion 364 

5.1 Optimal metrics of rainfall intensity and duration for flood warning 365 

Rain gage records, which provide rainfall intensity data at a single point, are often used to define rainfall ID thresholds in 366 
debris-flow and flash flood studies (e.g. Moody and Martin, 2001; Cannon et al., 2008; Cannon et al., 2011; Guzzetti et al., 367 
2008; Kean et al., 2011; Staley et al., 2013; Raymond et al., 2020; McGuire and Youberg, 2020). Using point source data to 368 
define thresholds for debris flows and flash floods is ideal when rainfall intensity does not vary substantially over the 369 
watershed, an assumption that is most appropriate for watershed areas less than several square kilometers. Radar-derived 370 
rainfall data has the advantage of providing spatially explicit information over an entire watershed at a high-temporal resolution 371 
(e.g. 5 minute). However, one challenge in using radar-derived precipitation to define thresholds is the need to condense 372 
spatially and temporally variable rainfall intensity information down to a single rainfall intensity metric. Regardless of whether 373 
the approach to determining an ID threshold involves fitting empirical relationships (e.g., Moody and Martin, 2001; Cannon 374 
et al., 2008) or using ROC analysis (e.g., Staley et al., 2013), a single metric is required to represent the rainfall intensity for 375 
each duration.  376 
 377 
We summarized spatially variable rainfall intensity data over the watershed by computing the peak value of 𝐼𝐼𝐷𝐷

𝑗𝑗(𝑡𝑡), the jth 378 
percentile of 𝐼𝐼𝐷𝐷(𝑡𝑡) for each rainstorm. We used two different techniques, one based on a linear regression analysis and one 379 
based on ROC analysis (Figure 2), to define thresholds for flash floods in post-fire years 1, 2, 3, and 5. Although the optimal 380 
metrics produced by the two approaches are not identical, they are generally similar in each post-fire year. In particular, high 381 
R2

 and TSmax values are associated with metrics of the peak 75th-85th percentile of rainfall intensity averaged over 15-60 minutes 382 
(𝐼𝐼𝐷𝐷
𝑗𝑗  for 75 ≤ 𝑗𝑗 ≤ 85,𝐷𝐷 = 15,30,60). In other words, a good indicator of the potential for a flash flood is the presence of 383 

intense pulses of rainfall over durations of 15-60 minutes that cover at least 15%-25% of the watershed (Figure 9). This finding 384 
highlights the ability of rainstorms to produce flash floods even if they don’t cover the majority of the watershed with intense 385 
rainfall. If rainfall over the majority of the watershed was required to produce flash floods, then we would expect that 𝐼𝐼𝐷𝐷

𝑗𝑗  with 386 
j<50 would be a better predictor of flash floods.  387 
 388 
Previous work has also identified that 30-minute rainfall intensity works well for predicting flash floods and debris flows 389 
(Moody and Martin, 2001; Kean et al., 2011; Staley et al., 2013). The finding that 𝐼𝐼15

𝑗𝑗 , 𝐼𝐼30
𝑗𝑗  and 𝐼𝐼60

𝑗𝑗  work best as thresholds when 390 
75 ≤ 𝑗𝑗 ≤ 85 could be helpful when issuing flash flood warnings based on radar-derived precipitation estimates or data from 391 
several real-time rain gages within a watershed. Current operational forecast models such as the High Resolution Rapid Refresh 392 
model have a horizontal resolution of 3 km and minimum temporal resolution of 15 minutes (Benjamin et al., 2016; NOAA 393 
2021a), such that it is feasible to use either 𝐼𝐼15

