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Abstract. Information on the spatial distribution of triggered landslides following an earthquake is invaluable to emergency

responders. Manual mapping using optical satellite imagery, which is currently the most common method of generating this

landslide information, is extremely time consuming and can be disrupted by cloud-cover. Empirical models of landslide prob-

ability and landslide detection with satellite radar data are two alternative methods of generating information on triggered

landslides that overcome these limitations. Here we assess the potential of a combined approach, in which we generate an5

empirical model of the landslides using data available immediately following the earthquake using the Random Forests tech-

nique, and then progressively add landslide indicators derived from Sentinel-1 and ALOS-2 satellite radar data to this model

in the order they were acquired following the earthquake. We use three large case study earthquakes and test two model types:

first, a model that is trained on a small part of the study area and used to predict the remainder of the landslides, and second

a preliminary “global” model that is trained on the landslide data from two earthquakes and used to predict the third. We10

assess model performance using receiver operating characteristic analysis and r2, and find that the addition of the radar data

can considerably improve model performance and robustness within two weeks of the earthquake. In particular, we observed a

large improvement in model performance when the first ALOS-2 image was added and recommend that these data or similar

data from other L-band radar satellites be routinely incorporated in future empirical models.

1 Introduction15

Earthquake-triggered landslides are a major secondary hazard associated with large continental earthquakes and disrupt emer-

gency response efforts. Information on their spatial distribution is required to inform this emergency response, but must be

generated within two weeks of the earthquake in order to be most useful (Inter-Agency Standing Committee, 2015; Williams

et al., 2018). The most common method of generating landslide information is manual mapping using optical satellite imagery,

but this is a time-consuming process and can be delayed by weeks or even months due to cloud cover (Robinson et al., 2019),20

leading to incomplete landslide information during the emergency response.

In the absence of optical satellite imagery, there are two options for generating information on the spatial extent of triggered

landsliding in the immediate aftermath of a large earthquake. The first is to produce empirical susceptibility maps, using factors
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such as slope, lithology and estimations of ground shaking intensity to predict areas where landslides are likely to have occurred

(e.g. Nowicki Jessee et al., 2018; Robinson et al., 2017; Tanyas et al., 2019). The second is to estimate landslide locations based25

on their signal in satellite synthetic aperture radar (SAR) data, which can be acquired through cloud cover and so is often able

to provide more complete spatial coverage than optical satellite imagery in the critical two week response window (e.g. Aimaiti

et al., 2019; Burrows et al., 2019, 2020; Jung and Yun, 2019; Konishi and Suga, 2019; Mondini et al., 2019, 2021).

To generate an empirical model of triggered landslides following an earthquake, a training dataset of landslides is analysed

alongside maps of "static" factors known to influence landslide likelihood e.g. slope and landcover, as well as "dynamic"30

causative factors e.g. ground shaking estimates, and a model is produced that predicts landslide likelihood based on these

inputs. A range of methods have been used to generate landslide susceptibility models, including: Fuzzy Logic (Kirschbaum

and Stanley, 2018; Kritikos et al., 2015; Robinson et al., 2017), Logistic Regression (Cui et al., 2020; Nowicki Jessee et al.,

2018; Tanyas et al., 2019) and Random Forests (Catani et al., 2013; Chen et al., 2017; Fan et al., 2020). When generating a

susceptibility map for emergency response, the training dataset can be either a collection of landslide inventories triggered by35

multiple earthquakes worldwide (e.g. Kritikos et al., 2015; Nowicki Jessee et al., 2018; Tanyas et al., 2019), or a small sample of

the affected area mapped immediately following the earthquake (e.g. Robinson et al., 2017). Here, we refer to these two model

types as "global" and "same-event" models respectively. The global model of Nowicki Jessee et al. (2018) is routinely used

to generate landslide predictions after large earthquakes, which are published on the United States geological survey (USGS)

website (https://earthquake.usgs.gov/data/ground-failure/). These products provide useful predictions of landslides triggered40

by earthquakes within hours of the event (e.g. Thompson et al., 2020). However, this model has been shown to struggle in

the case of complicated events, for example in 2018, when landslides were triggered by a series of earthquakes in Lombok,

Indonesia, rather than a single large event (Ferrario, 2019).

Several SAR methods have been developed for use in earthquake-triggered landslide detection based on the SAR amplitude

(e.g. Ge et al., 2019; Konishi and Suga, 2018; Mondini et al., 2019) or interferometric SAR (InSAR) coherence (a pixel-wise45

estimate of InSAR signal quality) (e.g. Burrows et al., 2019, 2020; Olen and Bookhagen, 2018; Yun et al., 2015) or on some

combination of the two (e.g. Jung and Yun, 2019). SAR data can be acquired in all weather conditions, and with recent increases

in the number of satellites in operation, data are likely to be acquired within days of an earthquake anywhere on Earth. The

removal of vegetation and movement of material caused by a landslide alters the scattering properties of the ground surface,

giving it a signal in SAR data. Burrows et al. (2020) demonstrated that InSAR coherence methods can be widely applied in50

vegetated areas, and can produce usable landslide information within two weeks of an earthquake. However, in some cases

false positives can arise from building damage or factors such as snow or wind damage to forests.

Recently, Ohki et al. (2020) and Aimaiti et al. (2019) have demonstrated the possibility of combining SAR-based landslide

indicators with topographic parameters in order to improve classification ability. Aimaiti et al. (2019) used a Decision Tree

method to combine topographic slope with SAR intensity and InSAR coherence to detect landslides triggered by the 201855

Hokkaido earthquake, and Ohki et al. (2020) used Random Forest classification to combine several landslide indicators based

on polarimetric SAR and topography to detect landslides triggered by two events in Japan: the 2018 Hokkaido earthquake and

heavy rains in Kyushu, 2017. While these studies established the promise of a combined approach to landslide detection, they
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did not assess the relative merits of empirical, SAR and combined methods. Furthermore, the two studies combined only SAR

and topographic landslide indicators, omitting factors such as lithology, land cover and ground shaking data, which are also60

commonly used in empirical modelling of earthquake-triggered landslides (Nowicki Jessee et al., 2018; Robinson et al., 2017).

Here we aim to establish which of these three options provides the best indication of areas strongly affected by triggered

landslides after an earthquake: landslide susceptibility maps, detection with InSAR coherence, or a combination of these. In

order to do this, we began with an empirical model of landslide susceptibility based on ground shaking, topography, lithology

and land cover, all of which are available within hours of an earthquake. To this model, we then progressively added landslide65

indicators derived from InSAR coherence in the order that the SAR images became available following each case study earth-

quake. At each stage in this process, we assessed the ability of the model to recreate the landslide areal density (LAD) in the

test area of the landslide dataset using receiver operating characteristic (ROC) analysis and by calculation of the coefficient of

determination (r2). For the modelling, we used Random Forests, a machine learning technique that has been demonstrated to

perform well in landslide detection (Chen et al., 2017; Fan et al., 2020). Rather than attempting to delineate individual land-70

slides, we chose to model LAD as both empirical models and detection methods based on InSAR coherence perform well at

relatively coarse spatial resolutions (within the range 0.01-1 km2 (Burrows et al., 2019; Nowicki Jessee et al., 2018; Robinson

et al., 2017)). Similarly, the empirical models of landslide susceptibility released by the USGS following large earthquakes

take the form of a predicted LAD, which can be interpreted as the probability for any location within the cell to be affected

by a landslide (Nowicki Jessee et al., 2018; Thompson et al., 2020). We used three case study earthquakes and assessed the75

effect of adding SAR-based landslide indicators to both the same-event model type and a preliminary global model, which was

trained on two events and used to predict the third, allowing speculation on the performance of a global model trained on a

larger number of earthquakes.

2 Data and methods

Empirical models of landslide hazard (represented here by LAD) adopt a functional form that is driven by a training dataset of80

mapped landslides rather than by the mechanics of slope stability. Since LAD is a continuous measure, our aim was to carry

out a regression between a training dataset of mapped LAD and a selection of input features (e.g. slope, elevation, land cover)

that influence landslide likelihood. The resultant function can then be used to predict LAD in areas where there are no mapped

landslide data available based on these input features. In this section, we first describe the landslide data used to train and

test our models. Second, we describe the different input features which we used in the regression to predict LAD. Third we85

describe the Random Forests method and its implementation in this study. Finally we describe the metrics used to assess model

performance.

