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Abstract. Shallow landslides pose a risk to infrastructure and residential areas. Therefore, we developed SlideforMAP, a

probabilistic model that allows for a regional assessment of shallow landslide probability while considering the effect of

different scenarios of forest cover, forest management and rainfall intensity. SlideforMAP uses a probabilistic approach by

distributing hypothetical landslides to uniformly randomized coordinates in a 2D space. The surface areas for these hypothetical

landslides are derived from a distribution function calibrated on observed events. For each generated landslide, SlideforMAP5

calculates a factor of safety using the limit equilibrium approach. Relevant soil parameters are assigned to the generated

landslides from log-normal distributions based on mean and standard deviation values representative for the study area. The

computation of the degree of soil saturation is implemented using a stationary flow approach and the topographic wetness

index. The root reinforcement is computed by root proximity and root strength derived from single tree detection data. The

ratio of unstable landslides to the number of generated landslides, per raster cell, is calculated and used as an index for10

landslide probability. We performed a calibration of SlideforMAP for three test areas in Switzerland with a reliable landslide

inventory, by randomly generating 1000 combinations of model parameters and then maximising the Area Under the Curve

(AUC) of the Receiver Operation Curve. The test areas are located in mountainous areas ranging from 0.5 – 7.5 km2 with

mean slope gradients from 18 - 28◦. The density of inventoried historical landslides varies from 5 – 59 slides/km2. AUC values

between 0.64 and 0.93 with the implementation of single-tree detection indicated a good model performance. A qualitative15

sensitivity analysis indicated that the most relevant parameters for accurate modeling of shallow landslide probability are the

soil thickness, soil cohesion and the precipitation intensity/transmissivity ratio. Furthermore, we show that the inclusion of

single tree detection improves overall model performance compared to assumptions of uniform vegetation. In conclusion, our

study shows that the approach used in SlideforMAP can reproduce observed shallow landslide occurrence at a catchment scale.
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1 Introduction

Landslides pose serious threats to inhabited areas world-wide. They are the cause of 17% of the fatalities due to natural

hazards in the period of 1994–2013 (Kjekstad and Highland, 2009). Average annual monetary losses over the period of 2010–25

2019 are approximately 25 billion US dollars (Munich RE, 2018). In addition, Swiss Re Institute (2019) notes a significant

increase in damages by hydrologically related natural hazards over the past 5 years, including hydrologically-triggered shallow

landslides. This has been attributed to increased urbanization in risk-prone areas and to an increase in heavy rainfall events.

Furthermore, Swiss Re Institute (2019) notes that the modelling of shallow landslides is underdeveloped compared to the

severity of the danger they pose. In mountainous regions, landsliding is a prominent natural hazard. For instance, in the Alpine30

parts of Switzerland, 74 people have died as a result of landslide events between 1946 and 2015 (Badoux et al., 2016). The

annual cost of landslide protective measures alone is approximately 15 million CHF each year (Dorren and Sandri, 2009).

No distinction is made between deep-seated and shallow landslides in these numbers. Rain induced shallow landslides are

one of the most important and dangerous types of mass movement in mountainous regions (Varnes, 1978). Shallow landslides

are defined as translational mass movement with a maximum soil thickness of 2 m and are the main focus in this paper.35

Fortunately, improvements in hazard assessment have significantly decreased the number of shallow landslide related deaths

over the past decades (Badoux et al., 2016). This general trend is also supported by long-term data (Munich RE, 2018). The

fatality decrease is related to better organizational measures regarding hazards, such as warning based evacuations and road

closures. Biological measures, such as management of protection forests, also play a role in mitigation of natural hazards. The

latter role is especially important for (shallow) landslides, rockfall, snow avalanches and debris flows (Corominas et al., 2014).40

Modelling of shallow landslide triggering has been an ongoing process. Shallow landslide probability has been modelled

mostly using a deterministic approach (Corominas et al., 2014). The deterministic approach is defined by using average values

of risk components and resulting in a univariate result (Corominas et al., 2014). An example of a deterministic approach in

this sense is the SHALSTAB model of Dietrich and Montgomery (1998). Other contemporary examples are TRIGRS (Baum

et al., 2002) and SLIP (Montrasio et al., 2011), the latter showing good results in assessing soil saturation in a spatially45

heterogeneous way. In a comparative research it was noted that the SHALSTAB approach was not representative for the spatial

variability of the parameters at a small scale (Cervi et al., 2010). In recent decades, the development of probabilistic models

and statistical methods has improved model performance for quantifying landslide probability and the interpretation of their

results (Corominas et al., 2014). In statistical methods (e.g. Baeza and Corominas, 2001), there is no explicit accounting of

physical processes. Probabilistic methods could take physical processes into account and additionally quantify the reliability50

of the results considering the probability distribution of values of one or more input parameters (Salvatici et al., 2018). The

output is a probability rather than a univariate result. A prime example of a probabilistic model in SINMAP (Pack et al.,

1998). Generally, these models perform better than deterministic ones (Park et al., 2013; Zhang et al., 2018), likely due to
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natural landslides having a mode of movement significantly controlled by internal inhomogeneities and discontinuities in the

soil (Varnes, 1978). These control mechanisms are unpredictable at small-scales, making it hard for deterministic models to55

identify exact locations of instabilities and adjust the heterogeneous parametrization accordingly. Below we go into more detail

on the initiation of shallow landslides.

Initiation of instability is a process that combines mechanical and hydrological processes on different spatial and temporal

scales and can thereby be very localized, with successive movement increasing the magnitude of the event (Varnes, 1978).

In alpine environments, instabilities are typically triggered by rainfall, leading to soil wetting and ensuing increase of pore60

pressure, which destabilizes the soil and can then initiate soil movement. An increase in pore pressure can build up in minutes

to months following a rainfall event (Bordoni et al., 2015; Lehmann et al., 2013), where rapid pore pressure changes are

attributed to macropore flow and slow pore pressure changes to the matrix water flow. The higher the horizontal hydraulic

conductivity of the soil, the faster pore pressure changes can develop (Iverson, 2000). The reaction of pore pressure to rainfall

is variable and highly dependent on soil type. A key experimental study is the work of Bordoni et al. (2015) in which in-situ65

measurements were taken on a slope with clayey–sandy silt and clayey–silty sand soils that experienced a shallow landslide.

It showed that intense rainfall and a rapid increase of pore pressure were the triggering factors of the landslide. Over the

duration of the measurements, comparable saturation degrees have been reached both during prolonged and intense rainfall

events. Prolonged rainfall did not result in the pore pressure required to trigger a shallow landslide. Similar behaviour has been

observed in an artificially triggered landslide in Switzerland (Askarinejad et al., 2012; Lehmann et al., 2013; Askarinejad et al.,70

2018). In the first wetting phase (year 2008), homogeneously induced rainfall with a duration of 3 days, an accumulated rainfall

of 1700 mm and an intensity of 35 mm/hr, induced a maximum pore water pressure of 2 kPa at 1.2 m soil depth, resulting in no

landslide. In the second phase of the experiment (year 2009), the rainfall was heterogeneous, with a maximum intensity of 50

mm/hr in the upper part of the slope that induced an increase of pore water pressure up to 5 kPa at 1.2 m soil depth, resulting

in the triggering of a shallow landslide. The triggering was reached after 15 hours with a cumulative rainfall of 150 mm. In75

addition, a computational study by Li et al. (2013) showed that at a high rainfall intensity (80 mm/hr), the pore water pressure

at a depth of 1 m reached a constant value within 1 hour. For a lower intensity of 20 mm/hr, this took approximately 3 hours.

This shows that landslide triggering is related to a fast build up of pore water pressure proportional to rainfall intensity. The

work of Wiekenkamp et al. (2016) suggests that preferential flow dominates the runoff in a heterogeneous catchment during

extreme precipitation events. Water can move downslope very rapidly through macropores (in experimental conditions) under80

both saturated and unsaturated conditions (Mosley, 1982). The role of macropores can be important in a closed soil structure

or in the presence of a shallow impermeable bedrock, where they control the soil hydrological behavior. Further examples of

the influence of macropores on hillslope hydrology in various soil types are presented in the work of Weiler and Naef (2003)

and Bodner et al. (2014). Additionally, Torres et al. (1998) demonstrates the strong role of macropore in preferential flow paths

for landslide triggering in an artificial rain experiment in a loamy sandy soil. Montgomery et al. (2002) and Montgomery and85

Dietrich (2004) also underline the importance of macropore flow, but state that the vertical flow governs response time and

build up of pore pressure rather than the lateral flow in their study areas.
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The mechanical aspect of shallow landslide initiation usually results from local instabilities that could extend indefinitely in a

infinite constant slope if the shear resistance is low (Varnes, 1978). In complex topography, however, the passive earth pressure

at the bottom of the triggering zone reacts with a resisting force, contributing thereby to landslide stabilisation (Schwarz et al.,90

2015; Cislaghi et al., 2018). It is important to note here that the passive earth pressure is activated in a later phase of the

triggering of a shallow landslide and should not be added to active earth pressure or tensile forces acting along the upper half

of the shallow landslide (Cohen and Schwarz, 2017).