𝑗𝑗 , 𝐼𝐼30
𝑗𝑗 or 𝐼𝐼60

𝑗𝑗  in an operational forecast setting. Where sufficient operational 394 
NEXRAD weather radar coverage is present, radar-derived precipitation estimates such as the MRMS (Zhang et al., 2016) can 395 
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provide near-real-time precipitation estimates at 1 km and as fine as 15 min temporal resolution (NOAA 2021b). In the case 396 
of poor radar coverage, gap-filling radars may be temporarily deployed or installed (e.g., Jorgensen et al., 2011; Cifelli et al., 397 
2018) to provide information necessary for accurate precipitation estimates. While the magnitude of rainfall thresholds 398 
estimated here may only work for similar, recently burned watersheds within the San Gabriel Mountains, this work provides 399 
a general methodology for exploring reliable predictors of post-fire flash floods for other watersheds and settings. Further 400 
testing is needed in watersheds with different watershed size, topographic characteristics, landscape, and burn severity patterns. 401 
 402 
Figure 9: Snapshots of the spatial patterns of 𝑰𝑰3075 of 34 unique storms. The peak jth percentile of ID (rainfall intensity 403 
over a duration D) is denoted as 𝑰𝑰𝑫𝑫

𝒋𝒋 . 𝑰𝑰3075 is the peak value of the 75st percentile of I30 (rainfall intensity over 30-min). 404 
Red contours delineate the pixels with rainfall intensities larger than 𝑰𝑰3075 of each storm. 405 
 406 
Several limitations are present in this work. First, we assess a small number of storm events (34) in the area as we are limited 407 
by the length of radar and gage records as well as and the number of events that impact the indicator rain gages, though 408 
applying the five Z-R relationships provides us with 170 rainfall realizations to assess. We prefer the use of observed rainfall 409 
data (radar and gauges) over simulated products, such as output from a rainfall generator (e.g., Zhao et al., 2019; Evin et al., 410 
2018), as the radar is able to capture the spatial and temporal patterns of rainfall intensity in the study area’s complex terrain. 411 
Though rainfall generators have advanced to represent some synoptic-to-mesoscale features, such as frontal and convective 412 
precipitation (e.g., Zhao et al. 2019), they are fundamentally designed to represent statistical characteristics of rainfall in places 413 
with limited observations (Wilks and Wilby 1999) and cannot be relied upon to replicate small scale storm characteristics in 414 
complex terrain (e.g., Camera et al. 2016).  Future work could compare results from this hydrologic modeling experiment with 415 
observed versus simulated rainfall. Second, the challenges of Z-R relationships to convert reflectivity to precipitation also 416 
presents challenges in accurately representing precipitation values. This can be addressed in future work through studies to 417 
constrain Z-R relationships for storms producing intense rainfall in this region and through the deployment or installation of 418 
high-resolution gap-filling radars (e.g., Johnson et al., 2019).   419 

5.2 The role of hydrological models in rainfall intensity threshold estimation 420 

In this study we employed the K2 model calibrated by Liu et al. (2021) to parameterize hydrologic changes affecting Hortonian 421 
overland flow within a five-year period following fire. Hillslope saturated hydraulic conductivity (Ksh = 7.2 mm/hr) and 422 
hydraulic roughness in channels (nc = 0.087 s/m1/3) were lowest immediately after fire (Table 1), resulting in high runoff 423 
coefficients and low rainfall thresholds in post-fire year 1. In later years, with Ksh and nc gradually increasing (Table 1), more 424 
rainfall infiltrated into soil and there was increased attenuation of flood peaks. Simulations indicate that the number of flash-425 
flood-producing rainstorms decreased from 59 in year 1 to 25, 18, and 16 in years 2, 3, and 5, respectively. Runoff coefficients 426 
and peak discharge of simulated hydrographs also decreased with time since fire (Figure 10). Given the same precipitation 427 
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ensemble, the likelihood of flash floods significantly decreased with time. The peak discharge produced by the highest intensity 428 
rainfall event with 𝐼𝐼6075 of 51.8 mm/hr was 554.0 m3/s in the first year after the fire, which is three times greater than the peak 429 
discharges of 157.5 m3/s in year 3 and 161.2 m3/s in year 5 produced by the same rainstorm. From a flood hazard perspective, 430 
the downstream area may be exposed to a 1000-year flood under the recently burned condition (less than one year since the 431 
fire), whereas the discharge produced in years three and five would amount to roughly a 30- to 40-year flood (Figure S3).  432 
 433 
Figure 10: Box plots showing the runoff coefficient and peak discharge of flash floods in post-fire year 1, 2, 3, and 5. 434 
The numbers of flash floods in each year are displayed next to the box. 435 