2.1 Landslide data sets

We used polygon landslide inventories compiled for three large earthquakes that each triggered thousands of landslides: the

inventory of Roback et al. (2018) of 24,915 landslides triggered by the Mw 7.8 2015 Gorkha, Nepal earthquake; the inventory90
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of Zhang et al. (2019) of 5,265 landslides triggered by the Mw 6.6 Hokkaido, Japan earthquake; and the inventory of Ferrario

(2019) of 4,823 landslides triggered by the Mw 6.8 Lombok, Indonesia earthquake on 5 August, 2018 (See Figure 1 for the

extent of triggered landslides from each of these earthquakes and the spatial and temporal coverage of the SAR data used

here). The performance of five SAR-based methods using the same SAR data used here has already been carried out for these

three case study earthquakes (Burrows et al., 2020). This allows a direct comparison between the performance of the models95

developed in this study and that of existing SAR-based methods of landslide detection. Predicted LAD based on the empirical

model of Nowicki Jessee et al. (2018) was also available to download for these three events from the USGS website.

We converted the three polygon landslide inventories to rasters with a cell size of 20× 22 m. We then calculated LAD within

10 × 10 squares of these 20 × 22 m cells, resulting in an aggregate landslide surface with a resolution of 200 × 220 m. This

is the same as the resolution at which Burrows et al. (2020) assessed SAR-based methods of landslide detection, allowing a100

direct comparison with that study, and similar to the resolution of the model of Nowicki Jessee et al. (2018), whose products

are provided at a resolution of 0.002◦ (approximately 220 m, depending on latitude).

2.2 Training and test data sets

When developing an empirical model, it is necessary to divide the data into two parts: a training data set, which is used to

train the Random Forest; and a test data set, which is used to test model performance. Here we used two types of model setup:105

"same-event" models trained on a small mapped area of an event to predict the landslide distribution across the rest of the

affected area (e.g. Robinson et al., 2017) and "global" models trained on historic landslide inventories to predict a new event

(e.g. Kritikos et al., 2015; Nowicki et al., 2014; Nowicki Jessee et al., 2018; Tanyas et al., 2019).

The real-world application of a same-event model is that a small number of landslides can be mapped manually from

optical satellite imagery in the days following the earthquake. Providing these landslides are dispersed across the study area110

to constitute a representative training dataset, their distribution can then be used to predict the landslide distribution across the

whole affected area in much less time than would be required to manually map the whole area (Robinson et al., 2017). For our

same-event model, we randomly selected 250 landslide (LAD >= 0.01) and 250 non-landslide (LAD < 0.01) pixels for use as

training data. Robinson et al. (2017) demonstrated that 250 landslide samples were sufficient to train their landslide probability

model. Since here we use 200 x 220 m pixels, 250 pixels is equivalent to a mapped area of around 11 km2.115

For the second approach, in which an empirical model is trained on a global inventory of past landslides, we trained the

Random Forest on two of our case study events and predicted the third. In this case, we randomly selected 1000 landslide

(LAD >= 0.01) and 1000 non-landslide (LAD < 0.01) pixels from each event. The resulting model was therefore trained on

equal numbers of pixels from the two training events, which prevents it from being dominated by the larger training event. We

trained an ensemble of 100 models, performing the random undersampling independently each time so that each model within120

the ensemble is trained on a different set of cells. We then estimated LAD using each model and took the median ensemble

prediction as our final model. This process allows the model to use more of the available training data and improves robustness.

It also allows calculation of upper and lower bounds for the LAD of every cell, as well as other statistical parameters such as

the variance in predicted LAD.
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It should be noted that successful global empirical landslide prediction models are trained on data from considerably more125

case study events than this; for example, the model used by the USGS of Nowicki Jessee et al. (2018) was trained on 23

landslide inventories and the model of Tanyas et al. (2019) was trained on 25. Ohki et al. (2020) demonstrated that when using

fully polarimetric SAR data alongside topographic input features, it was possible to predict the spatial distribution of landslides

triggered by the Hokkaido earthquake using a model trained on landslides triggered by a heavy rainfall event in Kyushu, 2017,

but that it was not possible to predict landslides triggered by the Kyushu event using a model trained on Hokkaido. Therefore,130

given the small number of case-studies used here to train our preliminary "global model", we expect a similar performance to

that observed by Ohki et al. (2020), i.e. we do not expect high performance on all predicted events. Instead, a high performance

on at least one predicted event would suggest that our approach is worthy of further investigation and is likely to improve when

trained on a number of case-studies more comparable to those used by current "gold-standard" models (i.e. 23-25).

2.3 Input Features135

A large number of possible input features have been used in previous work on landslide susceptibility mapping, including a

wide range of topographic parameters, ground shaking estimates, rainfall data, lithology, landcover and distance to features

such as rivers, roads and faults. Here we limited the model input features to globally available datasets in order to ensure the

widest applicability of the results. We targeted our model at earthquake- rather than rainfall-triggered landslides, as these have

been more widely used as case studies when developing and testing SAR-based methods of landslide detection (e.g. Aimaiti140

et al., 2019; Burrows et al., 2019; Jung and Yun, 2019; Yun et al., 2015) and detailed polygon inventories of thousands of

landslides triggered by a single earthquake (Ferrario, 2019; Roback et al., 2018; Zhang et al., 2019) provide a good source of

test and training data for the model. In this section, we describe the topographic, ground shaking, land cover and lithology input

features used to generate the initial same-event models. We also describe the model of Nowicki Jessee et al. (2018), which we

used as a base for the global models, and the SAR-based input features that we added to the same-event and global models. A145

summary of these inputs and which of our models they are used in is given in Table 1.

2.3.1 Topographic features

For input features derived from topography, we used the 30 m shuttle radar topography mission (SRTM) digital elevation model

(DEM) (Farr et al., 2007). When processing the SAR data, this DEM was resampled to a resolution of 20 m× 22 m using linear

interpolation. From this resampled DEM, we calculated slope and aspect using a 3 × 3 moving window and the compound150

topographic index (CTI), a static proxy for pore water pressure, which alters the effective normal stress on the failure surface

and thus the material strength (Moore et al., 1991). We aggregated 10 × 10 grids of these cells to produce input features at a

200 m × 220 m scale. For each aggregate 200 × 220 m cell, we calculated: the mean 20 m × 22 m cell elevation (used by

Catani et al., 2013; Nowicki et al., 2014), the standard deviation of cell elevations (used by Catani et al., 2013), the maximum

slope within an aggregate cell (used by Nowicki et al., 2014), the mean slope within an aggregate cell (used by Nowicki Jessee155

et al., 2018; Robinson et al., 2017; Kritikos et al., 2015; Tanyas et al., 2019), the standard deviation of pixel slopes within an

aggregate cell (used by Catani et al., 2013; Tanyas et al., 2019), the circular mean of the aspect (used by Chen et al., 2017),
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the mean compound topographic index (used by Nowicki Jessee et al., 2018; Tanyas et al., 2019) and the relief, or maximum

elevation difference between all 20 m × 22 m pixels within the aggregate cell (used by Tanyas et al., 2019).

2.3.2 Ground shaking estimates160

The inclusion of ground shaking information is what differentiates an earthquake-specific prediction of triggered landsliding

(used here) from a static estimate of landslide susceptibility (e.g. Nadim et al., 2006). Past studies have used Modified Mercalli

Intensity (Kritikos et al., 2015; Tanyas et al., 2019), peak ground acceleration (Robinson et al., 2018; Nowicki et al., 2014;

Tanyas et al., 2019) and peak ground velocity (PGV) (Nowicki Jessee et al., 2018; Tanyas et al., 2019). Here, we used PGV, as

this does not saturate at high shaking intensities (Nowicki Jessee et al., 2018). Gridded PGV estimates are available with pixel165

spacing 0.00083◦ as part of the USGS ShakeMap product. We resampled this onto the 200 × 220 m geometry used here using

a linear interpolation. The uncertainty of the ShakeMap product varies depending on the local seismic network used to gather

the shaking data on which the shaking estimates are based (Worden et al., 2020), but is not currently taken into account when

using these estimates in empirical models (Nowicki Jessee et al., 2018).