Besides hydrology, slope and soil characteristics, vegetation plays a key role in landslide triggering (Salvatici et al., 2018;

Corominas et al., 2014; Greenway, 1987; González-Ollauri and Mickovski, 2014). The role of vegetation can be subdivided95

in hydrological and mechanical effects. Vegetation influences the effective soil moisture by interception, increased evapotran-

spiration and increased infiltration (Greenway, 1987; Masi et al., 2021). Over the short timescale with intense rainfall these

hydrological effects are negligible, but do play an important role in pre-event disposition of slope instability (Feng et al., 2020).

Among the mechanical effects, root reinforcement, mobilized during soil movement, is an essential component (Greenway,

1987; Schwarz et al., 2010). It is a leading factor in the failure criterion for many vegetated slopes (Dazio et al., 2018). In100

modelling studies, the influence of root reinforcement on slope stability is often quantified as an apparent added cohesion

(Wu et al., 1978; Borga et al., 2002). This apparent cohesion in turn can be added in the limit equilibrium computation of a

Safety Factor (SF). Using a Monte Carlo approach of this method (Zhu et al., 2017), it was found that the SF can gain up to

37% stability when including vegetation root reinforcement. In another study in New Zealand, trees showed an effect on soil

stability up to 11 meter away from their position and had the ability to prevent 70% of instability events (Hawley and Dymond,105

1988). Computational research furthermore shows that root reinforcement by the larger roots is dominant over the smaller

roots, even though they are far less numerous (Vergani et al., 2014). The planting pattern and management of the vegetation

can have a profound effect on root reinforcement and thus on slope stability (Sidle, 1992). Therefore a detailed approach to

calculate the spatial distribution of root reinforcement is important for slope stability calculations. Root reinforcement can be

subdivided into two major components: Basal root reinforcement and lateral root reinforcement. Basal root reinforcement is110

the anchoring of tree roots through the sliding plane into the deeper soil. Lateral root reinforcement is the reinforcement from

roots on the edges of the potential slide that stick into the soil outside of the potential slide (Schwarz et al., 2010). In contrast,

the mechanical influence of vegetation weight on slope stability is often considered negligible (Reinhold et al., 2009). In cur-

rent shallow landslide probability modelling, whether deterministic or probabilistic, root reinforcement is generally modelled

in a simplified way, for example by including homogeneous root reinforcement (Montgomery et al., 2000). These methods115

limit the evaluation of the effects of different forest spatial properties such as forest structure, and the contribution of different

root reinforcement mechanisms to slope stabilisation (Schwarz et al., 2012). In order to overcome this limitation, we develop

a shallow landslide probability model, named SlideforMAP. To ensure a wide applicability, SlideforMAP is designed for a re-

gional scale. In concrete terms this means SlideforMAP should be applied to study areas of 1 - 1000 km2. The main objectives

of this work are to:120

– Present the SlideforMAP model as a tool for shallow landslide probability assessment.
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– Show a calibration of SlideforMAP through a performance indicator over three study areas with 78 field recorded shallow

landslide events in Switzerland

– Analyze the expected improvement in the performance of SlideforMAP with a detailed inclusion of vegetation

– Provide a qualitative sensitivity analysis and identify the parameters that are of greatest influence on the slope stability125

Strong emphasis within the SlideforMAP framework and this paper is put on the quantification of root reinforcement on a

regional scale. We will show the effect of accurate, quantitative, representation of root reinforcement has on slope stability

over three study areas. Simplifications, lack of a temporal component and calibration constraints make it impossible to use

SlideforMAP as an exact forecast tool. The main application for SlideforMAP is as a tool to quantify the effects of vegetation

planting, growth and/or management for land managers in relation to shallow landslides.130

2 Methods: SlideforMAP

2.1 Probabilistic modelling concept

SlideforMAP is a probabilistic model that generates a 2D raster of shallow landslide probability (Pls). It is an extension of

the approach of Schwarz et al. (2010) and Schwarz et al. (2015). It generates a large number of hypothetical landslides (HLs,

singular: HL) within the limits of a pre-defined region of interest. These HLs are assumed to have an elliptic shape and are135

characterized by a mix of deterministic and probabilistic parameters, from which the landslide stability is computed following

the limit equilibrium approach (section 2.2). The probabilistic parameters are the HL location, its surface area and its soil

cohesion, internal friction angle and soil thickness parameters (drawn from appropriate random distributions). The location

and surface area are approached in a probabilistic way to compute a spatial probability distribution. The soil parameters

are probabilistic because we assume their variation is high and important in mountainous environments. The deterministic140

parameters include several vegetation parameters and hydrological soil parameters. A key originality of the approach stems

from the fact that the vegetation parameters can be derived from single-tree scale information (section 2.5). The number of

generated landslides is high enough such that each point in a region of interest is overlain by multiple HLs from which a relative

Pls can be estimated by considering the ratio of unstable HLs. A general flow chart of SlideforMAP is given in Fig. 1. More

details on the modules follow in the subsequent sections.145
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Figure 1. Flowchart of the computational steps in SlideforMAP. Separate sections are outlined in colors. The central workflow is highlighted.

2.2 Stability estimation

The estimate of the stability of each HL is calculated following the limit equilibrium approach (described well in the work of

Day (1997)). In this method, a landslide is assumed to be stable if its safety factor (SF) is greater than 1.0. The SF is computed

as the ratio of the parallel to slope stabilizing forces and the destabilizing ones:

SF =
Fres

Fpar
, (1)150

where Fpar [N] is the force parallel to the slope, Fres [N] is the maximum mobilized resistance force. The assumed forces that

act upon a hypothetical landslide are schematically shown in Fig. 2.

6



Figure 2. Schematic overview of the forces acting upon a hypothetical landslide, as assumed in SlideforMAP. The blue arrow, Fres, indicates

the stabilizing forces and the red arrow, Fpar, indicates the destabilizing forces. Lateral root reinforcement only acts upon the green part of

the hypothetical landslide, where tension takes place. In purple is the compression zone in the shallow landslide. Basal root reinforcement

and soil shear strength act on the whole potential failure surface.

As seen in Fig. 2, all landslides are assumed to be elliptical (Rickli and Graf, 2009) with a ratio between length and width, lwr

= 2. The forces assumed in SlideforMAP are typical for the second stage of the activation phase: the displacement at which

lateral root reinforcement is maximized under tension along the tension crack and at which passive earth pressure and lateral155

root compression are assumed to not be fully mobilized (Cohen and Schwarz, 2017). The magnitude of the stabilisation’s

effects under compression considerably change depending on the stiffness of the landslide material and the dimension of the

landslide. The quantification of those effects are still a challenge for slope stability calculation at large scales. In order to

develop a conservative approach, we neglect those effects in the stability calculations of SlideforMAP. The tension crack is

assumed to span the entire upper half of the circumference of the HL and has an assumed length in the range of 0.01 - 0.1 m160

(Schwarz et al., 2015) depending on the root distribution. This behaviour of progressive shallow landslide failure with a tension

crack opening up in the upper half of a shallow landslides is described in detail in Cohen et al. (2009) and Askarinejad et al.
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(2012). This is different from the assumptions taken in most landslide models involving root reinforcement (e.g. Montgomery

et al., 2000; Schmidt et al., 2001), that assume lateral root reinforcement to be activated at the same time along the entire

landslide perimeter. Quantification of the forces in the safety factor calculation follows the limit equilibrium assumptions. This165

method is outlined in equations 2 to 5 below:

Fpar = g(msoil +mw +mveg) · sin(s), (2)

Fres =
cls

2
·Rlat +Fres,bas, (3)

Fres,bas =Als ·Csoil +Als ·Rbas +Fper,eff · tan(φ), (4)

Fper,eff = g · (msoil +mw +mveg) · cos(s)−Pwater, (5)170

In these equations, msoil is the soil mass [kg], mw is the mass of the water [kg], mveg is the vegetation mass [kg], g is the

gravitational acceleration assumed at 9.81 [m/s2], s is the slope [◦], cls is the circumference of the landslide [m], Rlat is the

lateral root reinforcement [N/m], Fres,bas is the basal resisting force, Als [m2] is the area of the landslide, Csoil [Pa] is the soil

cohesion [Pa], Rbas is the basal root reinforcement [Pa], Fper,eff is the effective perpendicular resisting forces [N], φ is the angle

of internal friction [◦] and Pwater is the water pressure [Pa].175

2.3 Placement and extent

The location of the center of mass of the HLs is generated from two uniform distributions covering the latitudinal and longitu-

dinal extent of the study area. HLs on the edge of the study area are taken into account as well, though cut to the extent of the

study area in the later spatial processes of SlideforMAP. The total number of HLs is determined by multiplying the landslide

density parameter (ρls) with the total surface area of the study area. This number is then uniformly sampled with replacements180

from the latitudinal and longitudinal distribution. The value of ρls should be high enough such that each raster cell of the study

domain is covered by several HLs. The HL surface area is sampled from an inverse gamma distribution following the work

of Malamud et al. (2004), which showed that the probability distribution of shallow landslide surface areas follows an inverse

gamma distribution (Johnson and Kotz, 1970). The parameterization of a three parameter inverse gamma distribution is shown

in equation 6 below.185

PAls =
1

a ·Γ(ρ)

(
a

Als− s

)(ρ+1)

e

(
−a

Als−s

)
, (6)
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where Als is the area of the landslide, PAls is the probability of Als, Γ is the gamma function, a, ρ and s are parameters. These

distributional parameters are estimated using the landslide surface area data of the inventory (section 3). The estimation is

based on minimizing the Root Mean Square Error (RMSE) between the histogram counts (size of histogram bins = 10) of the

surface areas from the inventory and the distribution of equation 6. Users can follow this approach with an inventory or use a190

custom parametrization. The maximum HL surface area is set for all case studies based on the maximum surface area observed

in the landslide inventory. This maximum is set to 3000 m2, based on the rounded up maximum value of a well-distributed

landslide inventory in Switzerland (section 3.3), but users can vary this parameter.