We were also able to perform numerical experiments to quantify the relative importance of temporal changes in Ksh and nc on 436 
temporal variations in the flash flood threshold (Figure 8). Results suggest that changes in vegetation and grain roughness, 437 
which are likely to influence nc, throughout the recovery process are less important for determining flash flood potential in our 438 
study area relative to changes to saturated hydraulic conductivity on hillslopes. It is worth noting that temporal changes in 439 
other model parameters (e.g., hydraulic roughness on hillslopes, capillary drive) may play more of a role in driving changes 440 
in post-fire flash flood thresholds in other settings. In this study, however, we focus on changes in Ksh and nc because Liu et 441 
al. (2021) were able to detect temporal changes in nc and Ksh through time and unable to detect similar temporal changes in 442 
other hydrologic parameters (e.g., hydraulic roughness on hillslopes, capillary drive) due to their relatively minor influence on 443 
runoff in the study watershed. 444 
 445 
In this study, the optimal flash flood thresholds increased from 𝐼𝐼3075 =16.0-16.8 mm/hr in post-fire year 1, to 23.2-26.9 mm/hr 446 
in year 2, and 27.6-34.5 mm/hr in post-fire year 5 (Figure 4 and 7; Table 2-3). In the San Gabriel Mountains and nearby San 447 
Bernardino and San Jacinto Mountains, Cannon et al. (2008) estimated rainfall thresholds of I30=9.5 mm/hr for flash floods 448 
and debris flows in the first winter rainy season following fire. They found that the thresholds for flash floods and debris flows 449 
increased to I30=19.8 mm/hr in post-fire year 2. The thresholds that we infer from hydrological modeling are greater than those 450 
reported by Cannon et al. (2008), which may be partly due to differences in (1) data and methods used and (2) the size of the 451 
studied watersheds. Our results are driven by a hydrologic model, forced with a radar precipitation ensemble that consists of 452 
170 rainstorms that contain a variety of storm types that impact southern California. The occurrence of a flash flood is based 453 
on exceedance of the maximum channel capacity and we summarize temporal changes in the rainfall ID threshold using 𝐼𝐼3075 454 
since we find this to be a reliable metric for all post-fire years included in this study. In contrast, Cannon et al. (2008) 455 
established rainfall ID relations by using observations of rainstorms and hydrological response in the two years following fire 456 
in 87 small watersheds (0.2-4.6 km2). They base their thresholds on rainfall characteristics that produced either flash floods or 457 
debris flows whereas we focus solely on flash floods. In their dataset, flash floods and debris flows were identified by 458 
investigating flood and debris flow deposits at the outlet of those small watersheds in the field. Despite differences in the 459 
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magnitude of the thresholds, the increase in the threshold from post-fire year 1 to year 2 in both studies are quite close. This 460 
agreement provides support for the use of simulation-based approaches to inform temporal shifts in rainfall ID thresholds.  461 
 462 
During the recovery process, increasing thresholds for flash floods and debris flows have also been identified in other areas at 463 
different scales by either observation- or simulation-based studies, such as hillslopes in the Colorado Front Range (Ebel, 2020) 464 
and small watersheds in Australia (Noske et al., 2016). The consistent increase in rainfall ID thresholds with time since fire in 465 
different geographic and ecological zones implies that hydraulic and hydrologic models may be useful tools for exploring how 466 
transient effects of fire translate into changes in water-related hazards. Particularly when historic data is limited and traditional 467 
empirical methods are impractical for defining thresholds, the role of hydraulic and hydrological models becomes more 468 
important.  469 