An initial estimate of ground shaking is generally available within hours of an earthquake from the USGS ShakeMap web-170

page, and is then refined as more data become available. The difference that these updates to the ground shaking estimates can

make to empirical models of landsliding has been explored by Allstadt et al. (2018) and Thompson et al. (2020). Here our aim

was to investigate changes to modelled landsliding due to the incorporation of SAR data and so for simplicity we chose to keep

all other input features constant through time. We used the final version of PGV published for each event in all our models. In

reality, model performance would evolve both due to updates to the estimated PGV and the availability of SAR data, but SAR175

data are also used to improve PGV estimates, and the final "best" PGV estimate is often achieved when the first post-event

SAR data are incorporated. Therefore in practice, SAR-based landslide indicators will only be added to final or close-to-final

versions of these empirical models.

2.3.3 Lithology

Lithology is one factor that determines rock strength, and therefore landslide likelihood (Nadim et al., 2006), and has been used180

in several empirical landslide susceptibility models (Chen et al., 2017; Kirschbaum and Stanley, 2018; Nowicki Jessee et al.,

2018). We used the Global Lithological Map database (GLiM) (Hartmann and Moosdorf, 2012), which has 13 basic lithological

classes, with additional "water bodies", "ice and glacier" and "no data" classes, which are supplied as polygon data. These data

are provided in vector format. We rasterized these data onto the 20 x 22 m grid at which the SAR data were processed. Then for

each 200 x 220 m aggregate pixel, we took the dominant basic lithological class (i.e. that with the largest area share), resulting185

in a categorical input feature. Random Forests can accept both continuous and categorical input features, but empty categories

in the training data can lead to biases in the model (Au, 2018). To avoid this, we used the "onehot" method, in which each

category is supplied to the model as a separate dummy input feature i.e. a binary surface of, for example, "unconsolidated

sediment" and "everything else" (Au, 2018). The number of input feature maps used for each model was equivalent to the

number of lithological categories present in each case: six in Hokkaido, nine in Nepal and six in Lombok.190
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2.3.4 Land cover

Nowicki Jessee et al. (2018) used land cover as a proxy for vegetation coverage and type, as the composition of the soil and

the presence or absence of plant roots can affect slope stability. Here we used land cover data downloaded from the European

Space Agency (ESA) Climate Change Initiative, which includes yearly maps of 22 land cover categories compiled at a 300 m

resolution from 1992-2015 (ESA, 2017). We used the 2014 map as the most recent land cover map preceding all of our case195

study events. Like lithology, land cover is a categorical variable, thus we used the same "onehot" method described in Section

2.3.3 to avoid biasing due to empty categories, and selected the dominant land cover type within each 200 m x 220 m aggregate

cell. As for lithology, the number of land cover input feature maps used for each case study area was equivalent to the number

of categories present: 15 in Hokkaido, 16 in Nepal and 16 in Lombok.

2.3.5 USGS ground failure product200

For our global model, instead of the set of individual input feature maps described above, we use one single feature map

that encapsulates the likely best results from a global model trained across a large number of events: the output USGS Ground

Failure product of Nowicki Jessee et al. (2018). This was necessary since we found that models generated from individual input

feature maps had limited skill in Hokkaido and no skill in Lombok or Nepal, which is not representative of the performance

of existing global models (e.g. Nowicki Jessee et al., 2018; Tanyas et al., 2019). This poor performance is likely to be due to205

the limited number of case studies used as training data in our global models and would make it difficult to draw conclusions

on the benefits of adding SAR to a global empirical model. We found that by replacing the individual input features with the

model output of Nowicki Jessee et al. (2018), we improved model performance in Nepal and Lombok, and obtained a more

consistent result across the three events.

The models of Nowicki Jessee et al. (2018) are published within hours following a large earthquake for use in hazard210

assessment and emergency response coordination and are available from the USGS website. They are generated using Logistic

Regression based on PGV, Slope, CTI, Lithology and Land Cover data (Nowicki Jessee et al., 2018). As described in Section

2.3.2, USGS estimates of PGV are updated multiple times after an earthquake and the ground failure products based on these

are also updated. Again, we use final published version of the ground failure product (based on the final PGV estimates) in all

our models. However, any conclusions drawn here about the advantage of incorporating SAR into the model should remain215

valid for earlier versions of the ground failure product. The models of Nowicki Jessee et al. (2018) are published at a similar

spatial resolution (around 0.002◦) to our models. Therefore the only processing step required was to resample them onto the

geometry of our other input data (200 x 220 m pixels).

2.3.6 InSAR coherence features (ICFs)

Multiple studies have demonstrated that methods based on InSAR coherence can be used in landslide detection (e.g. Aimaiti220

et al., 2019; Burrows et al., 2019, 2020; Jung and Yun, 2019; Yun et al., 2015). An interferogram is formed from two SAR

images acquired over the same area at different times, and its coherence is sensitive to a number of factors including changes to
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scatterers between the two image acquisitions and, particularly in areas of steep topography, changes to the image acquisition

geometry (Zebker and Villasenor, 1992). Changes in soil moisture (Scott et al., 2017), movement of vegetation due to wind

(Tanase et al., 2010), growth, damage or removal of vegetation (Fransson et al., 2010) and damage to buildings (Fielding et al.,225

2005; Yun et al., 2015) are all examples of processes which can alter the scattering properties of the Earth’s surface and so lower

the coherence of an interferogram. InSAR coherence is a measure of the signal-to-noise ratio of an interferogram estimated on

a pixel-by-pixel basis from the similarity in amplitude and phase change of small numbers of pixels (Just and Bamler, 1994).

We used single-polarisation SAR data from two SAR systems in this study: the C-band Sentinel-1 SAR satellite operated by

ESA and the Phased Array type L-band SAR-2 (PALSAR-2) sensor on the Advanced Land Observation Satellite 2 (ALOS-2)230

operated by the Japanese Space Agency (JAXA). For each case study earthquake, we used ascending and descending track

Sentinel-1 SAR imagery and a single track of ALOS-2 PALSAR-2 imagery (Figure 1). This volume of SAR data is available

in the immediate aftermath of the majority of earthquakes (Burrows et al., 2020). These two satellite systems acquire SAR

data at different wavelengths, and so interact slightly differently with the ground surface, with ALOS-2 generally being less

noisy in heavily vegetated areas than Sentinel-1 (Zebker and Villasenor, 1992). SAR data are acquired obliquely, which in235

areas of steep topography can lead to some slopes being poorly imaged by the SAR sensor. Here all data were acquired at an

angle of 31.4◦ - 43.8◦ to vertical. Descending-track data were acquired with the satellite moving south and looking west, while

ascending track were acquired with the satellite moving north and looking east. Therefore, slopes which are poorly imaged in

ascending data are likely to be better imaged by the descending track and vice versa. It is for this reason that we employed two

tracks of Sentinel-1 data, but this is currently not often available for L-band SAR. We processed the SAR data using GAMMA240

software, with Sentinel-1 data processed using the LiCSAR package (Lazeckỳ et al., 2020). The data were processed in a

Range × Azimuth coordinate system and then projected into a geographic coordinate system with a spatial resolution of 20 m

× 22 m. Further details on the spatial and temporal resolution of these SAR data, on their processing and on parameter choices

made in the generation of the CECL, Bx-S, PECI, ∆C_sum and ∆C_max surfaces can be found in Burrows et al. (2020).

We aimed to combine InSAR coherence methods with empirical models. To achieve this, we used multiple InSAR coherence245

methods as input features. The first coherence method we used was the coherence of the co-event interferogram (formed from

two images spanning the earthquake). The movement of material and removal of vegetation by a landslide alters the scattering

properties of the Earth’s surface, resulting in low coherence. This gives landslides a low coherence in a co-event interferogram.

Burrows et al. (2019) and Vajedian et al. (2018) demonstrated that this had some potential in triggered landslide detection.