2.4 Soil parameters

Steep-sloped mountainous areas are prone to extreme and unpredictable heterogeneity in soil parameters (Cohen et al., 2009).195

This makes a heterogeneous deterministic parameterization inaccurate, even if based on observations. To overcome this lim-

itation, a probabilistic approach in the parameterization of soil parameters of the model is applied. Values of soil cohesion

and internal friction angle of each HL are randomly generated from independent probability distributions. This is an approach

similar to the one taken in Griffiths et al. (2009), who use the log-normal distribution for soil cohesion only and Pack et al.

(1998) who use a uniform distribution for soil cohesion and friction angle. We choose the log-normal distributions in our200

parametrization because it has shown to give a good fit (Fig. A1 with a comparison to a normal distribution in the Appendix;

Corresponding code in the supplementary material), it ensures generating positive values only and its accuracy has been shown

in Griffiths et al. (2009). The distribution is parametrized by the mean and the standard deviation of observed samples. The

mean and the standard deviation are based on different information such as field soil classification or a geotechnical analysis.

The soil cohesion in our computations is assumed to be representative for saturated, drained and unconsolidated conditions.205

Soil thickness is parametrized following a different approach to account for the shallow soils found on steep slopes. An initial

soil thickness (hsoil) is derived from a log-normal distribution. This is then multiplied by a correction factor which is a function

of slope inclination as shown in equation 7. Soil thickness is defined here perpendicular to the slope as opposed to soil depth,

that is measured in the vertical direction.

Hsoil = hsoil
(
1−PN (S ≤ s|µ1,σ1)

)
, (7)210

where Hsoil [m] is the soil thickness and s is the observed slope, extracted for the HL. PN (S ≤ s|µ1,σ1)] is the cumulative

normal distribution of the slope S with µ1 = a·mh and σ1 = b·σh.mh and σh are the mean and standard deviation of the slope

angle of shallow landslides from an inventory or a best guess. a and b are estimated by fitting data from a landslide inventory

containing slope angle and soil thickness. Other relations than used by SlideforMAP to correct the soil thickness to the slope

(e.g. Prancevic et al., 2020) are possible as well.215
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2.5 Mechanical effects of vegetation

Three properties of vegetation are included in the model. These are vegetation weight, lateral root reinforcement and basal

root reinforcement. SlideforMAP only incorporates trees and ignores possible effects by shrubs, grasses and other vegetation.

This choice is due to the fact that trees are predominant in influencing slope stability (Greenway, 1987). Single tree detection

(Korpela et al., 2007; Menk et al., 2017) serves as a basis to estimate these properties. Single tree position and dimensions220

are derived from a Canopy Height Model (CHM), which is the difference between the Digital Surface Model (DSM) and the

Digital Elevation Model (DEM), using a local maxima detection method (LMD) described in the work of Eysn et al. (2015)

and Menk et al. (2017). First, the trees are rasterized. The resolution of this raster has to exceed the effective radial dimension

of the trees, in order to calculate representative vegetation parameter values at stand scale. The weight of the tree is calculated

by using the tree height and the Diameter at Breast Height (DBH), assuming that the trees are cone shaped. The tree mass,225

mveg, used in equation 2 and 5, is calculated assuming a mean tree density (ρtree) of 850 kg/m3. Root reinforcement is added

in the model using the method proposed by Schwarz et al. (2012), which relates the root reinforcement to the distance to a

tree, the size of the tree and the tree species. Two rasters are computed. A raster with the nearest distance to a tree (Dtrees)

and a raster with the average DBH of all trees within an assumed maximum distance of root influence (Dtrees,max), set at 15 m.

We compute actual lateral root reinforcement for a given grid cell as a function of maximum lateral root reinforcement and230

soil thickness, which reduces maximum lateral root reinforcement. The maximum lateral root reinforcement, RRmax [N/m], is

computed as a function of Dtrees and DBH (Moos et al., 2016; Gehring et al., 2019) according to equation 8 below:

RRmax = (c ·DBH) ·ΓPDF
(

Dtrees

DBH · 18.5

∣∣∣∣α1,β1

)
, (8)

In equation 8, c is a fitting parameter in N/m2 based on the work of Schwarz et al. (2010). DBH is in [m]. The ΓPDF(x|α1,β1) is

the gamma probability density function (ΓPDF) evaluated as function of x with shape parameter α1 and rate parameter β1. Both235

α1 and β1 are dimensionless. The parameters should ideally reflect any knowledge about how root reinforcement decreases

with distance for specific tree species. The general ΓPDF is written as:

ΓPDF (x|α,σ) =
xα−1e−x/σ

σαΓ(α)
,(x,α,σ > 0), (9)

In this equation α and σ are the shape and scale parameter. The rate parameter, β, as used in this research, is defined as 1/scale.

Soil thickness reduces the effects of lateral root reinforcement that contributes to stabilize a shallow landslide. This decrease240

of lateral root reinforcement with soil thickness is obtained as follows:

Rlat =RRmax ·
Hsoil∫
0

ΓPDF

(
H

∣∣∣∣α2,β2

)
dH, (10)

In this equation ΓPDF(H|α2,β2) is the ΓPDF for the normalized root distribution over the soil thickness with shape parameter α2

and rate parameter β2. In this equation β2 has the unit [m] in order to make the integral of the ΓPDF dimensionless. SlideforMAP
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computes this integral by numerical approximation. This method computes the root reinforcement where only one tree can245

influence a cell. A spatially representative minimum root reinforcement value is calculated in a stand assuming a triangular

lattice (Giadrossich et al., 2020). Under this assumption, three root systems interact additively. Basal root reinforcement, Rbas

is assumed to be proportional to lateral root reinforcement and dependent on soil thickness according to the relation shown in

equation 11:

Rbas =RRmax ·ΓPDF (Hsoil|α2,β2) , (11)250

where ΓPDF (Hsoil|α2,β2) is the normalized root distribution in the vertical direction. The ΓPDF in this application the unit [m-1]

which leads to a unit of [Pa] for the term Rbas, under the assumption of isotropic conditions.

2.6 Hydrology

The hydrological module in SlideforMAP is based on the TOPOG model (O’Loughlin, 1986), which includes a specific to-

pographic index as inspired by Kirkby (1975). In this framework we specifically assume macropore flow dominates hillslope255

hydrology. The identical model is used in the SHALSTAB stability model (Montgomery and Dietrich, 1994) and SINMAP

(Pack et al., 1998). It is assumed that the saturated soil fraction of each cell holds a relation to its specific catchment area,

its slope angle, a constant precipitation intensity and the soil transmissivity (equation 12). This is in close correspondence

to the parameterization used in the widely used TOPMODEL (Beven and Kirkby, 1979). Limitations of this approach is the

assumption of uniform soil transmissivity, no inclusion of initial conditions, steady state flow and lateral flow governing of soil260

moisture pattern. These limitations and generalizations make the model insufficient in capturing detailed hydrological pattern,

especially in mountainous regions modelled by SlideforMAP. Despite this, we assume the approach to be suitable for a general

pattern of saturated fraction and subsequent pore pressure. In addition to this shortcoming we ignore the apparent hydrolog-

ical cohesion (Chae et al., 2017) prominent in unsaturated fine and clayey soils, but of little prominence in other conditions

(Montrasio and Valentino, 2008). The saturated soil fraction, h∗sat [-], of a soil column is defined in equation 12 below:265

h∗sat =
I · a

T · b · sin(s)
, (12)

I [m/s] is the constant precipitation intensity, T [m2/s] is the transmissivity, a is the contributing catchment area [m2], s is the

slope inclination [◦], and b is the contour length [m] that in our model corresponds to the cell size (see Section 3.2 for details

on its computation). We assume dominant macropore flow, which has the ability to quickly drain a catchment and potentially

reach a state of stationary flow. Using this estimated h∗sat, pore water pressure is computed as:270

Pwater =Hsoil · cos(s) ·h∗sat · g · ρwater, (13)
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where Pwater [Pa] is the pore water pressure (used in equation 5),Hsoil [m] is the soil thickness, s is the slope angle, g=9.81 m/s2

is the gravitational acceleration, ρwater is the density of water assumed equal to 998 kg/m3. The same value for water density is

used in the computation of the water mass in the HL.