6 Conclusions 470 

We used 250 m, 5-minute radar-derived precipitation estimates over a 41.5 km2 watershed in combination with a calibrated 471 
hydrological model to estimate rainfall intensity-duration thresholds for post-fire flash floods as a function of time since 472 
burning. The main outcomes of this study are 1) identification of optimal radar-derived rainfall metrics for post-fire flash flood 473 
prediction in southern California, 2) estimates of temporal changes in rainfall ID thresholds for flash floods following 474 
disturbance in a chapparal-dominated ecosystem, and 3) a methodology for using a hydrological model to assess changes in 475 
post-fire flash flood thresholds.   476 
 477 
Results indicate that thresholds based on the 75th-85th percentile of peak rainfall intensity averaged over 15-60 minutes perform 478 
best at predicting the occurrence of a flash flood in our study area. In other words, a flash flood tends to be produced when 479 
rainfall intensity over 15%-25% of the watershed area exceeds a critical value. A threshold based on 𝐼𝐼3075 performs consistently 480 
well for post-fire years 1, 2, 3, and 5, although the magnitude of the threshold increases with time since burning. For the 481 
watershed studied, the 𝐼𝐼3075 threshold increases from 16.0-16.8 mm/hr for year 1 to 23.2-26.9 mm/hr, 26.9-32.6 mm/hr, and 482 
27.6-34.5 mm/hr, for years 2, 3, and 5 respectively. Increases in the threshold value of 𝐼𝐼3075 can be primarily attributed to 483 
increases in Ksh rather than nc during the hydrological recovery process. The increase in the magnitude of the threshold from 484 
year 1 to year 2 is consistent with previous observations from nearby areas in southern California. Results provide a 485 
methodology for using radar-derived precipitation estimates and hydrological modeling to estimate flash flood thresholds for 486 
improved warning and mitigation of post-fire hydrologic hazards. Thresholds developed through these methods can then be 487 
built into operational tools that use incoming radar data to evaluate flash flood hazard in near-real time or precipitation forecasts 488 
to evaluate potential for flash flood hazard in burned watersheds.  489 
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 671 
Table 1. Summary of model parameters for post-fire year 1, 2, 3, and 5. The saturated hydraulic conductivity on 672 
hillslopes (Ksh) and hydraulic roughness in channels (nc) are the average of values calibrated in post-fire years 1, 2, 673 
3, and 5 (Liu et al., 2021)  674 

Post-fire Year Calibration Events Ksh (mm/hr) nc (s/[m1/3]) 

1 

12 Dec 2009 

  7.2 0.087 17 Jan 2010 

  5 Feb 2010 

2 
17 Dec 2010 

13.8 0.275 
20 Mar 2011 

3 
17 Mar 2012 

18.5 0.320 
13 Apr 2012 

5 28 Feb 2014 23.8 0.280 
 675 
  676 
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Table. 2 The linear regression-based optimal rainfall ID metrics and corresponding rainfall thresholds for flash floods 677 
in post-fire years 1-5 678 

Year Rainfall metric Equation R2
max (95% CI) Intensity (mm/hr) (95% CI) 

1 𝐼𝐼6089 𝑄𝑄 = 8.51 ∗ 𝐼𝐼6089– 70.19 0.89 (0.80, 0.92) 15.05 (14.50, 15.53) 

2 𝐼𝐼1588 𝑄𝑄 = 0.94 ∗ 𝐼𝐼1588– 14.86 0.86 (0.73, 0.92)  39.23 (36.97, 41.84) 

3 𝐼𝐼1590 𝑄𝑄 = 0.63 ∗ 𝐼𝐼1590– 11.41 0.86 (0.76, 0.93) 49.87 (36.68, 55.44) 

5 𝐼𝐼1590 𝑄𝑄 = 0.60 ∗ 𝐼𝐼1590– 11.51 0.86 (0.70, 0.92) 51.64 (48.18, 60.13) 

 679 
Note: We denote the peak jth percentile of ID (rainfall intensity over a duration D) as 𝐼𝐼𝐷𝐷

𝑗𝑗 . For example, 𝐼𝐼1588 is the peak value of 680 
the 88th percentile of I15 (rainfall intensity over 15-min). 681 
  682 
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Table. 3 The ROC-based optimal metrics of rainfall ID and corresponding rainfall thresholds for flash floods in post-683 
fire year 1-5 684 