Second, we used the coherence of the post-event interferogram (formed from two images acquired after the earthquake).250

Coherence is dependent on the land cover, with vegetated areas generally having a lower coherence than bare rock or soil

(Tanase et al., 2010). Therefore the bare rock or soil exposed following a landslide is likely to have a higher coherence than the

surrounding vegetation. This input feature was found to be beneficial in most cases, but the distribution of post-event coherence

values varied significantly between events when using ALOS-2 data. This may be because the wait time between the first and

second post-event images varied significantly between the events (from 14 to 154 days, Burrows et al., 2020). The post-event255

ALOS-2 coherence was therefore omitted from our global models.
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As well as the raw coherence surfaces, we used the five coherence-based methods tested by Burrows et al. (2020) as input

features, all of which showed some level of landslide detection skill in that study. The output of each of these methods is a

continuous surface that can be interpreted as a proxy for landslide intensity. First, the co-event coherence loss (CECL) method

uses the decrease in coherence between a pre-event and co-event interferogram to identify "damaged" pixels (Fielding et al.,260

2005; Yun et al., 2015). The Boxcar-Sibling (Bx-S) method of Burrows et al. (2019) uses the difference between two different

co-event coherence estimates to remove large spatial scale coherence variations from the landslide detection surface. Finally

three methods presented by Burrows et al. (2020) incorporate the coherence of a post-event interferogram to detect landslides,

making use of the fact that the coherence decrease caused by a landslide is temporary. The post-event coherence increase

(PECI) method uses the difference between the post-event and co-event coherences. The PECI and CECL methods are then265

combined in two further methods: the sum of the co-event coherence loss and post-event coherence increase (∆C_sum); and

the maximum coherence change (∆C_max), where for every pixel, whichever is largest of PECI or CECL is taken.

The majority of the methods outlined in this section use a "boxcar" coherence estimate, using pixels from within a 3 x 3

window surrounding the target pixel in the coherence estimation. The only exception to this is the Bx-S method, which also uses

a "sibling" coherence estimate in which an ensemble of pixels is selected from within a wider window for coherence estimation270

using the RapidSAR algorithm of Spaans and Hooper (2016) (Burrows et al., 2019). This sibling coherence estimation requires

additional data (a minimum of six pre-seismic images), and so it was not possible to calculate this using ALOS-2 data for the

2015 Nepal earthquake, as this event occurred very early in the lifetime of the satellite. The Bx-S method with ALOS-2 data

was therefore not used in Nepal, or in any of the global models we tested.

2.4 Random Forest theory and implementation275

Random Forests are an extension of the Decision Tree method, a supervised machine learning technique in which a sequence

of questions are applied to a data set in order to predict some unknown property, for example to predict landslide susceptibility

based on features of the landscape (e.g. Chen et al., 2017). A Random Forest comprises a large number of decision trees,

each seeing different combinations of input data, which then make a combined prediction. This avoids overfitting the training

data, a problem when using individual decision trees (Breiman, 2001). First the training dataset is bootstrapped so that each280

tree sees only a subset of the original pixels . Each tree carries out a series of "splits", in which the data are divided in two

based on the value of an input feature. These splits are chosen based on the improvement they offer to the ability of each tree

to correctly predict its training data. Every tree remembers how it split the training data, and then applies the same splits as

it attempts to model the test data . For Random Forest Regression, the mean value of all trees is taken as the model output

for every sample (Breiman, 2001). To aid understanding, we include a simple example of Random Forest Regression in the285

supplementary material

Here, we used Random Forests to carry out the regression between the input features described in Section 2.3 and LAD.

Random Forests are well suited to the combination of SAR methods with static landslide predictors for several reasons. Random

Forests are relatively computationally inexpensive, and because of this, can use a large number of input features. Random

Forests do not require input features to be independent, which is advantageous here since InSAR coherence is sensitive to both290

9

katyb
Highlight

katyb
Highlight

katyb
Highlight



slope and land cover, as well as the presence or absence of landslides. Input features of Random Forests do not need to be

monotonic and can be categoric or continuous. Catani et al. (2013); Chen et al. (2017); Fan et al. (2020) and Ohki et al. (2020)

have demonstrated that Random Forests can yield good results in landslide prediction.

To implement the Random Forests method, we used the Python scikit-learn package (Pedregosa et al., 2011). The model

is defined by a number of hyperparameters that can have a noticeable effect on the model. First of these is the criteria on295

which a split should be assessed. In our models, splits were carried out that minimised the mean absolute error (MAE). This

criterion was selected based on Ziegler and König (2014). The second hyperparameter describes the bootstrapping step . Here

the data were bootstrapped so that a number of random samples was taken equal to the number of pixels in the training dataset.

Each individual pixel is therefore likely to appear at least once in around two thirds of the bootstrapped datasets (Efron and

Tibshirani, 1997). This process improves the stability of the model by ensuring that each tree is trained on a slightly different300

subset of the training data (Breiman, 2001).

Table 2 shows a further five hyperparameters that define the setup of a Random Forest model in scikit-learn (Pedregosa

et al., 2011). First the number of trees, n_estimators, defines the number of decision trees that make up a forest. More trees

can increase model accuracy up to a point, but also result in a more computationally expensive model. Second, max_features

defines the fraction of possible input features considered when selecting how to split the data is calculated. For example, our305

initial same-event models had 11 input features (Table 1), so with square root (sqrt) selected, the model will assess possible

splits based on
√

11≈ 3 input features before identifying the best split. The "depth" of each decision tree describes the number

of times the data will be split if it takes the longest path from the beginning of the tree to the end. This is limited by Max_depth,

which defines the maximum "depth" of each decision tree. Finally, min_samples_split is the minimum number of samples

a node has to contain before splitting for a split to be allowed, while min_samples_leaf is the minimum number of samples310

assigned to either branch after splitting for a split to be allowed. For each of these five hyperparameters, we selected several

possible options, which are shown in the final column of Table 2. We then used the GridSearchCV function in sci-kit learn

to select an optimised model. This function ran models with every possible combination of these values, using 4-fold cross-

validation over our training data to identify the optimal hyperparameter combination (Pedregosa et al., 2011).

2.4.1 Feature importances315

The importance of each input feature was calculated from the decrease in MAE resulting from splits on that feature for each

tree, then averaged over all the trees to obtain feature importance at forest level. This calculation gives an indication of how

reliant the model is on each feature, with the sum of importances across all input features equal to one (Liaw et al., 2002).

Feature importance therefore helps with interpreting the model and can allow unimportant features to be eliminated from

future models, reducing computation time (e.g. Catani et al., 2013; Díaz-Uriarte and De Andres, 2006). However, it should be320

noted that the importance of categorical input features (here lithology and landcover), is often underestimated, since in this

case the number of possible splits is limited to the number of categories present in the training data. Furthermore, since our

input features are not independent (for example, InSAR coherence can be affected by land cover and slope), caution should be

taken when drawing conclusions from importance values.
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2.5 Performance metrics325

Each model generated a raster of continuous predictor variables, corresponding to the modelled LAD in the range [0,1]. We

assessed model performance by comparing the test areas of these predicted surfaces with the mapped LAD calculated from the

inventories of Ferrario (2019); Roback et al. (2018) and Zhang et al. (2019) in Section 2.1. We used two metrics in assessing

model performance: ROC analysis and the coefficient of determination (r2).

ROC analysis has been widely used in studies of landslide prediction and detection and is relatively simple to interpret (e.g.330

Burrows et al., 2020; Robinson et al., 2017; Tanyas et al., 2019). Additionally, the use of ROC analysis allows comparison

between the models in this study and the InSAR-coherence-based methods of Burrows et al. (2020). ROC analysis requires

a binary landslide surface for validation, so we applied a threshold to the mapped LAD surface calculated in Section 2.1,

assigning aggregate cells with LAD > 0.1 as "landslide" and < 0.1 as "non-landslide". Setting this threshold higher would

test the models ability to detect more severely affected pixels, while setting it lower would test the models ability to more335

completely capture the extent of the landsliding. We chose 0.1 to strike a balance between these two factors. These aggregate

cells with LAD > 0.1 contain 77% of the total area of the individual landslide polygons in Nepal, 94% in Hokkaido and 46%

in Lombok. Using this binary aggregate landslide surface, the false positive rate (the fraction of mapped non-landslide pixels

wrongly assigned as "landslide" by the model) and true positive rate (the fraction of mapped landslide pixels correctly assigned

as "landslide" by the model) were calculated at a range of thresholds and plotted against each other to produce a curve. The340

area under this curve (AUC) then indicates the predictive skill of the model, with a value of 0.5 indicating no skill and 1.0

indicating a perfect model (Hanley and McNeil, 1982). The ROC AUC values calculated here therefore represent the ability of

the model to identify pixels with LAD > 0.1.