2.7 Model initialisation275

The model has a total of 3 probabilistic parameters and 15 deterministic parameters (Table 1). The deterministic parameters

as well as the distributional parameters for the probabilistic parameters are determined from in-situ data or from literature

(Section 3). In a first step of the workflow for the application of SlideforMAP, after assigning the deterministic parameter

values and sampling a value for each probabilistic parameter, a minimum value of soil cohesion is computed for each HL

to obtain stable conditions (safety factor, SF >= 1.0) under uniform a precipitation intensity of 28.3 mm/day or 1.2 mm/hr.280

This threshold of precipitation intensity is chosen according to Leonarduzzi et al. (2017), who statistically analyzed over 2000

landslides in Switzerland over the period 1972–2012 and found this as a triggering threshold. The minimum value of soil

cohesion is obtained by equating Fpar (equation 2) and Fres (equation 3). If the minimum value of soil cohesion is larger than

the sampled soil cohesion, the soil cohesion is updated to the minimum value. This procedure can be altered by users when

another threshold or no threshold at all applies.285
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Table 1. An overview of all variable model parameters of SlideforMAP. The second to last column indicates the source of the default value.

The last column indicates whether the default is global or specific for this research in Switzerland (CH).

Parameter Description Default value Unit Source Extent

md Soil thickness mean 1 m Estimate Global

σd Soil thickness standard deviation 0.25 m Estimate Global

mC Soil cohesion mean 2 kPa Estimate Global

σC Soil cohesion standard deviation 0.5 kPa Estimate Global

mφ Angle of internal friction mean 30 ◦ Estimate Global

σφ Angle of internal friction standard deviation 4 ◦ Estimate Global

ρls Density of the random generated landslides 0.1 HL/m2 Estimate Global

ρsoil Dry soil density 1500 kg/m3 Estimate Global

T Soil transmissivity 0.1 m2/s Estimate Global

I The precipitation event that is tested 10 mm/hr Estimate Global

Imin Precipitation intensity threshold for instability 1.2 mm/hr Leonarduzzi et al. (2017) CH

rxy Raster resolution of the SlideforMAP run 2 m Estimate Global

lwr Ratio between length and width of the landslides 2 - Estimate Global

c Fitting parameter for the lateral root reinforcement 25068.54 - Gehring et al. (2019) CH

α1 Shape of root distribution in horizontal direction 0.862 - Gehring et al. (2019) CH

β1 Rate of root distribution in horizontal direction 3.225 - Gehring et al. (2019) CH

α2 Shape of root distribution in vertical direction 1.284 - Gehring et al. (2019) CH

β2 Rate of root distribution in vertical direction 3.688 m Gehring et al. (2019) CH

Dtrees,max maximum distance for influence of tree roots 15 m Estimate Global

ρtree Density of a tree 850 kg/m3 Estimate CH

ρwater Density of water 998 kg/m3 Estimate Global

2.8 Landslide probability computation

After model initialisation, SF (equation 1) is computed for each of the generated HLs. Based on the SF for all generated HLs,

landslide probability per raster cell (with the resolution of the original DEM), Pls, is computed as:

Pls =
nus

nHL
, (14)

where nus is the number of unstable HLs, i.e. of HLs with SF<1.0 and nHL is the total number of generated HLs (the HLs are290

overlapping). Both per raster cell. Finally, this results in a raster of shallow landslide probability on a resolution of the input

DEM.
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3 Data

3.1 Study areas

Three study areas were chosen to test SlideforMAP based on the availability of elevation data and detailed records of historical295

shallow landslide events (Fig. 3), each varying in size and location to test the robustness and the general applicability of the

model.

Figure 3. Locations of the study areas in Switzerland with observed Shallow landslide occurrence over the period 1997 - 2012 (blue dots);

the case study names are given according to nearby villages: Trub, St. Antönien and Eriz. Forest covered area is presented in green. Source

of forest cover: Federal Office of Topography Swisstopo (Swisstopo, 2020). Source of hillshade: Federal Office of Topography Swisstopo

(Swisstopo, 2018).

The geological formations in the Eriz study area vary from Oligocene freshwater Molasse in the lower northern part, morainic

material in the central part and Cretaceous Limestone in the highest parts. Forests are dominated by spruce (Picea abies),

except for the lower regions where broad-leaved trees are dominant. In the Trub study area, the dominant geological formation300

is Miocene Marine Molasse and forests are dominated by spruce. In the St. Antönien (from here forward abbreviated to ’StA’)

study area, the dominant geological formation is Flysch (Prättigauer Flysch), partially covered by till (Moos et al., 2016). The

forest in this study area is also dominated by spruce (Moos et al., 2016). Further characteristics of the study areas are given in

Table 2.
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Table 2. Study area characteristics. Meteorological data is from the HADES yearly average precipitation for the time period 1981 - 2010

(Frei et al., 2020). Shallow landslide number and density from the inventory in section 3.3.

Name Centre coordinate Surface area Mean prec. Elevation Number of slides Slide density Mean slope

lat;lon (WGS84) km2 mm/year m.a.s.l. Slides/km2 ◦

Eriz 7.81; 46.78 7.54 1700 960 - 1750 37 4.9 20.4

Trub 7.90; 46.96 1.00 1620 820 - 1020 8 8.0 18.3

StA 9.80; 46.98 0.56 1310 1540 - 2010 33 58.9 27.5

3.2 Input data305

To accurately measure Pls for each study area, the following data are required.

– Digital Surface Model (DSM) and Digital Elevation Model (DEM)

– Average and standard deviation values for soil cohesion, thickness and friction angle

– A representative landslide inventory containing at least:

• Average landslide soil thickness310

• Landslide surface area

In addition to the DEM, the DSM is applied in the vegetation module of SlideforMAP. The DEM and the DSM are both

acquired from the SwissAlti3D database (Swisstopo, 2018), which makes use of aerial laserscanning (ALS). Both the DSM

and DEM are available at a resolution of 0.5 m. As an alternative to the use of a landslide inventory and the DSM for single

tree identification, users can also use synthesized values for the parameters derived from this data. After pit filling, the DEM is315

used to compute a slope map following the method of Zevenbergen and Thorne (1987). The topographic wetness index θ for

Fig. 4 is computed on a raster cell basis based on the 2 m DEM using equation 15.

θ =
a

b · sin(s)
, (15)

where a is the specific upslope catchment area, b is the contour length and s is the slope angle. To avoid numerical problems

for elongated catchments, θ is computed using a 2 km buffer around the catchment. The large buffer size is chosen arbitrarily,320

but can be reduced by other users. The standard D8 method is applied for the computation of the upslope catchment area from

the DEM (O’Callaghan and Mark, 1984). For single tree detection, the FINT algorithm (Menk et al., 2017) is used. Since the

results of such detection methods are strongly influenced by the resolution and smoothness of the input data (Eysn et al., 2015),

we applied the LMD method to the canopy height model (CHM). This canopy height model is computed by subtracting the

DEM from the DSM and is resampled to a resolution of 1, 1.5 and 2 m. In addition, three different Gaussian filters were applied325
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on the 1 m resolution CHM. These three filters have a radius of 3, 5 and 7 cells and a standard deviation of 2 m. To identify

the input data that leads to LMD results with the highest accuracy, we evaluated the identified trees in three randomly selected

forest inventory plots with an area of 20 m x 20 m for each study site. In these plots, we visually identified all recognisable

tree crowns, on the basis of aerial photos (Swisstopo, 2017) and the CHM. The identified trees were then compared to the

LMD result, using the difference in the number of detected trees. The input data leading to the most accurate results in all three330

study sites was the 1 m resolution CHM with a Gaussian filter of a 3 cells radius and with the fixed standard deviation of 2 m.

This combination has been applied to the entire area of the three study sites. To estimate the DBH from the tree heights of all

detected trees, the following empirical equation (Dorren, 2017) was used:

DBHtree =
(Htree)

1.25

100
, (16)

where DBHtree [m] is the diameter at breast height of a given tree and Htree [m] its height. Details resulting from the LMD335

method for the three study areas are shown in Table 3.

Table 3. Vegetation parameters in the study areas. Source of forest cover: Federal Office of Topography Swisstopo (Swisstopo, 2020). Source

of hillshade: Federal Office of Topography Swisstopo (Swisstopo, 2018).