Year Rainfall metric TSmax (95% CI) Intensity (mm/hr) (95% CI) 

1 𝐼𝐼6086 0.90 (0.84, 0.96) 12.91 (12.20, 13.20) 

2 𝐼𝐼6076 0.90 (0.74, 0.99) 19.98 (17.80, 20.40) 

3 𝐼𝐼3075 0.94 (0.78, 1.00) 32.60 (28.64, 33.60) 

5 𝐼𝐼3076 0.96 (0.82, 1.00) 34.86 (32.20, 35.40) 

 685 
Note: We denote the peak jth percentile of ID (rainfall intensity over a duration D) as 𝐼𝐼𝐷𝐷

𝑗𝑗 . For example, 𝐼𝐼6086 is the peak value of 686 
the 86th percentile of I60 (rainfall intensity over 60-min). 687 
  688 



27 

Figures and captions 689 
  690 



28 

Figure 1: Modified from figure 1 in Liu et al. (2021) (a) The location of the upper Arroyo Seco watershed within California. The red 692 
triangle indicates the location of the USGS stream gage (11098000); (b) Shaded relief showing the study watershed with the USGS 693 
stream gage (red triangle; 34°13 20”, -118°10 36”); (c) Soil burn severity for the 2009 Station fire. Burn severity percentages are for 694 

planform area within each category. 695 
  696 
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Figure 2: Delineation of rainfall intensity-duration threshold for post-fire flash flood 698 

  699 



30 

Figure 3: The determination coefficient (R2) and 95% confidence interval associated with the linear regression between 701 
𝑰𝑰𝑫𝑫
𝒋𝒋 and peak discharge in post-fire year 1, 2, 3, and 5. Data used to fit the linear relation are from events with peak 702 

discharge greater than 2 m3/s. 703 
  704 
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Figure 4: The rainfall intensity-duration threshold for flash flood derived from the best linear relation for different 706 
durations and percentiles of the most intense rainfall field in post-fire year 1, 2, 3, and 5. 707 
  708 
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 710 
Figure 5: Threat score (TS) of the peak 75th percentile of I30 in post-fire year 1. (a) Relationship between rainfall 711 
intensity and TS; (b) Scatter plots of positive (flood, red circle) and negative (no flood, hollow circle) with the rainfall 712 
intensity associated with the maximum TS. 713 
  714 
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 716 
Figure 6: The threat scores (TSmax) associated with flood occurrence and 𝑰𝑰𝑫𝑫

𝒋𝒋  in post-fire years 1, 2, 3, and 5. Data used 717 
to analyze is from events with peak discharge greater than 2 m3/s. 718 
  719 
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 721 
Figure 7: The rainfall intensity threshold for flash flood derived from the maximum of TS for different durations and 722 
percentiles of the most intensive rainfall field in post-fire years 1, 2, 3, and 5. 723 
  724 



35 

Figure 8: The ROC (receiver operating characteristic) based thresholds for 𝑰𝑰3075 in each year with different model 726 

settings. Pairs of Ksh (saturated hydraulic conductivity on hillslopes) and nc (Manning s n in channels) in each model 727 

are along with the data points.  728 
  729 
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Figure 9: Snapshots of the spatial patterns of 𝑰𝑰3075 of 34 unique storms. The peak jth percentile of ID (rainfall intensity 731 
over a duration D) is denoted as 𝑰𝑰𝑫𝑫

𝒋𝒋 . 𝑰𝑰3075 is the peak value of the 75st percentile of I30 (rainfall intensity over 30-min). 732 
Red contours delineate the pixels with rainfall intensities larger than 𝑰𝑰3075 of each storm. 733 
  734 



37 

Figure 10: Box plots showing the runoff coefficient and peak discharge of flash floods in post-fire year 1, 2, 3, and 5. 736 
The numbers of flash floods in each year are displayed next to the box. 737 
 738 
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