The second method we used to assess model performance was to carry out a linear regression between the observed and

predicted LAD. The r2 of this regression is calculated as the fraction of the variability in predicted LAD that is explained by345

this linear model. A high r2 coefficient value (up to a maximum of 1.0) indicates low levels of random errors, while an r2 close

to zero indicates that levels of random errors in the model are too high to obtain a good fit to observed LAD. Therefore, r2

indicates the ability of our Random Forest models to avoid random errors in their prediction of LAD, while the ROC AUC

indicates their ability to identify severely affected pixels.

3 Results350

3.1 Same-event models

Figure 2 shows the effect on model AUC (panels a, b, c) and r2 (panels d, e, f) of adding Sentinel-1 and ALOS-2 data to a

landslide susceptibility model trained on 250 landslide and non-landslide pixels mapped following an event, and tested on the

remaining pixels. Since the model performance varied depending on which 500 pixels were used as training data, we ran each

model 30 times and give the mean AUC and r2 of these models in Figure 2(a-f).355
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The initial models for Hokkaido, Nepal and Lombok had AUC values of 0.60, 0.75 and 0.79 and r2 values of 0.17, 0.027 and

0.020 respectively. We observed this combination of comparatively high ROC AUC values and very low r2 values for all of the

models tested in this paper as well as for the models of Nowicki Jessee et al. (2018). These low r2 values have implications for

how the current generation of empirical models should be interpreted and we discuss this further in Section 4.1.

In almost all cases, incorporating ICFs improved model performance in terms of AUC, with the biggest improvement ob-360

served when ICFs from the first ALOS-2 image are added. The addition of these first ALOS-2 ICFs also results in an increase

in r2 for each case study region. The biggest improvement is seen in Hokkaido, where the addition of these ALOS-2 ICFs

results in a increase in r2 from 0.17 to 0.45 and an increase in AUC from 0.68 to 0.78. Although these ALOS-2 ICFs result

in the largest improvement in model performance, in all three events the model incorporating both ALOS-2 and Sentinel-1

ICFs outperforms the model using ALOS-2 ICFs alone in terms of AUC. In terms of r2, the combined model outperforms365

the ALOS-2 only model in Nepal, but the ALOS-2 only model performs best in Lombok. In Hokkaido, the combined model

performs best after the third Sentinel-1 acquision. Sentinel-1 data are also often available sooner after a triggering earthquake

than ALOS-2 data, due to the short revisit time of the Sentinel-1 satellites.

3.2 Global models

An alternative to training on a small part of the affected area is to train the model on inventories from past earthquakes. To370

test the effect that incorporating ICFs might have on such models using our three case studies, we applied a "leave-one-out

cross-validation" approach: we tested predictions of LAD for each earthquake that were generated using models trained on the

other two earthquakes. LAD triggered by the third. Figure 2 shows the effect on model AUC (panels g, h, i) and r2 (panels j, k,

l) of adding ALOS-2 and Sentinel-1 ICFs to the input features used in training the model.

The USGS landslide model of Nowicki Jessee et al. (2018) had AUC values of 0.65 in Hokkaido, 0.62 in Lombok and 0.77375

in Nepal and r2 of 0.026, 0.033 and 0.0022 respectively. In order to test the effect of adding ICFs to a global model, we used

the USGS model as an input feature alongside the ICFs listed in Section 2.3. As with the same-event models (Section 3.1),

incorporating ICFs improved model performance in almost all cases with the largest improvement in terms of both AUC and

r2 seen with the addition of the first ALOS-2 ICFs. In all three cases, our global models at 2 weeks have an AUC > 0.8 and

outperform the USGS landslide model of Nowicki Jessee et al. (2018) in terms of AUC and r2. Overall, the addition of ICFs380

derived from SAR data acquired within 2 weeks of each earthquake results in better and more consistent model performance.

This improvement can be observed in Figure 4, which shows the models of Nowicki Jessee et al. (2018) alongside those

incorporating SAR data acquired within 2 weeks of each earthquake.

3.3 Do these models outperform individual InSAR coherence methods?

To assess whether a combined model of ICFs and landslide susceptibility is useful, it is necessary to compare it to the in-385

formation that could be obtained from SAR alone. The SAR data and case studies used here are the same as those used by

Burrows et al. (2020) in their systematic assessment of InSAR coherence methods for landslide detection. AUC values have

been calculated here at the same resolution and with the same definition of a landslide or non-landslide aggregate cell. This
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allows direct comparison between the performance of the models applied here and the InSAR coherence methods alone. To

assess the value added to the InSAR coherence methods by the static landslide predictors (e.g. slope), we also applied the390

Random Forests technique using the ICFs described in Section 2.3.6 as the only input features. Figure 5 shows AUC values for

1) the combined model, 2) a SAR only model and 3) the InSAR coherence-based method recommended for each SAR image

acquisition by Burrows et al. (2020, Supplement).

For the same-event models (Figure 5, panels a-c), the combined model outperforms the SAR-only model in almost all

cases and in the initial days following the earthquake, when only Sentinel-1 is available, the combined model outperforms the395

coherence methods. This is particularly noticeable for Lombok, as 4 Sentinel-1 images were acquired before the first ALOS-2

image following this event, and the model has a consistently higher AUC than the individual Sentinel-1 coherence surfaces

(approximately 0.8 compared to 0.6). When the coherence methods recommended by Burrows et al. (2020) are employed using

ALOS-2 data, they outperform both the combined and SAR-only models in terms of AUC in two cases (the first ALOS-2 image

after Hokkaido and the second after Nepal) and perform similarly in the other four cases.400

For the global models, the difference between the SAR-only and combined model is less pronounced, but in most cases,

the combined model has a higher AUC than the SAR-only model. Both models outperform the individual InSAR coherence

methods that use Sentinel-1 data in all cases except the first Sentinel-1 image following the Nepal Earthquake. The coherence

methods of Burrows et al. (2020) outperform both models when the second ALOS-2 image is available in Nepal and Lombok,

but have a similar performance in the other cases.405

We are also able to make a visual comparison between the InSAR coherence products of Burrows et al. (2020) and the 2-

week models shown here in Figures 3 and 4. Burrows et al. (2020) observed false positives south of the landslides triggered by

the Hokkaido earthquake, which they attribute to wind damage to vegetation associated with Typhoon Jebi. They also observed

false positives in built-up areas close to the coast in Lombok. These areas of false positives are visibly dampened in both our

same-event and our global 2-week models.410

3.4 Feature importances

Figure 6 shows the relative importance of each input feature in a Random Forest model when the model is trained on data

from Hokkaido (a), Nepal (b), and Lombok (c). For simplicity, the parameters have been grouped by the data required to create

them. For example, the importance of "topography" on Figure 6 was calculated as the sum of the importances of maximum

slope, mean slope, standard deviation of slope, elevation, standard deviation of elevation, relief, CTI and aspect. As described415

in Section 2.4.1, these measures of importance are limited since our input features are not fully independent, but it is clear

that the importance of the ICFs increases through time in each case. For each case study, topography was initially the most

important input feature but its importance gradually decreased as more SAR data were added, particularly in Hokkaido, where

it ceased to be the most important feature after the ICFs from the first ALOS-2 image were added to the model. In the final

models, ALOS-2 ICFs were consistently more important than Sentinel-1, particularly in Hokkaido where these become the420

most important feature in the model.
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4 Discussion

We have presented the results of adding ICFs to two types of landslide model: a same-event model trained on a small area of

each case study earthquake, and a global model, which is trained on two earthquakes to predict the third. In both cases, we have

demonstrated that model performance was significantly improved by the addition of ICFs derived from data acquired within 2425

weeks of an earthquake. In this section, we discuss some of the factors that could affect the applicability of these models in an

emergency response situation.