Study area Trees identified Forest cover Mean stem density Mean DBH Std. deviation DBH

% Stems/ha m m

Eriz 38923 32 165 0.51 0.27

Trub 7267 26 270 0.55 0.30

StA 1796 27 120 0.31 0.18

The lateral and the basal root reinforcement (equations 10 and 11) are parameterized using the values from Gehring et al. (2019)

(α1 = 0.862, β1 = 3.225, c = 25068.54, α2 = 1.284, β2 = 3.688). In their work, the calibration was performed on beech (Fagus

Sylvatica) stands over varying elevations. Our study areas, however, are predominantly vegetated by spruce trees. Therefore

a discrepancy in the estimated root reinforcement will likely arise. Unfortunately, this is the only published set of calibrated340

values.

3.3 Landslide inventory

A landslide inventory is required to quantify a distribution for slope, surface area and soil thickness for the HLs. This inventory

does not necessarily have to be well distributed in the study area, or even be present in the area. However, it should be

representative of the conditions in the area of interest as much as possible. A dataset of 668 shallow landslides that occurred345

between 1997 and 2012 in Switzerland has been created by the Swiss Federal Office for the Environment (Rickli et al., 2019).

Statistical information on the landslides can be seen in Fig. 4. We assume the properties in this inventory to be representative
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for shallow landslides in Switzerland. All landslides are triggered by rainfall and the majority of the landslides are shallower

than 1.5 m (Fig. 4). The landslides in the StA and Trub area took place in 2005 during or shortly after heavy rainfall in August.

The landslides in the Eriz area from 2012 are related to heavy rainfall in July. Exact precipitation amounts and intensities are350

unknown. The data is formatted with centre points and surface area of the shallow landslide initiation area. In our analysis we

assume they have an elliptical shape.

Figure 4. Overview of landslide properties for the studied regions. Top row: mean soil thickness (left) and the surface area (right) of the

shallow landslide (SL) for the test areas and the total inventory; bottom row: mean slope (left) and mean TWI (right). The box plots show the

25, 50 and 75 percentiles, the whiskers extend to 1.5 times the length between the 25 and 75 percentile. Outliers are marked as circles. The

TWI was extracted from the TWI raster cells that lie inside the landslide inventory polygons.

The inventory is used to estimate the parameters for the surface area distribution used in SlideforMAP (equation 6), via

minimization of the RMSE between observed frequencies and theoretical frequencies. The estimated values of the parameters

are: a = 1.40, ρ = 1.5-4 m2, s = 4.28-8 m2. In addition, the inventory is used to calibrate the a and b parameters for the soil355

thickness correction factor as used in equation 7. For the fitting (Appendix, Fig. A2) of the correction factor we use classes

of inclination of 2.5 degrees and the soil thickness values corresponding to 95th percentile. This best fit for equation 7 was

obtained with the values of a = 1.47 and b = 0.50.
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3.4 Model calibration and sensitivity analysis

The model has a total of 21 parameters that are derived from observed data, from literature or that are set to default values;360

their values, given in Table 1, are not further varied in the model behavior analysis due to their assumed low variance. The

remaining parameters can potentially influence the landslide probability, mostly given their variation as observed in nature.

These parameters are: Imin, lwr, c, α1, β1, α2, β2, Dtrees,max, ρtree, ρwater. The remaining 12 parameters are then calibrated by

Monte Carlo simulation, drawing a high number of parameter samples for all calibration parameters and evaluating the corre-

sponding model performance based on the Area Under the Curve (AUC) method (Metz, 1978; Fawcett, 2006). We hereafter365

first present the used performance evaluation method, followed by the parameter sampling method used for the calibration as

well as for the sensitivity analysis. In addition, we present four vegetation parameter scenarios that are developed to test the

potential influence of vegetation. Due to the limited size of the landslide inventory, we do not include an independent validation

of SlideforMAP.

3.4.1 Model performance evaluation370

The basis of the application of the AUC method is a spatial representation of the landslide inventory in a boolean raster (0 = no

past landslide present, 1 = past landslide present). For each randomly generated parameter set, the simulated Pls (section 2.8)

is also converted to a boolean raster, by selecting a threshold to assign 0 or 1. Overlaying the inventory raster on the modelled

raster, results in a confusion matrix with four possible combinations, as shown in Table 4.

Table 4. The confusion matrix, resulting from the comparison of a reference boolean raster and a raster corresponding to a simulation.

Model

True False

Inventory
True True positive (TP) False negative (FN)

False False positive (FP) True negative (TN)

A so-called Receiver Operator Curve (ROC) can be obtained by computing the values of the confusion matrix for all unique375

values in the simulated raster as threshold values and for each plotting the sensivitiy, TP/(TP+FN), against the specificity ,

TN/(TN+FP). The area under the ROC curve is the AUC and defines the accuracy of the model on a scale of 0.5 - 1.0, where

0.5 is being no better than a random guess and 1.0 is a perfect prediction.

3.4.2 Parameter sampling and qualitative sensitivity

The parameter samples for the Monte Carlo-based model calibration and the subsequent sensitivity analysis are generated using380

the Latin Hypercube Sampling (LHS) technique (McKay et al., 1979). This makes use of semi-random samples of variables

over pre-defined ranges. The outcome of a Monte Carlo-based calibration is highly influenced by the ranges chosen for the

parameters. For this reason, parameter ranges were chosen as realistically as possible. To estimate the parameter ranges for
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soil properties, soil types in USCS classes are taken from the shallow landslide inventory (a total of 377 had their soil type

listed). Soil types present more than ten times are taken into account and aggregated into a hybrid table of soil cohesion and385

angle of internal friction values per soil type based on the values given in the work of Dysli and Rybisar (1992) and VSS-

Kommission (1998) (see Appendix, Table A1). In order to obtain a realistic range for the soil cohesion, first the mean soil

cohesion (weighted on USCS soil type occurrence) is computed and then the weighted standard deviation is subtracted and

added twice to the weighted mean. This is to account for 95% of the variation in the observed soil cohesion (assuming a normal

distribution). The same procedure is performed for the angle of internal friction. The range of transmissivity values is obtained390

by taking the saturated hydraulic conductivity from the work of Freeze and Cherry (1979) for the respective soil classes and

by multiplying these saturated hydraulic conductivities with the minimum and maximum soil thickness of the soil class. From

the resulting list of possible transmissivity values per soil class, the minimum and maximum are taken for the LHS range. For

the precipitation intensity, four depth duration values are defined. These correspond to a duration of 1 hour and 24 hours with

subsequent return periods of 10 and 100 years. The duration of 1 to 24 hours is in line with the SlideforMAP assumption of395

quick macropore-flow dominated lateral groundwater flow. The return periods of 10 and 100 years were chosen arbitrarily in

line with forest management timescales. Precipitation intensities are computed using data from the work of Jensen et al. (1997)

and the methodology as described in the work of HADES (2020). An overview of the intensity - return period rainfall values

is given in Table 5.

Table 5. Rainfall intensity [mm/h] for specific duration and return periods, used to define the boundaries in the sensitivity analysis D =

duration, T = return period.

D = 1 h D = 1 h D = 24 h D = 24 h

T = 10 y T = 100 y T = 10 y T = 100 y

Eriz 32 48 4 5

Trub 30 42 4 5

StA 30 43 4 4

The R-script implementing the sampling methodology and a description is included in the supplementary material. The min-400

imum and maximum value from Table 5 are used as the range in the sensitivity analysis (Table 6). The maximum value for

vegetation weight is taken from a biomass study in Switzerland by Price et al. (2017). For the other parameters, realistic ranges

have been assumed. In Table 6 an overview is given of the tested parameters and the ranges used to generate the parameter

samples. The precipitation intensity and transmissivity together determine the saturation degree of the soil (equation 12) and

are therefore prone to equifinality. We grouped them as an additional parameter, the I/T ratio.405
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Table 6. Parameters used in the SlideforMAP qualitative sensitivity analysis and corresponding ranges for parameter sampling via LHS.

RRmax and Wveg are given as spatially uniform parameters and not computed by the methodology in section 2.5. This is to create scenarios

that are comparable with and without single-tree detection.

Parameter Unit Description LHS Range

ρls m-2 Density of the randomly generated landslides 0.02 - 0.10

ρsoil kg/m3 Dry soil density 1.00 - 1.50

md m Mean soil thickness 0.20 - 1.80

σd m Standard deviation of the soil thickness, as a fraction of md 0.00 - 0.50

mC kPa Mean saturated soil cohesion 0.00 - 12.5

σC kPa Standard deviation of the soil cohesion, as a fraction of mC 0.00 - 0.50

mφ
◦ Mean angle of internal friction 24.00 - 41.50

σφ
◦ Standard deviation of the angle of internal friction 0.00 - 5.00

T m2/s Soil transmissivity 10-8 - 10-3

I mm/h The precipitation event that is tested 4.0 - 48.0

I/T m-1 Ratio between precipitation and transmissivity 8.9-3 - 1390

RRmax N/m Maximum lateral root reinforcement 0.00 - 15.0

Wveg tonne/m2 The weight of the vegetation 0.00 - 0.10

For the model calibration and qualitative sensitivity analysis, 1000 LHS parameter sets were generated per study area by

drawing samples from the ranges in Table 6. The number 1000 was chosen arbitrarily for computational constraints. The

vegetation is set to a global uniform vegetation, which results in constant root reinforcement and vegetation weight in space.