4.1 Model interpretation based on ROC AUC and r2

We have demonstrated that the addition of ICFs to empirical models of LAD based on topography, ground shaking estimates,

land cover and lithology significantly improves their performance in terms of ROC AUC and r2. However, while the final AUC430

values are around 0.8 or higher, r2 remains below 0.05 in Nepal and Lombok. We also observed this combination of relatively

high AUC (0.63-0.77) alongside low r2 (0.0002-0.03) for the models of Nowicki Jessee et al. (2018), which are published on

the USGS website. This result directly impacts how the current generation of empirical models at this spatial scale should be

interpreted: the low r2 values we have observed indicate that the ability of the models to predict LAD as a continuous variable

is poor, while the more encouraging AUC values indicate that the models are well-suited to discriminating between affected435

and unaffected pixels. Therefore, in an emergency response scenario, the model of Nowicki Jessee et al. (2018) and the models

presented here can be used to provide an estimate of the spatial extent and distribution of the triggered landsliding after an

earthquake, but should not be interpreted as a reliable estimate of LAD.

4.2 Selection of the training data for the same-event model type

The same-event case we have presented here uses 500 training data cells randomly selected from across the study area. The440

aim of this process is to reduce the area that is required to be manually mapped from optical satellite data or field investigations

before an estimate of LAD can be generated over the whole affected area, and therefore to reduce the time taken to generate a

complete overview of the landsliding. An alternative scenario would be the case where cloud cover prevents manual landslide

mapping in some parts of the affected area. Robinson et al. (2017) noted that this clustering had a detrimental effect on the

performance of their same-event model.445

To explore this, we tested the ability of a same-event model to predict LAD for a selected area using only training data from

outside that area (Figure 7). We chose to test this in Nepal, as this event covered the largest area. We began with a training data

set comprising all of the data outside the test area (Figure 7d), which contained 5210 cells with LAD > 1% across an area of

47 km2, so that after balancing by undersampling non-landslide cells (see 2.4), the training data set comprised 10,420 cells.

The model shown in (e) used only the data west of the training area (6,106 pixels after balancing across an area 21 km2). From450

here, the longitudinal extent of the training data used was halved each time, resulting in balanced training data sets of 3,728

(f), 1466 (g), 538 (h) and 180 (i) cells.
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Figure 7 clearly shows that models trained on a smaller area have lower values of AUC (panel a) and r2 (panel b), which

is to be expected. r2 increased in most cases as ICFs were added, with the exception of model (i), which was trained on only

180 cells. All models improved in terms of both AUC and r2 when the first ALOS-2 ICFs were added. As more ICFs were455

added to the model, AUC improved for all models, and the difference in AUC between the best and worst models decreased.

An alternative way of viewing this is that the inclusion of ICFs in such models decreases the area required to be mapped before

an obscured area can be modelled with the same AUC. For example, the model trained on all the data outside of the test area

(10,420 mapped cells) achieved an AUC > 0.7 before the ICFs were added. Using ICFs derived from two Sentinel-1 images

and one ALOS-2 image, model (h) also achieves an AUC > 0.7 with only 538 mapped cells. Panels (d-i) show the model using460

ICFs derived from all SAR data acquired in the first 2 weeks following the earthquake (two Sentinel-1 images and one ALOS-2

image). In the locations where landslides were observed, the model signal strength visibly increases from (i-d) as the training

area is increased, and in most cases, noise in the northern area of the model decreases.

The initial model in Figure 2b,e performs significantly better than those in Figure 7 according to ROC analysis, with an AUC

of 0.75 compared to AUCs ranging from 0.54-0.74 from models (d-i) in Figure 7, despite the fact that models (d-g) are trained465

on considerably more data (1566-10420 cells compared to 500). However, the improvement in the model when the ICFs were

added is greater in terms of AUC in Figure 7a than in Figure 2b. For the model trained on 500 randomly selected pixels, mean

AUC increases from 0.75 to 0.78 when ICFs from SAR data acquired within 2 weeks of the earthquake are added to the model.

The AUC of model (h) in Figure 7, which is trained on a similar number of pixels (538) improves from 0.62 to 0.77 when the

same ICFs were added. Therefore, it appears that the benefits to same-event models offered by the addition of ICFs may be470

particularly relevant when cloud cover obscures part of the affected area.

4.3 Training data format

Here, we trained our same-event model on LAD calculated from polygon landslide data. In some cases, polygon landslide

data may be available following an earthquake, for example the Geospatial Information Authority (GSI) Japan released a

preliminary landslide map one week following the 2018 Hokkaido earthquake (GSI Japan, 2018). However, in the majority475

of cases, landslides are more likely to be mapped as points rather than polygons in order to produce maps more quickly (e.g.

Kargel et al., 2016; Williams et al., 2018). Therefore, the polygon landslide data we use here may not always be available soon

enough following an earthquake to be used in training empirical models of landsliding.

The simple regression we have carried out here to recreate LAD would not be possible using point-mapped landslide in-

ventories. The first alternative to this would be to carry out regression on landslide number density (LND) instead. LND and480

LAD are generally well correlated following an earthquake (Cui et al., 2020; Ferrario, 2019), therefore we expect that the

improvement observed here when ICFs are added to the model should also be observed when the regression is carried out for

LND. The second alternative, which is employed by Nowicki Jessee et al. (2018) and Robinson et al. (2017), is to train the

model at the mapping resolution, use machine learning to estimate the probability of landslide occurrence and then to carry out

an additional regression step to convert this to an estimate of LAD at a lower spatial resolution. For example, Nowicki Jessee485

et al. (2018) use the "two-buffer" method of Zhu et al. (2017), in which point-mapped landslides are used as the "landslide"
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part of the training dataset. Non-landslide training data points are selected that are far enough from any landslide point to

be unlikely to lie within a landslide, while being close enough that they are likely to have been included in the area mapped

when the inventory was generated. This technique could be employed for models incorporating ICFs in the case where only

point-mapped landslide data are available after an earthquake.490

4.4 Towards a global landslide prediction model

The advantage of a global landslide prediction model, such as those of Nowicki Jessee et al. (2018) and Tanyas et al. (2019),

is that there is no need to map any of the landslides triggered by an earthquake before a model of their likely spatial distribu-

tion and impacts can be produced. Our global models incorporating Sentinel-1 and ALOS-2 ICFs outperform our same-event

models in Nepal and Hokkaido in terms of AUC. All of the model inputs used here are available globally, and thus could be495

extended to a global model, but our "global" models were trained on only two events. It is likely that the model performance

would improve if the model was trained on more events. In comparing their model, which was trained on 23 events, to a prelim-

inary version trained on only 4 events (Nowicki et al., 2014), Nowicki Jessee et al. (2018) observed a noticeable improvement

in performance for the model trained on more events.

Random Forests are not capable of extrapolation, meaning that if the predicted event has LAD values or input feature values500

outside the range of those present in the training dataset, these will not be well modelled. A model trained on more events

will cover a wider range of input feature and LAD values. Furthermore, although the model of Nowicki Jessee et al. (2018),

which we used as an input feature to represent the combined effects of lithology, land cover, slope, CTI and PGV on landslide

likelihood, was trained on a global set of landslide inventories, the combined effect of this model and the ICFs was modelled

on only two events. It is therefore likely that the relationship between the original factors, the ICFs and landslide probability505

could be better captured by a model trained on more landslide inventories, particularly since the model of Nowicki Jessee et al.

(2018) did not perform well in Hokkaido or Lombok. This could have had an adverse effect on our models of Nepal, which

were trained on these two events. This may explain the relatively poor performance of the combined Sentinel-1 models in

Nepal compared to the performance of the model of Nowicki Jessee et al. (2018) in this location.

Despite only using two events as training data, the models incorporating ICFs from at least one ALOS-2 image outperformed510

the original model of Nowicki Jessee et al. (2018) in all three events, resulting in an improvement in AUC of over 0.2 in

Hokkaido and Lombok and in AUC > 0.8 in all three cases. This suggests that the addition of ICFs would improve both the

performance and robustness of global models and would be particularly useful in the case of complicated events, such as

Hokkaido, where landslides were triggered by both rainfall and an earthquake (Zhang et al., 2019). Model performance may

improve further when trained on a larger number of case study events. It may also be that when a greater number of case study515

events is used as training data, the addition of Sentinel-1 ICFs to the model will offer a greater improvement. However, for

models trained on only two events, the addition of Sentinel-1 ICFs did not consistently improve the model.
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4.5 Current recommendations for best practice

Here we have tested an established global model from Nowicki Jessee et al. (2018), InSAR coherence methods from Burrows

et al. (2020) and a set of same-event and preliminary global models incorporating ICFs for three large earthquakes in vegetated520

areas. We are therefore able to make some recommendations on which of these options is most applicable at different stages

following an earthquake in a vegetated area. In Section 4.1, we argued that empirical models are best suited to distinguishing

between affected and unaffected cells. For this application, the AUC values in Figures 2 and 7 are most relevant and our

recommendations are based on this metric.