This is necessary because the same runs are used for model calibration and for model sensitivity analysis, where we need

such uniform vegetation to ensure that the sensitivity of the (hypothetical) vegetation has an effect on all raster cells of the410

whole study area (and not only on the actually vegetated cells). The parameter set with the highest AUC value is retained for

model calibration. In addition, all 1000 parameter sets are used for a qualitative sensitivity analysis. The response variables are

the AUC as a measure for accuracy and the ratio of unstable landslides as a measure for instability. The AUC is chosen for

the sensitivity analysis as the main response variable since it expresses the performance relative to the independent landslide

inventory. We then consider AUC as a generalized measure of parameter likelihood (Beven and Binley, 1992) and assess how415

selected best parameter sets (e.g. the best 10 % out of the 1000 sampled sets) are distributed (parameter subsampling).

3.4.3 Vegetation parameter scenario analysis

SlideforMAP has potential in testing the effect of different vegetation scenarios on the landslide probability. For this research,

besides the reference scenario for model calibration and sensitivity analysis (global uniform vegetation), three additional sce-

narios are tested: i) without vegetation, ii) with uniform vegetation in forested areas and iii) with a fully diverse vegetation420
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based on single-tree detection. The single-tree version uses the input data as mentioned in section 3.2. The forested areas are

defined as areas where the single tree detection method leads to a lateral root reinforcement (Fig. 9) which is not equal to zero.

4 Results

4.1 Sensitivity analysis

We use the 1000 model simulations corresponding to the 1000 generated parameter sets per study area for a sensitivity analysis425

of the model. The objective of this analysis is to quantify how the distribution of AUC values and of the landslide probability

vary as a function of the parameters. Applying the parameter subsampling technique (see section 3.4.2), we see that for some

parameters, the histogram shape (i.e. their marginal distribution) does not significantly deviate from the initial uniform distri-

bution (from which we sampled), even if we retain only the best 10% (in terms of AUC) of all parameter sets (Fig. 5). This

apparent lack of sensitivity does not necessarily mean that the model is not sensitive to this parameter; in fact, the sensitivity430

could be hidden by strong parameter correlation (see Bárdossy, 2007, for a discussion of how uniform marginal distributions

can result from strong parameter correlation). Our addition of the I/T ratio gives a hint at such behaviour. From Fig. 5 it appears

that the sensitivity to AUC of the I/T ratio is slightly stronger than either the precipitation or transmissivity independently.

Some parameters, in exchange, show very strong sensitivity of their marginal distributions if only the best (in terms of AUC)

parameter sets are retained. For the Trub case study (Fig. 5), we see that the mean thickness md, the mean cohesion mC, the435

I/T ratio and the transmissivity show a well defined maximum around the parameter values retained for calibration (the best

performing ones). This suggests a good sensitivity of the model to these parameters in terms of model performance. Two of

these three parameters also show a clear sensitivity if we retain subsamples that lead to successively higher unstable landslide

ratio (Fig. 6): high unstable ratios are obtained for high md values or for low mC. Also for RRmax, highest ratios are clearly

obtained for low lateral root reinforcement values (for all three case studies, Fig. 6, Supplementary Material S-2, S-4). For440

transmissivity, while it shows a clear effect on model performance, the relation between its marginal distribution and the ratio

of unstable landslides is less visible.
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Figure 5. Histograms of different subsamples of the LHS parameter sets for the Trub study area. The shading (from light to dark) corresponds

to subsamples retaining only the x% highest parameter sets in terms of AUC; the shown fractions are: 1, 0.7, 0.4, 0.1.

Figure 6. Histograms of different subsamples of the LHS parameter sets for the Trub study area. The shading (from light to dark) corresponds

to subsamples retaining only the x% highest parameter sets in terms of Unstable ratio; the shown fractions are: 1, 0.7, 0.4, 0.1.

4.2 Model calibration

Based on the generated 1000 parameter sets, we identified the parameter set that resulted in the highest AUC value and assumed

this to be an optimal calibration of the model. These calibrated parameter sets for each study area and their AUC values are445

shown in Table 7 together with the ratio of generated HLs that are unstable.
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Table 7. Outcome of the Monte Carlo-based calibration: the parameter sets per study area resulting in the highest AUC value. The last row

shows the ratio of unstable HL resulting from these parameter sets.

Parameter Eriz Trub StA

ρls 0.095 0.041 0.093

ρsoil 1.40 1.20 1.49

md 1.62 1.02 1.78

σd 0.32 0.13 0.31

mC 4.29 1.75 2.51

σC 0.43 0.32 0.30

mφ 34.0 29.3 26.0

σφ 0.37 1.39 0.92

Parameter Eriz Trub StA

T 0.000148 0.000473 0.000582

I 40.3 24.2 14.0

I/T 0.077 0.014 0.007

RRmax 12.3 4.7 10.3

Wveg 0.05 0.02 0.03

AUC 0.924 0.940 0.693

Unstable ratio 0.197 0.308 0.387

Parameter consistency between the study areas appears to be visible in ρsoil,md,mC, σC,mφ, σφ, T andWveg. Other parameters

show stronger variation, relative to their LHS range, between case studies. A realization of the shallow landslide probability

computed with SlideforMAP for the three areas with their calibrated parameter set is given in Fig. 7.
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Figure 7. Overview of the landslide probability of the study areas simulated with the calibrated parameter sets of Table 7. Added as blue

points are the observed landslides from the inventory.

In general, the model represents well the spatial distribution of the shallow landslides from the inventory. A cumulative plot of450

the shallow landslide probability for the study areas based on Fig. 7 is given in Fig. 8
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Figure 8. Cumulative plots for shallow landslide probability in the study areas, derived from the results in Fig. 7.

4.3 Mechanical effects of vegetation

To test the impact of vegetation on the model behavior, we compare the different vegetation scenarios. The spatial distribution

of lateral root reinforcement, resulting from single tree detection and SlideforMAP, is given in Fig. 9.
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Figure 9. The spatial distribution of maximum root reinforcement (equation 8) in the study areas as used in SlideforMAP. Source of hillshade:

Federal Office of Topography Swisstopo (Swisstopo, 2018)

The selected vegetation scenarios (no vegetation, global uniform vegetation, forest area uniform vegetation, single tree detec-455

tion) affect the computation of the vegetation weight, the lateral root reinforcement and the basal root reinforcement. The latter

is due to its dependence on lateral root reinforcement (equation 11). Accordingly, the vegetation scenario has a direct impact

on SF (equation 1, 3, 4) and on Pls (equation 14). For the analysis, we use the optimal parameter set from Table 7, obtained for

a global uniform vegetation cover. The model runs are repeated 10 times to produce an average result and to show the variation

from the probabilistic approach. Due to sampling from distributions, every realization produces a (slightly) different result. The460

resulting influence of the selected vegetation scenarios on AUC and on the ratio of unstable landslides is given in Table 8. The

results from Table 8 and Table 9 display that the model is sensitive to the vegetation scenarios and that it predicts lower ratios

of unstable ratios for vegetated scenarios as compared to the unvegetated scenario. This underlines the value of the model for

future scenario analyses.
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Table 8. AUC and unstable ratio under different vegetation scenarios with the optimal parameter sets of Table 7 and averaged over 10 runs.

The "Overall" is composed of the mean value of all three study areas. In the global uniform vegetation scenario, the reference scenario is

used during parameter optimisation.

AUC Unstable ratio

Overall Eriz Trub StA Overall Eriz Trub StA

mean

Global uniform vegetation 0.808 0.910 0.844 0.669 0.299 0.197 0.311 0.388

Forest area uniform vegetation 0.801 0.901 0.861 0.641 0.400 0.250 0.371 0.580

Single tree detection 0.831 0.925 0.925 0.644 0.336 0.199 0.217 0.593

No vegetation 0.785 0.880 0.854 0.622 0.475 0.309 0.413 0.704

Std. dev.

Global uniform vegetation 0.017 0.007 0.029 0.016 0.001 0.000 0.001 0.002

Forest area uniform vegetation 0.021 0.008 0.039 0.016 0.001 0.000 0.001 0.002

Single tree detection 0.012 0.005 0.011 0.021 0.001 0.001 0.001 0.001

No vegetation 0.025 0.013 0.044 0.019 0.002 0.001 0.002 0.002

ROC curves corresponding to the scenarios with repetitions as presented in Table 8 are given in Fig. 10. Significance of the465

differences between vegetation scenarios from Table 8 as given in Table 9.

Figure 10. ROC curves of the 10 runs per vegetation scenarios from Table 8. Orange: Global uniform vegetation, light green: Forest area

uniform vegetation, Dark green: Single tree detection, Brown: no vegetation. Corresponding study areas from left to right are: Eriz, Trub and

StA.
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Table 9. Significance of the difference in distribution between results of vegetation scenarios at a 90 and 99 % confidence level. Scenario

names are shortened. Significance measured by Welch’s t test (Welch, 1947). T (True) indicates a significant difference, F (False) indicates

no significant difference. Three indicator per cell are related to the three study area, ordered as: Eriz, Trub, StA.

99%

Global Forest Single No

90%

Global - T,F,T T,T,T T,F,T

Forest T,F,T - F,T,F T,F,F

Single T,T,T T,T,F - T,T,F

No T,F,T T,F,T T,T,T -

5 Discussion

It is important to point out that the inventory to which the model performance is calibrated plays a key role in all the results

discussed below. The inventory was obtained after triggering rainfall events, for which the precipitation intensity, duration

and the spatial distribution are not known precisely. Despite this shortcoming, the inventory represents a unique source of470

information and the spatial localisation of the landslides can be assumed to be of high quality. Below, we discuss the model

behavior as a function of the different model parameter groups and the performance of the model and give directions for future

research.

5.1 Soil parameters

The best performing parameter sets show high values for the soil thickness for all study areas (by comparing the values of475

Table 7 and Table 6). The qualitative sensitivity analysis (Fig. 6) also shows that the highest unstable ratios are obtained for

highest soil thicknesses; this indicates that a certain minimum soil thickness is required for landslide triggering, which is in

line with previous findings by D’Odorico and Fagherazzi (2003) and by Iida (1999). In these studies, soil thickness is noted as

the conditional factor for landslide triggering along with precipitation intensity and duration. The best performing parameter

sets display cohesion values with a clear tendency to low values for all three study areas (Fig. 6, Supplementary Material S-4,480

S-2), which suggests that the observed landslides can only be reproduced with low soil cohesion for all case studies. The mean

angle of internal friction appears to show consistency for a low value (Table 7). The sensitivity of the AUC and unstable ratio

on the angle of internal friction, however, appears to be small (Fig. 6 and Fig. 5).

5.2 Hydrological parameters

Soil transmissivity showed considerable sensitivity to the AUC (Fig. 5) and the values are consistently high for all three485

case studies for the parameter range (Fig. 7), which is a hint that a correct estimation of soil transmissivity is paramount

for a reliable estimate of shallow landslide occurrence. Regarding precipitation intensity, we see variability between the best
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values for the three case studies and minor univariate sensitivity of the model performance or the model output (ratio of

unstable landslides). The application of the TOPOG approach has the major shortcoming that it assumes a groundwater gradient

parallel to the surface gradient. It has been shown in the past that this assumption decreases the accuracy of water content490

simulations as compared to distributed dynamic hydrological models (Grabs et al., 2009). However, as discussed earlier, it has

also been shown in the past that macropore flow is omnipresent in landslide triggering and SlideforMAP has been parameterized

assuming an important role of macropore flow. In macropore-driven systems, steady state groundwater flow can be reached (see

Introduction), which implies that the TOPOG assumption holds well in this case. Due to the lack of detailed meteorological

data, the precipitation intensity and duration is unknown. This makes computation on the exact pore pressure during the495

landslide event impossible. The precipitation intensity / transmissivity ratio (I/T ) is assumed to include both precipitation

intensity and transmissivity sensitivity. This is reflected in Fig. 5 and Fig. 6. The calibrated values for I/T ratio and subsequent

pore pressure computation should be regarded as a measure for landslide propensity. In the landslide inventory underlying the

study here, the dominant soil types are GM (silty gravel), GC (clayey gravel) and CL (low plasticity clayey silt); accordingly.

Due to large pore size, we can assume that the TOPOG assumptions are valid for a wide range of the domain (for GM and GC500

soil type), even if it probably holds less well for the CL soil types.

5.3 Vegetation

A key aspect of the model is the use of single tree detection to parameterize vegetation, a method that was previously found by

Menk et al. (2017) to be reliable to detect single trees and derive their DBH’s from the detected tree heights for sloped forests.

As mentioned in Section 3.2, we found for the selected case studies that single tree detection provides the best results in terms505

of correct number of trees counted if applied on a 1 m resolution DSM with a 3 cell kernel Gaussian filter. This is in line with

the results of Menk et al. (2017) who found in a similar scenario-testing approach that a 1 m resolution DSM with no Gaussian

correction provided the most accurate results, noting, however, that the difference in performance between these two methods

(with and without Gaussian filter) is small. In SlideforMAP, we do not only consider basal but also lateral root reinforcement.

This is unique for shallow landslide probability models. As shown in the sensitivity analysis (Fig. 6), RRmax has a clear effect510

on the ratio of unstable landslides, with low values leading to high ratios. In the SlideforMAP workflow and calibration, a

fixed relationship between the lateral and the basal root reinforcement is assumed, accordingly, the model sensitivity cannot be

attributed to Rlat or Rbas. Mobilization of the lateral root reinforcement in the SlideforMAP workflow is independent of time

and not countered by passive earth pressure. A shortcoming in this parameterization of the effect of vegetation is the assumption

of uniform forest structure and a uniform tree species (beech) within a landslide area. The field recordings in the StA area of515

Moos et al. (2016) show that the forest consists mainly of Norway spruce. For the Trub and Eriz area, visual interpretation of

aerial photos allowed us to identify mixed forests with Norway spruce and beech. The latter are known for having a high root

reinforcement and therefore the beech assumption will overestimate both the lateral and the basal root reinforcement (Gehring

et al., 2019). Vegetation weight shows no clear relation to both the AUC and the unstable ratio (Fig. 5, Fig. 6). However,

this does not mean that vegetation weight does not influence the response variables. The relationship could depend on other520

parameters and therefore obscured (Bárdossy, 2007). In contrast to the soil and hydrological parameters, vegetation configures

29



both the magnitude and the spatial pattern of the probability. Vegetation can be modified by land management practices with

relative ease (Amishev et al., 2014) and is therefore of ultimate importance in shallow landslide mitigation.

5.4 Implementation of the mechanical effects of vegetation

In Table 8 it can be seen that the vegetation scenario has a considerable impact on the modelled unstable ratio for all study525

areas. Unstable ratio is lowest in the single tree detection scenario for the Trub study area. In the StA and Eriz study area, it

is the lowest for the uniform vegetation. We assume this is caused by the low calibrated uniform root reinforcement in Trub

and a higher value in the other study areas (Table 7). Both single-tree detection and uniform vegetation are determined to have

the ability to decrease instability. From a practical perspective vegetating parts of a study area is more realistic than uniformly

vegetating the whole area. Influence of the vegetation scenario on the AUC is present, with an absolute mean increase of 0.023530

AUC points between single tree detection and uniform vegetation and to forest uniform vegetation and unvegetated of 0.030

and 0.046 AUC points respectively (Table 8). Additionally the performance improvement can be described relatively in terms

of percentage of extra AUC gained (AUC range from 0.5 - 1.0) between two vegetation scenarios. For the overall single tree

detection compared to uniform vegetation, forest uniform vegetation and no vegetation this is 8%, 10% and 16% respectively.

Results in Table 9 show that the differences are relevant for the uniform scenario in all study areas at both a 90% and 99%535

confidence level. The difference between single tree detection and no vegetation is relevant for all confidence levels and study

areas except for the StA study area at 99% confidence. The difference between single tree detection and forest uniform is more

ambiguous, with notably a significant difference at a 90% confidence level in the Trub and Eriz study area. This is likely related

to the forest uniform scenario being most close to single tree detection in the distribution of root reinforcement of all scenarios.

In both Eriz and Trub, the single tree detection is the best performing scenario. Our overall finding that the model output is540

sensitive to the vegetation scenario and gives second lowest values in unstable ratio and highest values in AUC for single-

tree detection. We argue that even though the model is calibrated on a global uniform vegetation scenario (Table 7) and

the single-tree detection gives a significantly better overall performance, single tree detection is more accurate in assessing

shallow landslide susceptibility (Table 8 and Table 9). Adding to this explanation is that in these study areas, where slope

angle is a highly predictive factor, even marginal gains in AUC due to vegetation are important and the result of extensive545

parameterization. Our analysis is in line with the findings of Roering et al. (2003), who state that single tree based modelling,

including the tree dimensions, has the highest accuracy in the prediction of shallow landslides. Moreover, Vergani et al. (2014)

state that a site specific estimation of vegetation and root extent is essential in the correct estimation of root reinforcement.