The model of Nowicki Jessee et al. (2018) initially has the highest AUC. After the first ALOS-2 image is acquired, the525

performance of the same-event and global models is similar in Lombok and Nepal, but the global model performed consid-

erably better than the same-event model in Hokkaido. All models using these first ALOS-2 ICFs outperformed the model of

Nowicki Jessee et al. (2018). Therefore at this stage we would recommend adding the ICFs derived from ALOS-2 data or from

a similar L-band SAR satellite to a global model.

In all of the cases here, Sentinel-1 data was acquired earlier after the earthquake than ALOS-2 data, resulting in a brief period530

where only ICFs from Sentinel-1 could be added to the model. During this period, our same-event models outperform our global

models in all three cases. The same-event models incorporating Sentinel-1 ICFs also outperform the model of Nowicki Jessee

et al. (2018) by 0.18 in Lombok and 0.03 in Hokkaido (The two models have the same AUC in Nepal). Therefore there

might be an advantage to applying a same-event model using Sentinel-1 ICFs before the first L-band SAR image is acquired.

However, this would only be possible when sufficient landslide data can be generated in this time period to train the same-event535

model, something which is likely to rely on cloud-free weather conditions and the availability of personnel to manually map

the landslides. This is therefore only likely to be relevant in cases where the first L-band image is acquired relatively late, as it

was following the Lombok earthquake studied here. In most cases, we do not expect this to happen, particularly as the number

of L-band SAR satellites is set to increase in the near future (Section 4.6).

In some cases, the individual InSAR coherence methods of Burrows et al. (2020) had a higher ROC AUC than our models540

or those of Nowicki Jessee et al. (2018) (Figure 5). However in practice, switching from an empirical model of landslide like-

lihood in the first few days of an emergency response to a different product derived from coherence would cause unnecessary

confusion. It is preferable to have a single product that can be updated as more information becomes available. For this reason,

our overall recommendation is that the model of Nowicki Jessee et al. (2018) should be used until the first L-band SAR image

is acquired, and then ICFs derived from this image should be incorporated into a combined model that exploits the advantages545

of both SAR and empirical landslide-mapping approaches.

4.6 Future possible SAR inputs

Although here we limited the SAR inputs to coherence-based landslide detection methods, there are other SAR-derived inputs

that could be beneficial. First, the amplitude of the SAR signal has been shown to both be sensitive to landslides and skillful in

their detection (Ge et al., 2019; Konishi and Suga, 2018, 2019; Mondini et al., 2019, 2021). As amplitude is not calculated from550
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multiple pixels, it can be used to obtain information at a higher spatial resolution than coherence. There have been three studies

that successfully combined surfaces derived from amplitude and coherence to detect landslides triggered by the Hokkaido

earthquake (Aimaiti et al., 2019; Ge et al., 2019; Jung and Yun, 2019), suggesting that amplitude methods may be beneficial

to our model. However, other studies have found amplitude to be unreliable in landslide detection (Czuchlewski et al., 2003;

Park and Lee, 2019). SAR amplitude depends on several factors including surface roughness, soil moisture content and slope555

orientation relative to the satellite sensor. The amplitude of non-landslide pixels is therefore likely to vary significantly across

the study area. Landslides can result in both increases and decreases in radar amplitude. Since the Random Forests technique

relies on establishing thresholds on which to divide data, input features based on amplitude methods may not be suitable.

A second option would be polarimetric SAR, in which data are recorded by the SAR satellite at two polarisations (dual-pol)

or both projected and recorded at two polarisations (quad-pol). Polarimetric SAR data thus describe the scattering properties of560

the Earth’s surface more completely than the single-polarisation data we have used here. It has been demonstrated that quad-

pol data can be used to map landslides (Czuchlewski et al., 2003; Ohki et al., 2020; Park and Lee, 2019). However, few SAR

systems acquire quad-pol data, and those that do (e.g. ALOS-2) do not acquire them routinely. Therefore these data are often

not available immediately after an earthquake and so are not suitable for use in a global model. The applicability of dual-pol

SAR data to landslide-detection is less well explored, but as these data are acquired more commonly and are routinely acquired565

by Sentinel-1 they are likely to be available following an earthquake and so could be incorporated. When testing a range of

polarimetric parameters that could be used in landslide detection, Park and Lee (2019) demonstrated that landslides could be

identified in surfaces generated from dual-pol data, although using dual-pol methods resulted in more noise than quad-pol.

Thus, when combined with the other landslide detection and susceptibility parameters used in this study, dual-pol Sentinel-1

data may offer an additional benefit.570

It is also worth considering which SAR satellites could provide data to be incorporated into empirical models. Here we used

two tracks of Sentinel-1 data and one of ALOS-2. ALOS-2 data are acquired at a longer wavelength than Sentinel-1 (L-band

rather than C-band), so the data retain a higher coherence in vegetated areas, a significant advantage in landslide mapping. It is

therefore unsurprising that the addition of the first ALOS-2 ICFs to the models offered the greatest improvement to prediction

of LAD. We have recommended that when the first ALOS-2 image becomes available after an earthquake, the ICFs derived575

from this image should be incorporated into a global model. The ALOS-2 satellite system has a 14-day repeat time and one

of the aims of the mission is to enable emergency response, so the first ALOS-2 image is very likely to be available within

two weeks of an earthquake. In the future, we expect that it will also be possible to derive useful ICFs from L-band SAR data

acquired by the planned NASA-ISRO NiSAR mission, which is due to launch in 2022. The NiSAR mission will acquire data

continually with a 12 day repeat time (Sharma, 2019). Therefore, after the launch of this satellite system, it should be possible580

to use both ascending and descending tracks of L-band SAR data, rather than just one track as we have used here. NiSAR will

also acquire SAR data at a wider swath width (240 km) than the ALOS-2 data we have used here (50 - 70 km) (Sharma, 2019),

which is an advantage for earthquakes that trigger landslides across a large area. For example, in the Nepal earthquake, the

ALOS-2 scene we used in this study covers less than half of the landslides that were triggered by the earthquake (Figure 1a).

Therefore, in order to obtain a complete model of a landslide event of this spatial extent, it would be necessary to combine585
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several adjacent scenes, which are likely to be acquired on different days. ALOS-2 PALSAR-2 data are also acquired at a wider

swath width (up to 490 km), but this is at the expense of spatial resolution, which coarsens to 100 m per pixel. Since coherence

is calculated over a 3 × 3 window, the resolution at which landslides could be detected would therefore decrease to 300 m.

Therefore we expect that data acquired by the NiSAR mission could be extremely useful in generating ICFs.

4.7 Possible application in other settings590

Here we began with a set of models that predicted the spatial distribution of earthquake-triggered landslides predominantly

based on topography and PGV, and demonstrated that the addition of ICFs could improve the performance of these models.

Landslides can also be triggered by rainfall events, and as with earthquake-triggered landslides, cloud cover can cause signif-

icant problems with mapping landslides using optical satellite imagery. In particular, in areas with a monsoon climate (e.g.

Nepal) the rainfall that triggers landslides often occurs during a period of several months with almost continuous cloud cover595

(Robinson et al., 2019). This means that it is currently extremely difficult to obtain landslide information beyond that predicted

by static empirical models such as that of Kirschbaum and Stanley (2018) or the necessarily patchy and incomplete information

provided by reporting of individual landslides by individuals or organisations (e.g. Froude and Petley, 2018).

Landslides in vegetated regions are likely to result in decreased coherence regardless of their triggering mechanism due

to associated movement of material and vegetation removal, which alters the microwave scattering properties of the Earth’s600

surface. Therefore, it seems likely that the added prediction ability that can be gained by adding ICFs to empirical models of

earthquake-triggered landslide susceptibility could also apply to models of rainfall-triggered landslide susceptibility.