5.5 Model performance

As pointed out by Corominas et al. (2014), the absolute values of AUC are dependent on the characteristics of the study area.550

In larger areas, with low overall landslide activity, the AUC will overestimate the predictive performance. This most likely

explains why the StA study area has a low overall AUC compared to Eriz and Trub (Table 8). In particular, StA study area

shows a higher prevalence of steep slopes. The Trub and the Eriz study area show both relatively high AUC values, indicating

high model performance, with very similar AUC values; this is in agreement with a similar occurrence of steep and gradual
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slopes in these areas. Another explanation for the discrepancy in model performance between the study areas could be the555

assumption that all trees are beech trees. This does not hold equally well for all three study areas. Based on visual inspection

and on elevation, the mismatch between actual vegetation and this assumption is probably most pronounced in the StA area,

where the dominant tree species appears to be Spruce. Though no published data is available, it can be estimated from the

work of Moos et al. (2016) that the root reinforcement of a spruce forest is lower than that of a beech forest, but this cannot

confirmed by our parameter analysis at this stage.560

A comparison between the shallow landslide density (Table 2) and the calibrated unstable ratio (Table 7) shows moderate

consistency. The Eriz and Trub study areas have a low unstable area corresponding to a low shallow landslide density. StA both

has a higher landslide density and higher unstable ratio. From the consistency in Table 7 and the sensitivity analysis results

of Fig. 5, it can be concluded that the main configuration of the model lies in the parametrization of the mean soil thickness,

the mean cohesion and the I/T ratio. In addition, the vegetation scenario strongly influences the model performance and is565

of high influence on calculated shallow landslide probability (Table 8). Equifinality between the parameters in the qualitative

sensitivity analysis is likely as it is very common in similar multi-parameter modelling (Beven and Binley, 1992). However,

we believe, the sensitivity as observed in Fig. 5 is valid and a qualitative indicator for important parameters in SlideforMAP.

The calibrated optimal parameter set (Table 7) is still within realistic bounds as is the ranges for the sensitivity analysis. In

addition, the calibrated combination of mean friction angle (26 - 34 ◦) and mean soil cohesion (1.75 - 4.29 kPa) are possible,570

according to Supplementary material Table A1. Finally, we would like to add here that the case study dependence of the used

model performance measure is a limitation that typically occurs for all model performance measures that compare the model

behavior to some reference model (Schaefli and Gupta, 2007) (the reference model for AUC is a random process). Accordingly,

we cannot compare the performance of SlideforMAP to other published AUC values despite of the fact that values above 0.8

are considered as indicating good performance (e.g. Xu et al., 2012).575

5.6 Comparison to other slope stability models

The main advantage of SlideforMAP to other models is the more realistic approach to implement root reinforcement. It includes

a spatial distribution in both the basal and lateral root reinforcement and the focus on second stage of the activation phase in

accordance with the Root Bundle Model as described in Gehring et al. (2019). Compared to previous slope stability models

that include the effect of root reinforcement, SlideforMAP uses a more realistic implementation of root reinforcement based580

on recent knowledge of shallow landslides triggering mechanisms and root reinforcement activation (Schwarz et al., 2012,

2013; Cohen and Schwarz, 2017). In particular, only part of the lateral root reinforcement under tension is considered for the

force balance calculation. Moreover, the spatial distribution of root reinforcement as function of forest structure is included.

The assumptions made in SlideforMAP allow a probabilistic calculation at regional scale that are not possible with more

complex models such as SOSlope (Cohen and Schwarz, 2017). In comparison to more simple models based on infinite slope585

calculations (Pack et al., 1998; Montgomery and Dietrich, 1994, SINMAP,SHALTAB), SlideforMAP considers the effect of

lateral root reinforcement on landslide of different sizes. SINMAP with a homogeneous root reinforcement is comparable

to our global uniform vegetation scenario (Table 8). A version of SINMAP with no root strength is comparable to our no
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vegetation scenario. When no vegetation data is available or complexity is not desired, these are valid option to assess shallow

landslide susceptibility in a probabilistic way.590

A hydrological and slope stability model identical to SlideforMAP is applied in Montgomery et al. (2000), which is used to

estimate sediment yield resulting from forest clearing. This is comparable to our global uniform vegetation scenario as well.

Their result of a high significance of root reinforcement is in line with our findings. Other differences in the model approach

are the assumption of fixed landslide dimensions, including soil thickness. In addition, the root reinforcement is assumed to act

around the full perimeter of the landslide. In its approach, SlideforMAP shares many similarities with PRIMULA, as devel-595

oped by Cislaghi et al. (2018), which applies a probabilistic approach and a spatially distributed root reinforcement as well. the

PRIMULA root reinforcement is based on a stand scale approach rather than single-tree detection though. The AUC values in

this paper are higher, but that could be the result of different characteristics of the study areas and our parameter optimization

by the qualitative sensitivity analysis. Other differences as compared to PRIMULA are their assumption of lateral root rein-

forcement along the entire landslide perimeter, the inclusion of lateral soil cohesion simultaneously with lateral root cohesion,600

the assumption of rectangular shaped landslides rather than elliptical ones and a different landslide surface area distribution.

3DTLE (Hess et al., 2017) is a deterministic landslide susceptibility model with a similar detailed spatially heterogeneous

inclusion of root reinforcement. Differences are their deterministic approach and the assumption of a simultaneous maximum

of tension and compression forces.

5.7 Future research605

SlideforMAP uses a relatively simple hydrological module to estimate soil saturation. The used TOPOG approach could be

improved and multiple papers have presented simple to more advanced rewriting of formulas (e.g. Beven and Freer, 2001;

Blazkova et al., 2002). Common denominator is the inclusion of time dependency, since the stationary flow assumption rarely,

if ever, holds in nature. This time dependency is a solution to simulate a different response to a precipitation event at different

locations within a study area. Future work could also focus on improving the vegetation module by including different tree610

species (those that are often used in protection forest) in the parametrization of lateral root reinforcement (equation 10).

For practical application of SlideforMAP we have not found a specific lower boundary in landslide density, to still generate

reliable results. More specific testing on this would be useful for future application of SlideforMAP. A comparison between

SlideforMAP and SHALSTAB and/or SINMAP would be interesting. It can validate whether the uniform vegetation scenario

in SlideforMAP produces similar results to these models in terms of shallow landslide probability. Finally doing a validation615

over study areas with a larger shallow landslide inventory would be a vital procedure to further analyze the SlideforMAP

model.

6 Conclusions

In this paper, we present a probabilistic model to assess shallow landslide (landslides with a scar thickness < 2 m) probability.

The main motivation to develop yet another model is to provide a detailed inclusion of the influence of root reinforcement. Its620
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application is illustrated based on three mid-elevation case studies from Switzerland, for which a detail landslide inventory is

available. The model has a total of 21 parameters, of which 12 are calibrated using the AUC of the Receiver Operator Curve as

performance measure to identify the best parameter set among a large set generated using Latin hyper cube sampling. The AUC

maximum values for the three study areas vary between 0.64 and 0.93 under a single tree detection vegetation scenario, which

reflects an overall good model performance. Our model parameter analysis has shown that soil thickness, precipitation intensity625

to transmissivity ratio and soil cohesion, are the key parameters to predict slope stability in the studied mountainous regions.

A major focus of the presented work was the assessment of the model’s ability to study scenarios of vegetation distribution.

Comparison of different scenarios ranging from uniform to single-tree detection-based vegetation clearly showed that the model

output, in terms of shallow landslide probability, is sensitive to the spatial distribution of vegetation. Additionally, in two of our

three study areas, the single-tree detection scenario provides significantly (Welch’s t test confidence > 99 %) higher AUC values.630

Accordingly, the model is fit for future scenario analysis, including e.g. different protection forest management scenarios. In

fact, a single-tree scale model parameterization provides the opportunity to run hypothetical vegetation scenarios reflecting on

small scale managements strategies or disturbances. Future improvements in the hydrological approach, concerning a more

catchment based approach to compute saturation degree, could likely further improve the performance of SlideforMAP.

Appendix A: Appendix635

Figure A1. Plot of the probability density of the soil thickness data from the BAFU dataset as used in this paper. The best fit is given of a

normal and a log-normal distribution. The mean square errors are 0.096 and 0.053 for the normal and log-normal fit respectively.
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Figure A2. Shallow landslide Slope soil thickness relationship as used in this research. Boxplots are classes with a width of 2.5 Slope units.

The red dots are the 95th percentile per class. The red line is the fit of equation 7 to the 95th percentiles.

Table A1. The hybrid table for the soil cohesion and angle of internal friction for the relevant set of USCS soil classes. Derived from

laboratory experiments (VSS-Kommission, 1998; Dysli and Rybisar, 1992) and combined in this research to exclude values that seemed

unrealistic.

USCS soil class Mean soil cohesion Std. dev. soil cohesion Mean friction angle Std. dev. friction angle

SM 0 0 34.5 5.0

CL-ML 0.4 1.3 32.7 4.8

GM 0.0 0.0 35.0 5.0

GC-GM 5.0 5.0 33.0 3.0

CL 6.2 11.3 27.1 5.2

OL 2.5 5.0 32.8 2.2

GC 20.0 52.9 31.4 3.6

Data availability. All data used in this research is open data. The topographical data and the landslide inventory as used in this research are

published on Zenodo
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