It is also worth considering the possible application of our approach in an arid environment. The training and testing of our

model was limited to landslides in vegetated areas. Due to significant differences in background InSAR coherence between

arid and vegetated regions, it is likely that separate models would be required for vegetated and arid regions of the world.605

C-band InSAR is generally more successful in less heavily vegetated areas. Sentinel-1 ICFs might therefore play a larger role

in empirical models based in arid environments than it did here. Sentinel-1 InSAR coherence has been used to map erosion in

arid environments (Cabré et al., 2020), indicating that it could also be applied to landslides. However, it is also more difficult

to derive landslide inventories from optical satellite images in less vegetated areas. This makes it more difficult to obtain the

landslide data required to train an empirical model, but it would also make such a model more valuable if it could be developed.610

5 Conclusions

We have tested the relative performance of InSAR coherence based classifiers, empirical landslide susceptibility models and a

combination of these using ROC analysis and r2. The performance of all models was better with ROC analysis than with r2, in-

dicating that the models are better suited to discriminating between landslide and non-landslide areas following an earthquake

than predicting continuous landslide areal density. We tested same-event and preliminary global empirical models and found615

that adding InSAR coherence features to these improved their performance in terms of both ROC and r2. Importantly, a con-

siderable improvement in model performance was seen using SAR data acquired within 2 weeks of each earthquake, meaning

19

katyb
Highlight

katyb
Highlight



that these improvements could be made rapidly enough to be used in emergency response. We also expect that similar models

could be developed to combine InSAR coherence and empirical models to predict rainfall-triggered landslides, or to predict

earthquake-triggered landslides in more arid environments, although we did not test these cases here. For the same-event mod-620

els, we observed that the empirical models without SAR performed considerably worse when the area available for training

data was restricted as it could be by cloud cover following an earthquake, consistent with Robinson et al. (2017). However, we

also found that the improvement in terms of ROC AUC offered by the inclusion of SAR data was particularly marked in this

case. Both Sentinel-1 and ALOS-2 InSAR coherence features were observed to improve these models, with the best overall

performance observed when both were used together. Before the acquisition of the first ALOS-2 image, when only Sentinel-1625

InSAR coherence features were available, our same-event models outperformed our global models but after this our global

models performed best. Our global models were only trained on two events, but the addition of the first ALOS-2 SAR data ac-

quired after each earthquake resulted in improved and more consistent performance compared to the model of Nowicki Jessee

et al. (2018) in terms of ROC AUC. We therefore recommend that in the future, InSAR coherence features from L-band SAR

should be routinely incorporated into empirical models of earthquake-triggered landsliding in vegetated regions.630
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Figure 1. SAR coverage of the three case study regions: (a) the 2015 Gorkha, Nepal earthquake; (b) the 2018 Hokkaido, Japan earthquake;

(c) the 2018 Lombok, Indonesia earthquake. Sentinel-1 scenes shown in blue. ALOS-2 scenes shown in green. Landslide data from Ferrario

(2019); Roback et al. (2018); Zhang et al. (2019). White stars show earthquake epicentres. White arrows show satellite orbit (O) and look

direction (L). Adapted from Burrows et al. (2020).

25



Hokkaido Nepal Lombok
Sa

m
e-

ev
en

t 
m

o
d

el
G

lo
b

al
 m

o
d

el

Data acquisition timing (days)Data acquisition timing (days)Data acquisition timing (days)

Data acquisition timing (days) Data acquisition timing (days) Data acquisition timing (days)

Data acquisition timing (days) Data acquisition timing (days) Data acquisition timing (days)

Data acquisition timing (days) Data acquisition timing (days) Data acquisition timing (days)

M
ea

n
 R

O
C

 A
U

C

M
ea

n
 R

O
C

 A
U

C

M
ea

n
 R

O
C

 A
U

C

R
O

C
 A

U
C

R
O

C
 A

U
C

R
O

C
 A

U
C

M
ea

n
 r

 s
q

u
ar

ed

M
ea

n
 r

 s
q

u
ar

ed

M
ea

n
 r

 s
q

u
ar

ed

r 
sq

u
ar

ed

r 
sq

u
ar

ed

r 
sq

u
ar

ed

Key Model with 
Sentinel-1 
data

Model with 
ALOS-2 data

Model with 
ALOS-2 & 
Sentinel-1 data

Sentinel-1 
acquisition

ALOS-2 
acquisition

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Nowicki Jessee
(2018) model

Figure 2. Step plots showing the change in ROC AUC (a-c, g-i) and r2 (d-f, j-l) for each of the three events. Models in panels (a-f) were

trained on a small part of each study area, while in panels (g-l) landslide areal density was predicted using a model trained on the other two

case study regions in each case.
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Initial model 2-week model Validation data
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Figure 3. Timelines of modelled landslide areal density for each event, starting with no SAR data (left column). The second column shows

the model using SAR data acquired within 2 weeks of the earthquake, and the final column shows landslide areal density calculated from

polygon inventories for each event (Ferrario, 2019; Roback et al., 2018; Zhang et al., 2019). The mapping extent of each of these inventories

is shown by a black polygon. White polygons in the final row show areas unmapped by (Roback et al., 2018) due to cloud cover in optical

imagery.
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Figure 4. Timelines of modelled landslide areal density for each event. The first column shows the results of the model of Nowicki Jessee

et al. (2018) for each event. The second column shows the model using SAR data acquired within 2 weeks of the earthquake, and the final

column shows landslide areal density calculated from polygon inventories for each event (Ferrario, 2019; Roback et al., 2018; Zhang et al.,

2019). The mapping extent of each of these inventories is shown by a black polygon. White polygons in the final row show areas not mapped

by (Roback et al., 2018) due to cloud cover in optical imagery.
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Figure 5. A comparison between the performance in terms of ROC AUC of individual SAR methods (blue and green circles), the model of

Nowicki Jessee et al. (2018) (pink square), a combined model using all input data listed in Section 2.3 (black line) and a model using only

SAR data (both Sentinel-1 and ALOS-2, red line)
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Figure 6. The relative importance of the different input datasets as ICFs generated from Sentinel-1 (S1) and ALOS-2 (A2) SAR data are

added to the model for models trained on balanced landslide data mapped following (a) the 2018 Hokkaido, Japan earthquake, (b) the 2015

Gorkha, Nepal earthquake and (c) the 2018 Lombok, Indonesia earthquake
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Figure 7. The effect of altering the extent of the training data in terms of ROC AUC (a) and r2 (b). The colours of the lines in (a,b) correspond

to the lateral extent of the training data marked on (c). (c) The mapped landslide inventory for the 2015 Gorkha earthquake of Roback et al.

(2018), reproduced as landslide areal density for 200 x 220 m pixels. (d-i) Modelled landslide areal density with decreasing areas of data

used for training the model.
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Table 1. Input Features used in the Random Forest models and whether they were used in the same-event or global models.The table is

divided into conventional predictors of landslide likelihood and and those based on InSAR coherence. For the latter, the case where only data

from the Sentinel-1 (S-1) satellite were used is noted, otherwise both Sentinel-1 and ALOS-2 data were used.

Input feature Same-event models Global models

Mean elevation X

Standard deviation of elevations X

Maximum Slope X

Mean Slope X

Standard deviation of slopes X

Circular mean of slope aspect X

Mean compound topographic index X

Relief X

Peak ground velocity X

Lithology X

Land cover X

USGS ground failure product X

Co-event coherence X X

Co-event coherence loss (CECL) X X

Boxcar-Sibling coherence (Bx-S) X (S-1 only in Nepal) X (S-1 only)

Post-event coherence X X (S-1 only)

Post-event coherence increase (PECI) X X

Sum of CECL and PECI X X

Maximum CECL or PECI X X
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Table 2. Hyperparameter options for the Random Forest in Scikit-learn over which a grid search optimisation was carried out (Pedregosa

et al., 2011).

Hyperparameter Definition GridSearch

n_estimators The number of decision trees that make up a forest [75, 100, 125]

max_features The number of input features (as a function of the total) consid-

ered when looking for a split

["log2","sqrt"]

max_depth The maximum depth of the tree [10,15,20,30]

min_samples_split The minimum number of samples at a node for a split to be

allowed

[2,3,4,5]

min_samples_leaf The minimum number of samples that would result at each leaf

for a split to be allowed

[2,10]
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